586 research outputs found

    Object-based Modeling of Audio for Coding and Source Separation

    Get PDF
    This thesis studies several data decomposition algorithms for obtaining an object-based representation of an audio signal. The estimation of the representation parameters are coupled with audio-specific criteria, such as the spectral redundancy, sparsity, perceptual relevance and spatial position of sounds. The objective is to obtain an audio signal representation that is composed of meaningful entities called audio objects that reflect the properties of real-world sound objects and events. The estimation of the object-based model is based on magnitude spectrogram redundancy using non-negative matrix factorization with extensions to multichannel and complex-valued data. The benefits of working with object-based audio representations over the conventional time-frequency bin-wise processing are studied. The two main applications of the object-based audio representations proposed in this thesis are spatial audio coding and sound source separation from multichannel microphone array recordings. In the proposed spatial audio coding algorithm, the audio objects are estimated from the multichannel magnitude spectrogram. The audio objects are used for recovering the content of each original channel from a single downmixed signal, using time-frequency filtering. The perceptual relevance of modeling the audio signal is considered in the estimation of the parameters of the object-based model, and the sparsity of the model is utilized in encoding its parameters. Additionally, a quantization of the model parameters is proposed that reflects the perceptual relevance of each quantized element. The proposed object-based spatial audio coding algorithm is evaluated via listening tests and comparing the overall perceptual quality to conventional time-frequency block-wise methods at the same bitrates. The proposed approach is found to produce comparable coding efficiency while providing additional functionality via the object-based coding domain representation, such as the blind separation of the mixture of sound sources in the encoded channels. For the sound source separation from multichannel audio recorded by a microphone array, a method combining an object-based magnitude model and spatial covariance matrix estimation is considered. A direction of arrival-based model for the spatial covariance matrices of the sound sources is proposed. Unlike the conventional approaches, the estimation of the parameters of the proposed spatial covariance matrix model ensures a spatially coherent solution for the spatial parameterization of the sound sources. The separation quality is measured with objective criteria and the proposed method is shown to improve over the state-of-the-art sound source separation methods, with recordings done using a small microphone array

    Shift & 2D Rotation Invariant Sparse Coding for Multivariate Signals

    Get PDF
    International audienceClassical dictionary learning algorithms (DLA) allow unicomponent signals to be processed. Due to our interest in two-dimensional (2D) motion signals, we wanted to mix the two components to provide rotation invariance. So, multicomponent frameworks are examined here. In contrast to the well-known multichannel framework, a multivariate framework is first introduced as a tool to easily solve our problem and to preserve the data structure. Within this multivariate framework, we then present sparse coding methods: multivariate orthogonal matching pursuit (M-OMP), which provides sparse approximation for multivariate signals, and multivariate DLA (M-DLA), which empirically learns the characteristic patterns (or features) that are associated to a multivariate signals set, and combines shift-invariance and online learning. Once the multivariate dictionary is learned, any signal of this considered set can be approximated sparsely. This multivariate framework is introduced to simply present the 2D rotation invariant (2DRI) case. By studying 2D motions that are acquired in bivariate real signals, we want the decompositions to be independent of the orientation of the movement execution in the 2D space. The methods are thus specified for the 2DRI case to be robust to any rotation: 2DRI-OMP and 2DRI-DLA. Shift and rotation invariant cases induce a compact learned dictionary and provide robust decomposition. As validation, our methods are applied to 2D handwritten data to extract the elementary features of this signals set, and to provide rotation invariant decomposition

    Tensor Decompositions for Signal Processing Applications From Two-way to Multiway Component Analysis

    Full text link
    The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under verymild and natural conditions. Benefiting fromthe power ofmultilinear algebra as theirmathematical backbone, data analysis techniques using tensor decompositions are shown to have great flexibility in the choice of constraints that match data properties, and to find more general latent components in the data than matrix-based methods. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We also cover computational aspects, and point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the benefits of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these benefits also extend to vector/matrix data through tensorization. Keywords: ICA, NMF, CPD, Tucker decomposition, HOSVD, tensor networks, Tensor Train

    Very Low Bitrate Spatial Audio Coding with Dimensionality Reduction

    Get PDF
    International audienceIn this paper, we show that tensor compression techniques based on randomization and partial observations are very useful for spatial audio object coding. In this application, we aim at transmitting several audio signals called objects from a coder to a decoder. A common strategy is to transmit only the downmix of the objects along some small information permitting reconstruction at the decoder. In practice , this is done by transmitting compressed versions of the objects spectrograms and separating the mix with Wiener filters. Previous research used nonnegative tensor factorizations in this context, with bitrates as low as 1 kbps per object. Building on recent advances on tensor compression, we show that the computation time for encoding can be extremely reduced. Then, we demonstrate how the mixture can be exploited at the de-coder to avoid the transmission of many parameters, permitting bi-trates as low as 0.1 kbps per object for comparable performance
    corecore