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Abstract

HIS thesis studies several data decomposition algorithms for obtaining an
T object-based representation of an audio signal. The estimation of the
representation parameters are coupled with audio-specific criteria, such as
the spectral redundancy, sparsity, perceptual relevance and spatial position of
sounds. The objective is to obtain an audio signal representation that is com-
posed of meaningful entities called audio objects that reflect the properties
of real-world sound objects and events. The estimation of the object-based
model is based on magnitude spectrogram redundancy using non-negative
matrix factorization with extensions to multichannel and complex-valued
data. The benefits of working with object-based audio representations over
the conventional time-frequency bin-wise processing are studied. The two
main applications of the object-based audio representations proposed in this
thesis are spatial audio coding and sound source separation from multichan-
nel microphone array recordings.

In the proposed spatial audio coding algorithm, the audio objects are es-
timated from the multichannel magnitude spectrogram. The audio objects
are used for recovering the content of each original channel from a single
downmixed signal, using time-frequency filtering. The perceptual relevance
of modeling the audio signal is considered in the estimation of the parameters
of the object-based model, and the sparsity of the model is utilized in encod-
ing its parameters. Additionally, a quantization of the model parameters is
proposed that reflects the perceptual relevance of each quantized element.

The proposed object-based spatial audio coding algorithm is evaluated
via listening tests and comparing the overall perceptual quality to conven-
tional time-frequency block-wise methods at the same bitrates. The proposed
approach is found to produce comparable coding efficiency while providing
additional functionality via the object-based coding domain representation,
such as the blind separation of the mixture of sound sources in the encoded
channels.



For the sound source separation from multichannel audio recorded by
a microphone array, a method combining an object-based magnitude model
and spatial covariance matrix estimation is considered. A direction of arrival-
based model for the spatial covariance matrices of the sound sources is pro-
posed. Unlike the conventional approaches, the estimation of the parameters
of the proposed spatial covariance matrix model ensures a spatially coherent
solution for the spatial parameterization of the sound sources. The separa-
tion quality is measured with objective criteria and the proposed method is
shown to improve over the state-of-the-art sound source separation methods,
with recordings done using a small microphone array.
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Chapter

Introduction

ECORDINGS of natural auditory scenes are composed of mixtures of dif-
ferent sounds. For us humans the separation of different sound sources
and events by their spatial position or spectral features comes naturally. Our
hearing functions subconsciously by enhancing, separating or focusing on dif-
ferent sound sources of interest. For example, at a concert we can easily shift
the focus of our hearing to different instruments or, in the case of multi-
ple simultaneous speech sources, we can hear and recognize the speech of
our conversation partner. It is evident that our hearing processes the audi-
tory information using a higher level representation which is assumed to be
object-based [93,94, 152], meaning that our consciousness of sounds is based
on entities referred to as audio objects.

The adoption of object-based processing into computer audio is an active
and ongoing field of research [13,103,131,145]. It has been enabled by the
recent advances in machine learning algorithms that are applicable for struc-
tural analysis of audio signals [19,80]. Machine learning in this case can be
divided into supervised and unsupervised methods. In supervised learning
the system is presented with annotated data of which structure and proper-
ties it tries to learn. In operation the system is applied to process unforeseen
data which is assumed to reflect the statistics and structure of the data used
in learning. In unsupervised methods the learning occurs during the oper-
ation, and assumptions on the structure of the data can be included in a
definition of the model it uses, for example, assuming certain statistics of the
input data [78].

A fair amount of the analysis abilities of human hearing can be attributed
to the memory and combining information from other sensory systems such
as vision and touch. Our hearing is presented with annotated stimuli over
the whole course of our life and the brain makes associations and interpreta-



tions of it. This learning allows us to recognize and classify different sounds
and recognize speech and the speaker’s identity even in difficult and unfa-
miliar environments [14]. The functioning of the hearing extends to concepts
that seem trivial in our everyday life, which include, for example, associ-
ating different notes as originating from the same instrument even though
their fundamental frequency and spacing of harmonics vary. Integrating such
processing and decision making into an algorithm analyzing an audio signal
is nearly impossible, at least with the level of precision we humans are ca-
pable of. Specializing the algorithm for a single task, for example speech
recognition or instrument classification, and using adequate training mate-
rial can result in satisfying performance [7,21,44]. However, there exists a
need for more generic audio models for cases where training is not viable,
the most notable being separation of sound sources from an audio recording
done in unforeseen conditions with no knowledge of the sources involved in
the recording. In such cases the focus of the research shifts towards blind
source separation approaches [20,127] that operate on information derived
solely from the data they observe.

In this thesis the aspects of unsupervised machine learning are studied
with the intent of deriving an object-based models and representations of
audio signals. The audio objects within the studied models reflect the various
properties of sound objects and entities, such as phonemes, words and notes,
all the way up to entire sound sources. The two applications focused upon in
the thesis are object-based audio coding and sound source separation. These
fields are briefly introduced in the following sections in order to provide the
problem statement and preliminaries of conventional approaches contrasted
with object-based methods.

1.1 Object-based Audio Coding

The consumption of audiovisual content has been revolutionized by the in-
crease in both the bandwidth and processing power of portable devices. The
streaming of video with several audio tracks may be viewed with devices rang-
ing from those comprised of only one channel of audio playback to the full
scale multichannel home theater setups. The scalability of audio coding in
terms of the number of channels addresses this issue and is known as spatial
audio coding (SAC) [33,125]. The SAC methods share a similar framework,
where a perceptually encoded downmix, along with auxiliary information
consisting of the spatial position of each time-frequency (TF) block, is used
to recover the original multichannel audio signal. The parameters for en-
coding the spatial position are based on the magnitude and time difference



between the input channels [4,34]. Additionally, coherence and diffuseness
of the time-frequency blocks between the channels are used [55,110].

The conventional SAC methods [54, 55] do not utilize any object-based
model and estimate the spatial position of each time-frequency block individ-
ually. In the context of this thesis an audio object is a spectral pattern with
a time-dependent activation which represents a part of or an entire sound
source. These audio objects occur redundantly during the audio signal that
is under analysis and finally encoded. Obtaining an object-based model of
the multichannel audio signal allows representation of the spatial position of
each audio object, spanning the whole frequency range, using a single param-
eter. This greatly decreases the amount of auxiliary information as compared
to the block-wise approaches. Additionally, the long term redundancy in au-
dio signals become utilized with the object-based representation. In return,
the representation and transmission of the object-based model requires extra
bitrate.

A class of related methods known as spatial audio object coding (SAOC)
[13,56] assumes that the individual audio tracks of each audio object are
available during the encoding. In such a setting the object-wise spatial pa-
rameterization of the multichannel signal can be done without first blindly
decomposing the mixture into audio objects.

The additional benefit of using blindly estimated object-based representa-
tion for SAC is its source separation capability. The sound source separation
ability is based on learning recurrent and repetitive spectral patterns using
audio spectrogram decompositions, such as the non-negative matrix factor-
ization (NMF) and non-negative tensor factorization (NTF) [19,37,80]. The
NMF and NTF applied on decomposing the audio signal spectrogram are
known to produce audio objects that can be used for sound source separa-
tion [20,147]. Such object-based models of audio signals allow manipulation
of its content based on meaningful entities, i.e., the audio objects. Using the
NMF and the NTF for SAC not only allows channel-wise scalability, but also
audio object-based control for the user over the reconstruction. This enables
the possibility of the removal or amplification of sound sources present in the
encoded content, without separate encoding of each source track. Addition-
ally, it is not necessary for the separate source tracks to be present in the
encoding stage as is the case in most music content to be encoded.

1.2 Sound Source Separation

The field of sound source separation studies the process of obtaining sepa-
rate source audio tracks from the mixture audio signal that it is composed



of. The audio signal is recorded by one or several microphones in a situation
where multiple sources are emitting sound simultaneously. The use of sound
source separation has been conventionally associated with telephony, telecon-
ferencing and automatic speech recognition (ASR), where the enhancement
and separation of multiple speakers is sought after [149]. Applications re-
lated to entertainment, such as gaming and the sharing of videos in social
media, have generated an increased demand for generic sound source separa-
tion. The recording of audio and video has never been more accessible than
during the current age of mobile phones with capabilities to record audio
using miniature microphones that not only handle high dynamics [74] but
are also capable for capturing high-quality audio in any practical scenario.
The recordings are usually done in public places with lots of interfering noise,
which prevents understanding of the speech or other essential content present
in the recording. The need for sound source separation in such cases is ev-
ident. Another example is the voice interface and communication used in
gaming consoles [75] which employ ASR in a home environment containing
numerous sources of interfering noise.

The field of sound source separation can be roughly divided into super-
vised [128,132,147], informed [82,91,106] and blind approaches [65,108,118,
150]. The supervised and semi-supervised methods either require training or
other annotated information to operate. In the field of informed source sepa-
ration (ISS), a set of known sources are mixed together and need to be sepa-
rated from the mixture after transmission. The completely blind approaches
assume no information being available for the sources, their parameters or the
environment used in recording. For the ASR, the reconstruction of separated
signals is not a mandatory step. The feature extraction through means of
source separation can be used directly as the input of the recognition module
(recognition back-end), for example, as in [45,60,95].

Furthermore, the sound source separation methods can be categorized
based on operation in either a single [132,147] or multichannel context [65,
108, 118, 150]. This thesis concentrates on blind sound source separation
from a multichannel audio signal assuming that no information regarding the
sources or the recording environment is available. The use of portable devices
for audio recordings and the growing number of microphones embedded in
one device encourage research on algorithms that are suitable for arrays of
microphones of a very compact size. For example, there already exist systems
that run independently on a mobile phone [100] and are able to separate two
sources from a two-channel audio recording.

The conventional multichannel blind sound source separation methods
include independent component and vector analysis (ICA and IVA) [62,81]
applied in frequency domain and spatial filtering by beamforming and spa-
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tial post-filters [139]. ICA and IVA are usually restricted to determined cases
where the number of microphones is higher or equal to the number of sources
to be separated. In beamforming the good spatial selectivity, and thus sep-
aration, requires a high number of microphones, which is a contradictory
requirement with respect to the size and cost of a portable device.

The benefits of object-based models of audio signals for sound source
separation were mentioned in the previous section regarding object-based
audio coding. In the single channel case, where no spatial information exists
to be utilized, the NMF-based models of audio signals have been considered
for supervised source separation [128,147]. The NMF is known for being
able to learn repetitive spectral patterns and events from the audio signal
spectrogram, and such audio objects can be used as a basis for building
a model for sound sources and their separation. More recently the NMF
model has been extended to multichannel audio recordings and estimation
of spatial properties of the audio objects [101,121]. These methods utilize
the spatial information in combining several audio objects to model complete
sound sources that are spatially discriminant.

Several ISS methods utilize an object-based model which is obtained us-
ing NMF or NTF [83,103]. In the coding-based ISS [103], the goal is to
represent and encode the sources for transmission. The sources are param-
eterized by an object-based model obtained by applying NTF to the mag-
nitude spectrogram. The encoded object-based model is used for recovering
the source signals from a mixture signal in the decoding stage. Coding-based
ISS is alternatively known in the literature as spatial audio object coding
(SAOC) [13], which extends the SAC framework for separate audio source
tracks. The ISS methods based on NMF and NTF are thus closely related to
both topics of the thesis by combining object-based separation and coding.

1.3 Objectives of the Thesis

The main objective of this thesis is to study and utilize conventional blind
data decomposition methods, such as the NMF and the NTF, in developing
object-based audio signal models for multichannel audio coding and sound
source separation. Models inherently incorporating structures suitable for
modeling spectral content and spatial position of audio objects are proposed
and estimations of the parameters of the models are presented.

In this thesis the object-based models for audio signals are obtained by
means of unsupervised machine learning that relies on the spectral redun-
dancy, perceptual relevance, sparsity, independence and analysis of the spa-
tial position of the audio object. This thesis introduces two main applications



for these blindly estimated object-based models of audio, multichannel audio
coding and sound source separation, both in single and multichannel cases.

The developed models and audio signal representations for the purpose
of audio coding are compared to conventional methods that operate on time-
frequency blocks with fixed size. Additionally, the performance of object-
based models in sound source separation are compared to generic data de-
composition algorithms applied to audio signals.

1.4 Main Results of the Thesis

The development and proposed use of object-based models of audio signals
for the tasks of audio coding and sound source separation is the main con-
tribution of this thesis. The main results include introduction of new func-
tionality to spatial audio coding and improving separation performance over
conventional time-frequency block-wise approaches. Additionally, estimating
object-based representation of audio signals by combining spectral redun-
dancy, perceptual relevance and spatial position of the audio objects can be
regarded as the main novelty of the thesis.

The main results regarding audio coding include the proposed object-
based SAC approach in [P3] which uses non-negative tensor factorization
(NTF) [37,80] for estimation of object-based representation of the multi-
channel magnitude spectrogram. The SAC algorithm relies on the percep-
tually motivated optimization criteria for the object-based approximation of
the audio magnitude spectrogram proposed in [P1] and utilizes the quanti-
zation and perceptual encoding framework considered in [P2]. The coding
efficiency of the proposed SAC is found to be comparable to conventional
methods in [P3], while a completely new functionality, the blind separation
of audio sources mixed in the encoded channels, is studied in [P5].

The sound source separation from a multichannel audio recording intro-
duced in this thesis consists of both conventional approach of ICA applied in
frequency domain [P4] and estimation of spatial properties of audio objects
in [P6] and [P7]. In the case of ICA-based separation, a source activation en-
velope estimation for improving the permutation alignment of frequency-wise
source estimates is proposed in [P4] and is found to improve the separation
quality over conventional approaches. Sound source separation based on esti-
mation of spatially coherent audio objects derived by the NMF is proposed in
[P6]. The spatially coherent audio object estimation is extended to cover es-
timation of entire sound sources in [P7] and is found to exceed the separation
performance of other spatial NMF algorithms and conventional methods.



The results and contributions of the individual publications included in
the thesis are summarized in the following listing.

Publication 1 : Noise-to-Mask Ratio Minimization by
Weighted Non-negative Matrix Factorization

The publication introduces a perceptually motivated cost function for mod-
eling the magnitude spectrogram of audio using the NMF. The cost function
proposed minimizes the noise-to-mask ratio [140] between the magnitude ob-
servations and its NMF approximation. The proposed cost function is found
to improve perceptual quality of the NMF model over conventional cost func-
tions such as squared Euclidean distance and Kullback-Leibler divergence.

Publication 2 : Object-based Audio Coding Using Non-
negative Matrix Factorization for the Spectrogram Rep-
resentation

In this publication a single channel object-based audio coding algorithm is
proposed which utilizes the perceptually motivated NMF from [P1]. The
publication concentrates on developing a quantization and entropy coding
scheme for the NMF model parameters, i.e., the object-based model. Addi-
tionally the quantization of the phase spectrogram required for time-domain
signal reconstruction is proposed. The NMF model is found to be very effi-
cient for representing magnitude information due to its sparsity properties,
but overall coding efficiency remains low due to the required coding of the
phase information.

Publication 3 : Multichannel Audio Upmixing Based on
Non-negative Tensor Factorization Representation

The publication proposes a spatial audio coding algorithm based on mul-
tichannel upmixing utilizing an object-based model obtained by using the
NTF. The coding framework consists of the transmission of a perceptually
encoded downmix and quantized NTF model, which is reconstructed on the
decoder side and used for recovering multiple channels from the downmix
via upmix filtering. The perceptually motivated cost function from [P1] is
extended for multichannel observations, and perceptual quality is optimized
for the upmix filtering operation. The proposed SAC algorithm is evaluated
using listening tests and is concluded to achieve perceptual quality similar to
conventional SAC methods [54].



Publication 4 : Permutation Alignment in Frequency-
domain ICA by the Maximization of Intra-source Enve-
lope Correlations

The publication investigates blind source separation using frequency domain
ICA and proposes a permutation alignment based on correlation of source
activation envelopes. The estimation of the source envelopes is based on the
singular value decomposition applied to the source spectrum after an initial
frequency-wise alignment by clustering the time difference of arrival (TDOA)
of ICs at each frequency. The method is shown to improve the separation
quality of multiple speakers recorded in a real environment where the cap-
ture consists of a high amount of spatial aliasing. This poses difficulties for
the TDOA-based permutation alignment due to the aliasing of the phase
differences in frequency domain processing.

Publication 5 : Multichannel Audio Upmixing by Time-
Frequency Filtering Using Non-Negative Tensor Factor-
ization

This publication further examines the source separation properties and en-
coding benefits of the object-based SAC proposed in [P3]. The upmixing
process using the NTF is formulated in a more general manner, allowing use
of either mono or stereo downmix. The evaluation of the source separation
quality with user-created clustering of the NTF components to entire sources
is presented and found to be comparable to ideal binary mask separation. The
manipulation of the selected individual sources of the upmixed mixture by
attenuating or boosting is concluded to be plausible, allowing similar abilities
as the SAOC [13] without the need of individual source tracks being available
during the encoding.

Publication 6 : Direction of Arrival Based Spatial Co-
variance Model for Blind Sound Source Separation

The publication proposes a direction of arrival-based spatial covariance model
to be used in conjunction with NMF and utilized for blind source separation
of multichannel audio. The proposed spatial model and estimation of its pa-
rameters independent of frequency ensures NMF components to be spatially
coherent, i.e., originating from one direction. Furthermore, a k-means clus-
tering applied to direction parameters of NMF components is proposed for
combining them to entire acoustical sources. The separation quality of the



proposed method, measured with energy-based and perceptual metrics, is
shown to exceed the conventional approach of frequency-wise spatial covari-
ance matrix estimation of NMF components and the ICA based separation
from [P4].

Publication 7 : Multichannel audio separation by Di-
rection of Arrival Based Spatial Covariance Model and
Non-negative Matrix Factorization

This publication proposes an improved version of the NMF based sound
source separation algorithm proposed in [P6] by introducing the estimation of
the NMF component to the source clustering parameter as a part of the entire
optimization problem. Additionally, the direction of arrival-based spatial
covariance model is defined as being estimated source-wise, instead of NMF
component-wise as in [P6]. Utilizing the concurrent optimization, with all the
parameters affecting the separation and enforcing spatially coherent sources,
the algorithm is able to improve the separation over all previous attempts
and other state-of-the-art sound source separation methods.

1.5 Organization of the Thesis

The thesis is organized as follows. First, an introduction to the field of audio
signal processing consisting of topics such as sound, capture, hearing and
frequency domain signal processing is presented in Chapter 2. The decom-
position models of audio signals as a basis for object-based representations
are introduced in Chapter 3.

The first main part of this thesis, consisting of the object-based model
for spatial audio coding, is presented in Chapter 4. The section includes a
short review of audio coding and is followed by an investigation of the main
findings of Publications [P1],[P2],[P3] and [P5]. The topics include the per-
ceptually motivated cost function for estimation of the object-based model
in Section 4.2.2, quantization in Section 4.2.3 and entropy coding of its pa-
rameters in Section 4.2.4. Optimizing the model for the recovery of multiple
channels for SAC is introduced in Sections 4.3.2 and 4.3.3. Additionally, the
source separation possibilities of the proposed SAC framework are discussed
in Section 4.3.5 based on the evaluations presented in [P5].

The second main application of blind sound source separation from a
multichannel audio signal is introduced in Chapter 5. The chapter starts
by presenting preliminaries of array signal processing in Section 5.2. The
direction of arrival-based spatial covariance model, as proposed in Publication



[P6] and utilized in [P7], is presented in Section 5.4 along with an introduction
to source separation using the NMF with spatial covariance estimation. The
separation performance analyses from [P4], [P6] and [P7] are summarized in
Section 5.6.

The research included in this thesis is concluded in Chapter 6, followed by
a discussion of future work regarding improving the algorithms and possible
other uses of the object-based audio signal models.
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Chapter

Background

HE auditory scenes we perceive are composed of multiple simultaneous
T sound sources. Their combination is called a mixture. The auditory
event the mixture invokes is characterized by attributes such as the source
radiation pattern, their location and the interacting environment affecting
the sound propagation in the form of reflections and diffraction. Our hearing
processes the auditory event and is able to resolve certain quantities for the
sources, such as their direction of arrival (DOA). Additionally, our hearing is
able to distinguish sound sources as separate entities based on their spectral
content and timbre [94].

This chapter introduces the background of sound and audio as related
to topics discussed in this thesis. The introduced concepts include sound
propagation, capture using microphone arrays and the processing of the cap-
tured multichannel signal in sampled time-domain and frequency-domain.
Additionally, the basics of hearing related to resolving the spatial location of
sound sources and the perceptual relevance of sounds is presented.

2.1 Definition of an Audio Object

The term sound source refers to the physical entity causing the sound, whereas
the sound object refers to the physical sound wave (movement of air molecules)
the source causes. The sound sources we perceive and conceptualize vary,
depending on the context. A concert might be considered as a single sound
source and object when heard from a distance, whereas each instrument (and
the crowd) can be considered separate sound sources as well. The relation
of a sound object to an audio signal-domain object is defined in order to
standardize the terminology used in the context of this thesis.
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The term audio object has been conventionally used in the field of audio
coding to denote different audio source tracks available for separate encod-
ing. The spatial audio object coding (SAOC) methods [13,53,56], have been
developed to cope and efficiently encode sources such as speech and different
instruments. However, within the scope of this thesis considering the object-
based representations blindly estimated from the mixture requires a broader
definition of an audio object.

The recent popular matrix and tensor decomposition models (NMF and
NTF) [19,80] applied on the audio spectrogram [39, 131, 147] produce an
object-based approximation of the audio signal. The representation is based
on spectral templates (single or multiple time frames) and their time-dependent
activation. These matrix and tensor factorization tools enable the extraction
of meaningful repetitive content from an audio spectrogram, such as words,
phonemes, notes and chords. It is justifiable to refer to these representations
as being audio object-based and to consider the pair of spectral template
and its time dependent activation as a fundamental audio object. The rep-
resentation of the audio object thus spans the whole frequency range making
it broad-band and it is estimated over the whole duration of the analyzed
signal segment. The spectral content of the obtained audio object and the
redundancy reduction ability of such a model in representing audio signal
magnitude spectrogram is discussed in more detail in Section 3.1.

Including the NMF-based signal models in the category of object-based
audio representations is justified by their powerful analysis properties proved
by numerous applications based on them. Applications in the field of audio
signal processing include single-channel source separation [128,147], multi-
pitch detection in score transcription [6,130] and multichannel source sepa-
ration [101,121], [P6],[P7].

2.2 Hearing

The understanding of the operation of human hearing in resolving sound ob-
jects and their spatial properties is essential in building object-based models
of audio signals. The field studying the perception of sounds is known as psy-
choacoustics and it tries to explain the relation of the physical stimulus and
the auditory event it produces. The essential theories related to the topics
of perceptual relevance, and spatial position of sound sources are introduced
in the following sections.

The functioning of hearing as a physical process is well known through the
studying of the anatomy of the ear and measurement of the neural activity
caused by different stimuli. However, the way in which cognitive processing
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of the auditory event occurs in the brain is less agreed upon. The auditory
models [84,152] are based on a knowledge of the physical process of hearing
and can be used in predicting the perceptual relevance of individual sound
components causing an auditory event [140]. This compact presentation re-
garding operation of the ear and perception of sound is based on literature
from hearing research [93,94], psychoacoustics [152] and neuroscience [5].

2.2.1 Ear Anatomy

The ear is divided into the outer, middle and inner ear and all have different
characteristics regarding the perception of sound. The outer ear consists
of the pinna and auditory canal which, ends at the tympanic membrane.
The pinna causes a direction- and frequency-dependent filtering for sounds
arriving from different directions; this is discussed in more details in Section
2.2.3 regarding spatial hearing. The middle ear is composed of the tympanic
membrane, small bones called the ossicles and another membrane known as
the oval window, which is located at the beginning of the cochlea. The air
pressure in the auditory canal causes the tympanic membrane to vibrate, and
its mechanical movement is further transmitted by the ossicles to the oval
window. The inner ear consists of the cochlea, which is filled with fluid. The
movement of the oval window causes the basilar membrane inside the cochlea
to vibrate and causes a resonance to occur at a location proportional to the
frequency of the sound. The hair cells attached to the basilar membrane
bend due the resonance and cause neural activity which is then sent through
the auditory nerve, ultimately ending up in the auditory cortex of the brain.
The brain then resolves the auditory event based on the neural stimulus.

2.2.2 Critical Bands and Masking

Human hearing is known to operate on frequency bands known as the crit-
ical bands. Additionally, the perception of pitch is logarithmic, meaning
that doubling the frequency of a tone is perceived as an equal increment,
regardless of the reference frequency. In audio signal processing the con-
cept of critical bands refers to the mapping of the linear frequency scale to
frequency bands in a non-linear (logarithmic) relationship with bandwidth
increasing towards the higher frequencies. The critical band decompositions
include, for example, the Bark bands [152], and equivalent rectangular band-
width [92]. Frequency bands with constant bandwidth in the Mel-frequency
scale [137] are also widely used for critical band decomposition in audio sig-
nal processing. The logarithmic relation in specifying the bandwidth causes
each obtained band to have equal informational relevancy.
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Within the body of hearing research, the concept of critical bands is
known as auditory filter [46]. It refers to a phenomenon where a complex
sound composed of several neighboring tones (frequency components) creates
an auditory filter around the most energetic tone and the neighboring tones
are not resolved and thus become inaudible. This complex sound causes a
joint neural stimulus that is not proportional to the linear combination of
the amplitude or energy of the individual tones, but is rather determined by
the most energetic tone.

The auditory filter can be explained by the physical properties of the
ear [5]. The frequency-resolving ability of human hearing can be attributed
to the different locations in the basilar membrane invoking neural activity,
which is known as the mapping of the location of hair cells in the basilar
membrane to the perceived frequency of a tone. Additionally, the basilar
membrane is an elastic organ and its floppiness and width increase towards
the end of the membrane where low frequencies resonate. In the case of
a single tone, the resonance peak caused by the physical stimulus slowly
attenuates towards neighboring locations and the hair cells of corresponding
frequencies are also activated. Such a sound is perceived as a pure tone even
though the hair cells corresponding to neighboring frequencies are bent by
the resonance and this indicates that the neural stimulus from them is being
suppressed.

The auditory filters are the reason for the masking phenomenon, i.e., faint
tones can become inaudible if a stronger tone is present on the neighboring
frequencies [152]. The masking and auditory filters behave similarly to the
pitch perception, i.e., in the linear frequency scale the masking extends fur-
ther towards higher frequencies and thus the auditory filters are wider at
higher frequencies. The masking effect also continues for a short time after
the sound causing the mask has ended and is then called post-masking. For
an even shorter time period the masking occurs before the sound event and
is called pre-masking. The utilization of the masking effect can be used in
measuring the perceptual quality of processed audio [140] and thus is uti-
lized in the perceptual coding of audio for specifying what information can
be disregarded without altering the perceived sound [134].

2.2.3 Spatial Hearing

Spatial hearing, or alternatively binaural hearing, refers to the ability to
sense the direction and spaciousness of different sound sources and is based
on perceiving slightly different sound with different ears. The differences
between ears can be characterized by following binaural cues, interaural time-
difference (ITD), interaural level-difference (ILD) and interaural coherence
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(IC). In determining the location of the sound source the spatial cues work
in different frequency regions.

The ITD is utilized in the frequency range of 200 - 1500 Hz [152]. The
time-difference is determined by locking on the phase of the signal [5]. The
fact that the ITD does not work at frequencies above 1500 Hz is caused by
the wavelength being less than the average distance between human ears (20
cm) and several cycles of such signal being able to fit within that distance.
In such a situation the phase difference becomes ambiguous. It has been
reported that I'TD is also utilized in higher frequencies, through the process
of detecting ITD from amplitude envelope changes [8].

At higher frequencies the ILD is used for localization of the sound source
and is caused by head blocking the wavefront and attenuating high frequency
components of the signal. Regarding low frequencies, the physical size of the
head is not proportional to the wavelength, and causes no acoustical shade.
The IC is considered to be the measure of how ambient and diffuse the
perceived sound is.

Additionally, the pinna and its directional properties have a large role
in spatial hearing. The localization by direction-dependent attenuation and
amplification of certain frequencies is a learned ability, and every person’s
pinna causes a unique frequency response. The direction-dependent filter-
ing property is especially used in locating sources in the region called the
cone of confusion, where I'TD and ILD are identical for sources located at
the surface of a cone. All the cues working together and associated to one
direction of arrival form the head-related transfer function (HRTF) for both
ears for that given direction of arrival. By filtering anechoic signals with the
HRTF and then listening them through headphones produces an illusion of
binaural hearing, where the sound is perceived to originate from the direction
associated to the HRTF that was used to filter the anechoic signal.

Binaural hearing is considered to be one of the most important factors in
speech intelligibility within a multi-speech scenario [26,51]. This ability to
concentrate on a specific sound source within a noisy environment is known
as the cocktail-party effect.

2.3 Sound and Recording

2.3.1 Sound Sources and Propagation

Sound is a pressure wave caused by a sound source. The sound wave propa-
gates through air from its originating location to the observer which senses
small changes in the atmospheric pressure. In free field propagation the sound
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pressure is attenuated in proportion to the inverse of the distance between
the sound source and the observer. Also absorption of sound energy by air
causes attenuation [31].

An auditory scene is composed of multiple sound sources. Sound sources
can have varying radiation patterns, from omni-directional point sources
(start pistol) to line sources (highway noise). Additionally the auditory scene
can include diffuse sounds that are considered as originating from all direc-
tions and thus do not have an interpretable origin.

With non-diffuse sounds the propagation is characterized by the direct
path and interaction with the surrounding environment which consists of
reflections, diffraction and scattering of the original source signal. The re-
flection is caused by the sound wave hitting a boundary with which it is not
fully absorbed. In practice some amount of energy is always absorbed in
the reflection. The phase of the reflected sound pressure wave is reversed.
Diffraction is caused by the wavefront interacting with an obstacle or a slit
which creates a new sound source through interference. The scattering of
sound refers to a sound wave being reflected to a direction other than the
opposite direction of arrival when interacting with an obstacle. All the above
are generally referred to as reverberation in the case of indoor sound propa-
gation. The amount of reverberation is characterized by reverberation time
T%o, which indicates the time when the sound has attenuated 60 dB from the
original sound pressure level [139].

The sound propagation and observing a sound event in outdoor and in-
door environments differs in terms of reverberation and the amount of re-
flections occurring. Outdoors the reverberation consists mainly of first-order
reflections from the ground whereas in indoors higher order reflections are
observed. Typical floor, ceiling and wall materials do not absorb a significant
amount of the energy of the sound wave and several interactions (reflections)
with such low absorbing materials are required for 60 dB attenuation of the
sound pressure level. A special indoor space is the anechoic room, where all
surfaces are treated so as to absorb all sound energy and no reverberation
occurs.

