7,781 research outputs found

    Deleting and Testing Forbidden Patterns in Multi-Dimensional Arrays

    Get PDF
    Understanding the local behaviour of structured multi-dimensional data is a fundamental problem in various areas of computer science. As the amount of data is often huge, it is desirable to obtain sublinear time algorithms, and specifically property testers, to understand local properties of the data. We focus on the natural local problem of testing pattern freeness: given a large dd-dimensional array AA and a fixed dd-dimensional pattern PP over a finite alphabet, we say that AA is PP-free if it does not contain a copy of the forbidden pattern PP as a consecutive subarray. The distance of AA to PP-freeness is the fraction of entries of AA that need to be modified to make it PP-free. For any ϵ[0,1]\epsilon \in [0,1] and any large enough pattern PP over any alphabet, other than a very small set of exceptional patterns, we design a tolerant tester that distinguishes between the case that the distance is at least ϵ\epsilon and the case that it is at most adϵa_d \epsilon, with query complexity and running time cdϵ1c_d \epsilon^{-1}, where ad<1a_d < 1 and cdc_d depend only on dd. To analyze the testers we establish several combinatorial results, including the following dd-dimensional modification lemma, which might be of independent interest: for any large enough pattern PP over any alphabet (excluding a small set of exceptional patterns for the binary case), and any array AA containing a copy of PP, one can delete this copy by modifying one of its locations without creating new PP-copies in AA. Our results address an open question of Fischer and Newman, who asked whether there exist efficient testers for properties related to tight substructures in multi-dimensional structured data. They serve as a first step towards a general understanding of local properties of multi-dimensional arrays, as any such property can be characterized by a fixed family of forbidden patterns

    Tensor Numerical Methods in Quantum Chemistry: from Hartree-Fock Energy to Excited States

    Get PDF
    We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, led to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(nlogn)O(n\log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n×n×nn\times n\times n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D ``density fitting`` scheme. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excited states, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is related to the recent attempts to develop a tensor-based Hartree-Fock numerical scheme for finite lattice-structured systems, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L×L×LL\times L\times L lattice manifests the linear in LL computational work, O(L)O(L), instead of the usual O(L3logL)O(L^3 \log L) scaling by the Ewald-type approaches

    Tensorizing Neural Networks

    Full text link
    Deep neural networks currently demonstrate state-of-the-art performance in several domains. At the same time, models of this class are very demanding in terms of computational resources. In particular, a large amount of memory is required by commonly used fully-connected layers, making it hard to use the models on low-end devices and stopping the further increase of the model size. In this paper we convert the dense weight matrices of the fully-connected layers to the Tensor Train format such that the number of parameters is reduced by a huge factor and at the same time the expressive power of the layer is preserved. In particular, for the Very Deep VGG networks we report the compression factor of the dense weight matrix of a fully-connected layer up to 200000 times leading to the compression factor of the whole network up to 7 times

    Fast truncation of mode ranks for bilinear tensor operations

    Full text link
    We propose a fast algorithm for mode rank truncation of the result of a bilinear operation on 3-tensors given in the Tucker or canonical form. If the arguments and the result have mode sizes n and mode ranks r, the computation costs O(nr3+r4)O(nr^3 + r^4). The algorithm is based on the cross approximation of Gram matrices, and the accuracy of the resulted Tucker approximation is limited by square root of machine precision.Comment: 9 pages, 2 tables. Submitted to Numerical Linear Algebra and Applications, special edition for ICSMT conference, Hong Kong, January 201

    Tensor Network alternating linear scheme for MIMO Volterra system identification

    Full text link
    This article introduces two Tensor Network-based iterative algorithms for the identification of high-order discrete-time nonlinear multiple-input multiple-output (MIMO) Volterra systems. The system identification problem is rewritten in terms of a Volterra tensor, which is never explicitly constructed, thus avoiding the curse of dimensionality. It is shown how each iteration of the two identification algorithms involves solving a linear system of low computational complexity. The proposed algorithms are guaranteed to monotonically converge and numerical stability is ensured through the use of orthogonal matrix factorizations. The performance and accuracy of the two identification algorithms are illustrated by numerical experiments, where accurate degree-10 MIMO Volterra models are identified in about 1 second in Matlab on a standard desktop pc
    corecore