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ABSTRACT 

 

Motion estimation has been dominated by time domain methods such as block matching 

and optical flow.  However, these methods have problems with multiple moving objects 

in the video scene, moving backgrounds, noise, and fractional pixel/frame motion.  This 

dissertation proposes a frequency domain method (FDM) that solves these problems.  

The methodology introduced here addresses multiple moving objects, with or without a 

moving background, 3-D frequency domain decomposition of digital video as the sum of 

locally translational (or, in the case of background, a globally translational motion), with 

high noise rejection.  Additionally, via a version of the chirp-Z, fractional pixel/frame 

motion detection and quantification is accomplished.  Furthermore, images of particular 

moving objects can be extracted and reconstructed from the frequency domain.  Finally, 

this method can be integrated into a larger system to support motion analysis. 

The method presented here has been tested with synthetic data, realistic, high fidelity 

simulations, and actual data from established video archives to verify the claims made for 

the method, all presented here.  In addition, a convincing comparison with an up-and-

coming spatial domain method, incremental principal component pursuit (iPCP), is 

presented, where the FDM performs markedly better than its competition. 
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Chapter 1 

Introduction 

There is much interest in identifying, quantifying, and extracting objects within video 

sequences, as evidenced by the amount of space allocated to the subject in textbooks and 

papers on video processing [1, 2, 3, 4, 5, 6].  This subject is important to video 

surveillance, military and civil aerial reconnaissance, and security.  The crop of methods 

currently in vogue each have their own strengths, but they all share certain weaknesses – 

difficulty with moving backgrounds, platform motion, fuzzy focus, issues with noise, 

smooth surface texture, scene clutter,  and high computational costs. 

1.1 Motivation  

Current methods do not fare well when confronted with background motion, jitter in the 

platform, focus issues, and optical noise.  Block matching and optical flow [3] are very 

popular methods, and they also have similar issues.  To illustrate this, two examples are 

presented in way of explanation.  A 32 frame video segment was created using a 64x64 

pixel frame.  The blob was moved 1 pixel to from left to right.  It was first submitted to a 

classical block matching algorithm which had been modified so that lines proportional to 

the magnitude would be displayed and exaggerated so they would be visible.  It was then 

presented to a Horn-Shunck optical flow algorithm [7], modified in the same way so the 

motion vectors are visible.  The results are shown in Figures 1.1 and 1.2, below.  This 

examples show both block matching and optical flow failing to properly process the blob 

beyond the edges.  The failure is due to the lack of features inside the blob. 
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As can be seen, the vectors from the block matching don’t seem to have detected the 

motion properly.  Optical flow did better, but there are still several stray estimates.  The 

other issues mentioned are equally troublesome. 

1.2 Related Research 

Motion detection and quantification fall into two classes – spatial domain algorithms and 

frequency domain algorithms.  The vast majority of extant methods are spatial domain 

algorithms, including everything from background subtraction to analytical methods like 

PCA.  Frequency domain methods are not at all well represented in the literature, 

indicating the degree of difficulty encountered when working in that domain. 

1.2.1 Spatial Domain Methods 

Existing methods of motion estimation have been dominated by spatial domain 

techniques, as evident from the references previously cited above [1, 2, 3], most notably 

block matching and optical flow.  Some techniques use analytical techniques, such as 

principal component analysis (PCA), as seen in [8], but it remains a spatial domain 

Figure 1.1 Block matching failing to 

estimate the correct motion  

Figure 1.2 Horn-Shunck optical flow 

failing to estimate the correct motion 

with default parameters (MatLab 

implementation) 
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technique.  When multiple objects are expected, these methods often require either that 

the scene be subdivided so as to isolate the different objects from each other or to use 

some kind of classification technique to identify multiple objects.  Generally, these 

methods assume that the short video segments along with the typically short sampling 

interval provided by the frame rate allows the assumption of linear motion without 

rotation and for uniform illumination and texture.  All methods have shortcomings.  As 

block matching and optical flow are probably the most popular methods, they will be 

examined further here.  As PCA methods are gaining popularity they will also be 

discussed. 

Block matching starts by breaking up the reference frame into small blocks (on the order 

of 8x8 or 16x16 pixels), which are then compared to the analogous blocks in the next 

frame.  The method assumes that the motions are simply linear translations of a few 

pixels per frame in x and y; although just finding the translation of the reference block 

that matches the target block is usually sufficient, adding cross-correlation to the search 

makes it very robust.  This also is its weak point.  First, the exhaustive search of the 

target frame is computationally expensive.  Fractional pixel motions can be part of the 

search, but it is even more computationally expensive, so sub-pixel resolution is usually 

not done.  Block size is also an issue, as the smaller the block size, the more computation 

required.  If the block is too big, then it will include background; if the background is 

changing as well, the technique will find it difficult to identify what is going on with the 

mixed blocks.  This problem also occurs when two moving objects are passing by each 

other.  The technique also depends on the texture of the object.  If the object is uniform, 

and the blocks are small, the technique will detect the edges, but otherwise fail.  The 
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estimate will be noisy, as the boundary of the estimate will be blocky.  Finally, the 

technique is not very robust in the face of noise; it depends on the image being 

unchanged, except in location, frame to frame, and noise changes the texture of each 

block in a random manner, making comparisons more difficult.   

Optical compares reference pixels to target pixels, one to one, rather than block to block.  

Optical flow uses statistical and optimization techniques to determine the motion of the 

pixel field, from which the motion within the video is deduced.  The assumption here is 

that the intensity is consistent.  Sub-pixel motion is easier to estimate than with block 

matching.  However, optical flow is not very robust in the face of noise for the same 

reasons as block matching.  Worse, the video sequence can’t be denoised, because 

denoising alters the intensity and texture of the video frame by frame, violating the 

assumption of consistent illumination intensity.  As computationally expensive as block 

matching is, optical flow can be even more costly because it works at the pixel level, not 

with larger blocks.  Optical flow also suffers from the same issue as block matching when 

confronted by a uniform object, not having a texture to differentiate one pixel from 

another, even though motion estimation will likely work at the edges. 

Before moving on, it must be acknowledged that PCA based methods must be mentioned.  

The current popular method is called "Incremental Principal Component Pursuit via 

Alternating Minimization” (iPCP) [9, 10] which uses principal component analysis to 

model the foreground (i.e. the moving object) as well as the background.  As an analytic, 

spatial domain method, it eschews the frequency domain, but it is a very effective 

technique.  The main idea is that the slow or static pixels are assumed to be background 

and the fast pixels are assumed to be in the foreground and therefore the moving object.  
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It uses this information to inform and update models of the foreground and background in 

real time and thus separate the moving object from the background.  This implies a 

restriction to a single moving object.  The method doesn’t explicitly provide output 

products other than video output showing the foreground and background, but the data is 

present within the method.  Teasing out specific objects is problematic.  Code was 

obtained from the author’s web site and slightly modified to provide the data to allow for 

a direct comparison detailed in Chapter 5. 

1.2.2 Frequency Domain Methods 

The obvious alternative to spatial-domain methods is to use the frequency domain 

methods.  However, it would appear that the alternative path is more daunting, based on 

the lack of papers presenting methods based on the frequency domain.  It is perhaps the 

perceived difficulty involved in using such techniques that discourages researchers from 

trying.  

There are only three quality papers on frequency domain methods worth mentioning.  

They are examined here.  The papers present one of three approaches, two of which 

address the unique properties of the 3-D spectrum where the spectrum of a moving object 

in a video sequence will reside on a plane skewed at angles determined by its velocity.  

The rarity of reported research speaks to the difficulty of extracting motion estimates 

from the spectrum. 

One of the earliest examples of the use of frequency domain methods is reported by 

Kojima, Sakurai, and Kishigami [11].  It addresses the tilted plane property of the 

spectrum by using a frequency domain filter bank tuned to the estimated direction of 

motion.  Here, the notion that a direct search of the spectral volume would be too difficult 
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computationally is expressed.  Simulations using one and two moving objects were 

reported, as well as results with a video of a moving car on a fixed background.  The 

method depends on detecting the lines of intersection in the 0th spatial frequency plane 

and two other spatial frequency planes to establish a general direction and magnitude of 

the moving object to set the initial parameters of the filter bank.  When there are multiple 

objects, each tilted plane must be deduced and a filter bank must be computed to produce 

the estimate of motion for each object.  The difficulty here is that the resolution of the 

estimate is limited to the number of filters in the bank.  Also, there is the computational 

cost of discerning the initial orientation of each plane and then separating them from each 

other.  Noise rejection was cited as a topic of future work. 

This paper is a good start, but as they use a hybrid method based on a set of filters, its 

resolution limited by the size of the set.  Their method can be overwhelmed by 

background.   They also have no demonstrated robustness in the presence of noise.  This 

paper’s method was likely dictated by the computing power available in 1993.  The 

method introduced in this dissertation is limited only by the resolution of the transform 

used.  The proposed method will also handle moving backgrounds.   

The second method, reported by Briassouli and Ahuja [12], uses phase correlation 

between individual 2-D frequency planes and least-squares model fitting to detect and 

track motion as part of a hybrid method.  The results reported include both image 

sequences created by combining various real images and actual video sequences were 

used.  All examples appear to have had a static background.  Some examples had two 

moving objects.  Velocity estimates, robustness in the presence of occlusion, and the 

ability to extract images of the moving objects were demonstrated using synthetic and 
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real video sequences.  The ability to overcome partial occlusion and to detect and 

measure rotation was reported.  The authors discussed noise issues, but it appears that 

they generally assumed that the videos would be denoised before any other processing 

was done. 

Briassouli and Ahuja method nibbles around the edges of the problem by using the fast 

Fourier transform (FFT) to inform a least squares/correlation motion model fitting 

technique rather than doing a head-on estimate.  The reported method results in some 

sensitivity to noise and background.  To their credit, the authors deal with rotation; this is 

more difficult than just finding the object and assuming steady-state velocity with no 

rotation or zoom.  Their method may inform future work on the method presented here to 

extend it to deal with rotation, as well.  It is likely that this work was also limited by the 

computing power available in 2008, as well.  The method which is the subject of this 

dissertation essentially directly deduce the orientation of the plane, and thus obtains a 

superior estimate, unencumbered by the need to denoise or remove the background.   

The third method, offered by Alexiadis and Sergiadis [6], ultimately uses the tilt of the 

moving object plane in the motion estimate, but takes a distinctly different tack to 

identify them, in that the researchers use a hyper complex Fourier representation of color 

video coupled with an iterative, fuzzy optimization based method to detect and quantify 

moving objects within the video.  Results were presented using both synthetic sequences 

assembled from still images and actual video.  Sequences with static and with moving 

backgrounds were included as examples.  This method was used to decompose the 

images and separate the moving objects from the background.  The results reported are 

obtained at the expense of considerable computational cost, but are still impressive.  They 
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were able to deal with longer sequences where acceleration and zoom were present.  

Reversibility of the image decomposition was not demonstrated, however, and no results 

with noise were presented.  Noise rejection was to be the theme of future work.   

As impressive as their results are, the authors of paper three achieve their result at the 

cost of an algorithmically complex method that uses the 3-D hyper complex spectrum to 

inform the fuzzy clustering estimator.  They do have the advantage of being able to deal 

with acceleration and zoom; the methodology used in this paper may point to a way deal 

effectively with both by incorporating elements of this paper into the method presented in 

this dissertation.  It would seem that an algorithmically simpler direct estimator using 

optimization is more appealing, as provided by the method presented in this dissertation.  

The method presented in this dissertation also has demonstrated robustness in the 

presence of noise, the ability to effectively use expanded frequency resolution to improve 

the estimate, and the ability to perform a “perfect” decomposition that is reversible 

without loss. 

 

1.3 Thesis Statement 

This dissertation presents a novel and elegantly simple frequency domain based method 

for decomposition of digital video and analyzing translational motions mechanized by 

simple optimization as good as, if not superior to current spatial domain methods.  It is 

effective over a wide range of resolutions, including fractional pixel/frame accuracy.  

Examples will be presented using both integral fast Fourier transform (FFT) based 3-D 

spectra and enhanced, fractional pixel resolution 3-D spectra based on the chirp-Z 

transform.  It will be shown that the method is robust in the face of significant levels of 
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noise.  It will be shown that a variant of the core algorithm can be used to extract and 

reconstruct of objects (or even the background) based on its corresponding motion.  It 

will be shown that the method can be used in a practical setting by offering a synthetic 

object tracking application.  Finally, a comparison of the tracking accuracy of the 

frequency domain based tracking application and an application based on the up-and-

coming incremental principal component pursuit method. 

1.4 Contributions 

The contributions presented in this dissertation include: 

 Development of an elegantly simple algorithm that reliably identifies and 

quantifies one or more moving objects in a video segment using 3-D Fourier 

transforms and a straightforward optimization methods. 

 3-D frequency domain decomposition of digital video as the sum of locally 

translational motions. 

 The algorithm has been extended to provide for fractional pixel/frame resolution 

using a chirp-Z transform. 

 Demonstrated strong noise rejection. 

 Development of a method to extract and reconstruct the image of the moving 

object using a variant of the algorithm. 

 Development of a virtual tracking method to showcase the practicality of the 

algorithm. 
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1.5 Dissertation overview 

This section contains a brief description of the all the work that is presented in this 

dissertation. 

 Chapter 2 presents the details of the core algorithm and how it works, along with 

directly related methods. 

 Chapter 3 presents details the properties inherent in the algorithm – robust noise 

rejection and the ability to deal with multiple objects, and the related methods of 

image extraction and tracking. 

 Chapter 4 presents results of trials with real data, 

 Chapter 5 presents results of a direct comparison of the accuracy of the tracking 

algorithm versus tracking by the iPCP method. 

 Chapter 6 gives a summary and possibilities for future work.  
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Chapter 2 

 The Core Algorithm, the Foundation of a Family of Methods  

The core algorithm opens the door to several interesting methods.  Without the core, the 

others would be impossible.  One of the daughter methods, image extraction, is so tied to 

the basic concept that it will be presented in this chapter, as well.  The basic algorithm is 

an integer based method; however, a related method using a chirp-Z transform to provide 

fractional pixel/frame resolution will also be covered.  It is virtually identical, except for 

the use of the chirp-Z instead of the DFT. 

2.1 Frequency Domain Representation of Translation Motion 

The development of the 3-D Fourier transform presented here is loose paraphrase of the 

discussion found in Wang, Ostermann, and Zhang [13].  For a more complete treatment, 

please refer to a multidimensional signal processing book such as [14], to which Wang, 

Ostermann, and Zhang themselves refer.  An object within a video frame can be 

identified by the coordinates of its pixels.  The coordinates of a given pixel are going to 

be given in terms of x, y and f, for its (x, y) position within the frame f.  For the 

continuous case, which is developed below, “f” is replaced by “t” for time, as the 

continuous case ignores the fact that a video stream is made up of discrete frames without 

loss of generality.  The position of the entire object can be discussed in terms of the 

position of a selected pixel within the object.   For the purposes of a transform, the 

individual object is not a concern, but the entire frame, and, indeed, the entire video 

sequence, is considered.  So it is obvious that we are dealing with three levels of 

abstraction: the pixel, the object, and the frame.  Fortunately, anything deduced about an 
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individual pixel also applies to the object and the entire frame itself.  With a moving 

object, or even a moving frame as with background motion, the pattern changes in a way 

determined by the type of motion and captured in the spectrum, as will be shown. 