2.3.2 Microphones and Microphone Arrays

Sound is recorded using microphones which have various directivity patterns.
The most typical types of microphones are omni-directional, dipole, cardioid
and hyper-cardioid. Spatial audio signal processing with estimation and uti-
lization of channel-wise properties requires using two or more microphones
in the capture. Such a recording setup is called a microphone array.
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Microphone arrays can be divided into spaced arrays and coincident ar-
rays. Spaced arrays are composed of omni-directional microphones and no
assumption on direction-dependent level difference between microphones can
be made. In practice the body of the array (where the microphones are at-
tached) causes an acoustical shadow, particularly at higher frequencies, and
differences in sound level. In coincident arrays the microphones are directive
(cardioid) and the level difference with respect to sound source direction of
arrival can be utilized. The coincident arrays are used in field recording of X-
Y stereo, B-format and other directional recordings. The coincident arrays
can be used to determine the intensity vector which point in the opposite
direction of the DOA of the sound wave recorded.

The signal processing with spaced arrays is based on observing time delays
in terms of phase difference between the array elements. The microphone
array signal processing is analogous to the processing developed for antenna
arrays, but it involves few notable fundamental differences mainly due to the
size of the aperture with respect to the wavelength of the electromagnetic
versus acoustical waves.

Far Field Assumption

The propagation and observation in considered to happen in far field when
the curvature of the wavefront is no longer a significant factor with respect to
time delay between array elements and thus the sound wave can be considered
to be a plane wave. An established rule of thumb for distinguishing near and
far field propagation is defined as follows: the capturing scenario can be
treated as far field when the receiving array is at distance r > % from the
emitting source, A being the wavelength and D is the maximum distance
between the array elements. The above definition originates from antenna
array signal processing literature [136].

Contrary to electromagnetic waves at radio frequencies, in audio signal
processing the recorded and observed frequency range (20Hz - 20 kHz) con-
sists of several decades and corresponds to a wavelength of from several
meters to a few centimeters. This makes use of the above mentioned rule
difficult, i.e., the distance that fulfills the far field condition is much larger
for high frequencies than for low frequencies of the audible spectrum. With-
out further scientific reasoning, in the context of this thesis far field wave
propagation is always assumed. However, it is worth noting that there exist
numerous spatial audio applications where near-field propagation and curva-
ture of the wavefront needs to be considered, for example [18,22].
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Spatial Aliasing

The observed phase difference is unambiguous only up to the spatial aliasing
frequency f = 5%, where v is the speed of sound. It means that frequencies
corresponding to a wavelength greater than half of the microphone spacing
have multiple cycles between the microphones of the array and thus the phase
difference is ambiguous.

The spatial aliasing causes several problems in array signal processing
algorithms. Beamforming is one of the most prevalent applications of micro-
phone arrays where the phase differences are used for aligning the microphone
signals in time to enhance sounds originating from certain direction. The spa-
tial aliasing causes amplification of undesired directions, as will be explained
in more detail in Section 5.2.2. These problems are not usually faced in
antenna array signal processing, since the relative bandwidth of the signal
observed is much narrower, and antenna elements can be placed optimally at
every half wavelength [139).

Microphone arrays in practical applications are usually small, at most
several tens of centimeters in diameter, and the number of microphones is
limited. These properties make them highly non-optimal at both ends of
the usable audio frequency range. The ratio of the wavelength of the lowest
frequencies compared to the overall aperture (size) is poor and spatial aliasing
increases if the size is increased.

Practical Considerations

A comprehensive introduction of specialties in microphone array signal pro-
cessing compared to antennas can be found in Chapter 5 in [139]. It covers
topics such as the noise properties of the capturing environment, self noise
of the array elements and computing power needed for a high number of mi-
crophones. Based on the aforementioned restrictions and the fact that the
microphone arrays need to be of a size that allows for embedment in devices
such as cellphones, laptops or placed on the desktop in a teleconferencing
scenario, makes the spatial audio signal processing a challenging research
area.

2.3.3 Sound Capture

Recording an auditory scene with one or several microphones captures the
source signals s,(t) convolved with their spatial impulse response fy, (7).
The recording is considered to happen by sampling the continuous change
of air pressure at discrete time instances and thus the variables involved are
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indexed by the time-domain sample index ¢ and discrete sample delay index
7. The spatial impulse response is the transfer function for a sound source ¢
at location s, € R? to each microphone m at location m € R3. The spatial
impulse response h,,,(7) incorporates all propagation attributes of a specific
source, which are the radiation pattern of the sound source and its position
with respect to the microphone array and the surrounding environment. In
room acoustics the spatial response is referred as the room impulse response
(RIR) and this thesis will use this notation hereafter when referring to any
form of sound source capture and the associated spatial impulse response.
In measurement of RIR a known input signal is produced by a loud-
speaker, and the output after interaction with the environment is measured
using a microphone. Assuming that the system under analysis is linear time-
invariant, the impulse response can be calculated based on the measured
output and knowing the input. Over the years numerous methods for mea-
surement of the RIR have been proposed [135] with the most prevalent being
exponentially the swept sine [35] and the maximum length sequence (MLS)
technique [124]. Regarding the topics covered in this thesis, the most impor-
tant observation regarding measurement of the RIR is that it includes the
directivity of the loudspeaker and the microphone used in capturing it.

2.3.4 Mixing Model

Audio sources in the discretely sampled time-domain behave similarly to
their physical counterpart, i.e., source signals are additive, but instead of
the movement of air molecules, the superposition principle is carried out by
summing the source signals in each time instance in which they were sampled.
The audio signal capture by m = 1... M microphones in a sampled time-
domain can be given as

Q
Lu(t) =D Y g (T)sy(t = 7), (2.1)

where the x,,(t) is the mixture signal consisting of () sources. The single
channel sources s,(t) are convolved with their associated spatial impulse re-
sponses f, (7).

2.3.5 Sound Source Separation

The field of sound source separation studies the estimation of the original
source signals s,(t) from the observed mixture of x,,(t). The separation
methods can be based on single or multichannel captures, and conventional
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methods were referred to in Section 1.2. In the case of single channel source
separation, the algorithm usually relies upon supervised learning of the pa-
rameters of the sources in order to apply the learned model to unforeseen
data. The multichannel source separation utilizes spatial array signal pro-
cessing, i.e., observation of level and time-differences between the recorded
channels [65,118,150].

In the development and comparison of the different sound source separa-
tion methods a set of objective metrics are used. The energy-based separation
metrics proposed in [144,146] are some of the most widely used and consists
of the following: signal-to-distortion ratio (SDR), image-to-spatial distortion
Ratio (ISR), signal-to-interference ratio (SIR), and signal-to-artefact ratio
(SAR). The SDR measures how much the separated signal resembles the orig-
inal signal from signal energy perspective, ISR measures the correct spatial
positioning of the separated source, SIR measures the interference between
separated sources and SAR denotes how many artefacts are added in the
process of encoding and separation. Perceptually motivated mapping of the
above metrics have been proposed in [30]. Perceptual speech quality metrics
are mainly used in measuring enhancement of noisy speech and include per-
ceptual evaluation of speech quality (PESQ) [114] and short-time objective
intelligibility measure (STOI) [138]. These can also be used for measuring
sound source separation quality.

2.4 Frequency-domain Representations

The human hearing operating on frequency bands for resolving a mixture of
sounds is one of the most utilized concepts in audio signal processing. Thus
spectral representations, the digital domain equivalent of frequency bands in
hearing, are widely used as an input for audio processing algorithms. One
of these is the discrete time short-time Fourier transform (STFT), which is
obtained by dividing the time-domain signal into overlapping frames, apply-
ing an (analysis) window function and then calculating the discrete Fourier
transform (DFT) of each windowed frame. In practice fast Fourier transform
(FFT) is used in calculating the DFT.

The result of the STFT, calculated from a multichannel mixture signal
T (t), is time-frequency representation x; = [z, . .., ziyu]? defined for each
frequency bin ¢ = 1...I in each analyzed frame [ = 1...L of length N =
21 — 1. The complex-valued result of the STFT is hereafter referred to as
spectrogram and the absolute value of each of its elements is referred to
as magnitude spectrogram. The argument of the STFT results in phase
spectrogram.
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In audio signal processing a time-frequency transform is said to be in-
vertible if the original signal can be perfectly reconstructed by applying the
inverse operations. The STF'T produces a spectrogram which can be perfectly
transformed back to the original signal. In case of the STF'T the operations
are the inverse DFT/FFT, application of a suitable synthesis window func-
tion [134] and the combining of the frames using the overlap-add method.

The perceptually motivated time-frequency representation can be ob-
tained by grouping the magnitude spectrogram frequency indices ¢ = 1...1
into critical bands. The most common divisions of frequencies into critical
bands are Bark bands [152] or the use of triangular bands equally spaced
on Mel-frequency scale [137]. It is worth noting that grouping the frequency
bins causes information loss, and the original signal cannot be reconstructed
from the critical band decomposed spectrogram. However, the result of an
audio signal processing algorithm operating on critical bands can usually be
applied to the linear frequency scale STFT and the output signal can be
reconstructed without loss of information, as in, for example, time-frequency
mask-based separation [50].

The STFT is a redundant representation due to the fact that the DFT
is applied to overlapping data. Especially in audio coding this is not desired
property and instead of the STFT the modified discrete cosine transform
(MDCT) is used [134] as a spectral representation. The invertibility of the
MDCT can be interpreted through the analysis-synthesis filter bank which
it realizes and through its perfect reconstruction requirements [134]. More
recently in musical signal analysis the method of constant-Q transform [15]
and its invertible realizations [123] have been considered instead of the STFT.

2.4.1 Mixing in Frequency Domain

The convolution of sources and their spatial impulse responses in the time
domain can be approximated in the STFT domain by a simple multiplication
of DFTs of the source signal and its associated spatial impulse response. It
equals out to instant mixing at each frequency bin individually and can be

written as
Q Q
X R Z hiysuq = Z YVilg; (2.2)
q=1 q=1

where x;; is the STFT of the array capture. The mixing of each source
q is denoted at each frequency bin ¢ by spatial frequency response h;, =
[hik1, - -, higar]” and the source signals are denoted by their STFT s;,. The
source signals as seen by the array are given as y;;; = h;ysiq. The approxima-
tion in Equation (2.2) is due to the fact that the effective length (before the
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impulse tail is attenuated to negligible energy) of spatial impulse response
himq in time-domain can be longer than its corresponding DFT h;, of the
length N = 21 — 1. Thus the spatial impulse response is truncated to the
window length used in calculating STFT.

The frequency-domain processing of audio signals can be reasoned as
originating from the analogue to human hearing and its ability to discriminate
sounds by their spectrum. Additionally, certain properties of mixtures of
sounds can be described and formulated in frequency domain, for example,
the approximate W-disjoint orthogonality of speech [113], which indicates
that the time-frequency information of multiple simultaneous speakers does
not overlap.

Another benefit of processing audio signals in frequency domain is the
approximation of the convolutive mixing process in Equation (2.1) by instan-
tanous mixing in Equation (2.2). The instantaneous mixing indicates that
each time-frequency point is linear combination of the source signals. This is
utilized in, for example, using of ICA for sound source separation [61,128].

2.4.2 Spatial Covariance Domain

In audio signal processing applications operating on channel-wise properties
it is beneficial to operate with spatial covariance matrices calculated from
the input signal STFT. The spatial covariance matrix in the context of this
thesis is calculated from the square rooted STFT

X = me|1/2 sign(z), .. ., |xuM|1/2 sign(:z:ilM)]T, (2.3)

where sign(+) is the signum function. The covariance matrix of a single time-
frequency point is obtained as the outer product

Xy = &%, (2.4)

where 1 stands for Hermitian transpose. The result of Equation (2.4) for
each time-frequency point is the spatial covariance matrix of the observed
STET. The elements of matrix X;; for each time-frequency point encode the
spatial behavior of the captured signal in the form of amplitude and phase
difference with respect to each microphone pair. The use of square rooted
STFT %x;; as proposed in [120] means that the diagonal of each matrix X;; €
CM*M contains the STFT magnitudes x; = [|zal,- -, |zam|]?. The off-
diagonal values [X;|m, n # m represent the magnitude correlation and phase
difference |2, @im|"/? sign(zg,25,,) between each microphone pair (n, m).
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The mixing defined in Equation (2.2) can be expressed in the spatial
covariance domain as

Q
X~ Y Higdug, (2.5)
q=1

where H;, is the spatial covariance matrix (SCM) for each source ¢ at each
frequency i and $;, = (5145uq) /% = |si,| is the magnitude spectrogram of
each source ¢q. SCMs H,, for all frequencies ¢ = 1,..., I defines the mixing
of gth source in spatial covariance domain.

Equivalence between Equations (2.5) and (2.2) is achieved by defining

hiqhg

H,, =
 |hyhf| g

(2.6)

and assuming that ||h;,||; = 1. In practice the connection between h;, and
H;, is not utilized and thus it is stated only for the completeness of the
derivation.

It can be assumed that the source covariances are uncorrelated and thus
the source magnitudes can be considered to be approximately additive, i.e.,
the diagonal of Xy is |x;| =~ Eq |Yig|- In the context of this thesis the
covariance mixing defined in Equation (2.5) is referred to as spatial covariance
domain.

Expressing the instantaneous mixing defined in Equation (2.2) in spa-
tial covariance domain by model in Equation (2.5) has several benefits. The
source spectrum §;;, is real valued and estimation of its absolute phase is
not required in separation applications. Additionally the source mixing is
expressed by the magnitude correlation and phase difference encoded in the
covariance matrices H;,, which is known to be easily estimated by aid of time-
difference of arrival (TDOA) estimation with a generalized cross-correlation
method [139]. Many separation methods also rely on the estimation of the
TDOA [65,117], which is equivalent to the argument of the covariance ma-
trix entries (phase difference). The benefits of defining the SCMs and source
magnitude spectrum separately are made more evident in the context of
complex-valued NMF for spatial sound source separation presented in Chap-
ter 5.
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Chapter

Object-based Models of Audio Signals

N digital audio signal processing the sampled time-domain signal is often
transformed to a mid-level representation [29] in order to analyze it and to
apply other signal processing operations. In typical applications a frequency
domain representation such as the STFT introduced in Section 2.4 or critical
band decompositions of it are used. The desired property of a mid-level
representation for an object-based audio model is that they allow utilization
of similar processing as known to be applied by human hearing for resolving
different audio objects. Additionally, the invertibility of the representation
is desired, which allows reconstruction of the time-domain signal by minimal
added artefacts caused by loss of information.

The derivation of an object-based model in the context of this thesis
consists of using two mid-level representations. The first is the STFT of
the mixture, which is further approximated using the NMF, producing yet
another mid-level representation composed of spectral bases and their activa-
tions. This chapter introduces the NMF and NTF models for the magnitude
spectrogram and the complex-valued NMF for spatial covariance matrices
given in Section 2.4.2. Additionally, frequency domain ICA for sound source
separation is considered for contrasting the object analysis in the later dis-
cussion of source separation results in Section 5.6.

3.1 Spectral Redundancy and Spectrogram
Decompositions

Natural auditory scenes are constructed of events that repeat over time, such
as, individual phonemes in speech and identical notes of musical instruments.
The magnitude spectrum, i.e., the absolute value of the STFT, of such an au-
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Figure 3.1: Example of magnitude spectrogram redundancy of piano notes. Re-
peating events are denoted by rectangle of same color, the note in the middle
occurs only once.

dio signal is constructed of spectral patches that also have a repetitive manner
and resemblance. This can be visually confirmed from Figure 3.1 depicting a
few different notes played on a piano in repeating sequence. Additionally, the
STFT is already redundant due to its definition having analysis frames over-
lapping, and thus DFT is being applied to partially redundant content. The
object-based representation based on magnitude spectrum templates derived
in the frequency domain also benefits from the shift-invariance property of
the spectral transform, meaning that the absolute phase of the audio object
or event can be disregarded.

The redundancy of the sound events can be utilized by a model that is
composed of a few spectral templates and their time-dependent activation.
The degree of the model, i.e., the number of spectral templates, restricts
the modeling accuracy. Given that a certain degree of error is allowed in
representing the spectrogram, similar yet slightly different sound events can
be modeled using the same spectral template. Such a model reduces the
redundancy in representing the overall spectral content. Additionally, the
single spectral template representing redundant content can be interpreted
to perform a separation at a very basic level.

The purpose of decomposing an audio spectrogram into objects is for the
learning of underlying structures from the original data, which are beneficial
for further signal processing stages. These stages include, for example, speech
recognition [111], audio coding [145] and source separation [121,147]. In the
course of this thesis the decomposing techniques of ICA and the family of
algorithms based on non-negative matrix and tensor factorization are utilized

26



and introduced.

Algorithms suited for monaural spectrogram decomposition rely on the
machine learning approaches that learn redundant parts occurring over time
in the spectrogram. The difference in decomposing monaural and multichan-
nel spectrogram is that the latter includes inter-channel information regard-
ing spatial position of the audio objects and events. The inter-channel infor-
mation can be utilized in the decomposition algorithm instead of processing
each channel individually. In spatial audio coding, the spatial properties of
audio objects are referred to as spatial cues, namely inter-channel level and
time difference, ICLD and ICTD, respectively. The decomposition methods
can utilize either one [37,39], [P3], [P5] or both [121],[P6],[P7], which can
improve learning of audio objects by combining spectrogram evidence over
multiple channels.

3.2 Independent Component Analysis

The most well known method for separating sources from multichannel audio
is independent component analysis (ICA) [61] applied individually for each
frequency of the STFT spectrogram [127]. The frequency-wise estimation of
source spectrum and its spatial mixing causes frequency permutation prob-
lems, i.e., independent components belonging to different sources at different
frequencies. After solving the permutation problem ICA can be considered
to produce a representation that is interpretable as being object-based.

Different realizations of ICA aim at maximizing the statistical indepen-
dence of extracted components by estimating a separation matrix W; of size
Q@ x M and @ < M for each frequency i. The ICA decomposition can be
given as

yi = WXy, (3.1)
where yi = [yu1, - -, yag|" are the (unmixed) separated signals or in other
words the independent components. The ordering of components g =1,...,0Q

at each frequency of y;; is permutated and for time-domain signal reconstruc-
tion the inverse STFT cannot be applied directly. The ordering of compo-
nents is aligned by a permutation matrix P; of size () X (). When multiplying
a column vector or a matrix by P; from the left, it changes the ordering of the
rows. Thus it is applied to each frequency bin as y;; < P;y; or W; «+— P, W,
since P; = P; 1.

Various methods have been proposed over the years to solve the per-
mutation ambiguity. One of the first methods was based on maximizing
the smoothness of the frequency response of the mixing filter [127]. Later
methods considered temporal gain structure of the source signals [2, 122]
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and TDOA interpretation of ICA mixing parameters [118], or both [122].
Solving the permutation problem by combining TDOA-based clustering of
independent components aided with intra-source envelope analysis, and cor-
relation maximization is presented in Publication [P4] of this thesis. Results
of the permutation alignment from [P4] are presented in conjunction with
the NMF-based sound source separation in Section 5.6.

More recently, methods inherently avoiding permutation ambiguity have
been proposed and have been reported to have better performance over the
conventional frequency-wise ICA in sound source separation. These methods
include independent vector analysis (IVA) [81,99] and ICA regularized over
frequency [96]. However, some restrictions exist; the algorithm proposed
in [96] allows no spatial aliasing and in [99] the algorithm is derived only for
M = @ = 2. Methods estimating convolutive mixing such as TRINICON
(Triple-N ICA for convolutive mixtures) [16] have gained success especially
in blind deconvolution and multichannel source separation of time-domain
audio signals [151]. Estimation of the convolutive mixing in time-domain
causes no permutation problem.

3.3 Non-negative Matrix and Tensor Factor-
ization

The family of algorithms known as non-negative matrix factorization (NMF),
are based on a simple model that consists of a linear combination of basis
functions and their activations. The non-negative constraint on the parame-
ters makes the model purely additive and efficient algorithms for estimating
optimal parameters have been developed [80]. The NMF decomposition of an
audio signal magnitude spectrogram produces a dictionary of spectral tem-
plates that model redundant parts of the audio signal (in spectral domain)
and thus is able to utilize long term redundancy in representing the signal.
The NMF model of audio spectrograms have been utilized in a wide range
of applications due to their ability to represent recurrent spectral templates
using a single pair of basis function and its activation. The representation of
the magnitude spectrogram of an audio signal using only several of such com-
ponents allows, for example, easy labeling and classification of the spectral
templates for separation, recognition and transcription types of applications.
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Figure 3.2: The NMF decomposition parameters estimated on spectrogram z;; il-
lustrated in (a), NMF basis by illustrated in left row (b) and component activations
illustrated in right row gg; (c)

3.3.1 Model for Single Channel Audio

Considering the magnitude of single channel STFT &; = |x;| = [|zi1]], the
NMF model of it can be given as

K
Ty = vy = Z birgrr,  bik, g > 0. (3.2)
=1

The parameters of the model arranged into matrices [B]; x = by, and [Gli, =
g allows for interpretation as follows; the kth column of [B];) contains
the fixed spectrum of k&th NMF component and corresponding row of [G]y
represents its gain in each STF'T frame. The number of components used for
approximating Z; is denoted by K, later referred to as the degree of the NMF
model. The estimation of the optimal parameters b;, and g, with respect to
different optimization criteria is introduced in Section 3.3.3.

One NMF component with a fixed spectrum can only model part of the
actual sound sources with varying spectral features. However, in most cases
the NMF components represent meaningful entities that are interpretable as
sound objects. Thus the entire NMF model consisting of several components
serves as a mid-level representation for an audio signal based on audio objects.
Such a structured model is utilized in applications such as the object-based
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audio coding and source separation discussed later in this thesis. An example
of a three-component decomposition of piano notes is illustrated in Figure
3.2 where it can be seen that each NMF component represents the harmonic
structure of one note and that the components are active during the presence
of associated spectral features observed in the mixture.

The required degree of the approximation denoted by K depends highly
on the application and data to be processed. In the case of the NMF utilized
in audio signal processing in a blind manner (without any training material),
the appropriate value varies from several to tens of components. In supervised
NMF, where spectral templates of known source types are learned from a
large dataset of training material, the number of components can be several
thousands up to tens of thousands. Concerning the representation of the
audio magnitude spectrogram for audio coding purposes, the study of the
required degree is discussed later in Section 4.2.

3.3.2 Model for Multichannel Audio

When dealing with multichannel data, there are two alternatives for defin-
ing and deriving an object-based signal model with the aid of matrix and
tensor factorization, the first one being the non-negative tensor factoriza-
tion (NTF), which is applied to the magnitude spectrogram of each chan-
nel stacked along the third dimension, producing a I X L X M tensor with
non-negative entries. Such a NTF model has been utilized in, for example,
source separation [37,40] and estimation of spatial position of spectral com-
ponents [104]. The second approach in decomposing multichannel audio is
factorization of the entire complex-valued STF'T, incorporating both magni-
tude and phase. These types of matrix factorization algorithms differ greatly
from the magnitude models and thus are discussed separately in Section 3.4.

The magnitude spectrogram of a multichannel signal is denoted as %, =
x| = [|zaa], - -, |Tam|]. The NTF model consists of the same basic linear
model introduced in Equation (3.2), composed of several fixed spectral bases
and their corresponding gain. The added third dimension is modeled using a
channel dependent gain for each component, resulting in the NTF model of

K
Titm A2 Vit = Z bik GkiCkm, ik, Gri, Ak > 0. (33)
k=1

The parameter ag, denotes the gain of NMF component k in each input
channel m = 1,..., M. In the above formulation the mixing of NMF compo-
nents i.e., sound objects, is only considered to occur via level difference be-
tween channels, corresponding to the ICLD. The phase relation determined
by ICTD is not considered.
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3.3.3 Optimization Criteria and Parameter Estimation

Estimating parameters for the NMF and NTF models introduced in Equa-
tions (3.2) and (3.3) can be done with respect to different optimization crite-
ria. In this section the most commonly used and general ones are introduced.

The optimization of the model parameters is done by iteratively updating
them. The update equations are required to monotonically decrease the value
of the cost function measuring the fit of the model to the observed data. The
decrease of the cost function is referred to as convergence. In the vicinity of
the local or global minimum the decrease in the cost function becomes small
between iterations and the algorithm is considered to have converged. No
globally optimal solution can be guaranteed to be obtained, since multiple
local minima exist even in the simplest NMF model formulation and cost
functions combinations.

Original work by Lee and Seung [80] includes multiplicative updates for
two different cost functions, squared Euclidean distance (SED)

dsgp = Z Z(@z —v)?, (3.4)

i=1 I=1
and Kullback-Leibler divergence (KLD)

I L .
dxrp = Tl log@ — Ty + vy 3.9
; ; o (3.5)
The convergence towards local minimum by the multiplicative updates pro-
posed in [80] are proven using an auxiliary function technique familiarized
by an expectation maximization (EM) algorithm [24]. The multiplicative
updates in general tend to converge faster than additive ones based on gradi-
ent descent. Additionally, additive updates require determination of the step
size for the update. The above-mentioned cost functions, with the addition
of the Itakura-Saito divergence [64], are generalized in the work by Kom-
pass [73]. The update rules for different non-negative models and modified
cost functions can be obtained utilizing the framework proposed in [80,116]
for deriving the updates.

When linear operations are used to modify the cost function, such as
weighting of each time frequency point of the model, new update rules can
be derived from the unweighted ones by simple multiplicative operations.
One of the most commonly used modified cost functions is weighted squared
Euclidean distance (WSED), which is defined as

I L
dwsep = Z Z wil(iu - Uz’l>2- (3-6)

i=1 [=1
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The term w; contains linear weights corresponding to each time-frequency
point (i,1) in the spectrogram. The WSED cost function is useful when
different parts of the input signal spectrogram have unequal importance. This
includes, for example, the perceptual relevance of the NMF approximation
based on the masking phenomenon [152] discussed in more detail in Section
4.1.1 and in Publication [P1]. Several weighted NMF approaches exist for
image classification [49] and audio separation [98].

3.3.4 Algorithm Description

The algorithm for estimating optimal parameters for the NMF and NTF
models consists of a few common steps that can be used to describe all cost
function variants and different formulations of the model. Given that the
input signal STF'T x;; and the cost function with associated update equations
is specified, the process can be described in the following steps:

1. Initialization of the model parameters (b, gxi, - .. ) with random posi-
tive values uniformly distributed between ]0,1].

2. Applying the update equation for each optimized parameter, for exam-
ple with multiplicative form as proposed in [80].

3. Fixing the scaling of one of the parameters for numerical stability, which
is then compensated by the rescaling of the other, for example {? -norm

for the basis defined as a; = (Zi[:l bfk)1/2, bir < bir/ak, gk < GriGy.

4. Repeating steps 2-3 for a fixed number of iterations or until the chosen
cost function does not change significantly between updates.

3.4 Complex-valued Non-negative Matrix Fac-
torization

The multichannel microphone array audio signal encoding the spatial position
of the sound sources by time-difference of arrival between the channels is not
considered in the magnitude-based NMF models discussed in Section 3.3.
This is due to the fact that the phase of the STFT x; is not retained in
the magnitude-only decomposition models defined in Equations (3.2) and
(3.3). Considering the phase of the STFT in the object-based decomposition
requires processing of complex-valued input data, as well as consideration of
the additivity of the NMF components with different phases.
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This section consists of an introduction to the complex-valued NMF
model suitable for processing multichannel audio including the phase dif-
ference between the channels. The complex-valued NMF model and algo-
rithm used in Publications [P6] and [P7] for spatial sound source separation
are more closely investigated in Section 5.4 where the proposed direction of
arrival-based model for spatial covariance matrices is introduced.

The first complex-valued NMF algorithms were introduced in [67, 101,
105]. In [67,105] only a single channel complex-valued spectrogram is con-
sidered with an attempt to cover the exact additivity of NMF components by
estimation of absolute phase of components for each time-frequency point.
The problem in single channel estimation is that the absolute phase of an
audio signal is not recurrently structured in the STFT domain and it is de-
pendent of the exact time of the frame used for calculating the STFT. The
multichannel complex valued NMF proposed in [101] considers the actual
spatial covariance estimation and directly uses the EM algorithm framework
for estimation of its parameters. In this thesis the concept and complex-
valued NMF framework proposed in [119-121] is adopted for spatial sound
source separation in a blind setting.

3.4.1 Component-wise Spatial Covariance Estimation

The complex-valued NMF model is formulated in the spatial covariance do-
main introduced in Section 2.4.2. The NMF framework can be used to model
the spatial covariance observations and the spatial covariance domain mixing
defined in Equation 2.5 as follows. The NMF magnitude model defined in
Equation (3.2) is used for representing the real-valued mixture spectrogram
T ~ Zq Sig = Y1 bikgw, and the spatial properties, the SCMs Hy;, are
estimated separately for each NMF component k. This strategy is hereafter
referred to as a component-wise SCM model. Such a model cannot be di-
rectly used for sound source separation, since several NMF components are
needed for representing one actual acoustic sound source 3;;4, and a separate
NMF component linking strategy would be needed, as proposed in Publi-
cation [P6]. However, the component-wise SCM model serves as the most
general complex-valued NMF decomposition for multidimensional signals.
The complex-valued NMF model with component-wise SCMs is defined as

K
Xa~ X =Y Higbirgn, (3.7)
k=1

where H;;, are the SCMs for each NMF component £ at each frequency in-
dex i. The above model and estimation of its parameters using auxiliary
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functions as in the EM algorithm is introduced in [120]. The optimization
criterion used is the squared Frobenius norm between the observed covariance
matrices and the model given as

I L
drro = Z Z X — Xal [ (3.8)

i=1 =1

Additionally, the model parameter estimation using KLD and Itakura-Saito
divergence as a cost function is given in [121].

3.4.2 Source-wise Spatial Covariance Estimation

Regarding the complex-valued NMF model in Equation (3.7), two or more
components modeling the same sound source will ideally end up having equal
SCM properties (up to the estimation accuracy) determined by the spatial
position of the source. An explicit parameterization of this underlying spatial
property has been proposed in [36,102] and utilized in [120] by introducing a
component to source linking parameter to the model and only estimating a
single set of SCMs for a group of NMF components. The component linking
can be estimated in the same way as any other non-negative parameter of the
model, and thus no separate clustering of NMF components for separation
is needed. Additionally, the number of SCMs which need to be estimated
at each frequency index decreases to the number of sources present in the
mixture.
The complex-valued NMF model with source-wise SCMs is defined as

Q K
X~ Xy = Z Z Hichkbikgkb (3-9)

q=1 k=1

where ¢y, denotes the association of component k& to source g. The association
parameter ¢y, is a non-negative scalar and the association is soft instead
of binary, which means that a one NMF component can be associated to
multiple sources with different weights. Also note that the SCMs denoted by
H;, are defined for the actual number of sources Q).

3.4.3 Interpretations of Complex-valued NMF

The interpretation of the complex-valued NMF model in Equation (3.9) based
on the covariance mixing defined in Equation (2.5) can be described as fol-
lows. The diagonal entries of H;, model the ICLD of each source ¢ with
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respect to the input channels, and are not time-dependent due to the as-
sumption of stationary sources and mixing. Furthermore, the NMF magni-
tude model ;4 = >, cqrbirgm for a single source denotes its overall spectro-
gram in all channels. The ICLD at the diagonal of H;, represents frequency-
dependent acoustical amplification or attenuation caused by the source posi-
tioning with respect to the capturing device. The off-diagonal values of H,,
model the cross-channel magnitude and phase difference properties of which
the latter represents the ICTD between the input channels.