Consider the case of a single moving object on a neutral background.  Let the initial pixel 

pattern of the object be initially O0(x, y, t).  The object is moving at constant linear 

velocity v whose components are vx and vy, respectively.  Assume uniform illumination.  

These assumptions simplify the discussion again without loss of generality.   

Starting with the classical Fourier integral, the form for a 3-D video segment o(x, y, t) is 

      , , , , exp 2 , ,x y t x y tO f f f o x y t j f x f y f t dxdydt   .      (2.1) 

Here,  , ,
x y t

O f f f  is the Fourier transform of  , ,o x y t , and fx, fy and ft are the frequency 

components.  To show the most salient property to be noted, it is necessary to relate the 

transform back to a reference frame, which here is the initial frame.  The position of the scene, 

in terms of the initial position of the object, is 

   0, , ,x yo x y t o x v t y v t                                            (2.2) 

This initially seems contrary to common sense, but it is a necessary tactic to make the 

derivation show what it must show.  As can be seen, x-vxt = x0 and y-vyt = y0 so that the 

object’s pattern is translated back to the initial position.  Substitute equation 2.2 into 

equation 2.1 to get:  

              0, , , exp 2 , ,x y t x y x x y y tO f f f o x v t y v t j f x v t f y v t f t dxdydt          

(2.3) 



13 

 

Let 0 0 0 0, ,x yx x v t y y v t dx dx dy dy        .  Thus, 0 0,x yx x v t y y v t     .  

Substituting, we obtain 

         0 0 0 0 0 0 0, , , exp 2 ,x y t x x y yO f f f o x y j f x v t f y v t dx dy                             

  exp 2 x x y y tj f v f v f t dt    .        (2.4) 

The first factor in equation 2.4 (the double integral) is, in fact, the 2-D Fourier transform 

of the initial frame.  Using the substitution is what makes this possible.  Equation 2.4 

becomes 

       0, , , exp 2x y t x y x x y y tO f f f O f f j f v f v f t dt       (2.5) 

where O0 is the 2-D transform of the initial frame, as stated above.  The last step involves 

an identity involving the delta function.  Since 

    0 0exp 2
K

T

R

j f x dx f  ,        (2.6) 

equation 2.5 becomes: 

      0, , ,x y t x y x x y y tO f f f O f f f v f v f         (2.7) 
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The implication of this is that temporal frequencies will only exist where ft = - fxvx – fyvy 

= 0. This causes the 2-D transform 

plane of the initial scene to be 

skewed at an angle through the 

spectral volume such that the plane 

is normal to the vector (vx, vy, 1).  

This phenomenon is illustrated in 

Figure 2.1. 

Ultimately, video is digital and discrete, not continuous, as the picture is presented as 

discrete frames, no matter how continuous it appears to the viewer.  Digital video is even 

more so, as each pixel on a given line is distinct from its neighbors, more so than the 

modulated amplitude trace used in traditional analog television.  The duration of the 

video is also finite.  This leads directly to the notion that a video signal is, of necessity, 

cyclical, as far as the transform is concerned.  Every frame has finite boundaries and, as 

such, forces the transform to consider it a cyclical event, even if though it really isn’t 

from frame to frame.  This is actually good news.  The extension to discrete is supposedly 

intuitive, but it is not straight-forward; fortunately, it can ultimately be bypassed, as the 

discrete 3-D Fourier transform can be formed by successive application of a 1-D FFT 

2.2 The Core Algorithm 

The equation for the plane tilt is equation 2.7.  This plane will have more spectral 

intensity on it than any other potential planes through the volume, barring other moving 

objects in the video segment.  If one can project the plane through the spectral volume 

and then sum the intensity found on that plane, he will end up with the total intensity 

Figure 2.1 Spectral volume showing skewed 

plane from moving object 
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contributed to the spectrum by the object.  The intensity can be used to identify the 

moving object’s plane, and, thus, identify the velocity of the moving object. 

Here is the challenging part of the procedure.  To find the plane of the moving object, 

every possible plane within the spectral volume must be examined, which means that 

every possible velocity pair must be examined.  Even though there is no theoretical limit 

on the size of the video, either in duration or frame size, as a practical matter the velocity 

pairs to be examined must be bounded heuristically along with the length of the video 

clip to keep the problem tractable.  For instance, most of the objects which were the 

subjects of this research moved at less than 5 pixels/frame, very few moving faster than 

that because they couldn’t move that far in 1/30th of a second, defined by the 30 

frame/second video frame rate.  Other frame rates and other applications could require a 

different set of heuristics.  In any case, it would be reasonable to assume that a plane with 

a moving object would hold more intensity than planes with only noise. 

Every possible velocity pair (vx, vy) defines a unique plane will be normal to the vector 

(vx, vy, 1).  It doesn't matter whether or not it holds the spectrum of a moving object.  

This property allows one to examine that plane for spectral values in the following 

manner, given a certain amount of setup.  The necessary set up starts with remembering 

that an FFT of N spatial points will generate N corresponding spectral points, and is 

generally shifted so that the values are arranged from frequency - to (N).  The 

reason for stopping one value short of is due to the mechanics of the FFT.  To access 

the spectral address (x, y, p) corresponding to the position (x, y, p) in plain indices in 

the spectral volume, one creates a scaling vector S of length N+1 that will translate the 
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plain index to the spectral volume’s index value .  The scaling vector is filled with N+1 

evenly spaced values from - to .   

Recalling that t determine if the spectral point in question is on the plane defined by the 

velocity pair of the search, one simply computes the dot product between the vector 

between the origin and the point to be tested and (vx, vy, 1).  If the dot product is 0 or less 

than some threshold , that point in the volume is considered on the plane associated with 

(vx, vy).  A logical data structure mimicking the spectral volume (that is, the same 

dimensions) is used to record the ones and zeros.  It stores the mask used to remove the 

values not on the plane.  At the end of the exhaustive but bounded search, the logical data 

structure holds a plane of ones representing the plane corresponding to the velocity vector 

being tested.  The mask is then used to select only the values on the putative plane of 

motion; the intensity values selected are then summed and stored in a 2-D array, the 

indices of which represent the velocity vector pairs within the bounds.  This intensity 

map is for all intents and purposes a map of motion within the volume, because the any 

motion corresponding to that velocity shows up there.  If there is no motion, the sum of 

the intensities will be low; if there is, the sum will be higher.  Thus, where motion exists, 

there will be a peak in the map at the velocity of the moving object.   Searching for the 

peak(s) in the map requires an optimization technique which allows the data to inform the 

observer of the presence of motion and its magnitude and direction.  We will next 

describe the steps mathematically. 
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The 3-D FFT of the video segment is given by Equation 2.8 below:

          
1 1 1

0 0 0

, , , , exp 2 2 2
R C P

x y t x y p

r c p

I I r c p j r R j c C j p p        
  

  

        

where the image size is R rows by C columns by P frames.  

Let  , ,x y t     be an element of a spectral space. The integer search space will be 

restricted to: 

0 1,0 1,0 1x y tR C P            .     (2.9) 

In the 3-D frequency plane, the set of spectral frequencies associated with the motion are 

given by the 3-D discrete-space plane approximation given by: 

   , { | , ,1 }x y x yS v v v v                         (2.10) 

which makes the motion map be given by the sum of spectral magnitude values over the 

plane given by: 

    ,
, | |

x y
x y S v v

M v v I


   .                   (2.11) 

To detect the peak(s), we need to consider the local maxima given by: 

 ,max ,
x yv v x yM v v     .                                                         (2.12) 

There are some practical issues to that have to be accounted for.  An exhaustive search of 

any kind on any sort of sizable data structure is costly.  In this case, a quick complexity 

analysis highlights the problem.  The cost of the 3D FFT comes from the need to 

compute along the rows, columns, and then frames through time. For an NxNxP video 

volume, the computational complexity of the search is O(PN2log(N)). The overall 
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complexity is dominated by the search procedure.  The cost of the core search is 

contingent on how large the spectral volume is and how extensive the velocity band is.  

There is one dot product/compare/store for each point in the volume for each possible 

velocity pair.  This speaks to the necessity of limiting the range of the velocities 

examined.   As it is, continue with the assumption that the frame size is N by N over P 

frames.  Also assume that the range of the velocities is minus v to plus v in both 

directions.  To search every velocity pair, that would require an examination of N2P 

points by (2v+1)2 velocity pairs.  For simplicity, let the velocity factor be V2.  Then. In 

asymptotic notation, the search is O(V2N2P).  A calculation of this order is daunting, at 

best. Therefore, ways to speed up the computations were sought. 

Three practical steps are the first resort.  First, process the video in gray scale.  Color 

would require three times the processing, and there is nothing to be gained by processing 

in color.  Second, the size of the video must be limited.  Cropping the frame size provides 

a virtual digital zoom, making the object of interest larger and allowing it to make a 

larger impact in the spectrum.  Likewise, limiting the length of the video segment 

reinforces the assumption of linearity.  Third, limiting the range of the velocities being 

examined as mentioned above further assists in reducing the load. The first algorithmic 

speedup applied is obtained by observing that the spectrum (the magnitude of the 

spectrum is used for this process) is symmetrical.  In this case, the negative temporal half 

of the volume does not need to be used; the result obtained will be the same.  This cuts 

the computational burden in half.  That’s some help, but more can be done.  Next, it is 

must be recognized that the origin itself is not interesting – the only value there is “DC 

offset”, a bias often called in video cameras the pedestal.  It is of no interest, but 
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including it would create a huge spike at the origin which would obscure any motion 

nearby, so it is ignored.  Likewise, values on the 0th temporal plane are of no interest, 

because that is where spectrum of non-moving objects (such as a static background) 

reside.  By skipping over the 0th plane and the origins of the other planes, the 

computational burden is cut down a bit more, but it’s still O(V2N2P).  The answer 

ultimately became the availability of multicore processors.  Using a multiprocessor 

approach to this otherwise daunting problem helped greatly.  The core algorithm is well 

suited for a multiprocessor approach; parallelizing it and compiling the core algorithm 

into a MEX routine ultimately yielded a 360+ times speedup for one example.  The actual 

speedup will vary with the size of the video. 

In the early stages of this research, simple sequences of moving blocks were generated to 

calibrate the core algorithm and insure its proper functioning.  Using one of the simple 

examples should illustrate the process.  Figure 2.2a-h shows a simple 2x2 block on an 

8x8 pixel frame moving from left to right diagonally down, 1 pixel/frame right in x and 1 

pixel/frame down in y. The motion map in Figure 2.3 clearly shows the motion peak at 

(1, -1).  For illustrative purposes, an isometric rendering of the motion map is presented 

as Figure 2.4  The pseudocode for the program implementing the algorighm is presented 

in Figure 2.5.  It should be pointed out that this includes the keyword “parfor,” which 

instructs MatLab to run this loop on multiple processors in parallel.  Turning it into a 

MEX file changes nothing in the MatLab code, except for a few lines defining the passed 

parameters to the C compiler. 
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Figure 2.2. Frames of 

block moving diagonally. 

Figure 2.3 Motion map for diagonally 
moving block 

Figure 2.4 Isometric view of motion map. 
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Figure 2.5 Pseudocode for the latest version of the motion mapping routine 

 

Motion Map 
Inputs: Spectrum, range, resolution;  
Output: Map 
 
Extent = range*resolution       //determine size of map 
Map = zeros (Extent ,Extent)    //allocate map 
vx_max = vy_max = Extent 
vx_min = vy_min = -Extent 
Thresh = constant                    //set the threshold as specified; it’s “hardwired” 
Size(Spectrum) = (M,N,P)       //get size of spectral volume 
halfP = floor(P/2)                      // set up for the positive half spectral volume 
halfSpec = Spectrum(M, N, halfP)    // this makes the positive spectrum volume 
             Probe = zeros (M, N ,halfP)    //preallocate probe volume 
 
// Build scaling vectors 
X = {N+1 values from -pi to pi} 
Y = {M+1 values from -pi to pi} 
Z = {halfP+1 values from 0 to pi} 
 
//the main loop – parfor means “parallel for” to allow loops to be run in parallel 
parfor Vx = vx_min to vx_max      // test each velocity vector 
    for Vy = vy_min to vy_max 
        if (Vx == 0) and (Vy == 0)        //skip the origin 
            Map(0,0) = 0 
        else 
            zero Probe               // must be done each time 
            for p = 2 to halfP    // planes – skip the 0th plane 
                for m = 1 to M    // rows 
                    for n = 1 to N   // columns 
                      // this simply means that the indices also pull in the  
                                              // scaling values 
                        Probe(m, n ,p) = ([X(n),Y(m),P(p)]dot[Vx,Vy,1])<Thresh 
                    end 
                end 
            end 
            Map(vx, vy) =sum (abs(Probe*halfSpec))    // sums up the intensities 
        end 
    end 
end 
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At this point, the work is almost done.  The map is readily read by humans, but to make 

the method useable for further processing by a larger system, a routine to detect the peaks 

must be invoked.  This a relatively straightforward process.  The map is first normalized.  

A 2-D storage array the same size of the map is allocated.  The normalized map is then 

examined point by point to see if any given point is a local peak, that is, above a 

threshold of 0.9 and it is higher than its 8 neighbors.  If it is, its normalized cumulative 

intensity is stored in the array at the same location as the peak in the map; otherwise a 0 

is stored.  The indices of both arrays correspond to velocities.  This way, only the largest 

values will be found in the auxiliary array; these large values indicate objects at the 

velocities indicated by the indices of the peaks.  The velocities are stored in an array 

along with the cumulative intensities, used for diagnostic purposes.  The array is then 

sorted in descending order so that the most prominent peak, corresponding to the object 

of interest, is first in line.  Practice has shown that this peak is the object of interest and 

the next peak (assuming that there are no other specific moving objects) will be the 

background, if it’s moving, too.   Sometimes, even a moving background is so diffuse 

that it will not show up.  The pseudocode for the peak detecting routine is given below as 

Figure 2.6.  This routine effectively implements Equation 2.12.  
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Figure 2.6 Pseudocode for the peak detection routine. 

Detectpeaks 

Inputs: map, scalefac;  

Output: vel 

 

[R,C] = size(map);           // build data structures for the search 

answer = zeros(R,C) 

map = map/max(map)      // normalize the map to 0-1 range 

thresh = mean(map)*0.9  // set the threshold to ignore any lower values 

parfor i=2:R-1                     // go through the map to find peaks; ignore the edges 

    for j=2:C-1 

        if map(i, j) > {all of it’s 8 neighbors} 

            answer(i, j)= map(I ,j) 

            if (answer(i, j) < thresh) 

                answer(i, j)= 0 

            end 

        end 

    end 

end 

B = floor(C/2)      // determine scaling of the map 

B = B*scalefac     // scale factor is to adjust scale if a fractional pixel/frame 
spectrum  

                               // is used 

ruler = {C values from –B to B}     // set up index to velocity ruler 

numpeaks= 0                                   // initialize the counter 

for i=2:R-1 

    for j=2:C-1 

        if answer(i,j) != 0 

            numpeaks = numpeaks+1 

            vel(1,numpeaks) = ruler(j)         // x in col space 

            vel(2,numpeaks) = ruler(i)         // y in row space 

            vrl(3,numpeaks) = answer(i, j)   // save the relative intensity 

        end 

    end 

end 

vel = sort(vel,-3)      // present in descending order 
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2.3 A Direct Corollary of the Core Algorithm – Fractional Pixel/Frame Resolution 

A chirp-Z based 3-D transform was implemented to support the work described in this 

dissertation.  It was successfully tested using the method above against various synthetic 

video sequences moving at rates as low as 1/8 pixel/frame.  This 3-D chirp-Z is 

implemented a row or column at a time, as it is done with an FFT, as each dimension is 

separable.  As a concession to speed and the fact that increased temporal resolution is 

unnecessary, the third (temporal) dimension is performed with an FFT.  The 

dimensionality of the spatial planes changes as the computations proceed, so storage 

allocation takes that into account.  The only change required in the energy mapping 

routine was to include variable scaling of the spectral values to accommodate the sub-

pixel/frame resolution of the spectral volume.  Using the expanded spectrum yields 

higher resolution results allowing direct estimation of velocities normally inaccessible to 

other techniques except by extrapolation.  