Calculating the input values of the algorithm, i.e., the spatial covariance
matrices defined in Equation (2.4), from a single frame causes the observed
covariance matrices to be rank-1 and positive definite Hermitian. Further, the
definition of the SCMs H;, in Equation (2.6) produces rank-1 and positive
definite Hermitian matrices. Thus within a single observed STFT frame
the covariance mixing is always rank-1, whereas in reality the actual spatial
covariance matrices of a source can be full-rank. Given the definitions the
magnitude differences at the diagonal would also determine the cross-channel
magnitude differences, but this property is not taken into consideration in
the covariance estimation of algorithms proposed in [120,121] or in the works
of this thesis in Publications [P6],[P7].

The difference between the magnitude-based NTF model in Equation
(3.3) and the magnitude part of the complex-valued NMF in Equation (3.7)
is that the ICLD in the former is defined component-wise, whereas the
complex-valued NMF model also allows magnitude differences frequency-
wise. Frequency-wise modeling is more accurate when considering real record-
ings done using microphone arrays, where frequency dependent attenuation
may exist, especially at high frequencies which are easily absorbed by physical
obstacles, as discussed in Section 2.3.
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Chapter

Object-based Audio Coding

BJECT-BASED audio coding is a relatively new area of research within the
field of audio coding. It aims at coding and representing separate audio
objects that can be efficiently encoded and allow modification of the mixture
content based on the objects at the decoding stage. In the coding of spatial
audio especially, the benefits of such models include scalability in the number
of channels and reconstructed content. The demand for an object-based
spatial audio coding arises from the fact that the devices used for consuming
the same audiovisual content vary from mobile devices to full-scale home
theaters. The audio playback capabilities of these devices range from mono
and stereo to multichannel loudspeaker arrays, thus requiring scalability of
channel quantity at the coding perspective. Additionally, control over the
reconstruction with respect to audio objects and sound sources allows novel
entertainment aspects of mixed audio content.

4.1 Audio Coding Background

The field of audio coding studies the concepts of representing single or mul-
tichannel audio using a minimum amount of storage requirements and often
aiming at minimal algorithmic delay required for real time streaming of the
audio content. In lossy audio compression the aim is to reduce the amount
of data needed for representing the signal without noticeably degrading its
perceptual quality. The lossy compression methods are also known in the
literature as perceptual coders [134]. The process of lossy compression can
be seen as an optimization problem of minimizing the perceived distortions
while reducing the amount of data needed for representing the signal. The
basis of modern-day audio coding is enabled by a large combination of source
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coding and signal processing techniques, such as perfect reconstruction filter
banks, entropy coding, nonuniform quantization with dynamic bit allocation
and psychoacoustic analysis.

4.1.1 Measuring Coding Distortions with Perceptual
Criteria

Minimizing perceptual error in the encoding of audio requires modeling the
human hearing in order to analyze which degradations in signal are dis-
regarded by our hearing and which cause audible artefacts. Experiments
for discovering the limits of our hearing in discriminating minor changes in
physical stimulus has created a basis upon which to build models of our
hearing [11,12,68,84, 140].

The audibility of distortions in the processed signal is determined by
estimating the masking threshold (see section 2.2.2) that the signal to be
encoded creates and then comparing that to the level of the artefacts caused
by the encoding. The psychoacoustic concepts used for building a perceptual
distortion measurement criteria include critical bands [92, 137, 152], equal
loudness contours [41] (Fletcher-Munson curves) and masking with temporal
integration in the role of pre- and post-masking [152].

Noise-to-mask Ratio

One of the perceptual criteria used for measuring the audibility of distor-
tions is the noise-to-mask ratio (NMR) as defined in ITU-R recommendation
BS.1387 for perceptual evaluation of audio quality (PEAQ) [140]. The PEAQ
is aimed at evaluating overall perceptual quality of different audio codecs by
combining several audio quality criteria, including the NMR. The main part
of the recommendation consist of defining and standardizing the masking
level estimation, but it also includes definitions for audio quality criteria
which are independent of it, such as overall distortion loudness, harmonic
structure of the error and modulation measures. All the derived individual
criteria are combined to obtain an overall perceptual score.

The NMR is defined as a measure between the reference and processed
audio and in [140] it is defined as the ratio between error energy and the
masked threshold in each analysis band corresponding to critical bands. The
error is calculated as a difference in frequency domain magnitudes weighted
by the outer- and middle ear model responsible for compensating for the
different frequency sensitivity of hearing. The resulting error of each audio
frame is grouped in the critical bands. The resulting error is considered as
noise. The masking threshold is estimated from the reference signal.
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The masking threshold estimations consist of the following steps. Before
the actual mask estimation, the time-domain input signal level is scaled to
match the average listening level and its STF'T is calculated. The first step
applied is the outer- and middle-ear modeling, which consist of frequency
dependent weight similar to equal loudness contour. The weighted magnitude
spectrum of each frame is grouped into critical bands with bandwidth of one
quarter of a Bark band. An offset representing internal noise of the ear is
added to each band. The spreading of the masking energy in each band is
then applied, which equals to adding a proportion of the energy of each band
to its neighboring bands. This process is referred to as simultaneous masking.
In the last step the masking energy is spread in time, which corresponds to
the pre- and post- masking phenomenon. The detailed operations of each
step can be found from [66].

The perceptual audio coding methods such as MP3, AAC and OGG Vor-
bis [10,134] use the mask estimation in allocating bits for each frequency band
in such a way that the audible distortions are minimized. A long and sys-
tematic research guided by listening tests has perfected the psychoacoustical
models of the prevalent lossy compression algorithms.

4.1.2 Spatial Audio Coding

The multichannel audio codecs encoding each channel separately, such as
AC3 [141], DTS [133] and DTS-HD, are bound to the fixed number of chan-
nels in reconstruction and bitrate increasing in proportion to the number of
channels to be transmitted. These restrictions have been surpassed by para-
metric approaches developed for spatial audio coding (SAC) such as MPEG
surround [55] and MP3 Surround [54]. These parametric approaches are ca-
pable of transmitting 6-channel audio (for 5.1 speaker configuration) with
bitrates comparable to conventional perceptual encoding of stereo audio [56].
In this section the principles of parameterizing spatial audio are introduced
which largely build the foundation for object-based spatial audio coding.
The parametric coding of spatial audio is based on a downmix-upmix
framework, where the reconstruction of multiple channels is obtained from
one or several downmixed channels using spatial cue parameters transmit-
ted as auxiliary information. The multichannel SAC can be seen as a gen-
eralization of the binaural cue coding principles proposed in [4,34]. The
generalized block diagram of the SAC is illustrated in Figure 4.1. The syn-
thesis of multiple channels is achieved from the downmixed signal by ad-
justing the level, time delay and decorrelation of each frequency band. The
frequency bands usually follow the resolution of the critical bands of hear-
ing [92,152]. The above-mentioned process is based on an estimation of the
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following spatial cues at each frequency band: inter-channel level difference
(ICLD), inter-channel time difference (ICTD) and inter-channel coherence
(ICC). The existing SAC codecs utilizing the above-mentioned spatial cues
range from parametric stereo [125] to full multichannel codecs [33,54, 55].

The field of SAC also covers approaches that try to cope with spatial
analysis, coding and reproduction as a whole. The method known as di-
rectional audio coding (DirAC) [110] analyses the direction and diffuseness
of frequency blocks using B-format recordings, which are usually used in
research on ambisonics [23]. Combined with spatial impulse response ren-
dering [88] the DirAC can not only encode the spatial sound field but can
also separate sources from a mixture, based on their direction. The DirAC
can thus be viewed as a method that is situated somewhere in the middle of
fields like SAC, 3D sound synthesis and sound source separation.

Downmix
SAC 1...N channels SAC >
Input o . Upmixed
h Is © Encoder/ > Decoder/ ' ch |
channels Spatial Analysis Upmixing channels

A

Side information /
spatial parameters

Figure 4.1: Block diagram of general spatial audio coding algorithm utilizing up-
mixing based on auxiliary information regarding spatial properties of each channel.

4.1.3 Spatial Audio Object Coding

Problem definition in spatial audio object coding (SAOC) starts from the
assumption that the audio objects to be encoded are available as separate
tracks in the encoding. Additionally, mixing information regarding the ob-
jects is available, which is used to construct one or more mixture channels.
The encoding of a multichannel mixture of spatially positioned audio objects
is an extension of the SAC approach, with the addition that the individual
objects in each channel can be separately synthesized. The coding principles
follow the SAC framework, where a downmix signal with additional auxiliary
information is transmitted in order to recover the individual objects from the
downmix.

The cues extracted and used for separating individual audio objects from
the dowmixed mixture signal in SAOC [13] are object level difference, inter-
object cross coherence, downmix channel level difference, downmix gains and
object energies. A more detailed explanation of the object cues and their
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quantization can be found from [13,32]. These cues are estimated for 68
frequency bands in the case of a sampling frequency of 44.1kHz, but com-
pared to the SAC the bands are more equally spaced regarding bandwidth,
and a greater number of bands is used in total. This is due to the fact
that separation of multiple audio objects from the mixture signal needs a
higher resolution in determining which time-frequency block is assigned to
which audio object. This may be validated by the approximate W-disjoint
orthogonality of speech [113] sources for linear time-frequency domain and
separation algorithms utilizing this property [65]. However, the degree of
Wh-disjoint orthogonality of the audio objects decreases as the width of the
frequency bands is increased, i.e., two sources may occupy the same frequency
band with equal energy levels.

The quality of the object separation when completely removing a certain
sound source such as vocals, is limited in terms of perceptual quality. For
improving the separation a perceptually encoded residual can be transmitted
and used as error correction of the standard object separation [13,32].

One of the conceptual problems in SAOC is the lack of applications where
the separate audio object tracks are available in the encoding stage. The
usual case of a recorded or produced mixture of sound sources would require
first solving the blind source separation problem. Omne of such methods is
proposed in [53] where DirAC is used as a source separation tool and a
preprocessing step for MPEG SAOC. The method proposed in Publication
[P5] can moreover be viewed as solution both blind source separation and
coding of spatial audio objects.

More recently a related field of informed source separation (ISS) [83,
106, 107] has been extended to the problem of spatial audio object-coding
[47,70,103]. Many of these methods utilize NMF and NTF for parameteriz-
ing the audio objects [70,82,83,103]. In addition to using NMF model for
representing the sources, a joint framework for the encoding of the source
parameters and the residual is proposed in [103]. The process of an NMF-
and NTF-based ISS can be seen as identical to the method proposed in Pub-
lications [P3] and [P5] for multichannel audio coding via a dowmix-upmix
framework.

4.1.4 Blind Upmixing

A related field to SAC is blind upmixing, which aims at creating additional
channels containing ambient audio content [25,63]. The ambience is usually
placed in the back channels in the 5.1 speaker configuration. The problem
of blind upmixing has also been addressed using the NMF [112,142,143]. In
NMF-based ambience extraction the residual of the approximation is consid-
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ered to contain the non-directive and ambient sound content. The operation
of these methods can be interpreted as the NMF or NTF model to capture
the content of the most prominent directive sound sources. Additionally,
source separation by NTF as part of a mono-to-stereo upmixing approach
has been proposed in [38].

4.1.5 Entropy Coding and Redundancy

The goal of general data compression is to reduce the redundancy in repre-
senting the signal to be compressed [115]. In lossless compression the amount
of achievable compression is bounded on the lower end by the Shannon’s
source coding theorem, i.e., the entropy of the signal in question. The com-
pression algorithms function by mapping symbols (patterns) from the data to
the variable length codewords in such a way that the most frequent symbols
are given the shortest codeword. The most well-known design of a predefined
codebook (prefix code) based on known statistics of the data is Huffman cod-
ing [59], which guarantees an optimal codebook for the given symbols with
given statistics.

The practical problem faced in data compression prior to the entropy
coding stage is the analysis and recognition of the recurrent bit patterns
that are considered as symbols. Audio in a purely binary form such as, for
example, 44.1kHz / 16bit pulse code modulated (PCM), does not contain re-
dundant parts, even though in terms of understanding music and speech they
are constructed of repeating events. PCM audio is known to be rather in-
compressible by conventional all-purpose compression algorithms, but can be
compressed by up to 50% using specially designed lossless audio compression
algorithms such as free lossless audio coding (FLAC) (xiph.org/flac/).

In conventional lossy audio compression, perceptually motivated quanti-
zation combined with entropy coding is the most effective tool in reducing the
size needed to represent the audio content without a significant perceptual
loss. However, the algorithms do not utilize the semantic redundant struc-
tures of music and speech, as is used in other audio signal processing tasks
such as automatic speech recognition (phonemes), automatic score transcrip-
tion (notes and chords) and many more.

4.2 Channel-wise Object-Based Audio Cod-
ing Using NMF

This section introduces object-based audio coding utilizing NMF as proposed
in Publication [P2] for the encoding of mono and stereo content. The benefits

42


xiph.org/flac/

of NMF-based signal representation for audio coding are evident and can be
summarized as follows. The NMF representation is able to utilize long-term
redundancy by modeling the signal over time using recurrent audio objects.
This reduces the redundancy in representing the audio signal which is the
foundation in all data compression. Additionally, the well known sparsity
property of the NMF model, i.e., only a small number of components are
active simultaneously, is beneficial for coding applications. The sparsity also
holds for the NMF component spectrum, as is shown and investigated in
Publication [P2].

The object-based audio coding of mono or stereo audio signals is not
widely covered in the literature. One of such methods proposed in [145] con-
structs audio objects based on the harmonic structure of musical instruments.
The SAOC concept and coding framework introduced in Section 4.1.3 also
differs from the object-based coding covered in this section in that it assumes
no separated sources present in the encoding stage.

4.2.1 Coding Framework Overview

In order to utilize recurrent structures in lossy audio compression, an object-
based approximation of the original audio signal needs to be estimated. This
can be achieved by estimating NMF approximation, Equation (3.2), of the
signal to be encoded. The learning of the audio object structures and the
NMF model require batch processing of an audio signal with a segment length
varying from several seconds to tens of seconds. In the context of this thesis
the proposed audio coding algorithms operate offline and a fixed 10 second
segment is used for estimating the object-based model, and utilization of
segment-wise information is not studied.

The entire compression algorithm based on an NMF spectrogram repre-
sentation is illustrated in Figure 4.2. It consists of the following steps.

1. Calculating the STFT spectrogram of the input signal to be encoded
and estimating the masking threshold it creates.

2. Magnitudes of the STF'T are approximated using the NMF model given
in Equation (3.2), with WSED as cost function as defined in Equa-
tion (3.6), and weighting corresponds to NMR as proposed in Publica-
tion [P1].

3. The NMF model parameters are quantized and entropy coded.

4. The phase of the STFT is quantized and entropy coded in a separate
processing branch.
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Figure 4.2: Block diagram of the NMF-based discrete channel audio coding algo-
rithm.

5. The object-based magnitude model and quantized phases are multi-
plexed to a single bitstream.

The above process needs to be applied to each channel in the signal to be en-
coded, i.e., it does not utilize any cross-channel redundancies. The decoding
is achieved by reconstructing the magnitude spectrum using the NMF param-
eters and combining it with a transmitted and quantized phase spectrogram.
Inverse STF'T is applied in order to obtain the time-domain signals.

The concept of perceptually motivated NMF model criterion and quan-
tization and entropy coding of its parameters are more closely examined in
Sections 4.2.2 — 4.2.4. The proposed framework is utilized in Publications
[P3] and [P5], and is comprised of the SAC algorithm based on the NTF.
Further studies in NMF-based coding developed by Ozerov, et. al. in [103]
utilize a similar concept for combination of audio coding and informed source
separation.
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4.2.2 Perceptual Optimization Criterion for NMF

The development of object-based audio coding algorithms began with re-
search on perceptually motivated cost function for the NMF proposed in
Publication [P1]. In order to model perceptually relevant parts of the magni-
tude spectrogram with high precision, a cost function approximating human
hearing was required, i.e., weighting the modeling error by the masking level.
The perceptual relevance measured by NMR was introduced in Section 4.1.1.
In [P1] the NMR criterion was formulated in the form of the WSED cost
function in Equation (3.6), where a weight for each time-frequency point is
applied. The NMR cost criterion for modeling the audio spectrogram using
the NMF was studied in the M.Sc. thesis [97] of the author and the contri-
butions relevant to the object-based audio coding using the NMF are cited
in the following sections.

Implementing the NMR cost criteria as a WSED cost function and using
the updates proposed in [9] for optimization of the model parameters re-
quires inversing the operations specified in the NMR error signal calculation
introduced in Section 4.1.1. The operations consists of weighting by the mid-
dle and outer ear transfer function and the grouping of the error into critical
bands. Additionally, the masking threshold calculated in critical bands needs
to be brought back to linear frequency scale. In Publication [P1] it is shown
that these operations can be simply converted to a weighting matrix w; for
linear frequency scale error, as in WSED cost function in Equation (3.6).
By using associated update formulas for the WSED, the NMR error of the
overall approximation of v; is minimized. The NMR cost function for NMF
audio spectrogram modeling has been proposed in [98] but it evaluates the
cost function in Bark bands, leading to effective resolution of the NMF model
to be equal to the number of Bark bands used in masking estimation. More
recently the coding-based ISS approach proposed in [70] has investigated the
use of perceptual criteria, both in estimation of the NTF model and in the
encoding of the residual. The findings favor the use of perceptual criterion
over mean squared error by improving the separation quality measured with
perceptual similarity metric.

4.2.3 Quantization and Rate of the Model Parameters
Quantizing the NMF Model Parameters

The quantization of the NMF representation of audio magnitude spectrogram
was studied in [P2] and the following quantization scheme was proposed. The
quantization of both NMF parameters b;; and g, is based on non-uniform
quantization, achieved by logarithmic compression before uniform quantiza-
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tion. The function used to map the values of both parameters is the p-law
companding. The quantization scheme developed equals to using more quan-
tization levels for the small values of b;, and gy, whereas larger values are
represented more coarsely. The justification of the non-uniform quantization
is based on the perception of loudness being approximately logarithmic [152],
i.e., doubling the perceived loudness requires amplification of the signal by a
factor of ten. That leads to the fact that high magnitudes of the NMF model
can be represented with less precision, since perceived differences are larger
compared to at a lower magnitude level.

Regarding the proposed logarithmic mapping of the NTF parameters val-
ues, a related work in coding-based ISS [103] provides a more detailed inves-
tigation of optimal NTF model quantization based on techniques introduced
in [71]. The analysis in [103] ends up with logarithmic compression with
a scalar quantizer being optimal for encoding the NTF model, with an as-
sumption of independence of the quantization error caused by quantizing
individual parameters.

Parameter Rate and Effect on Perceptual Quality

The quantization of the NMF parameters decreases the overall perceptual
quality of the NMF approximation. Assuming that the quantization of all
elements of b;, and g is independent, meaning that the overall bitrate of
the NMF model is determined by the total number of elements in b;;, and gy,
thus minimizing the parameter rate while optimizing the perceptual quality
before quantization is subject of great interest. This occurrence was studied
in [97] and Publication [P1].

The perceptual quality of the non-quantized model is determined by the
number of components used for approximating the spectrogram, given a fixed
window length used for calculating the STFT. The results from [97] indicated
that the NMR quality of the approximation increases almost linearly with
respect to the number of components used for the NMF model. The window
size affects the perceptual quality by determining the time resolution of the
gains of the NMF model. Additionally, the window size of STFT determines
the time resolution of the optimization criterion, meaning that the masking
threshold is estimated for each STF'T frame with a fixed duration. Transient
sounds (for example, drums) may have a significantly shorter duration than
the typical window size for STF'T, varying from approximately 10 ms to 100
ms in audio signal processing applications. This leads to a situation where
the masking threshold for a transient sound event is estimated from a signal
content averaged from its neighborhood (the entire long STFT frame), and
which may not reflect the masking properties at the time of the transient
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sound. Therefore the STFT window size determines the time resolution for
the perceptual optimization criterion and the NMF model. The shortening
of the window size from 40 ms to 20 ms was found to improve the NMR
quality by 2 dB [97], while substantially increasing the rate of NMF model
gains gy, due to the increased number of STF'T frames per second.

The parameter rate and the perceptual quality of the NMF model can be
concluded as follows. Increasing the degree of approximation increases the
number of both parameters, i.e., the gains and the basis functions, whereas
shortening of the window size increases the number of gain parameters g
per second and leads to better perceptual quality. In contrast, increasing the
window size increases the number of frequency bins used to represent each
NMF component basis b;;, which means a greater number of parameters for
the spectral basis part which in turn acts as an overhead.

4.2.4 Sparsity of the Model Parameters

A signal representation is said to be sparse when only a few atoms of which
it is composed of are activated at a time. The field studying sparse signal
representations divides the process for obtaining the approximation into two
stages, dictionary learning and sparse coding [28]. The methods used for
these are, for example, K-SVD dictionary learning [1], and matching pur-
suit (MP) and orthogonal matching pursuit (OMP). NMF does not make
an explicit difference in these stages, since alternating updates for all its
parameters are derived using the same process. However, the parameteri-
zation is clearly divisible into NMF basis (dictionary) and their activations
(component gains).

The similarity of NMF to non-negative sparse coding [58] applied for audio
source separation [148] is evident. Even without any sparsity constraints
applied to the NMF optimization criteria, the updates originally proposed in
[80] produce rather sparse solutions when approximating an audio magnitude
spectrogram.

Model Parameter Statistics

The probability distribution of the NMF parameters when compressed and
quantized as described in Section 4.2.3 is studied in Publication [P2]. The
collected probability distributions are reproduced in Figure 4.3, which clearly
indicates the sparsity when parameters are quantized. Not only the activa-
tions but also the component basis (dictionary elements) are dominated by
zero values. A large portion of the parameters without quantization would
be non-zero, but their numerical value would be very small and negligible re-
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Figure 4.3: Probability distributions of the compressed and quantized values of
the NMF parameters when 5 bits per parameter are used.

garding the approximation accuracy. This is proved by the small perceptual
degradation of the proposed quantization as reported in Publication [P2].

The probabilities in Figure 4.3 were collected by processing a large dataset
of speech and music from various genres which are all possible material for
the object-based audio coding algorithm. The collected probabilities were
used in building the prefix codes for entropy coding of the model parameters.
The Huffman codes for each quantized value were generated leading to the
shortest codeword associated for the zero value in both sets of parameters.
The infrequent nonzero values end up having long prefix codes.

4.2.5 Results and Findings

The overall results achieved in channel-wise audio coding using the NMF as
an object-based model for the audio magnitude spectrogram are provided in
Publication [P2]. In general, the evaluation concentrated on the perceptual
quality loss of the proposed quantization of the NMF model, and no direct
comparison to conventional perceptual codecs, such as MP3, was reported.
The test set consisted of 10-second signals of speech and music from various
genres with the total number of test signals being 100. A detailed description
of the encoding parameters and setting can be found from [P2].

Effect of Quantization and Entropy Coding

The decrease in NMR quality caused by the proposed quantization scheme
with 5 bits used for representing each entry of b;;, and gx; was less than 1 dB
averaged over a large test set. The average NMR quality being approximately
-14 dB indicates that the distortions are on average 14 dB below the masking
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level. However, the instantaneous NMR for individual frames can be closer to
the masking threshold and indicate the presence of audible distortions. With
the reported NMR quality the overall bitrate using 5 bits for each parameter
of the NMF model of one channel equals out roughly to bitrate of 64 kbps.

After the entropy coding the average bitrate was reduced to 50 kbps.
For the encoding of a stereo signal, the representation of the magnitude
spectrogram by the proposed object-based audio coding algorithm already
requires a bitrate of 100 kbps. It should be noted that no mutual information
and redundancy between the channels would be utilized in this case.

Encoding the Phase Spectrogram

The proposed object-based model is comprised of only the magnitude spec-
trogram and requires representing and encoding the phase of each time-
frequency point individually. In publication [P2] the quantization and encod-
ing of the phase spectrogram was based on a combination of using random
phases for the highest frequencies due to their irrelevance in overall per-
ceptual quality and different bit allocation schemes for the phases at lower
frequencies.

The evaluation using random phases indicated that random phase con-
tent can be used at frequencies above 15 kHz with practically no perceptual
quality loss when the magnitude spectrogram is represented using the NMF
and quantized using the proposed scheme. Three different bit allocation
methods were experimented with for quantizing the phase for the rest of the
frequencies. The baseline consisted of uniform quantization with an equal
number of bits allocated for each time-frequency point; the second approach
used dynamic bit allocation based on the magnitude of the time-frequency
point, which assumes that time-frequency points with high magnitudes are
also perceptually more relevant from the phase representation point of view.
The third approach used frame-wise differential encoding and dynamic bit
allocation based on magnitude for encoding the residual. The dynamic bit al-
location schemes were able to reduce the bitrate while maintaining the same
perceptual quality as the uniform quantization, but none of the methods were
found to be efficient enough for actual object-based audio coding comparable
to conventional methods. The bitrates for the phase quantization for single
channel were in the range of 70-80 kbps.

4.2.6 Conclusion on Channel-wise Approach

The overall channel-wise object-based audio coding algorithm based on the
NMF model was not comparable to conventional methods in coding efficiency.
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The shortcoming of the proposed audio coding framework is the utilization of
an object-based model solely for representing the magnitude spectrogram of
the audio signal to be encoded and not including object-based modeling and
coding of the phase spectrogram. The time-frequency point-wise encoding of
the phase spectrogram was found inefficient. Additionally, no cross-channel
information in representing stereo signals was utilized, resulting in a linear
increase in bitrate with respect to the number of audio channels to be en-
coded.

4.3 Multichannel Audio Upmixing by NTF

The multichannel audio downmix-upmix procedure, where multiple channels
are recovered from a perceptually encoded time-domain downmix signal by
filtering or other synthesis procedure, was introduced in Section 4.1.2. The
term spatial audio coding (SAC) is often used to denote such methods. In the
context of this thesis the term upmixing refers to the reconstruction stage
of the process of first parameterizing the multichannel audio, downmixing
and reconstructing the original multichannel audio by means of assigning the
downmix signal content to multiple channels.

4.3.1 Spatial Cues and NTF

In the SAC framework the spatial parameterization was determined based
on ICLD, ICTD and ICC. In the simplest case the spatial positioning of the
audio object is determined only by the level difference between channels. If
the audio object occurs on a single channel only, the effect of ICTD with
respect to other channels becomes inherently encoded by the downmix signal
phase. This assumes that the spectral content of audio objects does not
overlap. Additionally, in the case of a 5.1 speaker configuration [86] and
stereo downmix, the ICTD of the audio object present in the left and right
front or rear channels becomes encoded by the stereo downmix. Taking
into account the aforementioned special cases, it can be assumed that fairly
accurate spatial upmixing can be carried out by only estimating the level
differences of audio objects in each respective channel.

The NTF model as given in Equation (3.3) can be used to approximate
the magnitude spectrogram of multichannel audio. The parameter ay,, de-
notes the audio object occurrence with respect to each channel, making it a
very natural object-based representation for the SAC. The quantization and
encoding of the NMF model parameters introduced in Section 4.2 can be di-
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rectly utilized in encoding the NTF model used for multichannel upmixing,
as proposed in Publications [P3] and [P5].

The NTF model allows representing spatial audio objects that can over-
lap in frequency. Comparing the NTF model of multichannel audio to the
conventional SAC approaches, which estimate only a single set of spatial cues
for each time-frequency block, the NTF model estimates the cues over fre-
quency for each audio object and allows accurate upmixing of simultaneous
sound events overlapping in frequency.

4.3.2 Upmixing by Time-Frequency Filtering

The general approach in audio upmixing consists of estimating a compact
representation of multiple audio channels and using it to synthesize the orig-
inal content by filtering a downmixed signal containing a mixture of all the
channels. The block diagram of the object-based SAC proposed in Publi-
cation [P3] is illustrated in Figure 4.4. The overview of the algorithm for
obtaining the object-based model for the multichannel magnitude spectro-
gram and utilizing it for recovering the multichannel data by time-frequency
filtering consists of the following steps.

1. The magnitude spectrogram 2z, consisting of M channels is calculated
from the input signal and corresponding perceptual weighting wj;,, is
estimated from it.

2. The time-domain multichannel signal is downmixed to M < M chan-
nels and perceptually encoded using MP3, AAC or similar. For sim-
plicity we assume a mono downmix ( M =1 ).

3. The perceptually encoded downmix is decoded and its STFT is com-
puted, denoted by d;;. It is used in optimizing the NTF model estima-
tion for recovering the original channels from the downmix, not just for
optimizing the perceptual quality in approximating the multichannel
input Z;,,. See section 4.3.3 for more details.

4. The NTF model defined in Equation (3.3) of the input signal Z;,, is
estimated using WSED optimization criterion defined in Equation (3.6)
with weighting wy,, corresponding to the NMR, [P1].

5. The parameters of the NTF model are quantized and encoded based on

the framework introduced in Publication [P2] and extended to account
for the channel-wise gain parameters ag,.
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Figure 4.4: Block diagram of the SAC algorithm based on upmixing using the
NTF model for the magnitude spectrogram.

In practice the downmixed signal is mono or stereo, but the algorithm pre-
sented in Publications [P3] and [P5] is extendable to any combination of
input channels M downmixed to M channels.

In the decoding stage the NTF model based on the quantized parameters
is reconstructed, the downmix is decoded and the STFT of it is computed.
The upmixing by time-frequency domain Wiener filtering is implemented as

K
bi m
Yilm = 2= b di = Ajmdi, (4.1)
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where y;,, are the recovered channels and d;; is the STFT of the downmix
signal. The term in the numerator corresponds to the NTF model for channel
m. In the denominator one finds the sum of the NTF approximation over
channels which corresponds to the STFT of the downmix. The above type
of Wiener minimum mean squared error (MMSE) estimate is widely used in
NMF- and NTF-based source separation [101]. The time-domain signals can
be directly reconstructed from the upmixed STFT defined in Equation (4.1)
by inverse DFT and overlap-add synthesis.

The process of upmixing using the NTF model and mono downmix is
illustrated in Figure 4.5. In this example the first two channels contain a
structured spectral content (piano), whereas the third channel contains a
wideband noise-like signal (water fountain). The downmix magnitude spec-
trogram contains all of this spectral content overlapped. The upmixing masks
Ajim denote gains in the range of [0, 1] and the overall mask shape resem-
bles the original multichannel data, but with the exception of also being able
to handle rejection of spectrally overlapping content. This is especially evi-
dent in the upmixing mask of the third channel, which contains the spectral
shape of the piano with reversed gain, i.e., rejecting it. In the last column
the upmixed magnitude spectrograms before time-domain reconstruction can
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Figure 4.5: Process of upmixing based on the object-based NTF model of multi-
channel spectrogram and perceptually encoded mono downmix. The first column
contains the magnitude spectrograms of each individual channel. In the second
column is the magnitude spectrogram of the perceptually encoded downmix. The
third column contains the Wiener filtering masks denoting the gain [0,1] for each
time-frequency point. The combination of the second and the third column by
element-wise multiplication realizes the Equation (4.1) and the upmixed channels
can be seen in the last column.

be seen. There are only faint remarks from the upmix processing, namely
some noise of the third channel added to the first two and vice versa. This
equates to some crosstalk between the channels, which in general have little
or no perceptually degrading effect due to the masking effect caused by the
correctly upmixed content.