The actual chirp-Z is accomplished with a rather basic form of the algorithm.  The chirp-

Z, in general, allows arbitrary resolution and spacing.  It also encompasses the simpler 

FFT when the phase factors are appropriately chosen.  Although the chirp-Z can deliver a 

spectrum with arbitrary spacing, or even compute a Laplace transform, it is restricted 

here to generating evenly spaced frequency values on the unit circle to allow for easy 

computation of the values of the resulting frequencies.  The development of this form 

was pioneered by Bluestein [15] and generalized by Rabiner, Schafer, and Rader [16].  

To describe the form we use, one starts with the usual 1-D DFT.  Here we have the output 

spectral value kX  as the sum of the products of the phase factors as calculated in the 

exponential and the time domain sequence: 
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  
1

0

exp 2
N

k n

n

X x j nk N




    k=0…K-1.      (2.13) 

For an input sequence of N points, an output of N unique spectral values will be 

generated.  If we desire more spectral values, we must generate appropriate phase factors.  

Thus, if K spectral values are desired, and it is desired that they will be evenly spaced 

(which makes it easier to deal with the scaling), then we simply provide for K phase 

factors and modify Equation 2.6 as follows: 

  
1

0

exp 2
N

k n

n

X x j nk K




    k=0…K-1, N<K    (2.14) 

As deceptively simple as substituting K for N appears, this will generate K phase factors 

instead of N.  That is, if K is larger than N, there will be more phase factors, spectral lines 

that are more closely spaced, and thus more resolution.  Of course, this formulation will 

also allow larger than integral resolution, too, if that is of interest.  The pseudocode for 

the actual “chirpZ2dplus” routine is shown below in Figure 2.7 

Figure 2.7 Pseudocode for the actual 3-D chirp-Z used here 

 chirpZ2dplus 

 Input:    A holds the video segment, Res holds the resolution (1/2, ¼, etc.) 

 Output: B holds the complex spectrum. 

  

Calculate scale factor: M  = 1/Res 
[R,C,P] = size(A)                             // get the size of the input 
Allocate size of output as B = zeros(R*M, C*M, P) 
Compute w = exp(-j2pi/(2*R))   // Assume square region: R = C 
B1 = zeros (R, C*M, P) 
B2 = zeros (R*M, C*M, P) 
Loop through all the rows, B1= czt(A,R*M,w,1) 
Loop through the columns B2 = czt(B1, C*M,w,1) 
Loop through the plane axis B = fft(B2)    // fft used on the temporal axis 
Return the answer 
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The actual computation of the chirp-Z in packages like MatLab is generally performed 

using FFTs by invoking Bluestein’s identity, which is  
2 2 22 2 2nk k n n k     .  

This laborious identity actually serves to decompose Equation 2.14 into 

      
1

22 2

0

exp exp exp
N

k n

n

X j k K x j n K j k n K  




       k=0…K-1.          (2.15) 

This poses the transform as a convolution and a multiplication by a complex scale factor.  

The exponentials in Equation 2.15 are the phase factors or, here, sometimes called 

complex chirps, referring to the frequency chirp sometimes encountered in radar 

processing, because plotting them will result in a sinusoidal chirp.  This gave the 

transform its name.  The process is as follows in Figure 2.8. 

Figure 2.8 Pseudocode for Bluestein’s method 

Generate the first chirp vector  2exp j n K over N.   

Perform the multiplication of the vector x  by the above chirp vector. 
Take the FFT of the result.  
// The above steps can be done once, as they do not change with k. 

 for k=0 to K-1 do  

  Generate the second chirp vector   2
exp j k n K   over N for k. 

  Take the FFT of the sequence 
  Multiply the transforms together. 

Take the IFT of the product.  This completes the convolution 
computation. 

  Perform the summation as indicated. 

  Multiply the result by  2exp j k K . 

 end 
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This accomplishes Equation 2.15 with 3 FFT operations per iteration, which is generally 

more efficient than computing it directly.  This is basically the same method used by 

software packages such as MatLab. 

Computing a chirp-Z can also be done by multiplying the input vector by a matrix of pre-

computed phase factors, as can be found in any signal processing textbook.  This is an 

alternative way to perform Equation 2.15.  The pseudocode for this method is presented 

in Figure 2.9.  Such a version of the chirp-Z was implemented just in case it could prove 

useful.  It proved unnecessary, but it has potential.  Although this method requires a bit 

more storage, it has two potential advantages.  First, when a large number of identical 

transforms need to be made, pre-computing the phase factors could save time over the 

direct computation.  A second possibility is the situation where a subset of the spectrum 

is required or where a particular spacing is desired.  In this case, the particular phase 

factors would be generated to do the desired function. 

To compute the transform of a vector of N values resulting in K spectral values, the 

following method is used.  Note that the phase factors are identical to the exponentials 

generated in Equation 2.15. 

Figure 2.9 Vector multiply method pseudocode 

 Allocate array W= K by N   // Array to hold the phase factors 
 for n=0 to N-1 
  for k=0 to K-1 

     exp 2knW j nk K   

  end 
 end 
 // present N as a column vector 
 K=W*N 
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The result is row vector of K spectral values.  A 2-D or 3-D transform would be 

performed a row and column as a time, as indicated previously for the FFT.   Although 

the chirp-Z is a bit more computationally intensive than when using an integral transform 

like the FFT, its overall complexity remains the same (see [41] for recent approach).  

Again, because only one 3-D transform needs to be computed, absolute computational 

efficiency is not an issue here. 

A version of the blob presented to the block matching and optical flow algorithms was 

created moving ½ pixel/frame.  As before, the frame is 64x64 pixels; with this example, 

there are 64 frames.  In Figure 2.6 a-c, blocks 3, 4, and 5 are shown to illustrate how the 

½ pixel/frame is implemented.  Figure 2.7 is the resulting motion map.  It is obvious that 

it works. 

 

Figure 2.10. Frames 3, 4, and 5, blob moving 1/2 pixel/frame. 
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Figure 2.11. Motion map for slowly moving blob. 
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Chapter 3 

Robust Noise Rejection, Multiple Object Detection and Quantification, 

Image Extraction, and Tracking 

The core algorithm is an enabling technology for some interesting related methods and 

displays properties important to the successful deployment of any of these techniques. 

The first property is robust noise rejection.  The second property is the fact that multiple 

objects traveling along the same path together (such as a convoy) will show up as a single 

“object.”  The first related method is the ability to reconstruct moving objects from their 

motion-tilted frequency planes.  Second is a method to track the object of interest.  

Examples illustrating this will be shown using synthetic video data. 

3.1 Robust Noise Rejection 

Noise rejection is inherent in the core algorithm because of the fact that systemic noise 

will be scattered uniformly throughout the spectral volume while the moving object’s 

spectral signature is concentrated on its plane.  By filtering out everything but the image 

plane made by the object of interest, the only noise left will be the small portion of the 

noise coincidently on that plane.  Of course, issues directly related to the object’s image 

will remain, but that is usually not such a large amount to mask the motion.  This will be 

illustrated by using synthetic data mixed with noise.  
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Figure 3.1 Large blob, frame 5, moving 1/2 pixel/frame l to r, with motion map, no noise 

 

Figure 3.2 Large blob, frame 5, with motion map, 1-1 SNR additive Gaussian noise  

Figure 3.3 Extracted large blob images, no noise (l.), with noise (r.) 
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The example being presented above is the large, irregular blob used as examples with 

block matching (Fig. 1.1), optical flow (Fig 1.2), and fractional pixel/frame resolution 

(Fig. 2.9).  Here, the blob is moving left to right at ½ pixel/frame.  A Gaussian noise field 

was generated for each frame with an amplitude commensurate to the amplitude of the 

figure, so that the noise would have a signal to noise ratio (SNR) of 1 to 1.  This noise 

was then added to a copy of the moving blob to generate a noisy version of the blob.  

Figure 3.1 presents the blob and its motion map without noise, and 3.2 shows it with the 

1-1 SNR Gaussian noise added.  As can be seen, with this larger structure, the noise floor 

is raised a bit, but otherwise, there is no real effect on the map.  Figure 3.3 shows the 

blobs as extracted from the two videos, one without noise and one with noise. 

3.2 Multiple Object Detection and Quantification 

A natural result of the core algorithm is that objects moving together at the same velocity, 

as in a convoy or a formation of vehicles, will be mapped on the same 3-D frequency 

plane.  Another, not so immediately obvious aspect, is that objects moving differently 

will inhabit their own planes, and will be detectable and quantifiable from their own 

peaks in the motion map.  The algorithm even will detect a moving background, provided 

that it isn’t diffuse, like a flat parking lot or a barren countryside. As above, this is best 

shown by synthetic examples.   
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This demonstration is based on a simple synthetic video that portrays the motions of two 

formations of blocks shown in Figs. 3.4 and 3.5.  The first formation is moving left to 

right, with the second formation moving right to left diagonally down, both moving one 

pixel/frame. Note the slightly higher noise floor, due to the fact that the blocks merge in 

the middle. 

 

Figure 3.4 Two moving groups, frames 3 and 8 (at the merge) 

Figure 3.5 Two moving groups, frame 12 (after merge) and corresponding motion map 
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3.3 Image Extraction 

Extracting the image, or segmentation, of a moving object is accomplished by isolating 

the plane in the original complex spectrum on which the object’s energy resides by using 

a mask generated by the velocity of the object.  Then using an inverse Fourier transform, 

the image of the object is recovered. Thus, the segmentation is not done as it is in the 

spatial domain. 

 

A high fidelity simulation was implemented using actual photographs of terrain and an 

M-35 6x6 military truck to provide realistic test scenes.  This simulator was used to 

generate the above video. The rate at which the truck moves across the terrain and the 

rate at which the background scrolls by is controlled by programmed parameters; thus all 

of the motion parameters are known.  A more detailed description of the simulation is 

presented in Appendix A.  The simulation parameters for this example were set at (2, 0) 

for the truck and (-2, 0) for the background.  Frame size is 128x128; 16 frames were 

Figure 3.6 Original image from 

synthetic video sequence 

Figure 3.7 Image extracted from 

the video 
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generated.  Figure 3.6 shows the original truck image in the simulation, while Figure 3.7 

shows the extracted image.  The high quality of the extracted image attests to the 

perfection of the simulation’s imagery.  Real life, as previously mentioned, has a way of 

blurring the extracted image. 

How this algorithm works is as follows.  First, the object of interest’s velocity is required 

to extract the object’s image from the video sequence in which it is embedded.  This is 

required to build the mask to exclude the irrelevant spectral information from the spectral 

volume, leaving the object and whatever artifacts that are coincidentally on the object’s 

plane.  Once the mask is applied, the inverse transform is computed and the reconstructed 

image will be found on the 0th plane in the new “video”.  The details of the algorithm is 

given below as Figure 3.8. 

Figure 3.8 Pseudocode for the extract object algorithm 

Extract_Object 
inputs: video segment, x velocity, y velocity 
output: extracted image  
 
// compute complex spectrum of video segment 
Spectrum = FFTshift(FTn(video segment))  
// set threshold a bit looser to scoop up data that is close enough 
Threshold = 0.2  
//get size of spectral volume  
(M,N,P)   = Size( Spectrum)  

// build scaling vectors 

X = N+1 values from -pi to pi 

Y = M+1 values from -pi to pi 

Z = P+1 values from -pi to pi 

// allocate mask 
Mask = zeros (M.N,P) 
// build the mask 

for p = 1 to P    // planes 

    for m = 1 to M  // rows 



36 

 

       for n = 1 to N  // columns 

          //this is set up to allow the indices to also pull in the scaling values 

          //using a logical expression automatically gives a 1/0 answer 

         Mask(m, n ,p) = ([X(n),Y(m),P(p)]dot[x velocity, y velocity,1])<Thresh 

       end 

    end 

end 

// apply the mask to the spectrum 

Spectrum = (Spectrum.*Mask) 

// take the IFT of the spectrum 

OutSpec = IFTn(Spectrum) 

// select the 0th frame – that holds the extracted image 

extracted image = 0th video frame 

 
3.4 Tracking, After the Fact 

Tracking in video is usually considered a real time activity, with the tracker computing 

deviations from the center of the field of view using a centroid, edge or correlation 

algorithm.  These errors are then fed into a tracking loop to correct the aim of the 

camera’s gimbal to allow it to follow the action.  This is not the case here, however. 

Because the image of the object of interest can be segmented out, it can also be followed 

through the video sequence.  The path of the object may be of great interest to military 

analysts or law enforcement investigators trying to reconstruct an incident.  

Figure 3.9 Truck simulation baseline, frames 1, 9, and 16 
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What the user of this method does first is take the extracted image and stretch the 

histogram, then normalize the image gray scale values between 0 and 1.  The method is 

then invoked, passing to it the original video segment, the conditioned extracted image, 

and the previously measured velocity of the object of interest.  The routine calls a 

function to place the bounding box or convex hull on the image.  The final step is to 

superimpose said boxes or hulls on each frame of the output video using the appropriate 

function, computing the location of the object in the next frame assuming constant linear 

motion. The resulting modified video segment is returned to the user.   

To illustrate the result of this process, Figure 3.9 shows a segment of the synthetic truck 

simulation, this particular one showing the truck moving to the right and down one 

pixel/frame each, with the background moving to the left at 2 pixels/frame.  Figure 3.10 

Figure 3.10 Truck simulation with tracking boxes, frames 1, 9, and 16 

Figure 3.11 Truck simulation with convex hull, frames 1, 9, and 16 
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shows the same sequence with tracking boxes applied.  Figure 3.11 shows the same 

sequence with the convex hull applied.  Pseudocode for the tracking method is given 

below as Figure 3.12 a-d.  Sufficient detail is provided for understanding the flow of data; 

the actual MatLab code is to be found in Appendix B, should one care to examine it.  The 

pseudocode is of the latest version of the tracking box method.  The convex hull method 

is essentially identical to the box method, except that the bounding box routine is 

replaced by a convex hull routine. 

Figure 3.12a Tracking method main routine 

 

 

Follow_Object_Report_Modified 
//This is the most advanced version of the tracking program. The modification 
//is adding the output of the box array to allow for the comparison of this  
//method to the IPCA method. 
Inputs: 

invid = original video,  
exobj = extracted image (previously normalized and adjusted), 
xvel = x velocity,  
yvel = y velocity 

Outputs: 
outvid = output video (with applied boxes),  
boxes: box array} 

 
//Make beginning of boxed, output video by copying input video 
outvid = invid 
//Get the size of the video 
(R, C, F) = Size (outvid) 
//call bounding box function to get the specs for the bounding box 
BB  = get_object_bounding_box (exobj) 
//Bias the location of the bounding as indicated by the velocity vectors 
BB(1) = BB(1) - (F/2 * xvel) 
Bb(2) = BB(2) + (F/2 * yvel)  // yvel is up for humans, but in videos y is down 
//Loop to add the boxes to the output video 
For f = 1 to F 
 boxes(:, f) = BB 
 //call the box adding function 
 outvid(:, :, p) = add_standard_box(outimg(:, :, p), BB) 
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 //update the box position 
 BB(1) = BB(1)+xvel 
     BB(2) = BB(2)-yvel 
end 
 

 

Figure 3.12b Function that calculates the tracking box 

Get_object_bounding_box 
//This function makes use of MatLab image processing functions to find and 
// erect the bounding box.  An alternative version makes convex hulls. 
Inputs: exobj = extracted object 
Outputs: box = bounding box specification 
 
//Turn the exobj into a binary image.  It’s supposed to be gray scale expanded 
//normalized so that the max value is 1.  The threshold is set heuristically so that 
//only the extracted object is left. 
B = make_bin_img(exobj, threshold) 
 
L = bwlabel((B) //Label binary image blobs 
P = regionprops(L)  //properties include centroid and bounding box params. 
NB = length(P)  //Determine number of regions 
 
//If more than 1 blob, concentrate the blobs into the ones most likely to be 
//part of the object. 
If NB = 1 
 //use the one blob 
 Box = P(1).BoundingBox 
else 
 //Sort the list descending by size of blob.  This is a simple home-made 
 //bubble sort – no need to bore the reader with something this trivial. 
 P = sort_blobs_desc(P) 
 
 //To come up with a sane way to select blobs that are part of the object, 
 // choose the largest dimension of the largest blobs bounding box. 
 SL = {the largest dimension of the largest blobs bounding box} 

 
 for i = 2 to NB //minor loop to exclude blobs that are too far away 
  D = {distance to the center of this blob from the biggest blob} 
  If D > 3*SL 
   {delete this blob from the list} 
  end 
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 end 
   
 L = bwconvhull(B)   //Throw a convex shell around the blob(s)   
 P = regionprops(L)   //Get the region properties of the hull 
 box = P(1).BoundingBox //extract the bounding box specs 
end 
Expand the box by 2 pixels each direction  
 

 

Figure 3.12c Function that produces the binary image for the bounding box 

 
 
Make_bin_img 
//This little number turns a stretched and normalized gray scale image into a 
//binary image for the MatLab routines to properly find the brightest object 
//and measure its properties.  Very likely, the image ends up a blob.  A threshold 
//is provided by the caller to adjust the cut-off level as desired. 
 
input: inimg: input image, thresh = threshold 
Output: bw: resulting binary image} 
 
 (r, c) = size(inimg)  //r and c are rows and columns, respectively 
bw = zeros(r, c)  //preallocate space for the binary image 
 
//loop through the image, applying the threshold to the pixels  
for i = 1  to r 
 for j  = 1 to c 
  //This logical automatically yields 1 for pixels >= the threshold, 0 
  //for the rest of them. 
  bw (i, j) = inimg(i, j) >= thresh 
 end 
end 
 
 
 

Figure 3.12d Utility function to superimpose a box onto a frame of imagery 

 
 
Add_standard_box 
//MatLab’s image processing routines use a standard definition for a boxes,  
//which are often used to segment items in a digital image.  This utility routine  
//applies the supplied box to the supplied image based on the box definition and 
//location as specified in the definition.  Efforts are made to avoid the trivial, 
//boring details.  Besides, some of this will be language dependent. 
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Input: inframe = input image frame, boxdef = box definition; 
Output: outframe = output image frame} 
 
//Copy the input frame into the output frame 
outframe = inframe  
//Get the size of the image. 

 (R, C) = size(outframe) 
//Clip the boundaries of the box if they go past the edges of the frame 
//Local corner variables are ulr = upper left row, ulc = upper left column,  
//lrr = lower left row, lrc = lower left column.  They are clipped as follows: 
// 
{Set the local corners to the box values; check the values against the frame and  
clip them if they extend beyond the edge of the frame.} 
//Establish the maximum pixel value.  Needs to get this so the box is visable. 
maxpic = max(inframe) 
// 
{Draw the top, bottom, and sides on the frame} 
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Chapter 4 

Some Results with Real Data 

Up to this point, examples have been given with synthetic data.  Here, the results of trials 

with real data are given.  One source of data is the LIVE Video Quality Database from 

University of Texas, Austin (UTA) Laboratory for Image & Video Engineering (LIVE) 

(http://live.ece.utexas.edu/research/Quality/index.htm) [17, 18].  Another source is 

airborne video sensor data obtained from DARPA’s VIVID database 

(http://vision.cse.psu.edu/data/vividEval/datasets/datasets.html) [19].  Neither database 

was created with research like this in mind, but there were sufficient examples useful for 

this work to glean the necessary real-world data for this work to proceed.  Actual files 

will be identified as the narrative progresses. 

4.1 LIVE Data 

Standard, publically accessible imagery was sought to test the algorithm.  One such 

source is the LIVE video database from UTA.  Because these sequences were clean and 

clear, the first serious looks at real data were done with these examples.  This is not to say 

that they are easy; some, the cars on the street and the pedestrians crossing the street are 

quite complex.  All the sequences selected were converted to “.avi” format to enable 

processing. Six short sequences were selected for testing from five videos, based on their 

potential to provide information on the behavior of the algorithm.  The peak detector was 

used to verify any peaks found.  The videos chosen were all 25 frames/second 

withv768x432 pixel frame size.  The “13” at the end of each file name specifies the use 

of this format.  The short sequences used were cropped to 128x128 frame size and 0.62 

http://live.ece.utexas.edu/research/Quality/index.htm
http://vision.cse.psu.edu/data/vividEval/datasets/datasets.html
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seconds (16 frames) and converted to gray scale, as color is irrelevant.  A segment length 

of 0.62 seconds is sufficiently short to enforce motion linearity.  Segments, sources, and 

results are summarized below in Table 1.  Significant results will be discussed in more 

detail below. 

Table 1 Summary of Testing with LIVE Videos.  Good – motion map shows expected 

result; Mixed – unexpected results. 

Segment name Source Figure 
Reference 

Results 

Car changing lanes 1 rh13 Fig, 4.1 Good 
Car changing lanes 2 rh13 Not shown Good 
Pedestrians crossing street pa13 Fig. 4.2 Mixed 
Jogger on canal path pr13 Fig. 4.3 Good (Background motion only) 
Docent and tapestries sh13 Not shown Good (Background motion only) 
Tractor plowing field tr13 Not shown Good 

 

Nominal results were those that generated a motion map showing the “right” answer, 

based on simple visual examination.  Half of the samples exhibited the expected results.  

The pedestrians crossing and the jogger exhibited interesting results that were not 

expected.  The docent’s result, in light of the jogger’s result, were in line with what was 

going on and were not unexpected. 

4.1.1 Cars Driving Up the Hill 

The cars up the hill sequence (rh13) provided two encounters suitable for use.  The first 

of the two will be presented here as an example of a nominal result.  Figures 4.1a, b, and 

c show the this encounter, with 4.1a and b showing the initial and final position of the 

car, and 4.1c showing the motion map with the 3 pixel/frame right clearly indicated.  The 

motion is most evident from the position of the headlight.  Note the clear peak in the 

motion map at (0. 3). 
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Figure 4.1a Car one, frame one Figure 4.1b Car one, frame sixteen 

Figure 4.1c Motion map for car one lane change 
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4.1.2 Pedestrians Crossing the Street 

The next video segment (Fig. 4.2) is a LIVE sequence from the pedestrians crossing the 

street (pa13). It is interesting for a number of reasons.  It is the most complex of the LIVE 

sequences, and it presents a number of challenges.  The desired objects of interest are a 

mature woman crossing close to the camera left to right and a young woman walking 

right to left in the background  There is also a component of pan in this video, where the 

camera is panning very slowly left to right.  On top of all this, there are several other 

pedestrians milling around in the scene.  This sequence illustrates the difficulties 

encountered when working with real-world imagery that is cluttered with many moving 

objects, including the background.  The challenge here is for the algorithm to find 

meaningful peaks in the motion map when there are many moving objects in the scene 

and sudden scene changes (people walking behind other pedestrians), generating what 

can only be characterized as “noise”.  Indeed, it is difficult to identify whose peak is 

whose, even when looking at the video.  The third frame of the sequence clearly 

introduces the principle subjects of the sequence.  This is illustrated by showing the third 

frame of the video sequence as Figure 4.2a, where we see the mature woman, a young 

woman, and another person in the background, along with the corner of the building.  As 

the sequence progresses, the mature woman masks the young woman for a few frames, 

then as she moves on and unmasks the young woman, the man in the background comes 

in and out of view from behind the young woman, the ATM on the wall of the building is 

unmasked contributing its bright reflection, and a fourth person starts to enter the scene.  

This all contributes to the confusion seen in the motion map, which is given in Figure 

4.2b.  In spite of all this, the motion map clearly shows the young woman’s motion at (-2, 
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0).  The mature woman doesn’t show up as prominently as one might think, as her image 

is blurred by her motion and by being in poor focus and thus she doesn’t generate the 

energy in the spectral volume that it would if her image was crisper.  Her impact on the 

motion map is apparent in the small peak at (8, 0). It’s just one of many bumps and 

burbles in the map, except that it’s a little higher than the rest.  It’s just not very obvious 

with all the other undulation going on.  The extracted and reconstructed images of the 

young woman and the mature woman are shown in Figures 4.2c and 4.2d, respectively.  

It is important to note that there is a small lump at (-2, 2) which appears to correspond to 

the left to right and up pan (the background moves opposite to the camera’s motion). 

This scene would challenge any algorithm.  A bit of luck was obtained as the young 

woman’s image was crisp enough to make a clearly visible peak in the motion map.  The 

mature woman’s peak was identified in the map at the spot suggested by direct 

measurement.  The background was also teased from the scene by direct observation.  

This brings out an important point.  At times, a wealth of moving objects will mask each 

other in the map, as is the case here.  If one has a priori knowledge of the velocity 

vectors or a way to measure the motion of a given object directly, its image can be 

extracted and reconstructed regardless of the clutter and confusion present in the motion 

by map using the related extraction method independently of the motion estimation 

algorithm.  This could be useful in some instances. 
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Figure 4.2a Original image, frame three Figure 4.2b Motion map for Pedestrians 

Figure 4.2c Reconstruction of young 
woman, moving left at (-2, 0) 

Figure 4.2d Reconstruction of mature 
woman, moving right at (8, 0) 
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4.1.3 The Jogger 

The jogging man sequence (Fig. 4.3) provides another example of the power of these 

algorithms.  The pr13 sample shows a gentleman with an umbrella jogging along on a 

canal bank.  The limitation here is the fact that the camera man panned along so smoothly 

and kept the jogger in the center of the frame so well that his motion relative to the frame 

could not be determined algorithmically.  Under such circumstances, the moving object 

being tracked appears stationary as far as the video is concerned.  However, the 

background will be clearly in motion, as it is here.  By analyzing the data, the background 

can be extracted with the jogger essentially removed.   

The first frame of the sequence is shown in Figure 4.3a, the motion map in 4.3b, and the 

extracted background in 4.3c.  The right to left motion of the background is clearly seen 

in the map, as well as the absence of any motion on the part of the jogger.  An artifact of 

the jogger remains as a ghost shadow none the less, as some of its data lays on the plane 

where the background’s spectrum exists. This illustrates the fact that an object 

momentarily obscured by another can be recovered anyway, as its spectrum is extracted 

over several frames.  This fact can be useful if the object of interest is the one being 

obscured, as illustrated both here and in the pedestrian example above. 
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Figure 4.3c Reconstructed background 

image of the Jogger sequence 

Figure 4.3a Jogger sequence frame 1 Figure 4.3b Jogger sequence 

motion map 
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4.2 VIVID Data - Actual Aerial Videos 

The VIVID data base afforded the opportunity to examine video with multiple vehicles 

moving at different speeds and directions.  At the time of downloading the DARPA 

VIVID database, there were 185 data events which were recorded by three cameras – a 

wide field color video, a narrow field telephoto color video, and an IR camera with a 

medium field of view.  The cameras were mounted on the same gimbal, so they all saw 

the same events in somewhat different ways.  For the most part, the wide field camera 

generally gave the best view for the purposes of these trials.  The aerial platforms 

consisted of a UH-1 helicopter, an RC-26 Metroliner aircraft, and a C-23 Sherpa aircraft.  

It is not always obvious as to which aircraft is the platform, but they share some of the 

same obstacles in terms of platform vibration.  While the RC-26 had a stabilized platform 

installed in a belly turret, the Sherpa had to make do with an open door on the side.  The 

original purpose of these videos was to determine if specific activities could be elucidated 

from the videos.  The videos were in color, were longer than required for these short 

sequence trials, and the size of the frame was a problem in the early trials, as the 

algorithm had not yet been parallelized and optimized for speed.  Again, color was 

irrelevant, so the selected samples were rendered into gray scale, as it was in the case of 

the LIVE videos.  The single car events were performed with 128x128 pixels by 16 

frames 

Unfortunately, only a small number of the files lent themselves to analysis due to various 

reasons, such as bad focus, poor lighting, clouds, foliage in the way, and the camera 

operator being instructed to follow a particular vehicle.  The camera operator’s skilled 

manual tracking rendered that vehicle essentially stationary and unsuitable for analysis.  
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That notwithstanding, there were spots out of ten files that were suitable and are 

presented here.  If it was desired to get the actual velocity of a given vehicle, one must 

add the velocity of the frame along the ground created by the camera aircraft’s motion; 

the observed velocities are only relative to the frame, and the frame is moving.  Thus, 

velocities measured by the algorithm are not actual vehicle velocity but velocity relative 

to the frame only.  A summary of the results with the VIVID data is presented below in 

Table 2.  The really good, the good enough, and the problematic events are discussed 

below. 

 

Table 2 Summary of Testing with VIVID Videos; Good - motion map as expected; Mixed 

– unexpected or anomalous result; Poor – did not work as expected 

Segment Name Source File Figure 
Reference 

Results 

Car passing 1 V3V100003_007.avi Fig. 4.6 Good (some platform motion) 
Car passing 2 V3V100003_008.avi Not shown Mixed (one vehicle tracked too 

well) 
Car passing 3 V3V100003_008.avi Not shown Good (some platform motion) 
Car passing 4 V3V100012_009.avi Fig, 4,9 Mixed (puzzling map) 
Cars passing by 
each other 1 

V3V100004_003.avi Not shown Good (some platform motion) 

Cars passing by 
each other 2 

V3V100004_005.avi Fig, 4.4 Good (nearly perfect) 

Cars passing by 
each other 3 

V3V100003_008.avi Fig. 4.8 Poor (excessive platform motion) 

Cars turning 1 V3V100003_004.avi Not shown Poor (excessive platform motion) 
Cars turning 2 V3V100003_007.avi Fig. 4.7 Good (really interesting result- 

see below) 
Car in and out of 
the shade 

V3V100007_015.avi Fig. 4.5 Good (really interesting result- 
see below) 
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4.2.1 Best Results 

Not all of the results were stellar; a little more than half were good, or at least usable.  

Not to be redundant, the encounters illustrate the results when the conditions are 

favorable (good focus, low camera motion, etc.).  Here are the best of the data sets; 

4.2.1.1 Cars Passing Each Other 2 

The second passing by event was taken from V3V100004_005.avi, frames 1270-1285, 

with the 128x128 pixel window size.  The two sedans are passing each other, crossing the 

frame at about 45 degrees.  The motion map says it all, with the top car moving 

diagonally right to left and down at (-1, -1) and the bottom car moving left to right and up 

at (1, 1).  The 9th frame is shown as Figure 4.4a and the motion map as Figure 4.4b. 