4.3.3 Cost Function for Upmixed Signal Perceptual
Quality

In the above section describing the overall algorithm of the NTF-based SAC,
it was mentioned that the STF'T of the downmix is fed into the NTF pa-
rameter estimation stage. The downmix is used in optimizing the NTF for
the upmix operation and not just for modeling the magnitudes of the input
channels. This equates to the designing of the cost function and the model
parameter update formulas so as to minimize the upmixed signal NMR.

The initial cost function for modeling the magnitude spectrogram of mul-
tichannel audio is the WSED introduced in Section 3.3.3, which is extended
for multiple channels as

C = Z Z Z wilm(fcilm — ’Uilm)Z. (42)

i=1 =1 m=1
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The weights wj,, correspond to NMR criterion [140] utilizing the formulation
proposed in Publication [P1]. The masking level used in defining w;;,, is
estimated separately for each channel, based on specifications in [66, 140]
and thus no spatial unmasking effects are considered. Given that the actual
upmixed output is achieved using Equation (4.1) the above cost does not
minimize the upmixed NMR, which can be defined as

1 M
CcC =

1

1 =1 m=

1

The difficulty of the upmixed NMR as a cost function is that the updates
minimizing it cannot be derived directly, due to the fact that the parameters
of the model are defined as nested and twice in the Wiener time-frequency
filtering masks.

Optimizing the NTF model parameters using multiplicative updates ob-
tained by partial derivation of Equation (4.2) causes the following errors
when the estimated model is used for upmixing. If the spectrum of the audio
objects from different channels overlap or are only closely separated in time
and frequency the regular NMR cost function may allow too coarse of an
NTF-magnitude model for them, which leads to crosstalk when the model
is used for upmixing. All the audio objects being downmixed to one or two
channels causes the magnitude spectrum to become less disjointed. The ap-
proximation accuracy of the NTF model corresponds to time and frequency
selectivity, which needs to be increased at the time-frequency points where
the downmix contains overlapping content.

The method for approximating the upmixed NMR cost function in Equa-
tion (4.3) was proposed in Publication [P3]. It consists of emphasizing the
error in time-frequency points where the downmix STFT has a high magni-
tude with respect to the NTF channel sum in the denominator of the Wiener
mask in Equation (4.1). Such time-frequency points are assumed to contain
overlapping spectral content from audio objects in different channels. Using
the proposed weighting, the NTF model is restricted so as to have smaller
margin of error for spectrally overlapping audio objects. The proposed ap-
proximation can be implemented by modifying the weights according to

|
M K :
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There is no exact mathematical interpretation of the modified weights, and
it cannot be guaranteed to minimize cost function defined in Equation (4.3),

but as investigated in Publication [P3] the weighting was found to improve
the upmixed NMR over the unmodified weights and has no negative effects.

Wilm $ Wilm (44)
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The proposed weighting was applied only after the initial model estima-
tion was obtained using the regular cost function in Equation (4.2) and its
associated multiplicative updates for the first 500 iterations. This ensures
that the initial values of the model parameters are close to optimal when
starting to minimize the upmixed NMR, due to the fact that the developed
approximation is not guaranteed to converge to the sought minimum. In
Publication [P3] it was experimentally shown that the proposed approxima-
tion is able to converge to a smaller error measured using the cost function
in Equation (4.3) when evaluated over the whole test set used in the listen-
ing test mentioned in that paper. The behavior of both cost functions in
Equations (4.2), and (4.3) averaged over the test set, is shown in Figure 3
of Publication [P3]. After 500 iterations the weights are modified according
to Equation (4.4). The analysis of the results can be summarized by the
following observations

1. Both cost functions decrease and converge well up to the 500 itera-
tions using the updates derived for the multichannel NMR in Equation
(4.2) even though the rapid decrease of the upmixed NMR occurs later
regarding the number of iterations.

2. After changing to weighting defined in Equation (4.4) the upmixed
NMR again rapidly decreases but converges in a very few iterations.
Due to the cost function behavior being averaged over all test signals,
those containing less overlap of audio object spectrum do not benefit as
much, whereas those with more overlapping spectral content as in, for
example, the one illustrated in Figure 4.5, benefit from the proposed
approximation significantly.

3. Lastly it is clear that the optima of the two cost functions are not equal,
once the weights have been changed to approximate the upmixed NMR,
the general magnitude NMR criterion start to increase in an almost
exactly reversed manner.

4.3.4 Evaluation of Coding Efficiency

The overall encoding results of the NMF-based SAC coding method are re-
ported in Publications [P3] and [P5]. The perceptual quality produced by the
algorithms was evaluated using a methodology of multiple stimuli with hidden
reference and anchor (MUSHRA) [85], which allows simultaneous evaluation
of multiple methods using experienced listeners. The dataset used was the
MPEG multichannel test samples intended for playback with a 5.1 speaker
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configuration [86]. The complete description of the dataset and content of
the individual samples can be found from Table 1 in Publication [P5].

The proposed object-based SAC method was compared to MP3 surround
[54] based on conventional spatial cues estimated for fixed time-frequency
blocks and stereo downmix. The target bitrate was set at 128 kbps, which was
exactly produced by the MP3 surround. The bitrate of the proposed method
consisted of an MP3-encoded stereo downmix at 96 kbps and a quantized
and entropy-coded magnitude model producing 26 kbps using K = 64 audio
objects with window length of 810 samples (20 milliseconds) for the STFT.
The total bitrate of the proposed method thus equals to 122 kbps and more
detailed parameter and bitrate definition are given in [P5].

Evaluation using the MUSHRA methodology and encoding parameters
specified above indicated that neither of the tested methods were transparent
compared to the reference, and the proposed object-based SAC algorithm
produced a slightly lower perceptual quality than the MP3 surround baseline.
However, the quality impairment being very small and the fact that the
proposed method produced slightly lower overall bitrate indicated that the
proposed method is a suitable alternative in encoding 5.1 multichannel audio
at 128 kbps bitrate.

The benefits of the proposed model over the conventional SAC approaches
are that the upmixed content can overlap in time and frequency without
either a severe decrease in the perceptual quality of the upmixed content or
increased crosstalk between the channels. The most important aspect of the
object-based SAC, where audio objects are estimated blindly is that it also
allows a separation of mixture of sound sources in one channel. The aspect
of source separation with the proposed SAC algorithm is discussed in more
details in Section 4.3.5.

One disadvantage of the proposed algorithm is the lack of estimating
the diffuseness (ICC) or time-delay (ICTD) of the objects with respect to
channels. This was identified as being one of the causes of lower perceptual
quality in samples requiring time-domain decorrelation of upmixed channels
to create perception of ambient and diffuse sound sources. In contrast, the
test samples consisting of many point like sources were evaluated as being
better than the ones encoded using the baseline method.

4.3.5 Audio Source Separation with NTF-based SAC

The studies on NMF and NTF representations as a basis for audio and sound
source separation [37,40,147] have shown the potential of these spectrogram
factorization methods, especially if a suitable supervised or semi-supervised
clustering of the objects to entire audio sources are used [52,128]. Given
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that the clustering of NTF audio objects for entire audio sources can be de-
termined, the separation of the original sources present in the multichannel
mixture can be achieved. The performance of such source separation method
using user created NTF component to source clustering is examined in Pub-
lication [P5], and the findings are reviewed briefly in the next paragraphs.

The proposed object-based SAC allows for manipulation of the recon-
structed content by audio objects directly in the coding domain. Given that
the clustering of the audio objects for the audio sources is determined on
the decoder’s side, the separation can be achieved without any additional
bitrate in representing the source tracks individually. Assuming that the as-
sociation of NTF audio object k belonging to an audio source ¢ is known, a
binary decisions (a scalar value of either zero or one) denoted by ¢, can be
constructed to denote classification of NTF audio objects to entire sources.
The reconstruction of individual source ¢ constructed of subset NTF audio
objects denoted by the clustering parameter ¢, is defined as

EK Corb;

k=1 CqkVik 9kl Qkm, d
M K

> mi=1 D k=1 Dik Gri Qe

where the scaling of the clustering fulfills ) ok Cak = 1.

In Publication [P5] multichannel music samples consisting of mixture of
instruments and vocals were generated and the sources, i.e., the different
instrument and vocal tracks, were separated using user-defined NTF com-
ponent clustering and the above formulation for reconstructing the source
signals. The source separation occurs after the decoding process of the pro-
posed SAC algorithm and thus the separated source signals also contain all
the coding artefacts.

il (4.5)

Yilmqg =

Separation Performance

The separation performance of the proposed method was compared to the
ideal binary mask (IBM) separation, which determines binary clustering of a
time-frequency point by dominance of energy in the original separated source
signals. The separation performance measured by quantities introduced in
Section 2.3.5 was reported in Tables 4 and 5 of Publication [P5].

The SDR score for IBM varied from a good 7-9 dB separation of more
prominent sources such as the vocals, to a poor 1-2 dB separation of less
energetic ambient sources. In the case of vocals the proposed method pro-
duced SDR scores 1.3 dB and 1.2 dB lower than the IBM separation, which
can be regarded as an excellent result. Sources with intermediate separation
with IBM, SDR being approximately 5 dB, the proposed method achieved
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relatively good separation performance. For the most difficult sources the
proposed method failed to produce meaningful separation. The other sep-
aration metrics followed the trend of the SDR differences between the pro-
posed and the IBM separation. Most notably, the proposed method achieved
a better SAR score in a few cases, indicating that the Wiener upmixing in
Equations (4.1) and (4.5) produces less artifacts than the binary clustering
of time-frequency points, as in IBM separation.

The proposed SAC method with user-guided clustering of the blindly es-
timated NTF audio objects for entire sources was concluded to be plausible
for audio source separation, both in terms of separation quality and the rela-
tively low amount of user input needed for annotating K = 64 audio objects
for several audio sources. In the case of the proposed method the separated
audio signals went through downmixing and perceptual encoding, whereas
the IBM separation was applied for unprocessed multichannel audio signals
and uses the original source signals for creating separation masks. The per-
ceptual encoding of the downmix may lose some of the time-frequency details
of the low energy sources, which may be attributed as one of the reasons for
the proposed method performing worse in separation of such sources. Ad-
ditionally, the separation and reconstruction of multichannel audio signals
are both done by filtering a downmix, where the sparsity of the TF-points
is decreased in comparison to the original multichannel audio signal, i.e., the
original audio sources may occupy disjoint TF points in multiple channels
whereas they can overlap when downmixed to stereo.

Connection to Informed Source Separation

The SAC application of the NTF algorithm presented in Publications [P3]
and [P5] is highly related to the ISS problem definition. Let us consider the
scenario where the audio objects to be encoded are all presented in their
respective channel. In this situation the downmix contains the mixture of
the audio objects and the NTF model-based upmixing is used in a sound
source separation manner. The difference from the SAC approach is that each
channel is not necessarily composed of a single source but rather a mixture
of several sources. Such an approach is considered in, for example [83], where
the encoding of the NTF parameters is achieved by embedding them in the
mixture spectrogram to be sent to the receiver.
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Chapter

Source Separation from a Multichannel
Audio Recording

HE separation of sound sources from the multichannel mixture is often
T required in many audio processing applications. One of the most well
known is the preprocessing done in automatic speech recognition (ASR),
which is set to enhance or separate speech from noise before the actual recog-
nition task [87,129]. When the result of the separation is interpreted by a
human, as in source separation in teleconferencing [53], the perceptual quality
of the separation is essential. Human listeners are known to be very critical
regarding perceptual aspects of speech, i.e., artifacts in the separation.

The task discussed in this section is widely known as the cocktail party
problem, i.e., given a multichannel recording of the party at a given loca-
tion the goal is to separate individual sound sources. The source separation
using multichannel array recordings and spatial cues is related to spatial pa-
rameterization of auditory scenes [88]. The separation methods proposed in
Publications [P6] and [P7] combine the strengths of array signal processing
for estimation of the direction of arrival of the source, and machine learning
for the estimation of the redundant spectrum of sources.

The section is organized as follows. First, a problem definition and short
review on related blind sound source separation approaches are given in Sec-
tion 5.1. The preliminaries related to array geometry and array signal pro-
cessing in general are discussed in Section 5.2. The more detailed explanation
of the complex-valued NMF model as a multichannel separation method is
given in Section 5.3. The direction of arrival-based spatial covariance matrix
model proposed in [P6] and to be used in conjunction with the complex-
valued NMF is presented in Section 5.4. The DOA estimation properties
of the proposed spatial covariance model is presented in Section 5.5, and fi-
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nally the separation performance of the proposed methods is presented and
discussed in Section 5.6.

5.1 Problem Definition and Earlier Work

Considering multichannel capture and the time-domain mixing defined in
Equation (2.1) the blind source separation (BSS) problem consists of estimat-
ing the source signals s,(¢) and their convolutive spatial mixing h,,,(7). The
mixing can be estimated by observing the time difference of arrival between
the input channel which is interpreted as the phase difference in frequency do-
main. In the context of this thesis we consider the separation of the sources
in the frequency domain and the mixing model in Equation (2.2). In the
frequency domain the BSS problem can be formulated as estimation of the
source spectrogram s;, and the instantaneous mixing at each frequency h;,.

One of the most-used approaches for BSS is the ICA, as presented in
Section 3.2. The arbitrary frequency-wise ordering of the ICs, referred to as
the permutation problem, can be solved based on the phase difference of the
independent components. However, the phase difference becomes ambigu-
ous when the frequency exceeds the spatial aliasing limit.The permutation
is generally problematic to be solved at a post-processing step together with
the fact that the actual estimates of the source parameters are derived with
no regularization over frequency. It means that the algorithm cannot benefit
from the mutual information over frequency even though sources originat-
ing from the same spatial position are known to have the same direct path
propagation properties. The ICA- and IVA-based approaches which avoid
the permutation problem were discussed in Section 3.2.

The observed phase differences between microphones at each frequency
can also be directly clustered to sources. The time-frequency point belonging
to a cluster (source) can be used to create binary or soft separation masks,
which can then be applied to the mixture to filter out the sources. Such
methods include, for example, DUET [65] and bin-wise clustering [117].

More recently, methods based on NMF [19,79,80] have been used in the
separation of monaural and multichannel mixtures. The methods for single
channel separation are usually based on a separate clustering algorithm for
solving the NMF component assignment to sources and mostly use supervised
approaches [52]. The ability of NMF to find and to represent the mixture
spectrogram using spectrally redundant components was discussed in Section
4.2 regarding single channel audio coding. The decomposition of mixture
signal into redundant audio objects is as useful for the source separation and
only requires finding the clustering for real acoustical sources.
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The use of NMF in sound source separation from multichannel audio mix-
tures has been more recently studied in [3,37,40,101,119-121] where the NMF
framework is extended to complex-valued inputs and paired with estimation
of spatial parameters of sources. The methods share similar parameterization
of the spatial properties of the sources by spatial covariance matrix (SCM)
at each STFT frequency bin.

5.2 Array Signal Processing

The concept of microphone array was introduced in Section 2.3.2 and in this
section the principles of microphone array signal processing are discussed.
The topics include the estimation of time-difference of arrival (TDOA) and
direction of arrival (DOA). Additionally the beamforming as a basis for en-
hancing signals originating from certain spatial direction is introduced. These
topics lead to the proposed direction of arrival-based spatial covariance model
introduced in Section 5.4.

5.2.1 Time Difference of Arrival

A source at a certain spatial location is distinguished by its DOA with re-
spect to the microphone array. Assuming that the geometry of the array is
known, the DOA can be translated to TDOA, which is further interpretable
as a phase difference in the frequency domain. The purpose of the calculation
of the ideal TDOAs is that the array can be steered towards the source of
interest, which is done in its simplest form by a delay and sum beamformer
(DSB). DSB time aligns and sums the microphone signals to enhance a cer-
tain direction. The process of estimating TDOA by assuming known DOA
can be also seen in a reversed manner, i.e., observing TDOAs and estimating
the most likely DOA which is causing the observations.

The work regarding microphone array signal processing included in this
thesis assumes far field propagation. The wavefront-arrival direction cor-
responds to a set of TDOA values between each microphone pair and the
TDOAs depend on the geometry of the array. The geometry of an array
consisting of two microphones n and m located on the xy-plane at locations
n € R? and m € R? is illustrated in Figure 5.1. In the illustration a look
direction vector k, is pointing towards the source at location s € R? from the
geometrical center p € R? of the array. The geometrical center of the array
is in the origin of the Cartesian coordinate system, i.e., p = [0,0,0]7, and
the norm of the look direction vector is ||k,|| = 1. Any given array geometry
can be translated and rotated in such a way that its geometrical center is
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Figure 5.1: Geometry of an array consisting of microphones at locations n and m
and look direction vector k, pointing towards a source located at s.

located at the origin of the coordinate system, which is done to simplify the
TDOA calculations. The different look directions are indexed by o and their
direction is given in a spherical coordinate system using elevation 6, € [0, 7],
azimuth ¢, € [0,27] and fixed radius of = 1. The reference axis 6, = 0
of the array can be chosen arbitrarily.

With the above definitions and use of basic Euclidean geometry the
TDOA of the microphone n with respect to array center point p in seconds
is defined for direction k, as

~kjn—p) _-kin

To(k,) = ” _— (5.1)

where v is the speed of sound. The TDOA corresponds to a phase difference
of —j2m f;7,(k,) in the frequency domain, where f; = (i—1)F;/N is frequency
in Hz of ¢th STFT bin. F§ is the sampling frequency and N is the STFT
window length.

The Equation (5.1) determined the time difference between microphone
n located at n and array center p for a source at a direction k,. However,
in spatial processing the interest is in the TDOA between microphone pairs,
which can be given for a pair (n,m) as

—kI(n — m)

Tom(Ko) = Tn(ko) — Tin(ko) = T (5.2)

Its corresponding phase difference can be given similarly as above and we
denote such phase differences of all microphone pairs n = 1... M and m =
1... M using matrices of size M x M defined for each frequency index ¢ and
each direction o as

(Wiolnm = exp ( — jQWfiTnm(ko)). (5.3)
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Hereafter in this thesis we denote these matrices W;, € CM*M as DOA
kernels, since they denote the ideal phase difference for DOA hypothesis
towards look directions o =1...0.

5.2.2 Beamforming

The basis of beamforming is time aligning the microphone signals in such
a way that they sum up coherently and thus emphasize the direction of in-
terest. Additionally, different weights for each time-frequency point in each
array element can be applied to further suppress unwanted noise sources in
other directions. The field of beamforming is reviewed in this thesis due to
its close relation to the spatial covariance model and separation method pro-
posed in [P6]. The separation method can be seen as blindly estimating the
direction of interest, aligning the microphone signals to enhance that direc-
tion and estimate a spatial post-filter to further enhance signals originating
from that direction. The similarities of the complex-valued NMF for sound
source separation and adaptive beamforming are discussed in more detail in
Section 5.3.

The process of beamforming can be expressed in the time-frequency do-
main as obtaining a single channel enhanced signal from direction o as

Yil = WgXil, (54)

where w2 = [wio1, ..., wion]|’ are the beamforming weights for each fre-
quency index ¢ and each sensor m towards look direction o.

Static Design

The simplest beamformer design is the DSB, which consists of time align-
ing and summing the microphone signals. The DSB beamforming weights
can be obtained by taking the first row of matrix W;, specified in Equation
(5.3), which results in wi = [e7wimike)  g=jwinim(ko)] DSB alignment cor-
respond to a time delay caused by the target source DOA, i.e., beamformer
look direction indexed with o, and any sound sources originating from this di-
rection become enhanced. The DSB weights are also known as steering vector
since they act as the basis of time-alignment for the adaptive beamforming
designs.

The spatial selectivity of beamformers is measured using a directivity
index, which is defined as the ratio between the array sensitivity and the
average sensitivity in all other directions (surface of a sphere). In practice
the directivity index can be regarded as a measure of the main lobe width
with respect to suppression of all other directions.
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Figure 5.2: Example case of eight-microphone linear array with 5 cm spacing and
DSB steered towards source 1 in broadside of the array. Zero attenuation of other
directions occurs around 6.9kHz where the phase difference of all the microphone
pairs become aliased.

Limitations of DSB include a poor directivity index [87]. The strength
of DSB is its simplicity; only the array geometry and direction of the source
need to be known and thus it is easy to implement as a preprocessing step
to enhance the target source in almost any audio signal processing task.

All beamformers suffer from the spatial aliasing which causes amplifica-
tion of unwanted directions. This is due to the fact that above the spatial
aliasing frequency the phase difference corresponding to the given look direc-
tion has wrapped around the limit of +7. The delay according to Equation
(5.2) corresponds to multiple directions at aliased frequencies, which all be-
come enhanced when summing the time-aligned signal. The effect of spatial
aliasing is illustrated in Figure 5.2 for an arbitrary example case, which con-
sists of two sources and an eight-microphone linear array with spacing of 5
cm between microphones. The array is steered using DSB towards source 1
located in the broadside of the array. The array location, source locations
and look direction vector are illustrated in Figure 5.2 (a) and the beampat-
tern in Figure 5.2 (b). The beampattern depicts the beamformer gain and
attenuation towards all direction and at all frequencies. The aliased side-
lobe with 0 dB gain occurs around 6.9 kHz when the the wavelength of the
frequency is equal to microphone spacing and has exactly the same phase
difference as the steered direction of —90°. Additionally, smaller side lobes
occur between the extremes, which is due to the fact that aliasing starts to
occur in a subset of microphone pairs with a distance of larger than the 5
cm, but are fainter in terms of overall beampattern gain.
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Another phenomenon related to beamforming and array signal process-
ing, visible from Figure 5.2 (b), is that the main lobe widens towards low
frequencies and in practice the directivity index of the DSB decreases to
zero. It means that the DSB cannot enhance low frequency content from
the steered direction. This is due to the fact that the aperture of the ar-
ray in terms of distance between microphones is small with respect to the
wavelength of the frequency it is observing. In the case where the frequency
term in Equation (5.3) is small with respect to the TDOA term, which is the
case with reasonably sized microphone arrays and low frequencies, the phase
difference will be very small and not even large changes in the look direction
and TDOA will produce significant change in terms of phase. This means
that the low frequency content from the array perspective are in almost equal
phase regarding the incident angle and aligning and summing will not cancel
signal elements from other directions.

Adaptive Beamformers

The DSB introduced in the above section is only dependent on the source
direction and is thus considered as a static design. However, the choice of
the beamformer weights w allows frequency dependent suppression of the
noise or unwanted source direction. The name adaptive refers to change in
the beamforming weights over time and adaptation to time-varying statistics
of the noise or interfering source.

One of these is the minimum variance distortionless response (MVDR)
beamformer, which aims at minimizing the variance of the beamformer out-
put while maintaining unit gain towards the given steered direction. It
equates to placing null towards the direction of the interfering sources. This is
done by estimating the second order statistics of the noise, i.e., its covariance
matrix and the exact formulation can be found from, for example, [87,139].
However, estimating the noise covariance matrix can be problematic, espe-
cially if it is changing over time. In practice it is done by updating the
statistics of the noise while the source of interest is inactive which has to
be estimated using a voice activity detector. The detection of target source
activity is not necessarily perfectly accurate, especially in very noisy con-
ditions. One alternative is to use a minimum power distortionless response
beamformer, which uses the whole input signal covariance as such in place
of the noise covariance matrix, but may easily cancel out the desired source
content in the output of the beamformer.

The MVDR beamformer can also be implemented using a general sidelobe
canceller structure [42,43,48,57], which uses a separate blocking matrix which
tries to cancel out the interfering sources, but in practice also requires use of
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voice activity detection in audio signal processing applications. One emerging
approach in beamforming-based source separation includes spherical array
beamforming [89,90] with the advantage of spherical arrays having uniform
directivity properties towards every look direction. Additionally, higher order
statistics have been proposed for use in constraining the beamformer output,
namely the maximum kurtosis beamformer [78] and the maximum negentropy
beamformer [76,77]. They are reasoned out through assumption of human
speech characteristics following the super Gaussian distribution and thus the
output of the beamformer focused on speech should output such statistics.

5.2.3 Direction of Arrival Estimation

In previous sections regarding beamforming it was assumed that the direction
of the target source is known and thus the steering of the array can be applied
to the said direction. Beamforming can also be used to estimate the target
source DOA by following processing. The array is steered to a set of directions
o = 1...0 that sample the spatial space around it and the average output
power from each direction over all frequencies and frames is calculated. The
direction o producing the largest output is chosen as the estimate of the
source DOA. The estimate is based on observing where the largest energy is
emitted from the beamformers perspective.

A more common way of determining source DOA is by time delay es-
timation through searching out the maximum of steered response power
(SRP) [139] function, which is defined for look direction k, as

Fy/2

R(rum(k,)) = / VOHX ()X () exp(2m from(ko)df,  (5.5)

—Fy/2
where X,,(f) is the STFT of the signal of microphone n at frequency f and
U(f) is the weighting for magnitudes. For simplifying the equations, the
STFEFT of the microphone signal is given without frame index and with con-
tinuous frequency index, which differs from the earlier used discrete time
STFT x;. The magnitude weighting used in most cases is the phase trans-
form (PHAT) [17] which gives equal importance of phase difference at each
frequency and is defined as

\I]PHAT(f) !

X (DX (NI
The SRP-PHAT functions are combined over all microphone pairs to get an
estimate of energy originating from direction k, as

Bl =3 3 [R(rum(k) (5.7)

n=1 m=n+1

(5.6)
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The look direction vectors o = 1...O define the search space for the source
direction.

Alternatively, for calculating the directional energy in Equation (5.7) the
generalized cross correlation (GCC) [72] function can used instead of SRP.
The GCC refers to indexing only fixed sample delays (multiples of the sam-
pling period) whereas the SRP function given in Equation (5.5) is defined for
a specific delay 7, (k).

5.3 Source Separation Using Complex-valued
NMF

The complex-valued NMF model used for approximating multichannel STFT
was introduced in Section 3.4, but its use in sound source separation was not
discussed. In Section 4.3.2 NMF-based upmixing and a Wiener filtering of a
mixture signal using the NMF parameters was introduced. The use of com-
plex valued NMF for sound source separation follows the same framework.
The source spectrum estimates obtained by the complex-valued NMF are
used to construct a Wiener mask to filter out the sources from the mixture.

Considering the mixture model in covariance domain given in Equation
(2.5) it is evident that being able to estimate the source magnitudes §;, and
their corresponding spatial mixing in form of SCMs H;, allows designing a
Wiener filter to separate the sources from the observed mixture x;;. Assuming
that a complex-valued NMF model in Equation (3.9) of the observed mixture
covariance is estimated, then the Wiener MMSE estimates of the sources are

obtained as
K
> b1 Cakbikgr
K
2321 > i1 Cokbikgri

Alternatively, a multichannel Wiener filter can be used, which also utilizes
the estimated spatial covariance information. The multichannel Wiener filter
based on the complex-valued NMF model is given as

Yilg = Xl (5.8)

K

Yig = Z qubikglein;llXila (5.9)
k=1

where Xil is the model according to Equation (3.9). The structure of filter in
Equation (5.9) corresponds to an MVDR followed by a single channel post-
filter [126]. The estimated source SCMs H;, are in the role of the MVDR
weights and the magnitude model constructs the single-channel Wiener post-
filter. The Wiener estimates can be defined similarly to the complex-valued
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NMF model with component-wise SCM estimates given in Equation (3.7)
corresponding to reconstruction of the individual NMF components in an
MMSE sense.

Estimating H;, in such a way that it corresponds to a single source at all
frequencies requires an algorithm that operates jointly over frequencies and
thus ties together possible aliased phase differences. In source separation with
complex-valued NMF [120, 121] the estimation of source SCM assumes that
the NMF magnitude model enforces §;;, to correspond to a single source, and
thus estimating H,, yields an estimate that corresponds to a single source
over frequency. However, it is not guaranteed that each NMF component
models spatially coherent audio objects. For example, two audio objects
having similar spectral characteristics may become modeled by the same
NMF component even though they reside at different spatial locations.

A related method proposed in [27] introduces a direct estimation of full
rank SCM of the source and its magnitudes at each frequency, but requires
solving the frequency-wise permutation. It is further developed by combining
the full rank SCM estimation with the NMF magnitude model for the sources
[3], which similar to as in [120] avoids the permutation ambiguity by assuming
the NMF components to be spatially coherent. A direct investigation on
whether the assumption is violated is difficult. However, the evaluation of
the method proposed in [120] against the one proposed in Publication [P6]
indicates better separation performance by unifying the SCM properties over
frequency by the TDOA of the direct path of the source. The separation
performance is further discussed and investigated in Section 5.6.

5.3.1 Spatial Covariance Matrix Estimation

Given the complex-valued NMF model in Equation (3.9) the source-wise
estimation of the covariance properties as proposed in [120] is achieved using
update

H;, < H,, [ Z Carbikgrivi + Z chbikgklEil] , (5.10)

Lk Lk

where E; = X5 — >, Zq H,,cbikgr is the error of the model and v; =
Do o Cakbirgr is the approximation of the mixture source magnitude spec-
trum 2 &~ Zq Silg-

By investigating the update in Equation (5.10) and the model in Equation
(3.9) it is clear that the updating of the SCM H,, of each source ¢ is done
frequency-wise. Contrasting this to the spatial covariance domain mixing
in Equation (2.5), it can be stated that the only thing tying the estimated
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source SCMs over the frequency is the NMF-based source magnitude model,
defined as $;, = >, Carbirgri-

5.4 Direction of Arrival-based Model for Spa-
tial Covariance

The problem in estimation of the spatial mixing of a source concentrates
on the fact that the observed evidence, phase difference, is dependent of the
frequency and starts to alias at rather low frequencies with microphone arrays
of practical size. In section 5.2.1 the connection between source DOA and
phase difference was drawn by the aid of TDOA, meaning that the direct
path TDOA explains the observed phase difference even with the aliasing.
Additionally, as seen in Section 5.2.2 regarding beamforming, this property
was utilized allowing the beamformers implemented in a frequency domain
to be able to integrate the phase difference over the whole frequency range.
A similar concept can be adopted to the SCM estimation in complex-valued
NMF framework by finding which direct path TDOA defined in the frequency
domain explains the observed phase difference evidence the best. This is
analogous to directly estimating the TDOA by observing phase differences
over the whole frequency range.

The above-described concept has not been utilized in the sound source
separation earlier, due to the fact that it is difficult to include in the param-
eter estimation. In Publication [P6] the frequency independent estimation of
spatial properties of sources was achieved by estimating non-negative weights
for DOA kernels defined in Equation (5.3) containing phase difference for look
direction vectors sampling the spatial space around the array. The parameter
estimation framework was based on techniques introduced in [120] and the
proposed SCM model was further utilized in Publication [P7].

5.4.1 SCM Model by Superposition of DOA Kernels

The direction of arrival-based SCM model proposed in Publication [P6] is
based on superposition, i.e., weighted linear combination, of the DOA ker-
nels defined in Equation (5.3). The look directions of the kernels are set
to approximately uniformly sample the spatial space around the array. The
SCM of a point source in anechoic capturing conditions could be described
by a single DOA kernel, which is analogous to the direct path propagation
in reverberant conditions. Due to the echoes and diffractions from surfaces
and objects in regular capturing conditions, a combination of several direct
paths is proposed and for each direction a non-negative weight is estimated.
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Figure 5.3: Look direction vectors approximating uniform sampling of the unit
sphere around the geometric center of the array illustrated by the red circle; dis-
cretization of look directions is sparse for illustrative purposes.

The weight of each DOA kernel describe the signal power originating from
said direction and is comparable to DSB output power to the same direction.

The look directions vectors k,, defined in Section 5.2.1, are now set to
spatially sample the surface of a unit sphere set around the geometrical center
p of the array. A sparsely sampled grid is illustrated in Figure 5.3 and in
the real implementation a more densely spaced grid is needed to sample the
continuous DOA space around the array. Given the DOA kernels W, for
each look direction o = 1...0 according to Equation (5.3), the proposed
SCM model based on their superposition is given as

O
Hi =Y Wiz (5.11)
o=1

where 2,4, are the direction weights corresponding to each look direction.
The proposed model can be placed back into the spatial covariance do-
main Equation (2.5) to obtain

o

Q Q
Xz’l ~ Z Hiqgilq = Z [ZWiozqo} §ilq- (512)
q=1 q=1

o=1

As described in Section 5.3, the aim is to estimate H;, in such a way
that it is spatially coherent and thus corresponds to a single source over all
the STEF'T frequency bins. The direction weights z,, in the proposed model
are independent of frequency which makes the estimation of the entire SCM

70



H,, being optimized over all frequencies. The frequency dependencies of
the phase differences are taken into account in the definition of the DOA
kernels and the estimation can be seen as finding the most probable DOA
in terms of how well TDOA of each look direction explains the observations.
The direction weights z,, are restricted to being non-negative and can be
estimated using multiplicative updates based on techniques proposed in [120,
121]. The magnitude model is based on the NMF components and will be
presented in the next section.

5.4.2 Complex-valued NMF with the DOA-based SCM
Model

The complex-valued NMF model with the DOA-based SCM model is sim-
ply obtained from the source-wise SCM model defined in Equation (3.9) by
replacing the source SCMs H;, with the proposed model Z§=1 Wi,z40. The
entire model can be then written as

Q K O

Xy~ Xy = Z Z[Z W0 2g0) Cacbit gt (5.13)

g=1 k=1 o=1

Comparing the above model to the covariance mixing in Equation (2.5) it
can be identified that the NMF magnitude model represents source spectra
Silg = Y Cqkbirgr, and all the spatial properties are encoded by the kernels
W,, and the direction weights 2.

In [P6] the DOA-based SCM model is defined with NMF component-wise
SCMs and it omits the estimation of the clustering c,, within the algorithm.
Thus a separate clustering strategy for linking the NMF components to entire
acoustical sources is required. The model defined in Equation (5.13) follows
the formulation proposed in [P7] with source-wise SCM estimation. It is
more generic due to producing direct estimates of the source spectra 3;,
which can be used to obtain Wiener estimates of the sources as defined in
Equation (5.8). The source reconstruction produces estimates of the sources
as seen by the array, i.e., convolved with their spatial impulse responses. The
time-domain signals are obtained by inverse STFT of y;,.

The proposed method is not free from the spatial aliasing and the phase
difference in DOA kernels are ambiguous above the spatial aliasing frequency.
This causes side lobes in the spatial gain structure if the DOA kernels are
used as DSB steering of the array signal. However, the NMF magnitude
model acts as a spatial post filter which already attenuates time-frequency
bins that do not fit the spectral structure of the source.
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Estimating the DOA-based SCM model and the NMF model for mag-
nitudes in turn enforces the NMF components to be spatially coherent due
to the fact that the SCMs are constrained to being a linear combination of
direct path phase differences. Additionally, the NMF model enforces the
spatial post filter being structured by recurrent spectral events, which is
not taken into account in beamforming and TDOA-based spatial filtering
methods. This can improve the selectivity of spatial enhancement by Wiener
filtering when the derivation of the filter coefficients is not based solely on the
observed spatial information (phase difference), but also employs an object-
based magnitude model.

Parameter Estimation

Finding optimal parameters for the model defined in Equation (5.13) with
the cost function being the squared Frobenius norm in Equation (3.8) can
be achieved using the EM algorithm [24] and interpretation of its latent
components in the case of NMF with spatial covariance matrices as proposed
in [120]. The update equations and their derivation for both introduced
complex-valued NMF models (Equations (3.7) and (3.9)) are given in [P6]
and [P7]. In this section only the update of the SCM parameters, the spatial
weights z,, and the DOA kernels W, with source-wise SCM in Equation (3.9)
from Publication [P7] is presented. The optimization of the magnitude model
parameters cg, by, and gy is similar to the multiplicative updates proposed
in [120] and can be also found from the above mentioned publications [P6]
and [P7].

The update of the DOA kernels W,, requires a special process due to
the fact that the argument of each complex-valued entry of W;, needs to be
kept fixed. This is done to maintain the original phase difference, i.e., the
original delay caused by a certain look direction, while the magnitudes are
subject to updating. The magnitudes in the diagonal of W,, combined with
the non-negative weights z,, determine the magnitude difference between the
channels. The off-diagonal magnitudes determine the cross-channel magni-
tude correlation.

The following update scheme for the magnitudes of W;, was proposed
in [P6]. First a preliminary update for both the magnitudes and the phases
of the DOA kernels is derived based on the framework proposed in [120]
resulting to

Wio «— Wi, [ Z 2q0CakDik Grivit + Z ZqochbikgklEil] : (5.14)
l,k,0 I,k,o
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To prevent a subtractive model and negative values in diagonal, each ma-
trix W, is forced to be positive semidefinite. This can be done as proposed
in [120] by calculating its eigenvalue decomposition, setting all negative eigen-
values to zero and reconstructing each matrix with the modified eigenvalues.
The final update for W,, is achieved by combining the magnitudes of the
modified eigenvalue decomposition and the unmodified phase difference. The
phase difference of the original look direction is maintained and the magni-
tudes are updated. Due to the updated DOA kernels forced being semidefinite
and retaining the original phases while modifying the magnitudes, it is no
longer guaranteed that the proposed update scheme is optimal with respect
to the actual cost function in Equation (3.8). However, experiments with
the algorithm have shown no such occasion where the cost function has not
decreased after the proposed update of the magnitudes.
The optimization of the spatial weights is achieved with the update

> itk Carbirgrtr(Ea Wi) ]
Zi,l,k Cakbik griva '

The spatial weights and their above defined update behave similarly to the
magnitude model parameters, i.e., it is non-negative and a multiplicative
update rule is obtained based on partial derivation of the cost function.

Comparing the conventional source-wise SCM update given in Equation
(5.10) and updates in Equations (5.14) - (5.15) of the proposed SCM model
H,, = 200:1 W.s240, the following differences can be observed. The update
of the DOA kernels in Equation (5.14) is still frequency-wise, but it only
updates the spatial magnitude cues associated in each direction o. It can
be interpreted as learning the magnitude properties of each look direction.
These properties can be, for example, the frequency-dependent attenuation
caused by the acoustical shade of the array and its surrounding environment.
The actual SCM of the sources is estimated via update of parameter z,, in
Equation (5.15) which is truly independent of frequency.

The actual algorithm is a straightforward extension of the generic NMF
flow chart in Section 3.3.4. Each parameter is updated in turns and scaling
is applied between updates. The updates are iterated for a fixed amount of
iterations.

Za0 4 20 [1 + (5.15)

5.5 Direction of Arrival Estimation Perfor-
mance

The algorithm proposed in Publication [P6] requires a separate clustering
algorithm to associate the NMF component with entire sound sources. The
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assumption on NMF components originating from the same or neighboring
look direction models the spectral content of the same spatially discriminated
sound source. In Figure 5 of Publication [P6] the estimated directions of
several NMF components are illustrated. From the figure it is evident that
the sources at the left, right and bottom with exactly 90-degree spacing are
present and the NMF component belonging to each source is visually easy to
determine.

For the automatic assigning of a component to source, the following k-
means clustering based on the direction weights 2, was proposed. Values
Zko,0 = 1...0 were interpreted as a feature vector for NMF component k
and k-means clustering was applied to the features. The number of clusters
equals to the number of acoustic sources to be separated, which is assumed
to be known. As a result of the clustering, the ¢, with binary decisions were
generated, i.e., one NMF component belongs to one source and not to others,
whereas soft decisions are allowed in [P7].

The simple clustering approach was chosen to demonstrate the DOA esti-
mation accuracy of the proposed SCM model. The performance of the chosen
clustering was evaluated using known locations of the sources and retrieving
the oracle clustering based on it. The decrease in separation performance
compared to the oracle clustering in terms of SDR was measured. A small
SDR decrease indicated the effectiveness of the k-means clustering and the
performance of the proposed method in estimating the spatial direction of
each NMF component.

The source-wise SCM based on the DOA kernels in [P7] allowed initial-
ization of the spatial search space of each source to prominent locations. In
Section 5.2.3 the SRP-PHAT for source DOA estimation was introduced,
and the result of it can be used to initialize the direction weights z,, prior
to the estimation of the other model parameters. The exact procedure for
the preliminary DOA estimation is given in [P7]. The estimated DOA for
each source ¢ was used to set the weights of the look direction indices o in
Zq0 Within £25 degrees from it to one and all the other direction weights
of the source were set to zero. The window of 50 degrees was chosen to
account any errors in the preliminary DOA estimation. This was found to
be an important procedure in order to avoid the direction weights of each
source pointing in direction of the most energetic source. The cost function
of the Frobenius norm of the overall modeling error does not distinguish the
underlying sources, i.e., the modeling of less energetic sources may become
undermined and only details of the most energetic source will be accounted
for by the model.

Both of the above concepts, estimating either the DOA of an NMF com-
ponent or an entire source, allows positioning of the source in playback by

74



binaural synthesis or with a 3D loudspeaker array. The binaural reconstruc-
tion can be achieved by retrieving the DOA of the source by finding the
mean of the direction weights z,, and mapping its index o back to the look
direction azimuth ¢, and elevation 6, pair. The associated HRTF from the
nearest direction is used for convolving the estimated source signal. When a
loudspeaker array is used for reconstruction and playback of the 3D sound,
the source positioning, for example, with vector base amplitude panning [109]
can be used.

5.6 Source Separation Results

The separation quality evaluation from Publications [P6] and [P7] is sum-
marized next. The separation quality was evaluated using the energy-based
objective metrics introduced in Section 2.3.5 with the addition of percep-
tually motivated scores proposed in [30] were reported in the Publication
[P6].

The test material was generated by convolving anechoic material (male
and female speech, pop music and various everyday noise sources) with RIRs
from different angles captured using an array consisting of four omnidirec-
tional microphones enclosed in a metal casing of the size 30 mm x 60 mm
x 1150 mm. The geometry of the array used in recording is illustrated in
Figure 9 in [P6] and the locations of the microphones are given in Table 1
in [P6]. The spatial aliasing frequency of the array used is 1563 Hz. The
room used for recording the RIRs is a normal meeting room with moder-
ate reverberation time of Tgg = 350 ms. The room layout and directions of
the sources are shown in Figure 5.4. The description of the exact capturing
conditions, anechoic material used and the overall test set description with
used angle combinations for simultaneous sound sources can be found from
[P6]. In short, the evaluation material included two datasets consisting of
two and three simultaneous sources originating from different angles. The
total number of test signals was 48 and 42, respectively, and each test signal
was 10 seconds in duration.

The results of the separation quality evaluation from the Publications
[P4], [P6] and [P7] are considered all at once.The algorithms considered are

Alg. 1: Complex-valued NMF with component-wise SCM based on DOA
kernels [P6].

Alg. 2: Complex-valued NMF with source-wise SCM based on DOA kernels
[PT7].
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Figure 5.4: Room layout used for capturing RIRs for creating the source separation
evaluation material.

Alg. 3: Complex-valued NMF with unconstrained source-wise SCM estima-
tion [120].

Alg. 4: Frequency domain ICA with TDOA and intra-source envelope-based
permutation alignment [P4].

Alg. 5: Frequency domain ICA with TDOA-based permutation alignment
[118].

The combined results can be summarized as follows. Both proposed meth-
ods Alg. 1 and Alg. 2 with the DOA-based SCM model exceed the separation
performance of the unconstrained SCM estimation in Alg. 3 when measured
using the SDR criterion. In general, the NMF-based separation Alg. 1-3
exceeds the SDR performance of the frequency domain ICA approaches Alg.
4 and Alg. 5. The evaluation in [P6] and [P7] replicates the result from [P4]
where the proposed source envelope-based permutation alignment in Alg. 4
improves separation over permutation alignment-based only on the TDOA
estimation in Alg. 5.

The perceptually motivated scores reported in Publication [P6] indicate
that the methods based on ICA produce an almost perceptually equivalent
separation quality when compared to NMF-based separation and even ex-
ceeds the perceptual performance with three simultaneous sources. It is
worth noting that none of the tested algorithms managed to separate the
three simultaneous sources with moderate quality, with a few exceptions of
selected angle and source type combinations. Methods based on ICA do
not produce artefacts to the reconstructed signal even if no accurate estima-
tion of the unmixing matrix is obtained, whereas in similar situations the
NMF-based methods may produce unwanted rapid changes in the spectrum
resulting in separation artefacts. Particularly, the binary clustering used to
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link NMF component to sources in [P6] is affected from the said problem and
the lower SAR score can be partially attributed to the errors in the clustering.

Regarding the most general and best performing method proposed in
this thesis, the source-wise DOA-based SCM with NMF magnitude model
from [P7], achieves an SDR increase of 1.9 dB and 1.0 dB over the baseline
from [120] with two and three simultaneous sources, respectively.

In Publication [P6] the effect of the increasing angle between sources with
a fully simulated scenario was investigated. The angle between two simul-
taneous sources starting from 15 degrees, with 15 degree increments up to
90 degrees, were evaluated in terms of SDR between the method proposed
in [P6] and the baseline [120]. With 15- and 30-degree spacing the proposed
method already has a minor advantage, and starting with the 45-degree spac-
ing the proposed method gives a significant increase in SDR, up to 3 dB in
the case of 90-degree spacing between sources.
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Chapter

Conclusions and Future Work

6.1 Conclusions

HIS thesis investigated object-based models for representing audio signals
T and presented applications of them for audio coding and source separa-
tion. The suitability of the object-based audio models for the covered appli-
cations was analyzed and the benefits found either by better performance or
added features, were analyzed and critically assessed.

The focus of the thesis in obtaining an object-based approximation of a
time-frequency representation of an audio signal was upon machine learning
techniques. The methods included independent component analysis (ICA)
[61] along with non-negative matrix factorization (NMF) [80] and its multi-
way extensions [37,120]. The method of decomposing an audio spectrogram
to a finite set of spectral templates and their activations combined in a lin-
ear manner is equivalent to reducing the redundancy in representing the
audio signal. The machine learning approach for finding a small amount of
spectral templates with associated temporal activity that best explains the
observed spectrogram leads to structures that model coherent spectral con-
tent and have meaningful interpretation through audio objects. In the thesis
one NMF component, with the possible addition of spatial parameters, was
regarded as a fundamental audio object.

Approximating natural and rich audio signals with such an object-based
model was shown to have only a minor loss of significant signal details in
Publications [P1] and [P2], given that the optimization criteria used in deriv-
ing the model parameters reflect the perceptual relevance of time-frequency
points of the audio spectrogram in question. The perceptual relevance was
accounted for by the ratio of the modeling error compared to the masking
threshold created by our hearing [140] formulated as NMF model cost func-
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tion in Publication [P1].

The natural sparseness of the NMF decomposition, in terms of a few
simultaneously active audio objects, was proposed to be harnessed for au-
dio signal compression in Publication [P2]. The NMF model consisting of
only several tens of spectral templates and their associated time-dependent
gains for representing the magnitude spectrogram of audio was found to have
favorable data and redundancy reduction properties. A single channel object-
based audio coding algorithm was realized by developing a quantization and
entropy coding scheme for the NMF model parameters. The difficulties in
representing the phase of each time-frequency point caused inefficiency in
audio coding performance.

In Publications [P3] and [P5] a spatial audio coding (SAC) method based
on non-negative tensor factorization (NTF) was proposed. Recovery of multi-
ple channels was based on filtering a downmixed signal using an object-based
model encoded and transmitted as a auxiliary information. The object-based
model was obtained by applying the NTF to the multichannel magnitude
spectrogram, producing a channel-wise level difference for each audio object
to denote its spatial position. The conventional SAC methods [33,125] esti-
mate spatial cues, such as the time and level differences between channels, for
fixed time-frequency blocks, whereas the proposed method operates with an
object-based model requiring spatial position estimated for a fewer number
of elements. The quantization and encoding of the NTF model was based
on findings from [P2]. An evaluation done using listening tests indicated
that the proposed algorithm was comparable to the conventional upmixing-
based SAC method with block-wise spatial parameter estimation in terms of
perceptual quality at similar bitrates.

The benefits of the NTF-based model for SAC include its ability to learn
and represent audio objects with overlapping frequency content. Addition-
ally, the learned audio objects are suitable for blind source separation, given
that a suitable clustering of components to entire acoustical sources can be
obtained. Publication [P5] investigated the aspect of user-created cluster-
ing of the components to the original sources present in the mixture. The
evaluation of the separation quality by objective criteria [146] resulted in a
similar separation performance as ideal binary mask separation with selected
sources, including vocals. Blind separation allows, for example, removal of
vocals or other instruments without having the source tracks separately at
the encoding stage. The separation does not increase the bitrate of the en-
coding due to the fact that the manipulation of the upmixed content is based
on the gain of the objects directly in the coding domain.

The source separation part of the thesis in Chapter 5 concentrated on the
use of same object-based model obtained by NMF with the addition of spatial
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extension that can model both level and time differences between multiple
channels of a microphone array recording. The strengths of the object-based
model for sound source separation are similar as in audio coding, reducing the
amount of elements for which the spatial parameters are estimated and the
components being defined over frequency alleviating the spatial aliasing is-
sues. In [P6] a direction of arrival-based spatial covariance matrix model was
proposed for use in representing the spatial properties of NMF components
as a function of their direction. The proposed model unifies the estimation
of spatial parameter over frequency, thus ensuring that the audio objects es-
timated are spatially coherent, i.e., the object spectrogram modeled by one
NMF component is originating from the same spatial location over the whole
duration of the signal under analysis. In [P7] the direction of arrival-based
covariance matrix estimation was formulated for entire sources instead of
NMF components, removing the need for clustering the NMF components
to sources based on their estimated direction of arrival. The independent
component analysis (ICA) based separation with the permutation alignment
proposed in Publication [P4] was in the role of baseline for evaluation of the
object-based separation framework in [P6], [P7]. In both publications, the
proposed alternatives were able to improve the objective measures of separa-
tion quality over the ICA baseline and earlier covariance matrix estimation
methods [27,120].

This thesis has introduced different methods for obtaining an object-based
model of audio and has demonstrated the benefits of such models in applica-
tion fields of audio coding and source separation. The use of the decomposi-
tion models and machine learning-based audio models is certainly not limited
to the applications covered in this thesis, and the constant ongoing research
on improving the object analysis performance and utilization in new audio
signal processing problems and applications is evident.

6.2 Future Work

The concepts of NMF-based spatial audio coding and the direction of arrival-
based covariance matrix estimation for NMF-based source separation intro-
duced in this thesis are relatively novel and undiscovered fields. They allow
several new aspects for future work in improving and extending the methods.

The perceptually motivated NMF criterion considered in this thesis for au-
dio coding have been additionally considered for sound source separation [69].
However, the spatial extensions of NMF with covariance matrix estimation
have not been yet developed to account for such perceptual relevance. The
results in [121] with Itakura-Saito divergence suggest that the squared Eu-
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clidean distance is not optimal in terms of source separation, and it is yet to
be discovered whether improvements with perceptual criteria can be achieved.

A possible aspect for future work on improving the concept of object-
based SAC by NTF would be to include estimation of inter-channel time de-
lay for each audio object. The complex-valued NMF models with covariance
matrix estimation allow for modeling the time delay between the channels
but with respect to the coding and compression efficiency the number of pa-
rameters used for representing each covariance matrix is high. A modification
of the direction of arrival-based SCM model in [P6] to a general kernel-based
covariance estimation without assumption on array capture could be used to
reduce the number of SCM parameters to be encoded. However, the arbitrary
mixing in professionally produced material does not obey the assumptions
made on the time-delay behavior of a known array geometry and thus would
require a generalization to any arbitrary time-delay in each channel pair. A
related field of NMF-based informed source separation [103] can be consid-
ered as a future work for improving and extending the object-based coding
of multichannel audio, and the techniques developed can be utilized in the
coding of audio containing a mixture of sources as in the proposed SAC
framework.

The general direction-based estimation of the source spatial covariance
properties proposed in Publications [P6] and [P7] pave the way for numerous
minor modifications and alterations, possibly improving the separation qual-
ity. Several topics for future work include the following: incorporating the
perceptually motivated criteria, further studies on 3D sound reconstruction
based on the estimated source directions, investigation of rank-1 versus full-
rank SCM estimates while considering the fact that the input of algorithm is
strictly rank-1. Additionally, investigating the possibility of re-sampling and
allowing dynamic look directions for more accurate estimation of the source
direction and possibility to reduce the amount of DOA kernels used.
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ABSTRACT

This paper proposes a novel algorithm for minimizing the perceptual
distortion in non-negative matrix factorization (NMF) based audio
representation. We formulate the noise-to-mask ratio audio quality
criterion in a form where it can be used in NMF and propose an al-
gorithm for optimizing the criterion. We also propose a method for
compensating the spreading of the representation error in the syn-
thesis filterbank. The objective perceptual quality produced by the
proposed method is found to outperform all the reference methods.
We also study the trade-off between the window length and the rank
of factorization with a fixed data rate, and find that the best perfor-
mance is obtained with window lengths between 10 and 30 ms.

Index Terms— Non-negative matrix factorization, Noise-to-
mask ratio, Audio coding, Signal representations

1. INTRODUCTION

In audio signal processing, an acoustic time-domain signal is often
represented using a mid-level representation [1], which allows more
efficient analysis or manipulation of the signal. Commonly used
mid-level representations include, for example, the time-frequency
representations such as the short-time Fourier transform (STFT), and
parametric representations such as the sinusoidal model. More ad-
vanced models can take into account the structure of the sounds in
more detail, for example by using a harmonic model [2]. The lat-
ter two can be also viewed as lossy compression, since they reduce
the amount of information needed to approximate the original sig-
nal. The parameters of a representation can be estimated by using a
statistical criterion such as the mean-square error, but also the prop-
erties of the human audio perception can be taken into account.

All present-day perceptual audio coders are essentially based on
a sub-band bit allocation upon a psychoacoustical masking model.
They quantize a time-frequency representation of audio signal in
such way that the quantization noise stays below the masking thresh-
old and thus remains inaudible [3]. An objective measure of the
perceptual quality of a compressed signal is the noise-to-mask ra-
tio (NMR) [4], which measures the relative level of the quantiza-
tion noise in comparison with the masking threshold. An alterna-
tive approach to audio compression is object-based audio coding,
where individual sound sources or objects (e.g. musical instruments,
speakers, notes) in an audio recording are represented separately [5].
Object-based coding allows using the most efficient codec for each
object, but as well interactive synthesis of the signal.

Recently, non-negative matrix factorization (NMF) has been ap-
plied in many audio signal processing tasks, such as sound source
separation [6]. Its main advantage is the ability to automatically de-
compose a mixture signal into a representation where each sound

source is represented as an individual object [6]. The NMF decom-
position also effectively finds repetitive structures in the signal, thus
being able to reduce redundancy and being attractive from signal
compression point of view.

This paper proposes a novel algorithm for NMF which min-
imizes the noise-to-mask ratio of the signal decomposition. The
NMR objective is formulated as a cost function for NMF and it is
minimized using a weighted NMF algorithm. We also propose to
filter the estimated masking patterns in time, which effectively re-
duces the pre-echo caused by the spreading of errors in the synthesis
filterbank. Potential applications of the proposed method include
object-based audio coding and analysis of audio signals.

The block diagram of the proposed system is shown in Figure 1.
First, the magnitude spectrogram of an input signal is calculated for
the NMF algorithm. Masking thresholds are estimated from an input
signal, which are then used for NMF weighting. Approximation of
original spectrogram is obtained from the weighted NMF algorithm
and the signal is reconstructed by assigning the original phases to
it and taking the inverse FFT. Frames are finally combined in the
synthesis filterbank by overlap-add.

The structure of the paper is as follows: Section 2 gives short
review of the noise-to-mask ratio which is the objective of the pro-
posed method. In Section 3 we derive a weighted cost function for
NMEF corresponding to the NMR. Section 4 presents a synthesis pro-
cedure and proposes a technique to reduce the pre-echo effect. The
proposed method is compared to conventional NMF algorithms in
Section 5. Section 5 also presents results from an experiment on
finding the best combination of coding parameters in case of con-
stant data rate.

2. NOISE-TO-MASK RATIO

Human hearing includes a masking phenomenon, which causes low-
intensity frequency components to become masked by more intense
ones, that occur spatially and temporally close to each other. It
means that a loud frequency component can make a fainter com-
ponent become completely inaudible to our hearing [7, p. 56]. The
masking concept can be utilized in audio coding, where it is used to
decide, which parts of the audio can be disregarded without percep-
tual difference.

A quality metric to measure the audibility of distortions is the
noise-to-mask ratio, which was introduced by Brandenburg [4]. The
metric consists of the following processing steps: 1) The error be-
tween a distorted signal and a reference signal is calculated. 2) The
masking threshold is estimated from the reference. 3) The noise-to-
mask ratio in each time frame is calculated in Bark scale. 4) The
final measure is average over all the time-frequency points. Distor-
tions having a NMR value of -10 dB or below can be assumed to be
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inaudible.

NMR has been included into recommendation BS.1387 [8] for
perceptual evaluation of audio quality (PEAQ). The recommenda-
tion includes specifications for the auditory model to be used for es-
timating the masking threshold required for NMR evaluation. PEAQ
auditory model (with clarifications from [9]) is used here for mask-
ing threshold estimation. The model includes parameter L, for scal-
ing the mask estimation to correspond to desired listening sound
pressure level (SPL). This is due to the fact that spatial and tem-
poral spreading functions are dependent on the energy of the masker
component.

The NMR in PEAQ can be described using the equation

> My [CH(X=X)?]u.0 ), (1)

b=1
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and it consists of the operations below: 1) Squared difference be-
tween the magnitude spectrograms of the original signal X and the
estimated signal X is calculated. X2 denotes element-wise power
of two. The spectrograms are calculated using a 42.7 ms Han-
ning window and discrete Fourier transform (DFT). 2) The error is
weighted by middle- and outer ear transfer function, which is imple-
mented by multiplying the squared error spectrogram by a diagonal
matrix H having the values of the transfer function on the diagonal.
3) The error is decimated to a bark scale representation, which is
implemented by multiplication by matrix C € RZ%5*X where
each row contains the power response of a bark band for all the DFT
indices. 4) The error in bark scale is weighted by M € R=%EXT
which is the element-wise inverse of the masking threshold in each
frame ¢ and bark band b. Both the error and masking patterns are
having a quarter bark band frequency resolution, which results to
109 bands with 48 kHz sampling frequency. 5) The results are av-
eraged over frequency and time and converted to the dB scale. 1" is
the total number of frames, and the total number of bark bands is B.

3. PROPOSED PERCEPTUALLY WEIGHTED NMF
NMF approximates the observation matrix X € RZ%KXT a5 3
product of basis matrix B € RZ%f*% and gain matrix G €
RZOEXT a5 X ~ BG. Matrix X consists of magnitudes of
frame-wise DFTs of the observed audio signal, calculated in frames

t=1,...,T. Only positive frequencies £ = 1, ..., K of the DFT
are used. The rank of the decomposition is denoted by R, which is a
free parameter chosen by the user.

Matrices B and G are estimated by minimizing the error of the
approximation. Measures for the error include, for example, the
squared Euclidean distance (EUC), generalized Kullback-Leibler di-
vergence (KLD), and the Itakura-Saito divergence (ISD) [10].

3.1. NMR as cost function for NMF

The masking thresholds in M for certain observations X are calcu-
lated before the NMF algorithm. The mask estimation and NMR
evaluation in PEAQ is defined in bark scale, but due to its lower
resolution, we wish to perform the NMF decomposition in a linear
frequency scale provided by the DFT. In the following we formulate
the NMR objective into a weighted squared error, calculated in a lin-
ear frequency scale. Let use denote the squared error in Equation (1)
asE=(X-X) 2. The measure (1) is a monotonic function (logy,
and scalar multipliers) of term 3°,_, S°7  [M], {[CHE], ;. Thus,
minimizing the NMR is equivalent to minimizing the above term. In
each frame ¢, the term can be formulated as

[ }bt[CHE bt Cku[ ]
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The above formulation can be placed back to Equation (1) and
the result is an NMR metric defined for linear frequency scale error

T K
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When applying the above equation as NMF cost function, we model
X using BG. The resulting NMF criterion is the weighted squared
Euclidean distance:

Duie (X, BG,W) = 3 [Wli Xk — BGle)®, (3

kt

The NMR quality criterion has been also implemented as cost
function for NMF by O’Grady in [11]. His method calculated the
error between the observed magnitude spectrogram and the model in
bark bands, which does not allow modeling the fine spectral struc-
ture, that the linear frequency scale models.

3.2. Algorithm for minimizing the NMR

The weighted squared Euclidean distance and thus the proposed cost
function can be minimized by the update rules proposed in [12] and
applied in [11]. First, the entries of matrices B and G are initialized
with random values normally distributed between zero and one. The
matrices are updated iteratively using the update rules

(W. x X)GT
B =B X . xBaG)GT “
T
G x B(W.xX)

BT(W. x (BG))’

where operators .x and % denote element-wise multiplication and

division, respectively. The update rules are repeated until the algo-
rithm converges.



4. SIGNAL RECONSTRUCTION AND WEIGHT
SMOOTHING

The above section described the model parameter estimation stage
of the algorithm. In signal analysis the estimated parameters can be
used as such, but for example in audio coding applications a signal
needs to be reconstructed from the parameters.The synthesis proce-
dure requires generating the phases for the reconstructed magnitude
spectrogram BG, applying inverse DFT in each frame, and combin-
ing the frames by overlap-add.

An example of an algorithm that can be used to generate the
phases has been proposed in [13]. Our main focus in this study is
in the magnitude spectrogram modeling and in order to prevent the
artefacts caused by the phase reconstruction from affecting the eval-
uation, we use the phase spectrogram estimated from the original
signal, as illustrated in Figure 1.

The NMF cost function derived in the previous section does not
take into account the synthesis procedure, i.e., it assumes that the
magnitude spectrogram of the synthesized signal equals X in (1). In
practice, the overlap-add synthesis procedure affects the quality in
the sense that an error produced in a frame is spread to the neigh-
boring frames where it may become audible. Specifically, the phe-
nomenon becomes prominent if a quiet frame is followed by an in-
tense one where fair amount of error is produced. In audio coding
the phenomenon is called pre-echo.