 

  

Figure 4.4a Second Passing By 
event, frame 9 

Figure 4.4b Second Passing By 

event motion map; both cars are 

evident at (1, 1) and (-1, -1) 
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4.2.1.2 Car In and Out of the Shade 

The last example given here is that of a car driving through spotted shade, so that in any 

one frame, the car is illuminated with spots of light coming through the trees. This sort of 

illumination was originally thought to be problematic, but apparently it appears to be not 

a problem.  The sequence comes from file V3V100007_015.avi, frames 500-515, again 

with a 128x128 pixel window.  The spots of light move along the car as it drives by, with 

the rear deck generally illuminated all the time (see Figure 4.5a).  The resulting motion 

map indicates motion at (2, 0) (see Figure 4.5b). The extracted image (Figure 4.5c) 

appears to be evenly illuminated and shows no evidence of the light and dark interplay 

we see in the video itself.  This is similar to the events above in the previous section 

where previously blocked features are revealed because the various spots were “saved 

up” in the spectrum and then returned with the reconstructed image.  Both of these 

examples are exceptionally clear, almost as clear as the truck simulation examples.  

  

Figure 4.5a Car in and out of shade, 

frame 9 

Figure 4.5b Motion map for Car in 

and out of shade 
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4.2.2 Good Enough Results 

The “good enough” results would be sufficient to determine velocity when ground track 

velocity of the platform is included, the image(s) can be extracted, and so on.  Instead of 

showing all four of the “OK” examples, the most representative two examples will be 

discussed.   

4.2.2.1 First Passing Event 

The first mediocre event selected is from file V3V100003_007.avi, frames 1765-1780 

(16 frames), using a 128 pixel x 128 pixel window.  The “top” car is passing the 

“bottom”, both moving left to right. The background is flowing right to left, as expected, 

as the aircraft is moving left to right.  The camera man is tracking the passing car, 

rendering it essentially stationary, while the bottom car is overtaken and passed.  When 

analyzed, the motion map of the event shows two peaks: one at (-2, -2) and the other at 

(0, -1).  The video clearly shows that the passing car is being tracked in azimuth, but not 

Figure 4.5c Extracted Image of Car in and 

out of shade 
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elevation.  As such, the peak at (0, -1) represents this car.  The car being passed is 

represented by the peak at (-2, -2).  Both appear to be going “backward,” but that is due 

to the helicopter flying faster than the cars are driving.  Background is nowhere to be 

seen, as the runway on which they are driving is virtually featureless and doesn’t leave a 

clear signature in the spectral volume.  It is also possible that the aircraft is moving too 

fast for the background to be analyzed by the algorithm.  Frame 4 is presented as the 

example of the video sequence as Figure 4.6a, and the corresponding motion map as 

Figure 4.6b.  This result is not the best, but it is usable. 

 

 

4.2.2.2 Second Turning Event 

The second turning event (Fig. 4.7) comes from file V3V100003_007.avi, frames 670-

685, again with the 128x128 pixel window. What merits this event a second thought was 

that at first look, it seems that what the map is reporting is platform motion; it turns out 

that there is no platform motion at all.  The helicopter seems to have paused or turned in 

Figure 4.6a First Passing event, 

frame four 

Figure 4.6b First Passing Motion 

Map; Passing Car at (0, -1), 

Passed Car Left Behind at (-2, -2) 
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such a way that the camera was still, while the cars drove by.  The video captures left 

turn, but this time both vehicles are on the bottom of the loop as they turn back up the 

runway.  The leading car seems to be going up while the trailing car seems to be going 

left to right.  The truth, as it turns out, is that the bright spots on the side of each vehicle 

are roughly in line and both are going left to right at the same speed.  As such, they 

register in the spectrum as if they are going the same speed and direction (see Figure 

4.7a).   

There is only one peak, at (2, 0), in the map.  The question could well be “Which car is 

represented by this peak?” in Figure 4.7b.  The answer is “both.”  As indicated in the 

theory section, this peak should represent all motion going that direction at that speed, 

implying that the bright spots on both cars are captured in this one peak.  This notion is 

verified in the extracted image at (2, 0) given in Figure 4.7c, where both vehicles are 

clearly visible.  Mediocre?  No – surprising, yes, and maybe misleading. Clearly usable, 

as evidenced by the extracted imagery, even if it’s not perfect. 
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Figure 4.7a Turning event 2, frame 9 Figure 4.7b Motion Map for Turning 

event; both vehicles share the 

indicated motion 

Figure 4.7c Image extracted at (2, -2) 
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4.2.3 Difficult Cases 

These results are a bit problematic.  One example will show how a clear result really 

might be misleading, the other will show that the answer may be there, but not 

immediately discernable. 

4.2.3.1 Cars Passing by Each Other 3 

The third and last passing by event is found in V3V100004_008.avi, frames 290-305, 

with a 128x128 pixel window (Fig. 4.8).  What should have been an easy identification 

gets complicated by two factors.  First, the white pickup is hardly moving.  It shouldn’t 

show up at all, except it has a slow drift down, throwing some energy into the spectrum 

on the (0, -1) plane.  Second, because it’s white, its trace in the spectrum is powerful, 

bleeding into the some of the adjacent spectral space and smearing all over the 

neighborhood.  The dark Mustang doesn’t have a chance to make a discernable peak in 

the plateau in the motion map made by the two vehicles.  Throw in a little platform jitter, 

and we have nothing from the Mustang, and, when extracted, the reconstituted image 

pickup doesn’t fare well (see Figure 4.8c).  Frame 9 of this sequence is shown in Figure 

4.8a, with the corresponding motion map in 4.8b.  Because the energy in the spectrum of 

the truck was smeared all over the map there were no visible peaks.  The peak detector 

program tried to deal with this situation and located a peak pickup at (0,-1).  The motion 

map was essentially destroyed by the bright white truck, it would seem. 
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4.2.3.2 Car Passing 4  

The fourth passing event (Fig. 4.9) is a High Mobility Multipurpose Wheeled Vehicle 

(commonly called a Humvee) pulling a tank trailer and passing an M-35 6x6 truck.  This 

sequence is from V3V100012_009.avi, frames 1365-1380 (16 frames), and a 128x128 

pixel window.  The camera operator tracked the M-35, letting the Humvee move on by.  

Frame 4, representing the video sequence, is seen Figure 4.9a.  The motion map, given as 

Figure 4.8a Third Passing By event, 
frame 9 

Figure 4.8b Motion Map for Third 

Pass By event; white pickup is not 

detectable without detect peak 

program; Mustang not detectable  

Figure 4.8c Extracted image from 

Third Pass By at (0,-1) 
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Figure 4.9b, shows this, as the Humvee clearly shows up at (-2, 2) (see Figure 4.9c), and 

the M-35 seems to be inconclusively smeared all over what might have been a clear 

background indication or the actual truck’s motion.  This could have been caused by 

aircraft motion from mild turbulence.  This is disturbing, as one would expect the truck to 

show up somehow, because the camera did not perfectly track the truck.  However, this is 

not the last word on this data sample, as will be shown below. 

Figure 4.9a Fourth Passing event, 

frame four 

Figure 4.9b Fourth Passing motion 

map; passing HUMVEE with 

trailer at (-2, 2), passed M-35 lost 

in the noise 

Figure 4.9c Extracted image at (-2 ,2) 
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4.2.3 Tracking Real Vehicles 

The tracking program is now demonstrated on a real-world video.  To show its 

effectiveness, it was applied to an aerial sequence from VIVID file V4V200005_023.avi, 

frames 2801-2816, with a window of 256x256 pixels, showing a van driving through an 

intersection.  Figures 4.10 shows the “boxed” frames 1, 9, and 16 of the sequence.  As 

with the “truck on the meadow” simulation, the box is not perfect because the process 

that calculates the box has only the binary image’s blob made from the extracted image to 

go on.   It does, however, demonstrate the effectiveness of the algorithm’s products.  For 

completeness, the convex hull was also placed around the image.  The results are shown 

in Figures 4.11 for frames 1, 9, and 16.  The method clearly works on real vehicles in real 

video, too. 

 

Figure 4.11 Van through the intersection, frames 1, 9, and 16 with convex shell applied 

Figure 4.10 Van through the intersection, frames 1, 9, and 16 with tracking box applied 
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4.3 Interesting Conjectures 

Some topics came up during the evolution of this work.  These topics might be called 

“odds and ends.”  They are worthy of discussion, taken up here in no particular order. 

4.3.1 Convoys 

An obvious application of the tracking method to follow convoys of vehicles of interest.  

Preliminary results obtained during the initial trials with blocks and blobs and later with 

groups of vehicles moving together validates the theory, which indicates that such a 

group, traveling together in a given direction with a common velocity, will show up in 

the motion map as a single object.  In theory, they will show up together, as they occupy 

the same tilted plane in the spectral volume.  The tracking algorithm was modified to 

accommodate an extended group and the trial proceeded.  It must be admitted in advance 

that the original software should not be considered production quality, and the 

modifications to it to track a convoy is even less so.  Even so, the “hack” on the original 

software works well enough to prove the point. 

In the selected sample, we have a group of three vehicles traveling roughly vertically up, 

in respect to the frame, from extracted from frames 720 to 735 of V3V100003_005.avi 

(Figure 4.12, below).  The observing aircraft is crossing right to left and up faster than the 

convoy is moving.  Thus, the motion map of the clip (Figure 4.13) shows that the motion 

of the group relative to the frame is 2 pixels/frame right and 3 pixels/frame down.  This 

was not unexpected.  However, when the tracking algorithm attempted to separate the 

vehicles from the residual background, a problem was encountered with the residual 

background “stealing” the tracking gate (Figure 4.14).  The solution to this problem was, 

for lack of a better description, applying a “flat topped barrel vault” mask (Figure 4.15) 
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with the profile derived from a Hanning window with an intervening flat spot at the apex 

to span the area of interest in the frame while suppressing the extraneous residual 

background.  The orientation of the mask was determined by the program based on the 

velocity vector of the convoy.  When the mask was applied, the tracking gate was applied 

to the proper objects and the tracking successfully accomplished (Figure 4.16).  The 

orientation of the mask was determined by the difference between the x velocity vector 

and y vector.  A simplifying assumption was made to the effect that the convoy was 

either going to be going roughly vertically or that it would be moving more or less 

horizontally relative to the frame and that orienting the mask appropriately would 

sufficient for proof of principle.  As it turns out, the assumption proved effective. 
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Figure 4.12 Original convoy sequence Figure 4.13 Motion map of the convoy 

Figure 4.14 Initial result (without mask) Figure 4.15 Flat topped barrel vault mask 

Figure 4.16 Final result (with mask) 
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4.3.2 Ridge Running 

Often, a video sequence will have more than one moving object (aside from the moving 

background).  In such cases, each of the moving objects will generally have their own 

readily discernable maximum in the motion map.  However, when several vehicles are 

going in the same direction and at similar velocities, such as in a passing event, the 

maxima will be close together, perhaps even adjacent.  Throw in noise and the ground 

motion, and sometimes a “ridge” in the motion map will arise masking the individual 

peaks.  In Figure 4.17, presents again the scene from 4.9a, a Humvee pulling a trailer 

passing an M35.  The resulting motion map in Figure 4.18 (same as 4.9b) clearly shows 

this situation.  There is a main peak and right next to it is a discernable ridge.  To find any 

of the objects masked by the ridge, one must go point by point along the ridge to find 

them.  The main peak is at (-2, 2) and is unambiguous.  Extracting the image at the 

indicated location yields Figure 4.19, which is clearly the passing Humvee.  The map also 

shows a ridge from (0, 2) to (1, 1), ending at (2, 0).  Investigating the ridge, we start with 

the left local peak at (0, 2). The image extracted at that point, Figure 4.20, shows fuzzy 

images of both vehicles.  Enough of both vehicles leaked into the “in between” plane to 

make a weak appearance.  Figure 4.21 shows the image extracted from (1, 1) which is 

clearly the M35 being passed.  This is not a discernable peak, other than this point being 

on the ridge itself, as it sits in the saddle between the ends of the ridge. Finally, the image 

extracted from (0, 2) is given in Figure 4.22, where we have another case where we have 

fuzzy images of both vehicles.  The image of the Humvee is fuzzier than the image of the 

M35 due to the fact that this point is further away from the optimal point for the Humvee 

than is the truck’s optimal point. 
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  Figure 4.17 M35 Truck being passed 
by a Humvee with trailer 

Figure 4.18 Motion map of passing 

event 

Figure 4.19 Image extracted at (-2, 2) Figure 4.20 Image extracted at (0, 2) 

Figure 4.21 Image extracted at (1, 1) Figure 4.22 Image extracted at (2, 0) 
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4.3.3 Expanding the Filter   

The extraction process consists of determining the plane on which the information for the 

object’s image resides, and then using that information to create a mask to eliminate the 

extraneous data and allow the recovery of the best possible image of the object of 

interest.  The mask forms a spatial filter in the frequency domain.  When the perfect test 

images generated by the truck on the meadow were extracted from the spectral volume, 

for example, the results were sharp and clear.  However, real data is not perfect, with the 

vehicle not moving at exactly an integral velocity, focus and platform vibration issues, 

and the presence of noise in the data resulting in a “fuzzy” image.  It was speculated that 

expanding the mask to include adjacent planes might improve the quality of the 

extraction.  This conjecture is not quite in the mainstream of this research, but it is 

interesting and closely enough related to warrant a few trials.  Two cases were tried to 

obtain a preliminary result to see if there was any positive outcome – one trial with the 

four-neighbors and one with the 8-neighbors, the trials were performed by modifying the 

extraction software to construct the planes represented by the aforementioned neighbors 

and then including them in the mask.  The results can be seen below. Using the data from 

the convoy trials, we start with Figure 4.23, the extracted M35, which is the baseline 

image.  The extraction routine was then modified to include planes represented by the 4-

neighbors in its filter. The resulting image, Figure 4.24, is not visibly improved.  The 

routine was further modified to include the planes from the 8-neighbors.  The result, 

Figure 4.25, also shows no improvement, leading to the conclusion that expanding the 

filter to include the neighboring regions is not effective in improving the extracted image. 
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  Figure 4.23 Original extracted image Figure 4.24 Image augmented by 4- 

neighbors 

Figure 4.25 Image augmented by 8- 

neighbors 
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Chapter 5  

Tracking Accuracy Comparison 

An experiment was designed to verify the assumption of short-term linearity and 

accuracy of the algorithm and its associated tracking method.  The plan was to track and 

apply boxes to longer sequences of vehicle motion using sequential 16 frame snippets 

(approximately ½ second each at 30 frames per second) and compare the results to the 

results from a well-regarded algorithm by Paul Rodriguez and Brandt Wahlberg called 

incremental Principal Component Pursuit (iPCP) [9, 10].  The dataset used consisted of 

long single car sequences from the VIVID database described in Chapter 4, augmented 

by data taken by a drone hex helicopter.  The data set is show in Figures 5.1 – 5.5. 

 

Figure 5.1 Car on Road 1 – V3V100003_005.avi 

from DARPA VIVID; frame size: 128x128 pixels. 

See Figure 5.7. 

    

 

 

 

Figure 5.2 Car on Road 2 – V4V200005_022.avi 

from DARPA VIVID; frame size: 256x256 pixels.  

See Figure 5.8. 
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Figure 5.3 Car on Road 3 – V4V100013_053.jpg 

from DARPA VIVID; frame size: 128x128 pixels.  