We approximate the effect of the synthesis procedure by assum-
ing that the modeling error [E] ¢ of the magnitude spectrograms in
frame ¢ is divided into frames ¢t — 1, ¢, and t 4+ 1 by weights h_1, ho,
and h1, respectively. We use values o, 1 —2a, and « for the weights,
where the amount of spreading defined by the parameter « is depen-
dent on the shape of the window function. We also assume that the
errors produced in adjacent frames are independent from each other,
so that the errors (represented by energies) are additive. In practice
the spreading depends on the lengths and relative positions of the
windows of the synthesis filter bank and the analysis filter bank in
NMR, but for simplicity we restrict ourselves to the above approxi-
mation. The spread error is given as

1.1 K
T Z B Z[W]k,t[E]k,thhT,
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T Z B Z[W 1.t [Ek 2,

t=1

£
Il
-

where [W']; = S°1__ [W'])s4-hr. Thus the effect of the syn-
thesis filterbank can be taken into account by filtering the weights
W in time. The simulation results show that the overall quality is

slightly improved by the spreading.

5. SIMULATION AND RESULTS

The proposed NMF algorithm was tested by applying it to various
styles of audio signals and measuring the NMR of the synthesized
signals. The test set consisted of 10-second monaural excerpts from
following categories (number of entries in brackets): classical music
(16), drum patterns (20), western pop music (24), solo instruments
(20), solo singing (10) and speech (10), equaling to total of 100
samples. The speech samples have a 16 kHz sampling frequency,
whereas the rest of them have a 44.1 kHz sampling frequency.

—e—SED
—=—1ISD
——NMR o
——KLD

ok I
—— NMRL

-4+ o

NMR (dB)

—6F 4

_12l | | | | | | | | i
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Rank of factorization

Fig. 2. NMR of the tested NMF algorithms as the function of the
rank of factorization

Each test sample was processed using the method illustrated in
Figure 1. We used Kaiser-Bessel derived window function [3, p 171]
in analysis and synthesis, since it was found to produce the best per-
formance among various tested window functions. We used 50%
overlap between adjacent windows. The synthesized signals were
evaluated with NMR criterion described in PEAQ and the average
NMR over the whole test set was calculated. The scaling parameter
L, was set to 40 dB.

The tested NMF algorithms were EUC, KLD, ISD and proposed
NMR_. The weighting method from [11] is denoted as NMRo. The
masking estimation for NMF was done using a 42.7ms window, but
the hop size was set equal to the NMF hop size. The number of
iterations was chosen by calculating NMR after each iteration to de-
termine the rate of convergence for a subset of the test signals. The
experiments showed that EUC and NMR{, needed more iterations to
converge. The number of iterations was set to 200 for KLD and ISD
and 400 for EUC and NMR|..

The results of different ranks of factorization with a 20 ms
window are shown in Figure 2. Results indicate that the proposed
method enables on average 1.9 dB better NMR than the best refer-
ence method. The test was also repeated for 40ms window and the
results were very similar, the advantage of the proposed method be-
ing again approximately 1.6 dB. Few demonstrative test signals are
available at http://www.cs.tut.fi/sgn/arg/nikunen/demo/icassp2010/.

Increasing the hop size will reduce the amount frames per sec-
ond. From audio coding point of view this decreases the amount
of gains to be represented. The number of frequency indices for
each source in B is half of the window length, since the DFT length
equals the window length and only positive frequencies are retained.
We restrict the hop size to be 50% of the window size, and there-
fore longer windows will result to longer DFTs, which need to be
encoded as well. We consider each parameter to be represented as
a particle, and study the effect of the frame length and the rank of
factorization when constraining a fixed amount of particles per sec-
ond. The total amount of particles per second in a decomposition
is P = (Z + K/S)R, where Z denotes the number of frames per
second, K is the number of positive DFT coefficients, .S is the signal
length in seconds and R is the rank of factorization.

We fixed the amount particles per second to 3000, and deter-
mined the parameters by selecting a certain rank of factorization and
searching for the shortest possible window that did not exceed the
particle rate. The results with different ranks of factorization are
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Fig. 3. NMR as the function of the window length and the rank of
factorization when 3000 particles per second are used

shown in Figure 3. For this test we used 30-second excerpts where
the total number of samples was 50. The window lengths depend on
the sampling frequency. In the figure they are denoted for the sig-
nals with sampling frequency of 44100 Hz. Considering the average
quality, the range of equally good parameter combinations seems
to be wide for all the NMF algorithms. The quality decreases only
when a too short or a too long window is used. By examining the re-
sults of individual samples it seems that a good combination depends
greatly on the signal to be composed.

Figure 4 illustrates the average NMR as the function of the
spreading parameter . The average is calculated separately for
drum signals, which contain lot of transients, and thus the pre-echo
phenomenon is assumed to be the largest. It can be seen that with a
suitable value of «, the filtering improves the average quality NMR
of drums by 0.4 dB. For other signals the filtering does not improve
the quality.

6. CONCLUSION

We have proposed a method for minimizing the noise-to-mask ra-
tio using non-negative matrix factorization. We have formulated the
noise-to-mask ratio calculated on bark-band signal representation as
a cost function for linear-frequency NMF. Simulation experiments
show that the proposed method allows better quantitative percep-
tual quality than the reference methods. The proposed method for
spreading the masking patterns in time enables a better quality for
signals with plenty of transient sounds. The overall results show im-
provement of audio quality in benefit for proposed method and it
could be plausible for future object-based audio coding applications.
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ABSTRACT

This paper proposes a new spatial audio coding (SAC) method that
is based on parametrization of multichannel audio by sound objects
using non-negative tensor factorization (NTF). The spatial param-
eters are estimated using perceptually motivated NTF model and
are used for upmixing a downmixed and encoded mixture signal.
The performance of the proposed coding is evaluated using listen-
ing tests, which prove the coding performance being on a par with
conventional SAC methods. The novelty of the proposed coding is
that it enables controlling the upmix content by meaningful objects.

Index Terms— Spatial audio coding, Object-based audio cod-
ing, Non-negative tensor factorization

1. INTRODUCTION

The audio coding research have recently focused on spatial audio
coding (SAC), where one or few discretely encoded signal channels
are transmitted with additional spatial cues for synthesis of mul-
tiple channels. The existing SAC algorithms are mostly based on
binaural cue coding principles [1]. Algorithms include for example
parametric stereo coding [2] and coding of multichannel audio [3].

The spatial synthesis from a downmixed signal is based on ad-
justing the level, time delay and decorrelation of the time-frequency
blocks used for spatial parameter estimation. The parametrization
relies on assumption of non-overlapping sound sources in the fre-
quency domain or momentary dominance of certain sound source
in perception of direction. Directional audio coding (DirAC) [4]
shares the above assumptions but improves the parameter estima-
tion and spatial sound field reproduction by diffuseness measure and
spatial impulse response rendering. Another degree of parametriza-
tion in audio coding is using objects having interpretable structure,
for example audio objects based on harmonic components of in-
struments [5]. In this paper we focus on incorporating SAC with an
object-based model for spatial parametrization.

We propose a new object-based SAC algorithm utilizing au-
dio spectrogram parametrization by non-negative tensor factoriza-
tion (NTF) algorithm, which estimates object spectra and their spa-
tial parameters simultaneously. The NTF spatial parametrization is
used for recovering the multichannel signal from a downmixed and
perceptually encoded stereo signal by filtering the downmix short-
time Fourier transform (STFT) in Wiener filtering manner using the
NTF model as a time-frequency filter kernel.

The proposed approach relies on object parametrization from
the mixture signal in a blind sound separation manner using non-
negative matrix factorization (NMF) and its extension to multidi-
mensional data by NTF [6]. The NMF algorithm with various ex-

M. Vilermo

Nokia Research Center
Visiokatu 1, 33720 Tampere, Finland
miikka.vilermo@nokia.com

tensions has been intensively studied for blind sound source sepa-
ration [7, 8]. The separation is based on ability of NMF algorithm
to find and model repetitive structures from audio signals using a
single object. The NMF objects usually represent sound structures
such as individual notes of an instrument, chords or drum hits.

In addition to object separation, the advantage of NTF repre-
sentation for SAC is that it utilizes long-term redundancy present in
an audio signal by using a single object to describe repetitive sound
events. Additionally, the NTF signal model estimates the spatial
parameters and the object spectrum simultaneously allowing uti-
lization of inter-channel redundancy in representation of the spatial
information. Such non-redundant spatial representation is efficient
with respect to coding and bitrate performance. In comparison to
most existing SAC methods, NTF allows representing overlapping
frequency content of the objects, which enables better spatial syn-
thesis and separation of such simultaneous sound events.

The rest of the paper is organized as follows. In Section 2 the
novel method for object-based spatial audio encoding and decod-
ing utilizing NTF for signal parametrization is proposed. In Section
2.1 a perceptually motivated NMF cost function [9] is extended for
NTF and multichannel observations. The upmix filtering frame-
work for spatial synthesis with NTF is proposed in Section 2.2. The
estimation of NTF parameters optimized for the upmix operation is
proposed in Section 2.3 and the quantization end encoding of the
parameters is shortly revised in Section 2.4. The results from a lis-
tening test are provided in Section 3.

2. PROPOSED METHOD FOR SPATIAL AUDIO CODING

The encoding and decoding of the proposed SAC algorithm are il-
lustrated in Figures 1 and 2, respectively. The encoding starts by
calculating the STFT of each input signal channel to obtain a mag-
nitude spectrogram tensor. The masking level is estimated from
the input signal and the NTF algorithm with perceptual weighting
is applied to the spectrogram tensor to obtain an object-based spa-
tial parametrization of it. The input signal is downmixed to stereo
and perceptually encoded. The encoded downmix is STFT analyzed
and used as an additional time-frequency weighting to optimize the
NTF spatial parametrization for the upmix filtering operation. The
estimated spatial parameters are quantized and entropy encoded.

The decoding to recover the multichannel signal starts by de-
coding of the downmix and calculating its STFT. The spatial pa-
rameters are decoded and dequantized. The upmixing is done by
filtering the downmix STFT in a Wiener filtering manner where the
channel dependent filter kernels are obtained from the NTF model.
The time-domain signals are synthesized using the phases obtained
from the downmix STFT analysis for every upmixed channel.



2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics

Input Magnitude Non-negative »| Quantization
SipnaIE Spectrogram j‘> Tensor » and
9 - (STFT) Factorization » Entropy coding Encoded
ﬁ t Bitstream
> Masking MP3 Decoding
: Level and
— M~ »| Estimation STFT
A

¥ Downmixing
and
MP3 Encoding

Figure 1: Block diagram of the encoding part of the proposed cod-
ing algorithm.

Entropy
Decoding and
Dequantization

Upmix Filtering

Tensor
. :“ p ! and
Reconstruction Inverse STFT

F—»
. Reconstructed
* Output Signal

—

4

Encoded
Bitstream

MP3 Decoding
and STFT
(complex)
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2.1. Non-negative Tensor Factorization

In this section the NTF representation of multichannel magnitude
spectrogram tensor is introduced and we extend the perceptual
weighting proposed in [9] for multichannel observations. We will
use the following notation. Tensors are denoted by capital bold let-
ters and a single entry of rank-j tensor X is denoted as X, i,...i; -

For a multichannel time-domain audio signal z(n, c), of sample
index n = 1,... N and in channels ¢ = 1, ..., C, absolute values
of its STFT are denoted by Xy, ¢+, where k = 1, ..., K is the pos-
itive DFT frequency bin index and ¢ = 1, ..., 7 is the STFT frame
index. STFT is calculated using frame length of N = 2(K — 1)
samples and consecutive frames are overlapping by N/2 samples,
Hanning window function is used.

The NTF signal model for approximating spectrogram tensor
X of rank three can be written as a product of three matrix entries
summed over the decomposition objects r as

R
Xk,t,c ~ Xk,t,c = ZBk,TGT,tAT,c, (1)
r=1

where R is the number of NTF objects used for the approximation.
Each column of B contains the DFT spectrum of an object. The
corresponding row of G represents its gain in each STFT frame,
and the corresponding row of A represents the channel-dependent
gain of the object. The NTF model has been found to produce good
results in sound source separation in [6]. The NTF model (1) consti-
tutes from a set of fixed object spectra that have time-varying gain
and a channel-dependent gain.

2.1.1. Perceptually Motivated Weighting for NTF

The cost function to be minimized in finding the NTF approxima-
tion is the noise-to-mask ratio (NMR) [10], which evaluates percep-
tual quality of encoded audio by determining audibility of encoding
artefacts based on masking phenomenon invoked by the desired sig-
nal content. The perceptually motivated NMF algorithm, minimiz-
ing the NMR of the approximation by multiplicative updates of the
model parameters was proposed in [9].
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We propose to extend the NMR cost function for NMF [9] to
be used with the NTF signal model (1). The masking level for each
frame is estimated in Bark band domain and the masking level con-
version to any desired DFT frequency resolution is given in [9]. We
will denote the masking level for the each time-frequency point in
each input channel c by a tensor Wy, ¢ .. The NMR measure equals
to squared Euclidean distance of the original and NTF spectrogram
weighted by the masking level and can be defined as

R

c T K
CNVR = Z Z Zwk,t,c(xk,t,c — ZBk,rGr,tAr,c)Q‘ (2)

c=1t=1 k=1 r=1
2.1.2. Estimation of the Perceptually Motivated NTF
The estimation of the NTF model minimizing NMR (2) is achieved

by iterative multiplicative updates, which can be derived using same
principles as in [7]. The update rules are given as

By, — By D Wk,t,c{(k,t,cGr,tAr,c

Yo e Wit o X, Grt A
Dok e Br e Wi, e Xt e Ar e
Dok Bk,TWk,t,ch,t,cAr,c
D2 BrrGr Wi o Xt c
I Bi Gr Wit o Xt

G'r,t — Gr,t ) (3)

Ar,c — A'r,(‘

where Xk,t,c is the reconstructed NTF model evaluated according
to (1) before each update.

The complete NTF algorithm is as follows. First the entries of
matrices B, G and A are initialized with random values uniformly
distributed between zero and one. The decomposition matrices are
then iteratively updated by applying the updates (3) for each of the
matrices at a time. A fixed number of iterations is used.

2.2. Object-based Spatial Upmixing Using NTF Model

In this section we will propose an object-based spatial upmixing
method for recovering the multichannel signal. For streamlined
representation we will derive the upmixing model only for stereo
downmix, but it can be defined for any other desired input signal
and dowmix channel configuration.

The original multichannel time-domain signal x(n, ¢) is down-
mixed to stereo by

l(n) = Zx(n,c), r(n) = Z z(n,c), 4)

ceL cER

where [(n) and r(n) are the left and right channel respectively. For
a 5.1 speaker configuration £ contains front and rear left channel
with center and low-frequency extension, R contains respectively
the right side counterparts. The downmixed time-domain signal is
perceptually encoded and is available at the decoder. The decoded
downmix signal is STFT analyzed using same analysis parameters
(window length, etc.) to obtain complex downmix STFT spectro-
gram Ly ; and Ry, ; for left and right stereo channels respectively.
The object-based multichannel signal model is used for upmix-
ing the downmixed STFT as follows. The STFT of the upmixed
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signal is obtained as

R
Zrlek,rGr,tAr,c
Lt &
Zceﬂzrlek,TG’l‘,tAr,c
R
Yk,t,c = Rk . Zrlek,'rG'r,tAr,c
’ R
2cer2ar=1BirGriAre

1
3 [(5a) + (5b)]

,(5a) ceLl,c¢R

,(5b) ceR,c¢ L

ceL,R

)
Note that L ¢, Rx,; and Yy ¢, are complex-valued. Time-domain
signals are obtained by inverse STFT and overlap-add. The above
can be viewed as filtering the downmix to multiple channels using
a time-varying Wiener filter.

Similar filtering methods are widely used in reconstruction of
source signals when NMF or NTF is used for sound source separa-
tion, for example in [8]. The proposed method allows synthesizing
only selected objects. In this case the summation in numerator of (5)
is evaluated over desired group of objects » € O. This is refererred
as control of the upmix content based on meaningful objects.

2.3. NTF Parameter Optimization for the Upmix Filtering

Taking into account the filtering operation (5) the NMR cost of NTF
model becomes

T K
c= Z Z Z Wk,t,c(Xk,t,c - ‘Yk,t,c

c=1t=1 k=1

) (6)

where Y is evaluated according to (5). The difference between NTF
cost functions (2) and (6) is that the latter takes into account the
downmixing process and particularly the case where sound events
from different spatial positions are overlapping or are closely sepa-
rated in time and frequency. Such case will introduce cross-talk to
the upmixed channels if cost function (2) and updates (3) are used.
This equals to filtering undesired downmix STFT details to the up-
mixed channels.

We propose to approximate the upmixing cost function (6) by
giving bigger weighting for time-frequency bins in which the down-
mix STFT has high magnitude with respect to the NTF channel sum
in equation (8). These time-frequency bins are assumed to contain
overlapping but spatially separated signal content and the proposed
weighting assigns more NTF modeling accuracy for regions of such
sound events. This is achieved by replacing Wy, ¢ . in (3) with

L
Wkt,c»sk’t, ceL,cgR
Ly
5 R
Wite =14 Whitex bt cER,cg L ()
Ry
1 /L R
Wk,t,c*( ity k’t), ceL,R
2\Ly: Ry
where
R R
Lk’t = Z Z Bk’TGT’tA"”vW Rk,t = Z Z Bk,TGT‘,tA'r',c
cel r=1 ceR r=1

®

The weights V:V need to be updated after every NTF iteration due
the change of Ly ; and Ry, ;.
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The practical implementation of the proposed weighting is done
by first using cost function (2) and parameter updates (3) for several
hundreds of iterations to estimate an initial NTF model and then
change to (7) to optimize the NTF model to the given downmix.
Even though we cannot proof that algorithm described above would
minimize (6), the experiments with the implementation have shown
to produce desired result.

The behavior of the cost function (6) measuring the upmixed
signal NMR was investigated to prove its decrease with the pro-
posed weighting. The evaluation of (6) was done first with the up-
date rules (3) and then changing to the proposed updates (7). The
cost function was averaged over the whole test set described in Sec-
tion 3 and the resulting cost is illustrated in Figure 3. Detailed en-
coding settings are given in Section 3. The decrease of the upmix
filtering NMR cost is evident when switching to the proposed up-
dates at iteration 500.

12 o ‘

T T T
Cost function (2), Tensor Model NMR
= = = Cost function (6), Upmixed NMR I

Cost

200 300 400 500 600
Iterations

Figure 3: Behaviour of cost function (6) with the NTF algorithm
updates (3) for the first 500 iterations and with updates (7) for suc-
cessive 100 iterations.

2.4. Quantization and Encoding of the NTF Parameters

The NTF model derived in Section 2.3 is quantized and entropy
coded and sent as a side information for spatial synthesis by the
proposed upmix filtering. We use the quantization framework pro-
posed in [11], which applies a non-uniform quantization for object
spectrum By, . and gains G, ;¢ in such way that more quantization
levels are assigned for smaller parameter values. For quantization
of the channel gain parameter A, . we use uniform quantization.

In [11] the frequency of occurrence of quantized values of By, -
and G, ; was gathered from a large test set resulting to distributions
having high probability of zeros and rest of the quantization lev-
els had relatively small probability. Such distributions of quantized
values can be effectively utilized for reducing the output bitrate by
entropy coding. In the case of proposed SAC algorithm we cal-
culated the entropy of each individual model parameter By, ., G;
and A, . to estimate the final bitrate after entropy coding.

3. EVALUATION

In this section we will present listening test results of the proposed
SAC algorithm when evaluated using multiple stimuli with hidden
reference and anchor (MUSHRA) [12] methodology and comparing
the coding quality to MP3 surround [3] at similar bitrates. Test
samples used were the MPEG multichannel evaluation samples.
The listening test was run in Nokia Research Center listen-
ing room, which is fully conformant with ITU-R BS.1116-1 [13].
Speakers were set up according to ITU-R BS.775. 3.5kHz low-pass
filtered original was used as a lower anchor. A lower anchor with
spatially reduced quality was deemed unnecessary since all listeners
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were experts. 10 listeners participated in the test. Listeners were in-
structed to grade the samples taken into account all coding artefacts
including spatial sound image.

100 %

HH

80

H
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40

MUSHRA score

20

.

Lowpass anchor  Reference

MP3 Surround Proposed

Figure 4: Listening test mean score and 95% confidence intervals.

Encoding parameters were chosen as follows, the window
length was set to N = 880 samples, which equals to 20ms with
the sampling frequency Fs = 44.1 kHz. The length of the NTF
segment was chosen to 15 seconds. The number of NTF algorithm
iterations were set to 500 with updates (3), and 100 with updates
(7). The number of bits for representing each NTF parameter with
quantization described in Section 2.4 was defined by preliminary
listening tests. Evaluation resulted to using n, = 4,n4y = 4 and
nq = 6 bits per parameter for By, ., G, + and A, . respectively.

The stereo core encoding algorithm was MP3 at 96 kbps and
the target bitrate with the NTF upmixing side information was 128
kbps. The number of NTF objects was determined by allocating the
remaining bitrate after downmix encoding to the NTF model. The
bitrate reduction by entropy coding was estimated as described in
Section 2.4. The resulting number of objects R = 64 corresponds
to a NTF bitrate of 26.0 kbps after quantization and averaging the
estimated entropy coding bitrate over the whole test set.

The listening test results are given in Figure 4. The results in-
dicate that with similar bitrates the proposed coding attains slightly
lower mean score than the compared SAC method, MP3 Surround.
However, the score difference is small which indicates that coding
performance achieved by the proposed algorithm is comparable to
the existing SAC methods. Both tested SAC methods do not achieve
transparency compared to the hidden reference, but the overall qual-
ity level can be considered to be moderate and suitable for coding of
multichannel audio for consumer applications. The listening results
prove that the proposed SAC method can be used for coding of mul-
tichannel audio with at bitrates equivalent to 128 kbps or similar.

The proposed algorithm achieved coding performance compa-
rable to conventional SAC approaches and additionally the pro-
posed upmix filtering allows manipulation of the upmix content by
NTF objects, corresponding to meaningful sound events. The NMF
and NTF signal decomposition models have been shown to achieve
promising results in blind sound source separation [6, 7, 8]. Com-
bining the proposed coding with separation would produce SAC
with possibility to control the content of the upmix for example
by instruments. The sound separation performance of the proposed
SAC method was informally evaluated by k-means clustering of the
NTF objects with spectral and time-gain based features. The separa-
tion performance was determined to be promising and comparable
to separation results achieved in [6, 7].

4. CONCLUSION

We proposed a novel method for spatial audio coding (SAC) by us-
ing non-negative tensor factorization (NTF) for deriving an object-

October 16-19, 2011, New Paltz, NY

based spatial upmixing model. The spatial synthesis was done
in Wiener filtering manner using NTF representation as a time-
frequency filtering kernel and we proposed an experimental algo-
rithm for estimating the NTF parameters found to minimize the
filtering cost. The listening test showed that the proposed SAC
algorithm achieved the performance of conventional spatial audio
coding methods, but additionally enabling the control of the upmix
by objects in blind sound separation manner. The future work will
include more extensive evaluation of sound source separation per-
formance of the proposed method.
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OF INTRA-SOURCE ENVELOPE CORRELATIONS
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ABSTRACT

This paper presents a novel method for solving the permuta-
tion ambiguity of frequency-domain independent component
analysis based on source signal envelope correlation maxi-
mization. The proposed method is developed for blind source
separation with high sampling frequency and significant spa-
tial aliasing. We propose a method that analyzes the source
envelope using a rank-one singular value decomposition
(SVD) applied to an initial source magnitude spectrogram
obtained by a time difference of arrival (TDoA) based per-
mutation alignment method. The permutation for frequencies
with incoherent TDoA are corrected by maximizing the cross-
correlation of the SVD analyzed source activation vector and
each independent component magnitude envelope. We evalu-
ate the separation quality using real high sampling frequency
speech captures and the proposed method is found to improve
the separation over the baseline algorithm.

Index Terms— Blind Source Separation, Independent
Component Analysis

1. INTRODUCTION

The blind source separation (BSS) of simultaneously emitting
sound sources, generally known as the cocktail party problem,
has been intensively studied over the years, but is however
still categorized as an unsolved problem. In the course of this
paper we pursue blind separation of high sampling frequency
speech using independent component analysis (ICA) applied
in frequency domain leading into frequency-wise permutation
ambiguity. The permutation alignment have been previously
solved for example based on mixing filter frequency response
smoothness [1], temporal structure of the source signals [2],
and time-difference of arrival (TDoA) and direction of arrival
(DoA) [3, 4] interpretation of ICA mixing parameters. The
latter can be considered as generally robust with no assump-
tions on the source characteristics, however their performance
starts to degrade in reverberant conditions and with captures
involving lot of spatial aliasing frequencies.

In this paper we propose a novel method for ICA per-
mutation alignment that resolves the component ordering via
maximization of intra-source envelope correlations. TDoA
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based algorithm [4] is used for obtaining an initial solution
for the ICA parameter alignment which is to be improved by
the proposed method. The proposed algorithm is applied for
frequencies where the source TDoA is incoherent due spa-
tial aliasing and reverberation making the source magnitude
envelopes more accurate method for permutation alignment.
The separation quality of the proposed method is evaluated
using high sampling frequency speech captures and the re-
sults show an increase in separation quality measured using
quantities proposed in [5].

The rest of the paper is organized as follows, in Section
2 we review the frequency domain ICA and the permutation
alignment algorithms used in prior art. The proposed method
is presented in Section 3. In Section 3.1 we shortly present the
TDoA based permutation algorithm [4] used for obtaining an
initial permutation solution. The proposed singular value de-
composition (SVD) based source envelope analysis and the
permutation alignment by maximization of intra-source en-
velopes is presented in Section 3.2. The source separation
quality of speech samples is presented in Section 4.

2. BLIND SOURCE SEPARATION AND
INDEPENDENT COMPONENT ANALYSIS

The array capture can be considered by the following convo-
lutive mixture model in the time-domain

J
Tm(t) =YY hm;(1)si(t — ) )

j=1 7

where z,, (t) is the mixture of j = 1...J source signals cap-
ture by sensor m = 1...M and sampled in time instances ¢.
The spatial response from the source j to the sensor m is de-
noted by hp,;(7) and the source signals are given as s;(t).
Convolutive model (1) is usually approximated by instanta-
neous mixing in frequency domain as

J
x(f,n) =Y _h;(f)s;(f,n) 2
j=1
where x(f,n) = [z1,...,2p]7 is the short-time Fourier

transform (STFT) of the array capture z,,(t), f = 1...F is
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the frequency index and n = 1...N is the frame index. The
impulse response h,,;(7) is replaced with the frequency re-
sponse denoted by h;(f) = [h1j,...,hm;]T and the STFTs
of source signals are denoted by s;(f,n).

The ICA applied to the frequency domain model (2) has
been successfully used for determined BSS [1, 2, 3, 4] where
M > J. ICA is applied separately for each frequency bin f
to obtain J X M unmixing matrix W as in

y(fin) = W()x(f;n). €)

where y(f,n) = [y1,...,ys]T corresponds to the sources
s;j(f,n) with an arbitrary permutation of sources indices at
each frequency f. Further we assume that the unmixing ma-
trix is invertible and define A(f) = W(f)~1, thus we can
write the ICA model as,

X(fa n) = A(f)Y(f? n) @

If J < M, the mixing matrix is obtained via Moore—Penrose
pseudoinverse A(f) = W(f)*. A is constructed of column
vectors [ay, ...,ay] and each vector denotes the response of
single source j to the each capturing sensorm = 1,..., M.

In the earliest frequency-domain ICA based BSS meth-
ods [1] the permutation alignment was solved by assuming
a smooth frequency response of the mixing filters h;(f).
Later in [2] the temporal structure of the separated signals
y(f,n) was considered and the permutation was solved by
maximizing cross-correlation of magnitudes of neighboring
frequencies. TDoA and DoA interpretation of component
bases a;(f) has been proposed in [3] and in [6] the TDoA
approach was combined with the magnitude envelope corre-
lation maximization. More recently a method only relying
on anechoic source signal propagation model estimation was
proposed in [4], which will be used as a baseline in this paper.

There also exists ICA-based methods that unify the source
dependencies across frequencies, independent vector analysis
[7] and recursively regularized ICA across frequencies [8]. In
this paper we will concentrate only to the frequency bin-wise
ICA model (3) and improving the permutation alignment in
case of high sampling frequency captures and severe spatial
aliasing over the baseline [4]. Other related work combining
TDoA with envelope correlation maximization include for ex-
ample [6, 9].

3. PROPOSED METHOD

The proposed method for ICA permutation alignment com-
bines a TDoA based algorithm [4] with a novel source en-
velope analysis by rank-one SVD and source temporal activ-
ity cross-correlation maximization across frequencies. With
the proposed algorithm we aim for improving performance of
TDoA based algorithms with high sampling frequency cap-
tures by using source magnitude envelope information in the
permutation alignment.

(®)

x(f.n) y(f.n) Comrelation ] ¥(m) — Ui
—»‘ STFT }—»‘ ICA_[—h Barriaion iSTFT

A
A(f) PUOT | 9(fm)
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A 4 A 4
DoA P(f) Envelope
Permutation Analysis (SVD)
Fig. 1. Block diagram of the frequency domain ICA and the

proposed permutation alignment by source envelope cross-
correlation.

The block diagram of the proposed method is illustrated
in Figure 1. First the input signal z,, is STFT analyzed to get
x(f,n). The ICA is applied for each frequency f separately
to obtain mixing matrix A(f) and the source signals y(f, n).
The mixing matrix entries a;(f) are clustered using a TDoA
permutation alignment algorithm to get an initial permutation
matrices P(f). The source signals y(f,n) are aligned us-
ing the initial permutations to obtain ¥(f,n) and the source
envelopes are analyzed using rank-one SVD. The obtained
source envelope v(n) = [vy,...,vs]T is used for finding
the permutation that maximizes the cross-correlation with
|9(f,n)| at each frequency f. The SVD envelope analysis
and cross-correlation matching is repeated until no changes
are made for §(f,n) The time domain source signals are
obtained via inverse STFT.

3.1. Permutation Alignment by Signal Propagation Model

The initial alignment of separated components is obtained by
algorithm presented in [4], which is shortly reviewed in this
section. The algorithm provides initial magnitude spectro-
gram matrices |§(f, n)| in order to be SVD analyzed and cor-
rected by the proposed algorithm presented in Section 3.2.

The parameters a;(f) are phase and amplitude normal-
ized with respect to a chosen reference sensor by subtracting
the reference sensor phase and dividing by its norm, result is
denoted by a;(f). Normalization gives the relative TDoA of
the mixing parameters in terms of phase difference with re-
spect to the reference sensor. The source propagation model
is defined as

izmj(f) = A €xp(—127 f Ty ;) 5)

which approximates the mixing filter frequency response
hm;(f) by having a fixed time delay 7,,; and attenuation
Am; from source j to each capturing sensor m over all fre-
quencies. The propagation model (5) translates into a fixed
spatial position in means of TDoA in anechoic conditions,
which further can be viewed as DoA estimate of the source.
The permutations are solved by minimizing the cost func-

tion
J
D=3,
j=1f
where the permutation of a;( f) for each frequency f is given
by P¢(j) and the propagation model (5) is given in vector

—h;(f)IP (©)

Mw

||an<a>
1
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form ﬁj (f). The permutation alignment and the propaga-
tion model estimation is solved simultaneously and the cor-
rect permutations depend on the accuracy of the estimated
propagation model. With no further algorithm details we as-
sume to obtain the permutation matrix P(f) for changing the
rows of y(f,n) and estimated propagation model ﬁj (f) that
minimizes the cost function (6). The details of the algorithm
can be found from [4].

3.2. Source Envelope Analysis and Cross-correlation
Maximization of Magnitude Envelopes

We start the derivation of the proposed algorithm by consid-
ering which of the frequency indices after the permutation
alignment given in Section 3.1 have high confidence of being
correct. These frequency indices are used as a reference for
analyzing the source envelopes using a rank-one SVD. The
proposed algorithm is applied for correcting the permutation
of the rest of the frequency indices.

The confidence of correct permutation at each frequency
after TDoA permutation can be extracted by evaluating the
following distance measure,

J
D(f) = leﬁPf(j)(f) —h;(f)I? (7

and sorting D(f) in ascending order. Choosing the kg first
frequencies, denoted by set Fr, will serve as a reference hav-
ing the lowest distance to the estimated propagation model h.
The frequency indices to be corrected by the proposed method
are chosen by taking indices kg, . . . , F' from the sorted D( f),
denoted by set Fg. These have the most incoherent TDoA
and amplitude difference with respect to the estimated prop-
agation model. Note that 7 and F¢ can have overlapping
frequencies if kg < kg.

The confidence measure (7) assumes that the estimation
of the propagation model flj( f) has converged close to the
actual spatial position in terms of TDoA and that the ane-
choic source propagation assumption holds for the observed
data. It is shown by an example in Section 4 that the lowest
frequencies fit to the model (5) more accurately whereas the
ICs at higher frequencies suffer from the spatial aliasing and
phase modification by reverberation making the permutation
uncertain according to (7).

The permutation matrix P(f) obtained from the TDoA
based alignment is used to change the ordering of rows of
vector y(f,n) to correspond to a single source signal de-
fined as §(f,n) = P(f)y(f, n). The magnitude spectrogram
matrix of the sources after initial permutation is denoted as
Yplin = 195(f,n)l.

The permutation correction algorithm is described as fol-
lows. For each source j = 1...J we apply the SVD to the
magnitude spectrogram of the sources given as,

Y =UnEypViy, fe€Fr (8)
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Fig. 2. An example of the SVD analyzed source envelope in
the middle, the source magnitude spectrogram after baseline
[4] on the top and the source magnitude spectrogram after
proposed permutation alignment in the bottom.

where subindices (j) denote the matrix indexing correspond-
ing to each source and each Y(j) is of size kg X N. To obtain
a rank-one approximation of the source magnitude spectro-
gram we take the singular vectors Uy;); . and V;);. corre-
sponding to the largest singular value X;y; ;. The singular
vector Uy;y; . contains the average source spectrum and the
corresponding temporal activity is given by V ;. which we
propose to use as the reference source envelope.

The analyzed source envelope for each STFT frame n is
hereafter denoted by v(n) = [v1,...,vs]T = V(j)in. The
SVD analyzed envelope is assumed to capture quintessen-
tial temporal activity features of the source and thus can be
used as a reference for aligning permutation for frequencies
f € Fg by maximizing the cross-correlation of source mag-
nitudes and v(n). An example of the SVD analyzed envelope
and the source magnitude spectrogram before and after the
proposed permutation alignment is illustrated in Figure 2.

The permutation optimization with the obtained source
envelopes v(n) can be defined as

N
P(f) « argmaxp;, Z v(n)"P(f)3(f,n),

n=1

Vf € .7:Q
®

which equals finding a new permutation matrix P(f) which
maximizes the cross-correlation of v(n) and source mag-
nitude envelopes P(f)y(f,n) within the frequency set
f € Fg. In practice the maximization is implemented by
searching through all combinations of P(f) : {1,...J} —
{1,...J} and choosing the one producing largest cross-
correlation, this is computationally feasible for low number
of sources. As a result we obtain a new permutation matrix
P(f) which is used for aligning the permutations as

y(f,n) < P()y(f,n) (10)
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Fig. 3. The capturing array used in the simulations. Micro-
phones are denoted by circles and the zero angle references
axis by an arrow.

The experiments with the algorithm has shown that choos-
ing kg < kg produces generally best results regarding the
separation quality. In this case the evaluation of permutation
optimization given in Equation (9) may also change permu-
tation for frequency indices f € Fr which further affects on
SVD analysis (8). The proposed algorithm is implemented
by iteratively evaluating Equations (8) - (10) until no permu-
tation changes are made in (10). With a suitable choice of kg
and kg the algorithm usually converges in less than 10 itera-
tions. The choice of kg and kg is discussed in more details
in Section 4.

4. EVALUATION OF SEPARATION QUALITY

In this section we evaluate the separation performance of the
proposed algorithm against the TDoA based algorithm pro-
posed in [4]. The evaluation consist of real audio captures
recorded in following conditions: sampling frequency was
48kHz, the room dimensions were 4.53 x 3.96 x 2.59 m and
the reverberation time (T60) was approximately 0.26s.

The capturing array consists of four DPA 4060-BM
prepolarized omnidirectional miniature condensator micro-
phones.The array dimensions are given in Table 1 and the
array geometry with reference axis is illustrated in Figure 3.
The spatial aliasing frequency for the given array is 1563 Hz
which corresponds to STFT frequency bin f = 133.

The test samples used included three male and one fe-
male speakers from Librivox audiobook database which were
played with Genelec 1029A speakers. The utterance length is
10 seconds. Each speaker was captured separately and signals
were combined into mixtures of three simultaneous speakers.
The angle of the speakers with respect the reference axis of
the microphone array are given in Table 2.

4.1. Implementation Considerations

For the ICA parameter estimation we used the complex-
valued version of JADE algorithm [10]. Other parameters
were chosen as follows: STFT window length = 4096 with
50% window overlap, number of target sources = 3. Two

Mic x(mm) y(mm) z(mm) Identification Angle

1 0 -46 6 Speaker1  180°
2 22 -8 6 Speaker 2 90°
3 22 -8 6 Speaker 3 45°
4 0 61 -18 Speaker 4 0°

Table 1. Geometry of the array
used for evaluation. Illustrated in
Figure 3.

Table 2. Speaker posi-
tions with respect to ar-
ray zero angle axis.

Cost by equation (7)

200 400 600 800 1000 1200 1400 1600 1800 2000
DFT frequency bin index

Fig. 4. Cost function (7) for an individual test sample. The
reference frequencies f € F'g are denoted by dots and rest of
the cost function entries are denoted by plus-marks.

datasets were used, dataset one consisting of speakers 1, 2
and 4 and dataset two consisting of speakers 2, 3 and 4. The
total number of 10-second utterances in both datasets is five.
It is shown in Section 4.2 that no separate training stage or
development set is needed for the choice of kg and kg due
the separation quality not being affected by a wide range of
choosing kg and kqg. The values for the separation evaluation
were chosen as kg = 600 and kg = 300 producing a good
average performance.

An example of the TDoA coherence cost defined by Equa-
tion (7) is illustrated in Figure 4. The reference bins chosen
are denoted by dots and the rest of the frequencies are denoted
by plus-marks. It is clear from the shape of the cost func-
tion that the lowest frequencies have the most coherent TDoA
regarding the estimated propagation model and are chosen
mostly for the reference frequency group f € Fr. Also some
higher frequencies fit the model well and serve as a reference.

4.2. Separation Results

The results from the separation quality evaluation using met-
rics signal-to-distortion ratio (SDR), image-to-spatial distor-
tion Ratio (ISR), signal-to-interference ratio (SIR) and signal-
to-artefact ratio (SAR) proposed in [5] are given in Table 3.
The measures are averaged over all sources and all utterances.
With the proposed method the SDR separation quality in-
creases by 0.72 dB and 0.48 dB in the datasets one and two,
respectively. The source interference (SIR) is improved no-
ticeably, the separated source spatial image accuracy (ISR)
improves as well and the separation artifacts are decreased
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Baseline [4] Proposed
Dataset 1 2 1 2

SDR (dB) 3.88 0.92 4.60 1.40
ISR (dB) 8.92 5.04 10.19 5.63
SIR (dB) 8.37 1.42 9.64 2.93
SAR (dB) 6.24 3.85 6.82 443

Table 3. Separation results for datasets one and two.

(SAR).

Each source in dataset one are spatially separated at least
by 90° whereas in the dataset two the spatial separation is 45°,
which significantly decreases the separation performance. In
case of dataset two where the initial separability of the sources
is poor the proposed algorithm is still able to improve the
average separation of sources, considering the fact that the
derivation of the algorithm assumes obtaining a fair initial
separation for the envelope analysis.

The effect of the algorithm parameters kr and kg is illus-
trated in Figure 5 where the SDR separation performance is
given with different combinations of kg and kg. The perfor-
mance of the proposed algorithm is almost equivalent regard-
less of the choice of the parameters. Only too few reference
frequencies kg = 200 degrades the SDR quality below the
baseline performance. The results in Figure 5 indicate high
robustness towards the choice of the parameters and elimi-
nates the need of a separate training stage.

Temporal activity based permutation alignment algo-
rithms are known to be less efficient with short signals and
thus the proposed method was additionally tested with the
signals from the test set one split to duration of 2.5 seconds.
The average SDR was 2.82 dB and 3.15 dB for the baseline
and the proposed algorithm, respectively, indicating improved
separation with the proposed method also in such cases.

5. CONCLUSION

In this paper we proposed an algorithm for independent com-
ponent analysis (ICA) permutation alignment when used for
blind source separation (BSS) of simultaneous speakers. The
proposed method is based on analysis of source envelopes by
rank-one SVD and maximizing the cross-correlations of the
analyzed envelope and source magnitude envelopes at each
individual frequency. The proposed method is aimed for im-
proving the time difference of arrival (TDoA) based align-
ment algorithms suffering from spatial aliasing in case of high
sampling frequency speech and it was found to improve the
separation quality in such conditions.
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Direction of Arrival Based Spatial Covariance
Model for Blind Sound Source Separation

Joonas Nikunen, non-Member and Tuomas Virtanen, Member, IEEE

Abstract—This paper addresses the problem of sound source
separation from a multichannel microphone array capture via
estimation of source spatial covariance matrix (SCM) of a short-
time Fourier transformed mixture signal. In many conventional
audio separation algorithms the source mixing parameter esti-
mation is done separately for each frequency thus making them
prone to errors and leading to suboptimal source estimates. In
this paper we propose a SCM model which consists of a weighted
sum of direction of arrival (DoA) kernels and estimate only the
weights dependent on the source directions. In the proposed
algorithm, the spatial properties of the sources become jointly
optimized over all frequencies, leading to more coherent source
estimates and mitigating the effect of spatial aliasing at high
frequencies. The proposed SCM model is combined with a linear
model for magnitudes and the parameter estimation is formulated
in a complex-valued non-negative matrix factorization (CNMF)
framework. Simulations consist of recordings done with a hand-
held device sized array having multiple microphones embedded
inside the device casing. Separation quality of the proposed
algorithm is shown to exceed the performance of existing state
of the art separation methods with two sources when evaluated
by objective separation quality metrics.

Index Terms—multichannel source separation, spatial covari-
ance models, non-negative matrix factorization, direction of
arrival estimation, array signal processing

I. INTRODUCTION

HEN recording an auditory scene using one or multiple

microphones, it is preferred that the sound source
dependent information can be separated for the uses of great
variety of subsequent audio processing tasks. The examples of
such applications include spatial audio coding (SAC) [1], [2],
3D sound analysis and synthesis [3], and signal enhancement
for various purposes, such as automatic speech recognition
(ASR) [4], [5]. When no prior information of the sources
involved in the capture is available, the process is called blind
source separation (BSS). The BSS problem in the case of
spatial audio captures consist of decomposing the multichannel
mixture signal into source signals and representing information
about their spatial position or response from their originating
location to each receiving microphone.

A well known BSS approach is the independent component
analysis (ICA) [6] applied separately at each frequency of a
short-time Fourier transformed (STFT) array input. It leads
to an arbitrary frequency-wise source ordering referred to as
the permutation problem. Source permutation is usually solved

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.

J. Nikunen and T. Virtanen are with the Department of Signal Pro-
cessing, Tampere University of Technology, Tampere, Finland, email: first-
name.lastname @tut.fi

based on time difference of arrival (TDoA) interpretation
of ICA mixing parameters [7]-[9]. The TDoAs calculated
from phase differences become ambiguous when the frequency
exceeds the spatial aliasing limit, which corresponds to a
wavelength greater than half of the microphone spacing. As
a result, the TDoAs cannot be directly utilized in solving
the permutation problem for high frequencies. Additionally,
the ICA parameters for a single source concatenated over
frequency do not explicitly have a connection to the spatial
position of a source but only to the phase difference caused
by it. Separation methods directly utilizing TDoAs between
microphones and creating time-frequency separation masks by
clustering the measured TDoAs at each frequency include for
example DUET [10] and binwise clustering [11].

More recently, methods based on finding spectrally redun-
dant parts by non-negative matrix factorization (NMF) [12]-
[14] have been proposed for separation of sound sources both
with single [15], [16] and multichannel mixtures [17]-[20].
NMF is applied in the magnitude spectrogram domain and it
finds an approximation of the mixture spectrogram using a
linear combination of components that have a fixed spectrum
and time-dependent gain. In the NMF separation framework
the spatial properties of the sources can be modeled using a
spatial covariance matrix (SCM) for each source at each STFT
frequency bin [18]-[22]. Such extensions are hereafter referred
to as complex-valued NMF (CNMF). The SCM denotes the
mixing of the sources by magnitude and phase differences
between the recorded channels, and is not dependent on the
absolute phase of the source signal. Additionally, non-negative
tensor factorization with spatial cues based on the magnitude
panning of sources have been proposed in [23].

The CNMF algorithms [19]-[21] estimate unconstrained
SCMs at each frequency, thus relying on the ability of the
NMF magnitude model to separate repetitive parts that cor-
respond to sources at a single spatial location. In the case of
spectrally similar sources, for example two speakers, a single
NMF component and the corresponding SCM can end up
representing both the sources at different spatial locations. In
such case, the estimated parameters cannot provide separation
of the two sources. Spatial aliasing makes the algorithm prone
to SCM estimation errors and separation is dependent on
the magnitude model separation abilities. The CNMF method
proposed in [18] assigns a fixed number of NMF components
per source but it is reported to have a poor separation quality
without an oracle initialization of the source parameters.

A spatial signal processing field of beamforming [24] can
also be considered as a separation technique. The simplest
design is the delay and sum beamformer (DSBF), which
consists of time aligning and summing the microphone signals.
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The alignment correspond to a time delay caused by the
target DoA, i.e. beamformer look direction, and the sources
originating from this direction become enhanced. Other types
of beamformers, such as the minimum variance distortionless
(MVDR) beamformer, aim at suppressing and canceling inter-
fering signals originating from other than the beamformer look
direction. More recent advances in beamforming are based on
adaptively estimating the noise characteristics and designing
blocking matrix for the general sidelobe canceller structure
[25], [26].

Beamforming methods assume that the geometry of the
array is known and require a high number of microphones
to work efficiently, to form a narrow beam that is useful for
source separation. This is conventionally only achieved with
physically large arrays. Beamformers also suffer from spatial
aliasing which causes signal amplification from undesired
source directions, i.e. peaks in the sidelobe structure. An
emerging approach for beamforming based source separation
is spherical array beamforming [27], [28] where a high number
of densely spaced sensors in a physically small sphere is used
to obtain uniform directivity properties towards every look
direction.

In this paper we propose a novel BSS method that combines
SCM estimation by beamforming-inspired DoA kernels and
object-based signal analysis using NMF. We propose to model
the source SCMs as the weighted combination of DoA kernels
and the magnitudes of sources by the NMF. The DoA kernels
represent the phase difference between array channels caused
by a single source TDoA at a certain spatial position. The main
benefit of the method comes from making the connection be-
tween the SCMs at each frequency by representing SCMs over
frequency as a weighted sum of DoA kernels thus avoiding
source and frequency ambiguity issues. By only estimating
direction-dependent weights for the DoA kernels of each
source, the proposed SCM model is jointly optimized over
all frequencies, and produces better estimates of the source
SCMs. The direction weights estimation also mitigates the
effect of spatial aliasing in high frequencies due the estimation
algorithm taking into account phase difference evidence across
frequency by single time delays of individual DoA kernels.

The NMF components represent parts of the sources by
estimating repetitive magnitude structures from the mixture
signal. Components sharing the same spatial position are
assumed to originate from the same source and can be thus
linked together by simple clustering applied on the estimated
direction weights. In addition to doing separation of sources,
the method produces a parameterization of their spatial prop-
erties, and can therefore be used in 3D sound synthesis of the
recorded mixture.

We evaluate the separation quality of the proposed method
against the reference CNMF approach [19] and frequency-
domain ICA [8], [29]. The simulations are done using a small
microphone array consisting of four microphones enclosed in
a casing similar in size to a hand-held mobile device. The
evaluation is based on objective separation quality metrics
proposed in [30], [31] and perceptually motivated metrics [32].
The proposed method is shown to produce considerably better
separation quality over the conventional methods.

The rest of the article is organized as follows. In Section
II we present the background of spatial audio processing
for sound source separation. The general principle of the
proposed SCM model as a superposition of DoA kernels
is presented in Section III. Formulation of the proposed
SCM model into the CNMF framework and update rules for
the model parameter optimization are presented in Section
IV. The source reconstruction based on clustering of DoA
kernel weights is presented in Section V. The simulations
and separation evaluation are given in Section VI. In Section
VII we discuss future work for improving the proposed SCM
model and 3D sound synthesis using the proposed spatial audio
parameterization.

II. BACKGROUND

In this section we define the problem of the sound source
separation with spatial audio captures and present the spatial
processing background for the proposed SCM model and
CNMF algorithm it is used with. The section consist of stating
the source mixing model in Section II-A, definition of the
signal representation and the spatial covariance matrices, in
Section II-B, and interpretation of the convolutive mixing
model in the spatial covariance domain in Section II-C.

A. Source Mixing Model

In time domain an array capture consists of a mixture of
sound sources convolved with their spatial responses. The
mixing model can be described as

K
Em(t) =D Poni(T)si(t — 7) (1)

k=1 7

where the mixture Z,,(¢) consists of k& = 1..K sources
captured by microphones m = 1...M, and the time-domain
sample index is denoted by ¢. The spatial response from source
k to microphone m is represented by a mixing filter A, (7)
and the single-channel source signals are denoted by s (t).
The convolutive mixing model (1) can be approximated in
the STFT domain by instantaneous mixing at each frequency

bin as
K K
X4 A Z hsu, = Z Yilk (2
k=1 k=1
where x;; = [2i1,...,7an]? is the STFT of the capture

Zm (t) with analysis window length of N = 27 —1, the positive
DFT bin frequencies are denoted by ¢ = 1...I and the STFT
frame index by [ = 1...L. The frequency-domain mixing filter
is denoted at each frequency bin by h;; = [hik1, - -, hixar] T
and the STFTs of the sources are denoted by s;;;. The spatial
images of the sources are denoted as y;;; = h;gs;,, which
are the source signals as seen by the array, i.e. convolved with
their spatial impulse responses. The effective length of the
mixing filter h,,;(7) can be several hundreds of milliseconds
but its approximation in frequency domain with an analysis
window length of tens of milliseconds works well in practice
due to the negligible energy after the main reverberant part of
the source spatial response.
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B. Signal Representation

The proposed method uses SCMs calculated at each time-
frequency point as the signal representation. Spatial covariance
calculation translates the absolute phase of the mixture to a
phase difference between each microphone pair. In the CNMF
work by Sawada et. al [19] it was proposed that for the
calculation of the SCMs a magnitude square-rooted version of
the array capture is used. This ensures that the nonnegative part
in the diagonal of the SCM, modeled by the NMF, contains the
magnitude spectrum of the mixture and the individual source
spectra are approximately additive.

The magnitude square-rooted version X;; of the capture
Xy = [zi1,...xynm)? for a time-frequency point (i,1) is
obtained as

i = [z |V sign(zin), - -, [z |V sign(zan)]” 3)

where sign(z) = z/|z| is the signum function for complex
numbers. The SCM for a single time-frequency point is
obtained from the array capture vector X;; = [&11, - - -, Zinr] T
as outer product

Xy = RuXj], “)

where  stands for Hermitian transpose. Matrices X;; €

CMXM for each time frequency point (i,[) point consist
of observation magnitude |x;| = [|zi1l,. .., |zaa|]T in its
diagonal [X;],n, and off-diagonal values [X;]nm,n # m
represent the magnitude correlation and phase difference
|ZitnTitm|'/? sign(zin2},,) between each microphone pair
(n,m).

C. Comvolutive Mixing Model in Spatial Covariance Domain

The convolutive mixing model defined in Equation (2) can
be expressed in the SCM domain by replacing each term by its
covariance counterpart. The SCM domain mixing is expressed

as K K
X~ Y Hidik = Y Sin, 5)
k=1 k=1

where H,;, is the spatial covariance matrix for each source at
each frequency and 3;;, is the corresponding source magnitude
spectrum.

The matrix H;, € CM*M denotes the source spatial re-
sponse h;; expressed in the form of covariance matrix h;y, hffg.
The complex-valued monoaural source spectrogram s;;; in the
SCM domain results to a real-valued power spectrum $;;x5;%-
Due to the square-rooted STFT used to calculate the observed
SCMs, we denote the sources using their magnitude spectra
Sk = (silkﬂ)l/z. We can approximate the SCMs being
additive since the sources are approximately uncorrelated but
also sparse, meaning that only a single source is to be active
within each time-frequency point [33]. When using the SCM
domain representation defined by Equations (3) - (5), the
absolute phase of the sources is not significant from the
parameter estimation point of view, and we only model the
phase differences between all microphone pairs.

Estimating the source magnitudes $;;; and the correspond-
ing SCMs denoted by H;; by turn would provide the de-
sired BSS properties. However estimating H;j, jointly over

all frequencies requires a model that ties together the phase
difference over frequencies, which is a difficult constraint to
be included in the parameter estimation. For the CNMF-based
source separation the SCM estimation proposed in [19] relies
on the NMF model to enforce magnitudes 3;;, to correspond to
a single source, which is assumed to yield an estimate of H;j,
associated to a single source. A direct estimation of the source
SCM and variances at each frequency is done for example
in [34], but it again requires solving the frequency-wise
permutation. The covariance estimation strategy from [34]
with NMF as a source magnitude model has been proposed
in [22], thus avoiding permutation ambiguity. However, in
both cases the spatial properties estimated separately for each
STFT frequency bin ¢ do not utilize the fact that the SCM
properties are connected by the TDoA of the direct path and
early reflections.

III. PROPOSED SPATIAL COVARIANCE MATRIX MODEL BY
SUPERPOSITION OF DOA KERNELS

In the case of direct path propagation or anechoic condi-
tions, the source direction with respect to a receiving array
corresponds to a specific time delay between the microphones.
In beamforming, the TDoA defined by the look direction
of a beamformer is used to align the received microphone
signals in order to enhance sources originating from the look
direction. A single TDoA determines the desired phase differ-
ence over frequencies, making the beamformer implemented
in the frequency domain able to integrate source evidence over
the whole frequency spectrum. Such a concept has not been
widely utilized in BSS since it is difficult to include it to the
parameter estimation, and the spatial aliasing makes the delays
unambiguous at high frequencies.

The proposed DoA-based SCM model can be used to unify
the STFT bin dependencies when estimating the source spatial
responses, and to avoid optimizing the model parameters
individually for each frequency. The difference of the proposed
source separation algorithm to beamforming is that the CNMF
optimization algorithm is set to fit a collection of predefined
DoA kernels (beamforming kernels) to the observed data and
that way to find the most likely DoA of the source in question.
By defining the SCM model using only direction-dependent
parameters, we can utilize the time delay dependency of
the spatial covariance values across frequencies in a CNMF
algorithm framework for estimating the source magnitude and
spatial properties.

A. Time-difference of Arrival

A specific wavefront-arrival direction corresponds to a set of
TDoA values between each microphone pair. The TDoA val-
ues depend on the geometry of the array and the relationship is
shortly explained in the following. We first consider the array
illustrated in Figure 1, where one pair of microphones n and
m lie on the xy-plane at locations n and m, respectively. A
unit vector k, is pointing towards the look direction from the
geometrical center p of the array. For simplicity, we define
that the geometrical center of the array is in the origin of
the Cartesian coordinate system, i.e. p = [0,0,0]%. The look
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Fig. 1. Example array geometry consisting of two microphones m and n as
seen from above, source s azimuth angle given as 6.

directions can be denoted in the spherical coordinate system
using elevation ¢ € [0, 7], azimuth ¢ € [0,27] and fixed
radius of » = 1. We define ranges of —90° < # < 90° and
0° < ¢ < 360° for elevation and azimuth, respectively.
Assuming the far field model, i.e. the wavefront being planar
when arriving to the array, we can write the TDoA of the
microphone n with respect to array center point p in seconds

as
~kT'(n — ~kn
ralley) = o) K (©)
v (%

where v is the speed of sound. Each look directiono=1...0
translates to a TDoA for each microphone, which further
translates into a phase difference linearly proportional to the
frequency in the STFT domain. The TDoA in Equation (6)
equals to frequency-domain phase difference of —j27 f7,,(k,),
where f is the frequency in Hertz. The phase difference is
unambiguous only up to the spatial aliasing frequency f = o,
where d is the smallest distance between any two microphones
in the array.

We define TDoA between a microphone pair (n,m) as
Tnm(Ko) = Tn(ko) — Tm(ko). The phase differences corre-
sponding to the TDoA 7,,,,(k,) between every microphone
par n = 1...M and m = 1...M are represented as a
matrix W;, € CM*M for each each STFT frequency index
i = 1...1 and each look direction o = 1...0. We define
these to be DoA kernel matrices which are obtained as

[Wiolnm = exp (427 fiTum(ko)), fi=(i—1)Fs/N (7)

where the F denotes sampling frequency and N is the STFT
length.

B. Superposition of DoA Kernels

Assuming a point source and an anechoic capturing con-
dition, a single DoA kernel would be enough to describe the
SCM of a source. However, because of echoes and diffractions
from surfaces and objects, a more complex model is needed.
For SCM modeling, we propose to use a weighted linear
combination of DoA kernels that uniformly sample a surface
of the unit sphere around the receiving array. The gain of
each DoA kernel describe the signal power emanating from
each sampled look direction around the array.

We define a set of fixed look directions vectors k, that
spatially sample the surface of a unit sphere set around the

Fig. 2. Look direction vectors approximating uniform sampling of the unit
sphere around the array.

geometrical center p of the array. An example set of the look
direction vectors is illustrated in Figure 2. DoA kernels for
each look direction o = 1...0O at each frequency i =1...1
are denoted using W, € CMx*M gnd are calculated according
to Equation (7). Entries of kernel matrices [W;,]nm denote a
TDoA in terms of phase difference expressed as a complex
number for a microphone pair (n, m).

In Section II-C the source spatial image was defined as
Six = H;i 8k, consisting of the magnitudes §;;; and the
mixing defined by the source SCM H,;. The proposed SCM
model equals the weighted superposition of multiple DoA
kernels and is given as

]
Hi, = Y Wio2ko, ®)
o=1

where 2y, are the direction weights corresponding to the DoA
kernels into each look direction.

We want to estimate H;; in such a way that it corresponds
to a single acoustical source over all the STFT frequencies.
This is directly achieved in the proposed SCM model by
estimating the spatial weights 2, which are independent of
frequency. The definition of the DoA kernels in Equation (7)
directly takes into account the frequency dependencies that a
certain source DoA causes through a single TDoA. The spatial
weights zy, are restricted to be non-negative and they can
be estimated in the CNMF framework with a corresponding
magnitude model for §;;;, as will be shown in Section IV. An
example of the estimated SCM model weights zy, for three
sources are illustrated in Figure 3. The illustration depicts
the weighted look direction vectors denoted by zx.k, and
the result is projected on to the xy-plane. The experimental
conditions for obtaining Figure 3 is described in Section VI-A.

IV. COMPLEX-VALUED NON-NEGATIVE MATRIX
FACTORIZATION WITH THE PROPOSED SCM MODEL

In this section we present a BSS algorithm that combines
an NMF-based source magnitude model and the DoA kernel
based SCM model which together produce a complex valued
NMF (CNMF) model. The proposed BSS algorithm is able to
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Fig. 3. TIllustration of the weighted look direction vectors zp,k, of the

estimated SCM model projected on to the xy-plane. Sources are at 0, 90
and 180 degrees in azimuth, pictured above the array, and azimuth increasing
counterclockwise.

jointly estimate source SCMs across frequencies by using the
proposed SCM model and its parameterization of source spa-
tial properties by the direction weights, which are independent
of frequency.

The block diagram of the proposed algorithm is given
in Figure 4. First the STFT is calculated from the time
domain microphone array input and the SCM of each time-
frequency point is calculated as defined in Section II-B.
The SCM representation serves as an input for the CNMF
algorithm. Prior to model parameter estimation a set of DoA
kernels with fixed look directions are constructed as defined
in Section III-A. The DoA kernels are set to sample the
spatial space approximately uniformly around the array. The
CNMF algorithm with the proposed DoA-based SCM model
is applied to estimate the source parameters, i.e. magnitude
spectra and DoA kernel direction weights. In the separation
stage the sources are reconstructed from the mixture signal by
clustering the components obtained by the CNMF to construct
a magnitude mask which is used for obtaining Wiener filter
estimates of the source spatial images.

Array
Mixture

STFT

y
Spatial
Covariance

Matrices

\ 4
CNMF
with
DoA Kernels

!

Separation
and o
Reconstruction

DoA Kernel
Design

A 4

Reconstructed
Sources

Fig. 4. Block diagram of the proposed BSS system.

A. CNMF Model for SCM Observations

The proposed spatial model consist of a NMF magnitude
model [13], [14] for the source magnitude spectra denoted by
Six and the DoA kernel based SCM for denoting the spatial
position of the source. In practice, several NMF components
are used for representing one actual acoustic sound source,
but for the algorithm derivation we define that one NMF
component represents one sound source. Later in source signal
reconstruction we will cluster the NMF components based on
their estimated direction weights zg,.

The model for SCM observations is obtained by replacing
H,;, in Equation (5) by the proposed SCM model defined in
Equation (8) to get

K K O
i~ Xy Z H;p5:, = Z ZWiozko§iz1c- 9
k=1 k=1o0=1
Source magnitudes $§;;; are to be obtained by the NMF esti-
mation framework. A rank-1 NMF model for the magnitude

spectrogram of a single source k is defined as

Sik = tikUki,  Tik, Vg > 0, (10)

where column vector t.;, contains the spectrum of the source,
and the corresponding row vy represents its gain in each STFT
frame. The NMF magnitude model with a fixed source spec-
trum is extremely simplified and can only model parts of real
acoustic sources, but serves as an intermediate representation
for the spatial parameter estimation.