See Figure 5.9. 

    

 

 

   

 

Figure 5.4 Hexcopter Clip 1- Earthmover; frame  

size: 256x256 pixels.  See Figure 5.10. 

 

 

 

                

    Figure 5.5 Hexcopter Clip 2- Car in parking lot;  

    frame size: 448x128 pixels.  See Figure 5.11. 

 

  

 

An automatic object following program using the preceding routines was under 

development at the time this test was proposed, and it was modified to perform this 

comparison.  This code is provided below in Appendix B.  No pseudocode will be 

provided due to its complexity. 

 IPCP is robust and well behaved.  As mentioned in Chapter 1, iPCP separates the video 

frame into background and foreground regions.  As with the automatic tracking program, 

some minor modifications were made to allow access to internal data structures and 
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frame-by-frame results so a direct comparison could be made.  The results from both 

algorithms would then be compared to ground truth data done by hand.  The results for 

each method were plotted on the same graph for a given sequence, and the results for all 

the examples were combined and tabulated.  As neither algorithm was originally intended 

to do object tracking, this is as fair a comparison of performance as possible that could be 

devised.  Copyright issues preclude the publication of the modified iPCP code; it is 

available at the authors’ web site. 

 

 

 

 

 

 

Figure 5.6 Scoring criterion for the comparison. 

A very simple-minded scoring method was devised to compare the efficacy of the two 

methods.  Code for this program is also given in Appendix B.  As illustrated above in 

Figure 5.6, the result of each method on a sample sequence frame was used to generate a 

box on the frame, as in the synthetic tracking examples above.  These boxes were then 

compared to a reference box inserted by hand.  Scoring proceeds as follows.  The area of 

the reference box is used as the standard for area and accuracy comparisons for that run.  

Area of the method boxes were compared to the reference box by forming a ratio of the 

Reference Box 

Method Box 1 

Method Box 2 

Reference Area 

Reference Distance 

Miss Distance 
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areas.  Using this method always yields a positive, unambiguous result, unlike a simple 

arithmetic difference.  That is,  

Normalized_Area_Difference = Area_of_Method_Box / Area_of_Reference_Box.     (5.1)  

 Likewise, half the length of the diagonal of the reference box was used as a normalizing 

distance to determine the “miss distance” of the center of the method box to the center of 

the reference box, that is,  

Ref_Dist = ½(Diagonal_of_Ref_Box).                                       (5.2) 

          Miss_Dist = norm(Method_Box_Center,Ref_Box_Center) / Ref_Dist                (5.3) 

By not using absolute areas and distances, the results of one run could be directly 

compared to another in terms of the common criterion.  Thus, if a given method was 

working perfectly, it would generate a box that was centered on the reference box (zero 

miss distance) and was the same size as the reference box (size ratio of one).  Of course, 

that never happens.  The justification for the box size score is that it is an indirect 

measure of the quality of the extracted/reconstructed image.  That is, if it is sharp, the box 

will closely conform to the shape of the original object, while if it’s diffuse, it will be 

larger, and perhaps off center as well.  Of course, the “boxing” algorithms used on either 

set of data could always be improved, but those that were used are probably good enough 

to give an informed comparison. 

In the case of the example in Figure 5.6, the blue reference box is given with two other 

boxes, representing the competing methods superimposed on it.  Method 1 represents a 

reconstruction where the “bright” spot being detected by the algorithm is smaller than the 

actual object, and the “miss distance” is less than the reference distance.  As the box is 
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smaller than the reference box and fairly well centered, the result is that both scores are 

less than 1.  Method 2 represents a reconstruction where the bright area is more diffuse, 

and, thus larger than the original.  The box’s miss distance is also less than the reference 

distance.  The scores for this example would be less than one for the miss distance and 

greater than one for the box area. Remember, “perfection” would be a score of 1 for the 

size ratio and 0 on miss distance. 

Results of real data comparisons are given below in Figures 5.7 through 5.11.  Various 

sequences with cars on the road were analyzed with total sequence lengths of 2 to 3 

seconds.  A sliding interval of 16 frames was used, as indicated above.  A reference 

sequence for each was manually generated and the results of the sequence as processed 

by the iPCP and FDM methods were compared to the reference and the results plotted.  

Sample fames from each video sequence is also presented with the reference, FDM, and 

iPCP generated boxes superimposed on the original object. 

 

 

 

Figure 5.7a Car on Road #1, Frame 22 Figure 5.7b Image produced by iPCP 

segmentation model 
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Starting with Figure 5.7a, frame 22 of the Car on Road #1 sequence is presented, along 

with the image produced by the iPCP in Figure 5.7b.   Figure 5.7c shows the color coded 

tracking boxes applied to the original frame 22 image to show how close the methods 

came to the position and size of the boxes placed by hand. This sequence is extracted 

from VIVID sequence V3V100003_005.avi, 0:48 to 0:53 seconds, frames 17-79 (32-79 

for the FD method) with a frame size of 128x128 pixels. The iPCP method requires 15 

frames to “prime the pump” with data, then the rest come out of the pipeline, hence the 

extra 15 frames to process the same number of frames as the FD method.  The yellow box 

is the manually placed ground truth box, green is the FDM generated box, and the red 

box is the one placed using the iPCP data to generate the box.  Figure 5.7d is a plot of the 

scoring data.  Here, except for the one outlier in the iPCP score which forced the scaling 

to be so large, the results can be seen to be fairly close, with the FDM generated boxes 

edging out the iPCP results. This also shows that under favorable circumstances, both 

methods can produce similar results.  

Figure 5.7c Original frame 22 with 

tracking boxes added for comparison 

Figure 5.7d Relative error plot for Car 

on Road #1 
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Figure 5.8a shows the Car on Road #2 sequence; Figure 5.8b, as before, shows the iPCP 

model generated image, 5.8c the original frame 33 with the tracking boxes applied, and 

Figure 5.8d its error plot.  This sequence is from VIVID sequence V4V200005_022.avi, 

seconds 0:00 to 0:04, frames 1-79 (16-79 for the FD method), with a window of 256x256 

pixels.  The results are not as good for the iPCP method as it was before, as can be seen 

in Figure 5.8c, considering the misalignment of the red iPCP box with the yellow ground 

Figure 5.8a Car on Road #2, Frame 33 

Figure 5.8d Relative Error Plot for 

Car on Road #2 

Figure 5.8b Image produced by iPCP 

segmentation model 

Figure 5.8c Original frame 33 with 

tracking boxes added for comparison 
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truth box.  Bright spots dragged into the foreground by iPCP, seen in the upper right 

corner, snatch the block placing routine’s attention and fool it into generating a larger box 

which is not always close to being coincident with the ground truth box 

  

Figure 5.9a Car on Road #3, Frame 30 Figure 5.9b Image produced by iPCP 

segmentation model 

Figure 5.9c Original frame 30 with 

tracking boxes added for comparison 

Figure 5.9d Relative error plot for Car 

on Road #3 
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ar on Road #3 is a sequence taken from VIVID file V4V100013_053.jpg, 1 minute, 41 

seconds to 1 minute 43 seconds, frames 1 to 79 (16-79 for the FD method), with a 

window size of 128x128 pixels.  The white van is flanked by light colored curbs and 

sidewalks which caused difficulty to the iPCP method, as it included much of the bright 

background clutter in its foreground rendering.  The results are evident in Figures 5.9a 

through c.  The red iPCP box is considerably larger than it ought to be, grabbed as it was 

by the light colored curbs, and it is clear from the plot that the centers of the iPCP boxes 

are unstable in relation to the center of the ground truth box. 

The next two sequences were obtained by a fellow classmate, Jeffery Love, using a drone 

hexcopter with a video camera.  The sequences consist of an earthmover driving through 

the brush by the Rio Grande, the other an SUV negotiating its path through a parking lot.  

Both videos are of excellent quality – the GoPro camera being superior to the cameras 

flown a decade ago by DARPA.  The videos have come challenging issues though with 

terrain clutter, as will be discussed.  

 

 

Figure 5.10a Hexcopter Clip 1, Frame 33 Figure 5.10b Image produced by iPCP 
segmentation model 
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Figure 5.10a is an earth mover driving through the brush by the river while doing erosion 

mitigation.  It is flanked by reeds and rushes as commonly found on a river bank.  This 

environment presented the most challenging background encountered in these trials.  As 

can be seen in Figure 5.10c, the red iPCP box is fully expanded to the limits of the frame, 

which indicates that the weeds leaked into the foreground with sufficient energy to steal 

the box from the earth mover.  The FD method had trouble with the earth mover as well, 

as it was an extended object with three bright spots sufficiently separated from each other 

to force the boxing software to choose the brightest and closest two spots (the cab and the 

front of the bed) to be boxed, leaving the rear of the bed out of the box, but even so, it did 

successfully capture most of the object.  The result is that the size of the box was simply 

stuck on essentially the whole frame.  Figure 5.10d records the analysis. 

 

  

Figure 5.10d Relative Error Plot, 
Hexcopter Clip 1 

Figure 5.10c Original frame 33 with 

tracking boxes added for comparison 
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The second hexcopter sequence is seen in Figure 5.11a and b.  Here, the white SUV is 

driving away while the drone is loitering overhead.  The challenges to both the FD 

method and the iPCP method are the trees to the right and the parking lot to the left.  The 

segment from the file is from 2 minutes, 6 seconds to 2 minutes, 10 seconds.  The 

segment is 111 frames long (96 frames for the FDM, giving 15 frames to get the iPCP 

started), with a window of 448x128 pixels. The unusual window was chosen to reduce 

the interference from the trees and parking lot to give both methods the best chance of 

properly functioning properly.  At this juncture, the point is to compare the tracking 

ability. 

  

Figure 5.11a Hex Copter Clip 2, Frame 40, 

original, iPCP, and boxed 

Figure 5.11b Relative Error Plot, 

Hex Copter Clip 2 
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Putting it all together, the results are charted on a common graph in figure 5.12.  The 

green representing the FD method is concentrated around the (0, 1) point of “perfection.”  

Meanwhile, the red iPCP data is scattered all over.  There are some iPCP successes, such 

as “Car on Road #1,” but the iPCP was consistently outperformed by the FD method.   

The numerical results are shown below in Table 3, where the aggregate results confirm 

the results from the graph.  With 336 frames of video, the average normalized miss 

distance is 0.2593 with a variance of 0.0224, while the iPCP yields a normalized miss 

Figure 5.12 Aggregate Error - All Data 
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distance of 1.1329 and a variance of 0.7480.  Likewise, the normalized size estimate 

difference is 0.7340 with a variance of 0.2042 for FDM versus 6.8108 and variance of 

32.6233.  This means that the FDM method was doing approximately 4 times better at 

miss distance, versus the iPCP, and approximately 9 time better than iPCP in size 

estimate. 

 

Table Three. Aggregate Numerical Errors – Comparison Tests 

EVENT  MEAN MISS 
DISTANCE 

MISS 
VARIANCE 

MEAN SIZE 
DIFERENCE 

SIZE 
VARIANCE 

NUM. 
FRMS. 

CAR ON 
ROAD #1 

FD 
METHOD 

0.1673 0.0138 0.6880 0.0014 48 

iPCP 
METHOD 

0.4525 0.0735 2.2048 5.8076 

CAR ON 
ROAD #2 

FD 
METHOD 

0.2455 0.0162 0.5120 0.0590 64 

iPCP 
METHOD 

0.8197 0.5319 2.6163 5.1548 

CAR ON 
ROAD #3 

FD 
METHOD 

0.2183 0.0097 0.9070 0.0728 64 

iPCP 
METHOD 

2.3343 0.6642 12.8362 32.4922 

HEXCOPTER 
CLIP 1 

FD 
METHOD 

0.3174 0.0498 1.2919 0.3958 64 

iPCP 
METHOD 

0.8668 0.2129 13.2751 0.0037 

HEXCOPTER 
CLIP 2 

FD 
METHOD 

0.3032 0.0123 0.4176 0.0042 96 

iPCP 
METHOD 

1.0584 0.3413 3.5836 1.4926 

AGGREGATE 
RESULTS 

FD 
METHOD 

0.2593 0.0224 0.7340 0.2042 336 

iPCP 
METHOD 

1.1329 0.7480 6.8108 32.6233 
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Chapter 6 

Summary and Possible Future Research 

6.1 Summary 

For videos characterized by moving backgrounds and multiple moving objects, the 

proposed frequency-domain methods delivered improved performance over time domain 

methods.  The algorithm delivered especially well with clean, unambiguous examples 

where clutter was not an issue and the focus was good, but performed in a reasonable 

manner under most other circumstances.  Where the methods did not perform adequately, 

it was clear that circumstances beyond the scope of the methods intervened to reduce the 

effectiveness of the analysis.  It must be pointed out these data sets, especially the VIVID 

examples, are difficult datasets.  DARPA did not design this set to test motion detection 

and quantification techniques, but rather to test activity detection algorithms.  Even so, 

the results were convincing.  Furthermore, it is clear from the results of the comparison in 

Chapter 5 that the FD methods are clearly superior in segmenting and following the 

object of interest as opposed to the iPCP method that was not designed to deal with 

background motion. 

The success with drone hexcopter imagery points to the fact that technology has 

surpassed the VIVID 640x480 cameras.  The current and future generations of drone 

videos will have stability augmentation, semiautonomous control, and high resolution, 

autofocusing cameras which will and do provide video without the platform issues.  

However, the backgrounds will still move, and there will often be multiple moving 

objects.  This makes the application of these methods even more effective, as 

demonstrated in sections 5.10 and 5.11. 
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6.2 Future research 

The FDM described in this dissertation are related to current UNM research on 2-D AM-

FM models and methods described in [25-35].  The lack of a large dataset calls out for 

more development with a more expansive dataset for this algorithm.  The proposed 

methodologies will have to be verified on large video databases before they become more 

widely used.  As an example, at UNM, the AOLME project aims to extend video analysis 

methods in 1000 hours of videos (e.g., see earlier methods in [36-41]).   

In the modern era of Big Data (e.g., [20]), it is important to develop methods that allow 

for very fast processing of large scale video databases. Such methods are described in 

[21, 22] based on the Discrete Periodic Radon Transform while FPGA implementations 

of general filter banks where developed in [22, 23, 24].  The FDM presented in this 

dissertation benefits from hardware assists, especially with parallel processing.  It no 

doubt can benefit from an infusion of even higher performance hardware to increase its 

utility.  It is conceivable that an external hardware implemented accelerated version 

(perhaps using an FPGA or a graphics processor) might allow near real time processing 

that keeps up with 30 frame/second video, opening up a wider array of possible uses of 

the algorithm and associated methods.  

A paper based on this work will be submitted to EURASIP Journal on Image and Video 

Processing.  
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APPENDICES 

Appendix A 

High Fidelity Motion Simulator 

It was quickly apparent that a realistic motion simulator was needed to validate the 

algorithms as they were developed, as simple moving blocks were not completely 

satisfactory.  A real vehicle on a real landscape was desired.  A photograph of the Lower 

Geyser Basin on the west side of Yellowstone National Park had been taken on a family 

vacation a few years prior to this effort by the author’s wife. It had all the desired 

characteristics being sought, so a copy was cropped to create a long strip of landscape.  

The image of an Army M-35 6x6 truck was also identified for use in this effort.  The 

background image was converted to gray scale, as was the truck.  The truck was then “cut 

out” of its picture, so that the vehicle was the only item in it.  A program was written to 

move a window along in the background at a specified rate from left to right, which 

meant that the background appears to move right to left.  The truck image is placed in the 

window also moving as specified generally right to left (it can be moved along not just 

left to right but diagonally).  The net result is as if the observer was riding in a vehicle 

moving left to right looking out the left hand window with the landscape moving by right 

to left, as one would expect it to.  The truck is generally going faster than the observer’s 

“vehicle,” so it passes by going left to right as if it were passing the observer.  Multiple 

motions would then be present and the algorithm tested to see if it correctly captures 

them all.  Figures A.1 through A.4 show the actual images used.  The code enabling the 

simulation is given in Appendix B. 
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Figure A.1 Lower Geyser Basin, Yellowstone National Park (photo: Virginia Stone) 

Figure A.2 Yellowstone scene Cropped and converted to gray scale 

Figure A.3 M-35 6x6 truck 

Figure A.4 Resulting composite scene 

presented by the simulation 
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Appendix B 

Computer Programs Created for the Work 

B.1 Motion Mapping Function, Parallel and Accelerated Version 
 
function [Answer] = fastmappmex(dft, range, resolution) %#codegen 
% This routine maps the motion for the analysis of motion in video 
% sequences.  It features variable range and resolution, which will be 
% determined by the parameters provided by the user.  The actual compiled  
% version to be invoked is fastmappmex_mex. 
% Inputs 
% dft – magnitude spectrum of the video sequence 
% range – span of the velocity search in –span to +span in x and y 
% resolution – used with Z transform for sub pixel/frame motion 
% Output 
% Answer – 2-D array holding the motion map 
% 
% © V. M. Stone 2018 
% 
% assert the input variables; required to compile this routine 
assert (isa (dft, 'double')); 
assert (all (size(dft)<=[1024 1024 160])); 
assert (isa (range, 'double')); 
assert (isa (resolution, 'double')); 
% The scaling of the result is determined here; this stays the same as 
% before... 
extent = 2*(range/resolution)+1; 
Answer = zeros (extent, extent);  %this is where the answer goes 
midp = ceil (extent/2); 
% Set the threshold. 
thresh = 0.1; 
% Get the size of the incoming DFT. 
[r, c, p] = size (dft); 
% We use the temporal positive half; we'll chuck the negative half, of the  
% spectrum.  I suppose we could doctor the code to just ignore it, but then 
% gets insane. 
% the indexing gets insane. 
%F irst, figure out which plane is the "0Hz" plane 
zhp = floor(p/2)+1; 
% Isolate the positive half of the spectral volumes 
spec = dft(:, :, zhp:p); 
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% Next, we need the zero points of the planes. 
zx = floor(c/2)+1; 
zy = floor(r/2)+1; 
% We have isolated the half we want.  Eventually, we will ignore the temporal  
% 0 plane, as well as the region around spatial zeros. 
% While we're at it, let's redefine r, c, and p.  BE %CAREFUL!  r and c remain 
% the same, but p is 1/2 of what it was... 
[r, c, p] = size(spec); 
% 
% Build the scaling vectors, one for each axis.  They will have the same 
% indexing as the points in the probe volume.  We need only 1/2 the values 
% for z. 
X = linspace(-pi,pi,c+1); 
Y = linspace(pi,-pi,r+1); 
Z = linspace(0,pi,p+1); 
% We now build probe volumes for each trial, where the test plane is indicated 
% by 1's.  This is done by exploiting the property that the dot product of a 
% vector in the plane with the plane's normal is zero.  Because a vector 
% from the origin to any point in the space is a vector in any plane that 
% passes through that point, we can thus take the dot product of that vector 
% and the velocity vector being examined and see what's going on.  We'll search 
% the space point by point and mark the space with 1's where the product is 
% sufficiently low, and 0 where it's not.  This should yield a plane defined 
% in the probe space that can be anded with the 3d-fft to eliminate values 
% not on that plane and allow for the testing process to succeed. 
% 
% figure out the size of the blanking factor – this is necessary if the spatial frequency 
% space is too big 
if r <= 16 
    bf = 0; 
elseif r <= 64 
    bf = 1; 
else 
    bf = 2; 
end 
% Preallocate the transfer variable used in the probe process. 
tran = zeros(r, c, p); 
% run timer 
%t1=tic; 
% It is worth mentioning that when doing sub-pixel work, i and j are 
% fractional.  They have to be translated for the algorithm... 
parfor i=1:extent 
%    display(i); 
    for j=1:extent   %j and i map into the Vx’s and Vy's, respectively, being searched for 
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        Vx = (j-midp)*resolution; 
        Vy = (i-midp)*resolution; 
        % Now, let's build a plane of 1's normal to Vx, Vy, and 1. 
        % preallocate/reset the accumulator space 
        zero_vals = zeros(r, c, p); 
        % Do the dot products by brute force, but ignore the velocity pair (0,0). 
        if Vx==0 && Vy==0 
            Answer(i, j) = 0; 
        else  
            for m=2:p %remember, we're skipping the 0 hz plane 
                for l=1:r 
                    for k=1:c 
                        if ~(abs(zy-l)<=bf) || ~(abs(zx-k)<=bf)  %if too close to 0,0 then skip this 
                            %Now, what happens with the "k" variable is that X is 
                            %column, Y is row in non-MatLab thinking, so I have to 
                            %exchange the column and row indices to make it work right. 
                            zero_vals(l, k, m) = (abs(dot([X(k) Y(l) Z(m)],[Vx Vy 1])))<thresh; 
                       end 
                    end 
                end 
            end 
            %"and" it with the dft to eliminate the irrelevant stuff and 
            %sum it up to get the intensity on that plane. 
            tran = abs(zero_vals.*spec); 
            Answer(i, j)= sum(tran(:)); 
        end 
    end 
end 
% ok, how much time did it take? 
%toc(t1) 
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B.2 Peak Detecting Function, Parallel Version 

function [vel]=detectpeaksp(mapin,scale) 
% 
% The object of this code is to detect the peaks in an energy map 
% and return the velocities indicated by the peaks.  It is possible that 
% there are more than one peak.  We will ignore the edges of the map, 
% as the data we seek supposed to be closer to the center 
% Assume the map is symmetrical, at least in its layout.   
% 
%Inputs 
%  mapin-       the input map 
%  scale-       scale factor of incoming map (i.e., 1, 1/2, 1/4, etc. pix resolution) 
% Outputs 
%  vel-         velocities indicated by the peaks, and relative amplitude 
% 
% © 2018   V. M. Stone  
% 
% Create a structure to hold the captured peaks 
[R,C]= size(mapin); 
answer= zeros(R,C); 
% Normalize the input map; this keeps us sane 
mapin= mapin/max(mapin(:)); 
% Since it’s normalized, the 90% point is above 0.9 
thresh = 0.9; 
% Let's walk through the map; ignore the edges; parfor invokes parallel processing 
parfor i=2:R-1 
    for j=2:C-1 
        % This mess checks the 8-neighbors by brute force (my favorite way) 
        if ((mapin(i, j) > mapin(i-1,j-1)) && ... 
            (mapin(i, j) > mapin (i-1,j)) && ... 
            (mapin(i, j) > mapin (i-1,j+1)) && ... 
            (mapin(i, j) > mapin (i,j-1)) && ... 
            (mapin(i, j) > mapin (i,j+1)) && ... 
            (mapin(i, j) > mapin (i+1,j-1)) && ... 
            (mapin(i, j) > mapin (i+1,j)) && ... 
            (mapin(i, j) > mapin (i+1,j+1))) 
            answer(i, j)= mapin(i, j); 
            if (answer(i, j) < thresh) 
                answer(i, j)= 0; 
            end 
        end 
    end 
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end 
% Let's determine the scaling of the map; assume it's symmetrical 
B= floor(C/2); 
B= B*scale; % This adjusts for subpixel/frame resolution, if being used 
% Now we set up the actual "ruler" to relate the index to the actual value 
ruler= linspace(-B,B,C); 
% Let's set up to identify the velocities 
numpeaks= 0; 
% How about a 3 by n array to hold the velocities and associate intensity?  Now for a  
% walk through the 2-d array and find the detected peaks... 
for i=2:R-1 
    for j=2:C-1 
        if answer(i, j) ~= 0 
            numpeaks= numpeaks+1; 
            vel(1,numpeaks)= ruler(j); %x is in column space 
            vel(2,numpeaks)= ruler(i); %y is in row space 
            vel(3,numpeaks)= answer(i, j); 
        end 
    end 
end 
vel = (sortrows(vel',-3))'; 
% We’re done 
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B.3 Chirp-Z 2-D Plus 

 
B.3.1 Forward chirp-Z transform 

 

function [B]=chirpz2dplus(A, Res) 
%Here, we want to increase the resolution of the spatial frequency part of 
%the 3d transform.  We keep the temporal axis the same (i.e., use a 
%simple fft instead of the czt).  We'll keep the spacing even just to 
%preserve our sanity. 
% 
%Input 
% A – video segment 
% Res – resolution factor ( 1/2, 1/4, 1/8 etc.) 
%Output 
% B – complex spectrum, unshifted, as it is with the FFT 
% 
% © V. M. Stone    2018 
% 
%turn resolution into size multiplier 
M=1/Res; 
%figure out the size of the input and define the output stack 
[R,C,P]=size(A); 
B=zeros(R*M, C*M,P); %we'll start with an appropriate workspace 
%first scratch space 
B1 = zeros(R, C*M,P); 
%second scratch space 
B2 = zeros(R*M,C*M,P);  %we need working scratch for the intermediate results 
%we’ll use the output variable as the third scratch space 
%evaluate the coefficients for the czt 
a=1;   %even spacing, supposedly 
w = exp(-j*2*pi/(M*R));  %assumptions: R=C (square array) so we can use this 
%do the columns  
for k=1:P  %We have to cycle through all the planes... 
    for i=1:R %and then we cycle through each row in each plane, storing in B1 
        B1(i,:,k)= czt (A(i,:,k),R*M, w, a); 
    end 
end 
%then we next do the columns of the first result, putting the second result in B2 
for k=1:P  %again, we have to cycle through all the planes... 
    for i=1:C*M %and then we cycle through each column in each plane, storing in B2 
        B2(:,i, k)= czt (B1(:,i, k),C*M, w, a); 
    end 
end 
%and on to the vertical axis of the second result (the time axis) into B3. 
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%We have to index each point on, say, the bottom spatial plane and do each 
%vertical column, storing it in B. 
for k =1:C*M 
    for I =1:R*M 
        B(i, k,:) = fft (B2(i, k,:)); 
    end 
end 
%done 
 
B.3.2 Inverse Z transform 

 

function [B] = invchirpz2dplus (A, Res) 
% This will compute the inverse of the chirp-Z 2-D plus transform.  As a 
% reminder, the temporal axis is 1 to 1 same (i.e., use ift instead of the iczt). 
% 
% Input 
% A – a chirpz2dplus spectrum 
% Res – the resolution (1/2, 1/4, 1/8, etc.) 
% Output 
% B – the spatiotemporal video stack 
% 
% ©   V. M. Stone    2018 
% 
% turn the resolution into size multiplier  
M = 1/Res; 
%figure out the size of the input and define the output stack 
[R, C, P] = size(A); 
B = zeros(R*M, C*M, P); %we'll start with an appropriate workspace; we're not 
%expanding or contracting the temporal axis 
B1 = zeros(R, C*M,P); 
%evaluate the coefficients for the czt 
a = 1;   %calls for even spacing 
w = exp(j*2*pi/(M*R)); %assumptions: R=C (square array) so we can use this; this also 

  %makes it do the inverse transform 
%next, do the columns  
for k = 1:P  %We have to cycle through all the planes... 
    for I = 1:R %and then we cycle through each row in the plane, storing in B1 
        B1(i, :, k) = czt(A(i, :, k),R*M, w, a); 
    end 
end 
B2 = zeros(R*M, C*M, P);  %we need working scratch for the intermediate results 
%then we next do the columns from the first result, putting the second result in B2 
for k=1:P  %again, we have to cycle through all the planes... 
    for i=1:C*M %and then we cycle through each column in the plane, storing in B2 



93 

 

        B2(:, i, k)= czt(B1(:, i, k),C*M, w, a); 
    end 
end 
clear B1; 
%and on to the vertical axis of the second result (the time axis) 
%We have to index each point on, say, the bottom spatial plane and do each 
%vertical column 
for k=1:C*M 
    for i=1:R*M 
        B(i, k, :)=ifft(B2(i, k, :)); 
    end 
end 
%fix the scaling 
 [r, c, p]=size(B); 
B=B/(r*c*p); 
% done 
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B.4 Image Extraction 

function [obj]=extract_object(vidin, xvel, yvel) 
% This little number filters out the stuff NOT on the plane defined by xvel 
% and yvel.  This essentially extracts the object making the plane.  
% Notice: this version does not do a chirp-Z.  Modify it with chirpZ2dplus and 
% invchirpZ2dplus if necessary. It will also need the scale factor passed in. 
% 
% Input 
% vidin – source video 
% xvel, yvel – velocity of object to be extracted 
% Output 
% obj – extracted object 
% 
% ©   V. M. Stone   2018 
% 
% first order of business - get the fft, and keep it complex 
fftin = fftshift(fftn(vidin)); 
[r, c, p] = size(fftin); 
thresh = 0.2; 
% we now build a space where the plane is indicated by 1's 
% we'll do this using the property that the dot product of a vector in the 
% plane with the plane's normal is zero.  We'll search the space point by 
% point and mark the space with 1's where the product is sufficiently low, 
% and 0 where it's not.  This should yield a plane defined in the space that 
% can be essentially anded with the 3d-fft to facilitate the filtering 
% process. 
% build a plane of 1's normal to Vx, Vy, and 1. 
X = linspace(-pi,pi,c+1); 
Y = linspace(pi,-pi,r+1); 
Z = linspace(-pi,pi,p+1); 
zero_vals=zeros(r, c, p); 
%Do the dot products by brute force, 
for k=1:p 
    for j=1:r 
        for i=1:c 
            %now, what happens with the "j" variable is I flip the thing 
            %upside-down, as positive, here, is from top to bottom... 
            if (abs(dot([X(i) Y(j) Z(k)],[xvel yvel 1])))<thresh 
                zero_vals(j, i, k) = 1; 
            end 
        end 
    end 
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end 
%apply mask 
fftout = (zero_vals.*fftin); 
%get tne image stack back 
vidout = real(ifftn((ifftshift(fftout)))); 
%fish out the image 
obj = vidout(:,:,(p/2)+1); 
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B.5 Object Tracking 

B.5.1 Main Tracking Routine, as Modified for Comparison Test 

 

function [outimg,boxes]=follow_object_report_modified(inimg,objimg,xvel,yvel) 
% This puts it all together.  We are going to find the image of the moving object, 
% figure out where the box goes in the frame, and put it on the output image. 
% 
% Inputs 
%  liming-        the original input video sequence 
%  objimg-       extracted object image, normalized and histogram adjusted 
%  xvel, yvel-   the velocity vectors, as detected by the peak detector 
% Outputs 
%  outimg-       the original video sequence with the boxes added 
% boxes-         box array, one column with upper left-hand corner's x (column), 
%                        y (row), width and height, all in plot coordinates. For use by the  
%          scoring for the comparison 
% 
% ©   V. M. Stone  2018 
%  
% copy the incoming video segment into the output variable 
outimg= inimg; 
% get the size of the input segment 
[R,C,P]= size(inimg); 
% find the object in the frame; make a bounding box 
BB = get_object_bounding_box(objimg); 
%bias the first bounding box position with the velocity vector 
BB(1) = round(BB(1)-(P/2)*xvel); 
BB(2) = round(BB(2)+(P/2)*yvel);  %remember, yvel is up while y is down 
%s and set up the box array 
boxes = zeros(4, P); 
% apply the boxes 
for p=1:P 
    % 
    boxes(:,p) = BB; 
    % Add the box; add_standard_box handles clipping for us 
    outimg(:,:,p) = add_standard_box(inimg(:,:,p),BB); 
    %move the box along 
    BB(1) = round(BB(1)+xvel); 
    BB(2) = round(BB(2)-yvel);  %remember, yvel is up while y is down... 
end 
% we’re done  
 



97 

 

B.5.2 Create the Object Bounding Box 

 

function [box] = get_object_bounding_box(obj) 
% We're going to scrub the reigonprops array to figure out if there's any 
% outliers to erase prior to constructing a convex hull around it 
% 
% Input  obj - a "cleaned up" image (normalized and adjusted) 
% Output box – bounding box (standard format) 
% 
% © V. M. Stone    2018 
% 
% take a cut at the binary image 
B = make_bin_img(obj, 0.99); 
% label the image 
L = bwlabel(B); 
% get the region properties 
P = regionprops(L); 
% how many regions? 
NB = length(P);  %Number of Blobs 
% 
% There are generally three possibilities: it's a solid object (one 
% blob), it’s predominately a single large blob with lot of clutter around 
% it, or a really fragmented objects, with a few more or less 
% medium blobs with irrelevant clutter nearby.  Let's see what we have. 
% 
if NB == 1 %There's only one blob; just use the bounding box. 
    box = round(P(1).BoundingBox); 
else %There's more than one blob. Generally, the largest blob is part of the 
    % object of interest.  We'll start there and work down. 
    % Sort the list by size of blob 
    P = sort_blobs_desc(P); 
    % Figure out the distance to be used as the distance metric. Let's use 
    % the size of the bounding box, for lack of anything else 
    box = round(P(1).BoundingBox); 
    if P(1).BoundingBox(3) > P(1).BoundingBox(4) 
        SD = P(1).BoundingBox(3); 
    else 
        SD = P(1).BoundingBox(4); 
    end 
    % We could sort by distance and then cut off the list at some distance, 
    % or we could just look at the other blobs and keep the close ones and 
    % dump the far away ones.  Let's use the second method, as it's easier. 
    for i = 2:NB 
        %Compute the distance to each of the other blobs 
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        D = nearest(sqrt((P(1).Centroid(1)-P(i).Centroid(1))^2 + ... 
            (P(1).Centroid(2)-P(i).Centroid(2))^2)); 
        %If it's too far away, blob it out. 
        if D > 3*SD %Dump the blob - it's too far away.  The multiplier is 
            % heuristically determined (i.e., trial and error).  
            cbox = round(P(i).BoundingBox); 
            %black out the contents of the bounding box in the label image 
            B(cbox(2):cbox(2)+cbox(4),cbox(1):cbox(1)+cbox(3)) = 0; 
        end 
    end 
    % Throw a convex hull around what's left 
    L = bwconvhull(B); 
    P = regionprops(L); %there will be only one region- the convex hull 
    % Collect the bounding box 
    box = round(P(1).BoundingBox);  %done with this case 
end 
% Relax the box a bit 
box(1) = box(1) - 2;  %expand the box by 4 pixels 
box(2) = box(2) - 2; 
box(3) = box(3) + 4; 
box(4) = box(4) + 4; 
% We're done 
 
 

B.5.3 Add a Standard Box to a Video Frame 

function [outframe] = add_standard_box (inframe, boxdef) 
% Add a box to the input frame and put it out as the output frame. 
% 
% Input 
% boxdef - contains a MatLab standard box definition  
%  inframe – frame to which the box will be added 
% Output 
% outframe – the modified image 
% 
% © V. M. Stone   2018 
% 
%Copy the input into the output 
outframe = inframe; 
[R, C] = size(outframe); 
%Unbundle the mins and maxs 
ulr = round(boxdef(2)); %upper left row 
if ulr < 1 %clipping at the edge of the frame, if necessary 
    ulr = 1; 
end 
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ulc = round(boxdef(1)); %upper left column 
if ulc < 1 
    ulc = 1; 
end 
lrr = ulr+round(boxdef(4)); %lower right row 
if lrr > R 
    lrr = R; 
end 
lrc = ulc+round(boxdef(3)); %lower right column 
if lrc > C 
    lrc = C; 
end 
%add in the box 
maxpix = max(inframe(:)); 
if maxpix == 0 
    maxpix = 1; 
end 
%do the sides 
for i=ulr:lrr 
    outframe(i, ulc) = maxpix; 
    outframe(i, lrc) = maxpix; 
end 
%now the top and bottom 
for i=ulc:lrc 
    outframe(ulr, i) = maxpix; 
    outframe(lrr, i) = maxpix; 
end 
%done 
 
B.5.4 Alternate Convex Hull Applying Tracking Routine 

 

function [outimg]=follow_object_hull(inimg, objimg, xvel ,yvel) 
% We are going to find the image in the frame, compute a convex hull, and 
% put it into the output image. 
% 
% Inputs 
%  inimg-        the original input video sequence 
%  objimg-       middle frame of the reconstructed object image 
%  xvel, yvel-   the velocity vectors 
% Output 
% outimg-       copy of the original video sequence with the hull added 
% 
% © V. M. Stone   2018 
% 
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% Normalize the image to 0-1 in intensity values.  This preserves our 
% sanity and makes the other stuff work 100% of the time. 
normimg= objimg/max(objimg(:)); 
% Adjust the grey scale to enhance contrast. 
normimg= imadjust(normimg); 
%make a binary image 
binimg = make_bin_img(normimg, 0.95); 
%trim the edges 
[R,C]=size(binimg); 
binimg(1:10, :) = 0; 
binimg(R-10:R, :) = 0; 
binimg(: ,1:10) = 0; 
binimg(: ,C-10:C) = 0; 
% Throw a convex hull around the binary image 
hull= bwconvhull(binimg); 
% get the hull properties 
P = regionprops(hull, 'ConvexHull'); 
% Trace the hull; the point on the hull will be i, j. 
j = round(P.ConvexHull(1,1)); 
i = round(P.ConvexHull(1, 2)); 
bound=bwtraceboundary(hull,[i  j], 'E'); 
% Put the hull on the output image, moving it as necessary. 
% First, a little bookkeeping. 
outimg= inimg; 
[RI,CI,P]= size(inimg); %All I really need is P, the number of planes. 
[R,~]= size(bound); %I do need the number of rows in bound; C is 2. 
% Now, we set the bias of the boundary to put it into the output stack. 
rowbias = floor(-(P/2)*(yvel)); 
colbias = floor(-(P/2)*(xvel)); 
% Set the intensity of the outline 
bright= max(max(max(outimg))); 
% Write it in. 
for p=1:P 
    %Do the current plane. 
    for i=1:R 
        r = floor(bound(i,1)+rowbias); 
        c = floor(bound(i,2)+colbias); 
        %clip, if necessary 
        if (r < 1) 
            r = 1; 
        elseif (r > RI) 
            r = RI; 
        end 
        if (c < 1) 
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            c = 1; 
        elseif (c > CI) 
            c = CI; 
        end 
        outimg(r, c, p)= bright; 
    end 
    %Update the bias factor. 
    colbias= colbias+xvel; 
    rowbias= rowbias+yvel; 
end 
% and we're done, I think 
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B.6 Code for the Comparison 

B.6.1 Automatically Detect Moving Object, as Modified 

 

function [out_vid, boxes] = auto_detect_moving_object_modified(in_vid, range) 
% The operator is asked to manually box a moving object through a video clip, then 
% this software attempts the same task.  The result will be compared by a scoring 
% program. 
% 
% Inputs 
% in_vid – the input video 
% range – the expected velocity range 
% Outputs 
% out_vid – boxed version of the input video 
% boxes – an array of specifications for each of the boxes 
% 
% ©   V. M. Stone    2018 
% 
% Get the frame size 
[R, C, P] = size(in_vid); 
% Preallocate space. 
out_vid = in_vid; 
boxes = zeros(4, P); 
% 
% Define block size and stride (i.e. overlap). 
block = 16; %number of frames for each iteration 
stride = 16; %stride is how far the analysis jumps ahead for each iteration 
% This nibbles its way through the input video, finding and marking the 
% object on the way 
% First thing is to set the starting block 
curstart = 1;  %let's start with the first segment 
objstackptr = 1; 
while (curstart+block-1)<=P 
    % Cut out the sub-stack 
    stack = in_vid(:,:,curstart:(curstart+block-1)); 
    % Make magnitude spectrum. 
    rspec = abs(fftshift(fftn(stack))); 
    % Build an energy map [Note: this routine needs the parallel processing 
    % stuff turned on]. 
    map = fastmappmex_mex(rspec,range,1);  %this is the compiled version 
    % Detect the peaks; assume the largest peak is the object. This ignores 
    % the problem of two or more objects for now. 
    peaks = detectpeaksp(map,1);  %peaks are sorted by intensity 
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    % Assume that the dominant peak is probably the object of interest 
    xvel = peaks(1,1); 
    yvel = peaks(2,1); 
    %Do any necessary heuristics 
    [xvel, yvel] = heuristics(map, xvel, yvel); 
    %Extract the object. 
    obj = extract_object(in_vid(:, :, curstart:(curstart+block-1)), xvel, yvel); 
    % Normalize the extracted image to 0-1 in intensity values.  This preserves our 
    % sanity and makes the other stuff work 100% of the time. 
    obj= obj/max(obj(:)); 
    % Adjust the grey scale to enhance contrast. 
    obj= imadjust(obj); 
    % Follow object box; save the box locations frame-by-frame for comparisons. 
    [outstack, boxstats]=follow_object_report_modified(stack, obj, xvel, yvel); 
    % add outstack (the output video frame) into out_vid 
    out_vid(:,:,curstart:(curstart+block-1)) = outstack; 
    % add boxstats to boxes 
    boxes(:,curstart:(curstart+block-1)) = boxstats; 
    % update pointers 
    curstart = curstart+stride; 
end 
 

B.6.2 Heuristics Routine 

 

function [xvel, yvel] = heuristics( map, xvel, yvel) 
% Heuristics examines the map for peaks adjacent to the main peak in the map. 
% If it finds one, it will increment the velocity estimate as appropriate, 
% as the integerized map tends to truncate the estimate and the subsequent 
% processing misses the mark. This is more pronounced in real sequences than 
% in synthetic ones. 
% 
% Input 
% map – incoming motion map 
% xvel, yvel – incoming velocities 
% Outputs 
% xvel, yvel – adjusted velocities 
% 
% ©   V. M. Stone    2018 
% 
% Deduce the scaling of the map so we can do the heuristic. 
% As of now, the map is square. It is also an integer system. This heuristic 
% gets blown all to hell if we try this with fractional resolution. 
[r, c] = size(map); 
mapcen = ceil(r/2); 
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mapmax = r-mapcen; 
mapscale = linspace(-mapmax, mapmax, r); 
% Now that I know the map scaling, I can back out the neighbors to the max 
% peak. Compute the index of the peak. 
i = find(mapscale == yvel);  %first the row 
j = find(mapscale == xvel);  %then the column 
% Let's try a general heuristic 
% Check the 8 neighbors. Is any of them a secondary peak?  It's always plus 
% one in the current direction, or plus one laterally. 
% first, let's normalize this thing, just in case… 
map = map/max(map(:)); 
if (xvel > 0) %OK, lets try to the right. Remember, i is row (y), j is column (x) 
    if (map(i-1,j+1) > 0.9)  %look up diagonally right first; up is NEGATIVE, remember? 
        yvel = yvel-1;  %this wouldn't work if we hadn't normalized the map 
        xvel = xvel+1; 
    elseif (map(i+1,j+1) > 0.9) %look down diagonally right 
        yvel = yvel+1; 
        xvel = xvel+1; 
    elseif (map(i-1,j) > 0.9)  %look up;  
        yvel = yvel-1; 
    elseif (map(i,j+1) > 0.9) %look to the right 
        xvel = xvel+1; 
    elseif (map(i+1,j) > 0.9)  %look down 
        yvel = yvel+1; 
    end 
elseif (xvel <= 0) %Try to the left. Remember, i is row (y), j is column (x) 
    if (map(i-1,j-1) > 0.9)  %look up diagonally left 
        yvel = yvel-1; 
        xvel = xvel-1; 
    elseif (map(i+1,j-1) > 0.9) %look down diagonally left 
        yvel = yvel+1; 
        xvel = xvel-1; 
    elseif (map(i-1,j) > 0.9)  %look up; 
        yvel = yvel-1;  %this wouldn't work if we hadn't normalized the map 
    elseif (map(i,j-1) > 0.9) %look to the left 
        xvel = xvel-1; 
    elseif (map(i+1,j) > 0.9)  %look down 
        yvel = yvel+1; 
    end 
end 
% this usually leaves the peak unchanged 
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B.6.3 Scoring Routine 

 

function [score] = numerical_score(refboxes, trialboxes) 
% This compares the ground truth boxes (refboxes) with the machine 
% generated boxes (trialboxes) and computes deltas for later display. 
% The stats come out as the vector score.   
% 
% Inputs 
%    refboxes - Box vectors from the manual scoring program.  Format is 
%                          upper lhc x, upper lhc y, width, heigth (standard format) 
%    trialboxes - Box vector from method. Format is the same. 
% Output 
% score – the score: miss distance, size ratio 
% 
% ©   V. M. Stone     2018 
% 
% Compare the length of the box arrays.  If they aren't equal, there's a 
% problem. 
[~,reflen] = size(refboxes); 
[~,triallen] = size(trialboxes); 
if (reflen ~= triallen) 
    display('Box arrays are not the same length!'); 
    return; 
end 
% Make an empty score array 
score = zeros(2, reflen); 
% Compute the normalization factors.  Area will be normalized to the area 
% of the reference box, which will be computed here once (it's always the 
% same size) and the "miss distance" normalized to 1/2 the diagonal of the 
% reference box, again computer here only once. 
% First, the area of the reference box 
refarea = refboxes(3, 1)*refboxes(4, 1); 
reflength = norm([refboxes(3,1),refboxes(4,1)])/2; 
% Loop through the boxes and compile the statistics. 
for i = 1:reflen   %Since they're the same length, either one will do 
    % Compute trial box stats 
    trialarea = trialboxes(3, i)*trialboxes(4, i); 
    % Normalize the trial area for direct comparison (of course, normalized 
    % refarea is 1).  If the trial area is > 1, it's bigger. 
    % Compute normalized trial area 
    normarea = trialarea/refarea; 
    % Compute normalized distance metric. First, we get the centers of the boxes. 
    refx = refboxes(1, i)+(refboxes(3, i)/2); 
    refy = refboxes(2, i)+(refboxes(4, i)/2); 
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    trix = trialboxes(1, i)+(trialboxes(3, i)/2); 
    triy = trialboxes(2, i)+(trialboxes(4, i)/2); 
    % Now, we compute the distance and normalize it to 1/2 the diagonal of the ref 
    % box. 
%    distance = abs(sqrt((trix-refx)^2+(triy-refy)^2))/(refboxes(3,i)/2); 
    normdistance = norm([(trix-refx),(triy-refy)])/reflength; 
    %add to the vector 
    score(1, i) = normarea; 
    score(2, i) = normdistance; 
end 
% We should be done. 
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