Substituting the NMF model (10) into the SCM model (9)
and rearranging the parameters gives us the whole CNMF

model
Z Z Wzozko ikVkl-

k=1 o=1

X, ~ X, (11)

Additionally, the CNMF model can be given using the source
SCMs H;;, which equals to the model

K
X =Y Hitirvu.
k=1

(12)

Comparing the models defined in Equations (11) and (12), we
observe that the real-valued entries in the diagonal of Hg
are responsible for modeling the absolute source magnitude
level with respect to each channel, and the off-diagonal values
model the cross-channel magnitude and phase difference prop-
erties. This further means that the magnitudes |W;,| combined
with the non-negative weights zp, determine the magnitude
difference between the channels.

The DoA kernels generated using Equation (7) have unit
magnitudes and for modeling the magnitude differences be-
tween each channel, the algorithm needs to estimate and
update magnitudes of W;,, accordingly. This is due to the fact
that the sources have gain differences with respect to each mi-
crophone. The gain differences are caused by the microphones
being at different distance from the source and the possible
acoustical shade of the array casing which produces direction-
dependent gain even if omnidirectional microphones are used.
While the SCM magnitudes are subject to updating, we keep
the original DoA kernel phase difference the same, i.e. the
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original time delay caused by certain direction of the source. In
this way we retain the frequency dependency when modeling
the phase difference by estimating the frequency independent
spatial weights 2.

B. The CNMF Algorithm

NMF algorithms typically use multiplicative updates it-
eratively in order to minimize a given cost function, for
example the squared Euclidean distance or the Kullback-
Leibler divergence [12]. In this paper we present a method
for obtaining the algorithm updates via auxiliary functions and
EM-algorithm structure similarly as presented in [19].

1) CNMF Cost Function: We aim to minimize the squared
Frobenius norm between the observed X;; and the model Xil
summed over frequency and time indices, which is defined as

I L X
D IXa-X

i=1 [=1

all%- (13)

In [19] the statistical interpretation of the CNMF model error
(13) is shown to be equivalent to the negative log-likelihood
(up to terms independent of the model parameters)

I L K O
LOW.Z, T, V)= Y |IXa— > Y Wiozkotinvrll7-

i=1 I=1 k=1o0=1
(14)

We use this result in deriving the algorithm update rules for
optimization of the model parameters § = {W,Z, T, V}. We
introduce latent components C;;1, given as

Xi—>  Wiozkotikvr), (15)
k,o

Ciiko = WioZkotikUki+Titko(

where

Zkotik Uk

Titho = — Ty = E ZkolikVki- (16)
il

The parameters satisfy Zk oTilko = 1 and 7y, > 0. The
latent components obey

Z Z Ctlko - le

=1o0=1

a7)

Based on techniques introduced in [19] the negative log-
likelihood (14) can be minimized using an auxiliary function
incorporating the latent components. The auxiliary function is
defined as

E*(WZTVC):
L K O

SYYY L

i=1 =1 k=1 o0=1

Wiozkotinvii| |5 (18)

HCzlko -

According to [19], the likelihood function (18) can be used
for an indirect optimization of (14). This is due to the auxiliary
function having the properties

L(W,Z,T,V) < L(W,Z,T,V,C)
L(W,Z,T, V) = m(%nﬁJr(W, Z,T,V,C),

19)
(20)

which indicate that minimizing £* with respect to W, Z, T
and V corresponds to the minimization of £ which yields
optimization of the model parameters with respect to (13).
Substituting the definition of C;;;, in Equation (15) to Equa-
tion (18) makes it equal to original likelihood (14) and allows
indirect optimization of the whole model using the auxiliary
variables.

2) Algorithm Updates for the Non-negative Parameters:
The derivation of the algorithm updates is achieved via partial
derivation of (18) with respect to each model parameter and
setting the derivative to zero. The derivations are given in
Appendix A. For non-negative model parameters zj,, t;x and
vg1, the following update rules are obtained:

i ti Vg tr Ei Wio
zko<—zko[1+z’l v tr (B )} @1
Zi,l Lk VK1 T4
o ZkoUkitT (B Wi,
Lik < tik {1 + 2t ( - )} (22)
> 10 koVkiTil
Zi o Zkotiktr(EilWio)
Vit — Ukt [1 = i } 23)
Zi,o ZkolikTil

where E; = X;; — Zk R
model.

3) Algorithm Updates for the SCM Model Parameters:
The optimization of the DoA kernels needs a different update
scheme, since we desire to retain the phase differences of the
predefined kernels but update the relative magnitude differ-
ences. For estimation of the DoA kernel magnitudes we first
derive the update for complex W,,, but restrict the update to
its magnitude.

The update rule for W, via partial derivation is given in
Appendix A and results to multiplicative update

W.iozkotinUr 18 the error of the

Wi, Wzo[z ZhotikOhidis + Y ZkotikvklEil} L)
Lk Lk

where W, is a preliminary update with a modified phase
difference compared to the actual desired update of magnitudes
of Wio-

In particular at the highest frequencies the update (24)
may produce matrices that are not positive semidefinite. For
example, negative values at the diagonal equal to a subtractive
magnitude model even though the model assumes purely
additive sources. Based on [19] to enforce posmve semidefinite
matrices an eigenvalue decomposition W,, = VDV¥ j
applied and eigencomponents with negative eigenvalues are
set to zero, denoted as D. The positive semidefinite matrices
are obtained as

W,, + VDV, (25)

For the final update of actual DoA kernels W,, we apply
Wi ¢ [Wio| exp(i arg(Wio)), (26)

which only updates the magnitude part of the DoA kernels
and thus the magnitudes of the SCMs.
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4) Parameter Scaling: We constrain the scale of DoA
kernels as

[[Wiollr =1, 27)
which is achieved by applying
Wio
Wip (28)

after evaluating the final stage of the update given in Equation
(26). The scaling ensures that the SCM part is only respon-
sible of modeling phase differences and relative magnitude
differences between the input channels (diagonal values).

Additionally we introduce following constraints for numer-
ical stability:

9 L
=1, Y v =1 (29)
o=1 1=1
The scaling of 2y, to unity /2-norm along DoA kernel direction
dimension is compensated by multiplying ¢;; by the same
norm. Similarly, enforcing unity /2-norm to vy; is compensated
by scaling of ¢;;. The scaling of the model parameters is
achieved by applying

L
R 1/2 Ukl X
ar = () vi) 2 o i tik < tiwar,  (30)
=1
© 1/2 z
. ro .
b= () _2%0) " ko < 3. tik < tibr,  (31)

o=1 k
after updates of vy; and zy,, respectively.
5) Algorithm Implementation: The proposed CNMF algo-
rithm consists of the following steps.
1) Initialize z,, t;; and vg; with random values uniformly
distributed between zero and one.
2) Initialize W, according to (7) and apply scaling (28).
3) Recalculate magnitude model Z;; according to (16).
4) Update t¢;; according to (22).
5) Recalculate magnitude model &;; according to (16).
6) Update vy; according to (23).
7) Scale vy; to unity [2-norm and compensate by rescaling
tir as specified in (30).
8) Recalculate magnitude model Z;; according to (16).
9) Update zj, according to (21).
10) Scale z, to {?>-norm and compensate by rescaling t;;,
as specified in (31).
11) Recalculate magnitude model #;; according to (16).
12) Calculate W,, according to (24) and enforce it to be
positive semidefinite by (25).

13) Update W, according to (26) and apply scaling (28).
The algorithm is implemented by repeating steps 3-13 for
a fixed amount of iterations or until the parameter updates
converge.

V. SOURCE RECONSTRUCTION AND DIRECTION WEIGHTS
CLUSTERING

The separation of sources corresponding to whole physical
entities requires clustering the CNMF components that were
earlier interpreted as individual sources. The components span
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Fig. 5. Look direction vectors weighted by the estimated SCM model
parameters for several CNMF components. Vectors denoted by zp.k, are
projected on to the xy-plane and illustrated as seen above the array. Experi-
mental conditions are described in Section VI-A.

over frequency, but due to their fixed spectrum over time
they can only model simple audio objects which need to
be clustered based on their spatial orientation. This can be
compared to the clustering of ICA components consisting
of estimates for single frequency bin, whereas the CNMF
components are audio objects that are sematically at a higher
level.

CNMF components originating from the same acoustic
source share similar spatial covariance properties determined
by their spatial weights zj,. This is illustrated in Figure 5
which depicts SCM model direction weights for several CNMF
components showing distinct segmentation to sources at three
separate directions. Based on the spatial weight similarity, a
separate clustering algorithm can be used to associate CNMF
components to the acoustic sources.

We propose to use k-means clustering on the spatial weights
Zko- Bach z . acts as a feature vector and we apply k-means
clustering with the cluster count being equal to the number
of acoustic sound sources which is defined by the user of
the algorithm. We now define the acoustic source index as
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Weight Amplitude

Source index
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Fig. 6. Direction weights z, for sources 1, 2 and 3 determined by proposed
clustering are illustrated in separated rows. The weights zj, for multiple
components k overlaid in each row have a similar peak structure determined
by the spatial position of the source.

g=1...Q. As a result from clustering we get binary cluster
decision by, denoting component k belonging to a source q.
An example of direction weights associated to three different
sources are illustrated in Figure 6 and direction weights for
multiple components & associated to each source are plotted
on separate rows. The weights in Figure 6 corresponds to the
ones illustrated in Figure 5 projected to the xy-plane.

The CNMF magnitude model for the magnitude spectro-
gram of an acoustic source ¢ is defined as

Silqg = Z bk Zkotik Uk (32)
ko
The reconstruction of sources y;;, as seen by the array, i.e.
convolved with their spatial impulse response, based on (32)
is given as
> ko bak Zrotik Vi
Yiig = Xl )
> ko DakZhotik Vi

(33)

The time-domain signals are obtained by inverse FFT and
frames are combined by weighted overlap-add.

Any other clustering algorithm or CNMF component to
source linking strategy can be used to estimate either a binary
or a soft decision b,,. We have chosen to use the k-means
clustering using spatial weights as features to demonstrate the
DoA analysis performance of the proposed SCM model. Other
features extracted from the CNMF component parameters such
as spectral similarity and gain behavior over time can be
used in parallel for associating the CNMF components to
the sources to improve the clustering decision [35], [36]. In
Section VI-D we study the performance of the chosen k-means
clustering strategy against oracle clustering based on known
source locations.

VI. SIMULATIONS AND SOURCE SEPARATION
EVALUATION

In this section we evaluate the source separation perfor-
mance of the proposed algorithm. The evaluation consist of
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Fig. 7. Capturing room layout, and array and source positions used for
datasets one and two.
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Fig. 8. Simulated room layout for dataset three, microphones illustrated by
gray circles and sources by red circles.

a comparison against conventional BSS methods suitable for
the case of small microphone array captures with a reason-
able amount of reverberation. The separation performance
is determined by objective measures, the signal-to-distortion
ratio (SDR), image-to-spatial distortion ratio (ISR), signal-
to-interference ratio (SIR), and signal-to-artefact ratio (SAR).
Additionally, perceptually motivated scores proposed in [32]
are reported.

A. Evaluation Datasets

For evaluation purposes, a set of room impulse responses
(RIR) were measured in a regular meeting room by using
an array consisting of four Sennheiser MKE2 omnidirectional
condensator microphones inside a metal casing similar to a
regular hand-held device. The room dimensions were 7.95 m
x 4.90 m x 3.25 m and the reverberation time averaged over
all the impulse responses from all locations was Tgo = 350
ms. For obtaining the RIRs, an MLS sequence of order 18
was played using a Genelec 1029 monitor loudspeaker and
captured using the array. The room layout and angles of the
speaker with respect to the array are given in Figure 7. The
angles of the speakers were 0, 45, 90, 135, 180 or 305 degrees,
the height of the speaker was set to 1.40 m and the array was
placed on a tripod with elevation of 1.08 m. The distance
of the loudspeaker to the array was approximately 1.50 m.
The microphone locations are given in Table I and the array
geometry with a reference axis is illustrated in Figure 9. The
spatial aliasing frequency for the given array is 1563 Hz.
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Mic | x (mm) y (mm) z (mm)
1 0 -46 6
2 =22 -8 6
3 22 -8 6
4 0 61 -18
TABLE I

GEOMETRY OF THE ARRAY USED FOR EVALUATION.

-0.05~ 005

x[m]

Fig. 9. Array geometry and reference axis.

The test material was generated by convolving the source-
to-array RIRs with varying anechoic source material. The
material consist of samples of male and female speech, pop
music and various everyday noise sources as listed in Tables
IT and III. The length of the signals is 10 seconds and original
sampling frequency of 48 kHz was downsampled to Fy = 24
kHz to reduce the computational complexity. The produced
spatial images of sources were summed to obtain an array
mixture containing specific sources at specific angles.

Datasets with two and three simultaneous sources were
generated, referred as dataset one and two respectively. The
datasets consist of cases which refer to combination of dif-
ferent types of sources which are described in Tables II and
III. For all cases a set of angles were used which are given
in Table IV. The case and angle combinations result to 48
different mixture signals for two simultaneous sources and
42 different mixture signals for three simultaneous sources.
It results to eight and seven minutes of evaluation material for
datasets one and two, respectively.

Additionally, a simulated room with dimensions of 7 m x 4
m x 3 m was generated using a room simulator based on the
source-image method [37]. The simulated room was used to
study separation of two sources as the function of the angular
spacing between the sources, starting from 15° spacing to 90°
with 15° increments. The array was rotated 5° to prevent any
special geometry of it being parallel to the walls, and the first
source is located at 8° with respect to the reference axis of
the array. Distance of sources to the array center is 3 m. The
source types used were the same as given in Table II and the
corresponding angles are reported in Table IV. The simulated
room is illustrated in Figure 8. The target reverberation time
was set to 300 ms and the default reflection coefficients for
surfaces were used. This test material is referred to as dataset
three.

B. Evaluated Methods and Algorithm Parameters

The evaluated algorithms are the proposed CNMF with
the DoA kernel based SCM model, the baseline CNMF with

Case Source 1 Source 2
1 music 1 music 2
2 male speech 1 power drill
3 male speech 2 hairdryer
4 male speech 3 music 1
5 male speech 1 male speech 2
6 male speech 3 female speech 1
7 female speech 1 movie trailer
8 male speech 2 vacuum cleaner

TABLE I
DESCRIPTION OF SOURCES IN EACH CASE IN DATASET WITH TWO
SIMULTANEOUS SOURCES.

Case Source 1 Source 2 Source 3
1 music 1 music 2 music 3
2 male speech 1 music 1 movie trailer
3 male speech 1 male speech 3 power drill
4 male speech 2 | female speech 1 hairdryer
5 male speech 2 male speech 3 music 1
6 male speech 1 male speech 2 female speech 1
7 male speech 2 male speech 3 vacuum cleaner

TABLE III
DESCRIPTION OF SOURCES IN EACH CASE IN DATASET WITH THREE
SIMULTANEOUS SOURCES.

unconstrained SCM estimation [19], fullrank SCM estimation
[34], ICA variant 1 with magnitude envelope permutation
alignment [29] and ICA variant 2 with TDoA permuation
alignment [8]. The baseline CNMF was included in the
evaluated algorithms to prove the advantages of the proposed
DoA kernel based SCM model over the unconstrained SCM
model. The ICA methods were chosen to provide comparison
to a well known and established BSS techniques.

The results for fullrank SCM estimation [34] are only
reported for two sources case. The reference implementation
requiring inverting the estimated source covariance matrices
which in case of low energy at higher frequencies may become
close to singluar and eventually becoming not invertible and
preventing the algorithm to proceed from such a state. In the
case of three sources dataset, majority of the test samples could
not be processed due to the above issue. Additionally, for the
same reason one test signal is omitted from the average scores
of the fullrank SCM estimation method in two sources dataset.

The proposed separation method only requires three pa-
rameters set by the user: the window length, the number
of NMF components and the number of iterations for the
algorithm updates. The parameters were set to similar values
as used in related works [18], [19], and are as follows. The
window length of the short-time Fourier transform was set to

Dataset 1 Dataset 2 Dataset 3
Angles 1 2 1 2 3 1 2
1 45° 90° 0° 45° 90° 8°  23°
2 135°  180° 45° 90° 135° 8°  38°
3 0° 90° 0° 45° 305° 8°  53°
4 45° 135° 0° 90° 180° 8°  68°
5 0° 135° 0° 135°  180° 8°  83°
6 45° 180° 45°  135°  305° 8°  98°
TABLE IV

ANGLE COMBINATIONS FOR BOTH DATASETS GIVEN IN DEGREES.
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N = 2048 with 50% window overlap, the window function
used was the square root of Hanning window. The number of
NMF components for all the CNMF based algorithms was set
to K = 60 and the algorithms were run for 300 iterations. The
true number of sources was given to the methods. ICA and
fullrank SCM estimation methods use same STFT analysis
parameters given above. For description of the ICA based
separation and its method-specific parameters, please refer to
[29]. Fullrank SCM estimation was run for 20 iterations.

The look direction vectors for the proposed CNMF are
illustrated in Figure 2. It consists of 110 beam directions which
sample the unit sphere surface around the array approximately
uniformly. The lateral resolution at zero elevation, i.e. at
the xy-plane of the array, is 10 degrees, and the different
elevations are at 22.5 degrees spacing. The azimuth resolution
is decreased close to the poles of the unit sphere.

C. Separation Metrics

The evaluation is done by comparing each separated signal
to the spatial images of the original sources and using objec-
tive measures by BSS Eval toolbox [30], [31]. Additionally,
perceptually motivated scores proposed in [32] are reported.

The discussion of the separation performance is mainly
based on signal-to-distortion ratio (SDR) and signal to inter-
ference ratio (SIR). The SDR determines how much of the
original signal can be explained by the reconstructed source
estimates. It is known to emphasize frequency bins with high
energy and thus is somewhat dominated by low frequency
content especially in case of music samples. The SDR is,
however, an established evaluation technique for separation
quality comparison. The interference metric SIR determines
the amount of cross-talk, and is therefore a good measure of
how well each algorithm can separate sources.

Other metrics, SAR and ISR, measure the amount of addi-
tional artefacts produced by the separation, and the accuracy
of the spatial image of the reconstructed signals, i.e. how well
the spatial position of the reconstructed sources is preserved
after reconstruction. The used perceptual metrics are overall
perceptual score (OPS), target-related perceptual score (TPS),
Interference-related Perceptual Score (IPS) and artifact-related
perceptual score (APS) [32].

D. Overall Results

The separation scores averaged over all test samples are
given in the Tables V and VI for datasets one and two,
respectively. The last row labeled as “mixture” contains the
separation metrics evaluated without processing, i.e. calculated
for the mixture signal as input for the evaluation toolbox. The
results show that the proposed method achieves better average
SDR and SIR over the all the compared methods. In the three
source dataset the overall separation scores of all the tested
methods are fairly low which makes the separation improve-
ment of the proposed method less evident as compared to two
sources separation. In the case of three simultaneous sources
the SIR performance of the baseline CNMF goes below the
performance of ICA separation while the proposed method
maintains a better separation with respect to the SIR score.

The proposed method also performs best in reconstructing the
spatial image of the sources in both test sets.

The score regarding added artefacts to the separated signals
measured by the SAR score are lower with the proposed
method when compared to the baseline CNMF. This may be
attributed to the binary clustering of the proposed method.
Faults in the clustering decisions may introduce unwanted
rapid changes in the spectrum of the sources, which produces
artefacts when reconstructed using the phase of the mixture
signal. The baseline CNMF allows soft component-to-source
decisions which prevents the added artefacts by smoother
spectral discrimination between sources but adds unwanted
crosstalk between them. Examples of separated signals from
all the evaluated methods are provided at http://www.cs.tut.fi/
sgn/arg/nikunen/demo/TASLP2013/.

Method SDR [dB] SIR [dB] SAR[dB] ISR [dB]
CNMF proposed 4.59 7.71 10.25 10.29
CNMF baseline 3.57 4.46 11.97 8.31

ICA variant 1 2.86 5.93 9.20 7.87
ICA variant 2 2.03 447 8.20 6.95
Fullrank SCM! 3.24 6.06 9.19 8.5

Mixture 0.00 0.05 256.76 23.79

Method OPS TPS IPS APS
CNMF proposed 26.44 45.70 31.15 54.69
CNMF baseline 16.36 37.13 17.36 64.01

ICA variant 1 22.81 46.63 29.99 53.84

ICA variant 2 23.81 46.22 27.83 52.66

Fullrank SCM! 25.17 48.66 33.67 56.86
TABLE V

SEPARATION METRICS FOR DATASET WITH TWO SOURCES.

Method SDR [dB] SIR [dB] SAR [dB] ISR [dB]
CNMF proposed 2.06 4.59 7.92 6.37
CNMF baseline 1.65 -0.10 9.69 4.44

ICA variant 1 1.38 3.14 6.39 5.88
ICA variant 2 0.51 1.33 5.59 4.99

Mixture -3.50 -3.43 251.75 19.62

Method OPS TPS IPS APS
CNMF proposed 21.00 28.51 29.52 40.04
CNMF baseline 17.05 19.64 9.63 45.10

ICA variant 1 26.78 49.03 37.49 43.79
ICA variant 2 23.03 44.25 33.95 42.68
TABLE VI

SEPARATION METRICS FOR DATASET WITH THREE SOURCES.

The separation quality measured by the SDR for different
cases are reported in Figures 10 and 11 for dataset one and
two, respectively. With two simultaneous sources, the proposed
method exceeds the baseline CNMF and ICA based separation
in most cases. Only in one case the proposed method performs
worse than the baseline in terms of the SDR. For very
difficult broad-band noise produced by vacuum cleaner, all
the tested methods fail to produce adequate separation of the
sources. For the three source case, the performance of the
evaluated methods have more deviation. The proposed method
with simple k-means clustering for determining the NMF
component to sources mapping does not produce as constant
separation performance as in the case of only two simultaneous

'One test signal omitted from the averaging, see Section VI-B.
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sources. All the methods fail to provide meaningful separation
except in cases 3 and 5.

The overall perceptual score of the proposed method in the
case of dataset one indicate the best performance among the
tested methods. However, with three simultaneous sources the
ICA variant 1 produces better perceptual scores. This can be
due to the fact that for most of the cases all the tested methods
fail to separate the sources but the reconstruction of sources
with ICA based separation are pleasant sounding despite of
high amount of crosstalk between the sources. The proposed
method in case of faulty component-to-source clustering deci-
sion might produce rapid changes in the spectrum which may
decrease the perceptual quality and associated scores.

The SDRs for dataset three for the proposed CNMF and
baseline CNMF are illustrated in Figure 12 for different
angles for the sources. The results clearly indicate that the
proposed method benefits from the increased angle between
the sources. With the two closest spatial separation of 15
and 30 degrees both the methods produce similar separation
with minor advantage for the proposed method. The separation
score difference increases when the angle between the sources
is increased and starting from 45 degrees the proposed method
produces significant improvement for the SDR score over the
baseline method.

For performance analysis of the k-means clustering of
estimated source spatial weights zj,, a comparison to oracle
clustering is provided. The oracle clustering is implemented
by searching for the largest value of z, for each component %
and comparing the azimuth of the found index o to the known
source angular positions, determined by their azimuth. The
component is assigned to the closest known source azimuth.
Using the described oracle clustering we only rely on the
spatial information of the NMF components but eliminate the
effect of possibly faults made by the k-means clustering. The
average SDR with oracle clustering are 5.25 dB and 2.94 dB
for datasets one and two, respectively. The increase from the
k-means clustering are 0.66 dB and 0.88 dB which indicate
that the robustness of the k-means clustering is acceptable.
Additionally, it can be stated that the spatial weights of the
proposed contain the information of the real source spatial
positions.

Average SDR
8

- CNMF proposed
[ ]1CNMF baseline

0 |ﬂ|ﬂ||ﬂ

Angle between sources

m

B
>

l\)

Fig. 12.  Averaged SDR for different angle between sources in dataset three
with simulated room.

VII. DISCUSSION AND FUTURE WORK

For the evaluation of the proposed algorithm, a method
proposed in [18] that use SCM estimation was also considered.
However, it did not prove to be suitable for the given test case

according to the separation results and thus no exact separation
measures are reported. The lack of any oracle information of
the sources and their mixing to give the algorithm a good
initial starting point is arguably the reason for low separation
performance. Regarding the fullrank SCM estimation [34] of
which only partial separation results were reported, issues in
solving the permutation ambiguity originating from frequency-
wise processing, and the algorithm producing singular SCM
estimates for high frequencies were identified as the reason
for low separation scores. This indicates the difficulty of the
tested case and the efficiency and robustness of the proposed
algorithm in analyzing the source spatial covariance.

The future work related to improving the proposed separa-
tion framework includes investigating better clustering strate-
gies based on the estimated SCM model direction weights. The
k-means clustering does not take into account the geometrical
interpretation of the direction weights but solely treats them as
feature vectors. Also the clustering decision could be included
in the CNMF parameter estimation framework as in done in
[19], [21].

In the development of the proposed SCM model, the com-
putational cost of the model was not considered as a design
parameter and only good separation performance was sought
after. Regarding the computational cost of the model, the
number of DoA kernels used for the SCM model increases the
computational complexity compared to for example [19]. The
average time for performing one iteration with the proposed
method takes approximately 9.2 times longer when compared
to [19]. The result is obtained with a desktop computer
equipped with Intel core2duo E8400 3GHz processor and
no special optimization of codes regarding computational
complexity for either of the algorithms was made. The compu-
tational complexity of the proposed method is approximately
linearly proportional to the number of DoA kernels. For
example, halving the number of DoA kernels from the used
110 directions to 55 directions decreases the factor to 4.8,
when compared to [19]. In general all the CNMF algorithms
based on SCM estimation are computationally heavy as they
require a high number of iterations in order to converge to a
feasible solution.

Reconstruction of the 3D spatial sound field recorded by an
irregular array such as the one used in the evaluation requires
not only the separation of the sources but information regard-
ing the spatial orientation of the sources. Conventional sound
source separation methods do not provide such information,
whereas the proposed algorithm can be directly utilized in
reconstruction of the spatial sound field the array records.
Other soundfield reconstruction methods [38], [39] do not
require separation of the sources but utilize more specialized
array constellations such as B-format arrays or large linear
arrays. For 3D sound field synthesis with the proposed method,
the individual CNMF components of the model can be re-
constructed without the clustering introduced in Section V,
and their direction and spatial spread is determined by the
direction weights of the SCM model. Each CNMF component
could be synthesized individually and panned and positioned
to their analyzed spatial location for example by VBAP [40]
or binaural synthesis by HRTF filtering.
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Fig. 10. Averaged SDR for each case for the dataset with two sources.
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Fig. 11. Averaged SDR for each case for the dataset with three sources.

VIII. CONCLUSION

In this paper we have proposed a direction of arrival (DoA)
based spatial covariance matrix (SCM) model for the purpose
of spatial sound source separation using complex-valued non-
negative matrix factorization (CNMF). The proposed parame-
terization of the source SCM by direction-dependent weights
allows deriving parameters for the SCM model simultaneously
over all frequencies. This improves the overall converge to a
spatially coherent solution and mitigates the effect of spatial
aliasing which causes problems to many conventional audio
separation algorithms. We have shown the separation perfor-
mance of the proposed algorithm to exceed best performing
conventional methods with various types of audio recorded
by a small microphone array. The proposed method is a novel
approach for spatial parameter estimation in frequency-domain
blind source separation, which makes it interesting concept to
be utilized in different separation model structures.

APPENDIX A
DERIVATION OF THE CNMF UPDATE RULES

For the estimation of zp,,t;x and vy, we redefine the
likelihood function (18) by expanding the Frobenius form by
using the equality ||A||> = tr(A¥ A) into the form

1

LY )=y - [[Citkol |7 + [[Wiol 727,17 v
il ko ilko

— 220tk Vkitr (Citeo Wio)].  (34)

Based on the scaling introduced in (28) the second term
simplifies to 27t v7,.
The partial derivatives of (34) with respect to parameters

case 5 case 6 case 7

Zko, tir, and vy; are given as

(6 2
9L7(6) _ [erot2 02 — tigvpatr(Cgo Wio)] - (35)
02ko — Tilko
oL+ () 2

T %: p— [Zhotinviy — 2zkoUkitr(Citko Wio)] (36)
9L () 2 22

= z oti Vgl — 2 oti tr Ci oWio ) (37)

To Z.Zo:mko[ kotikVkt — Zkotiktr(Cik )]

where § = {W,Z, T, V,C}. Setting the derivatives to zero,
substituting 7,5, with its definition in Equation (16), and
solving the equations with respect to the parameter to be
updated, results to update rules

> i1 Zutr(Ciko Wio)

Zko - (38)
g > i tikvi®a
Zatr(Ciiko Wio
- 21,0 Zittr( tko ) 39)
> 1.0 ZkoVkiil
o Zatr(Ciko Wio
Vgl < ZZ’O l ( " ) (40)

> i ZhotikTil

Above updates can be brought into a multiplicative form
(Equations (21) - (23)) by substituting the term in the nu-
merators of the above equations as
Titr(CitkoWio) = 2rotinvii(Ta + tr(EaWio))  (41)
and applying some trivial manipulations of the equations.
The update rule for the spatial covariance matrices W, is

obtained via partial derivation of the negative log-likelihood
(18) with respect to W, which is

aLt(o) 2
Wiy

(Citko — WioZkotirtVki) (— ZkolikUki)-

Ik Tilko

(42)
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Setting the above derivative to zero and substituting 7;;,, with
its definition in Equation (16) results in the update

. >k LitCitko

Wi - =——7F— (43)
>k Titzkotik Ukl

Due to the scaling defined in (29) the divisor in the above up-
date can be disregarded. Substituting C;;x, with its definition
(15) the above update can be modified into the multiplicative
update given in (24).
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ABSTRACT

This paper studies multichannel audio separation using non-negative
matrix factorization (NMF) combined with a new model for spatial
covariance matrices (SCM). The proposed model for SCMs is pa-
rameterized by source direction of arrival (DoA) and its parameters
can be optimized to yield a spatially coherent solution over frequen-
cies thus avoiding permutation ambiguity and spatial aliasing. The
model constrains the estimation of SCMs to a set of geometrically
possible solutions. Additionally we present a method for using a pri-
ori DoA information of the sources extracted blindly from the mix-
ture for the initialization of the parameters of the proposed model.
The simulations show that the proposed algorithm exceeds the sepa-
ration quality of existing spatial separation methods.

Index Terms— Spatial sound separation, non-negative matrix
factorization, spatial covariance models

1. INTRODUCTION

Sound source separation has many applications which include for
example signal enhancement for speech recognition [1] and object-
based audio coding [2]. The separation of multichannel audio is usu-
ally based on the estimation of the mixing filter in time or frequency
domain. Along with the underlying mixing, there exists spectral
structure of the sources that can be analyzed from the mixture for ex-
ample by non-negative matrix factorization (NMF). The utilization
of NMF in separation of spatial audio captures in combination with
spatial covariance matrix (SCM) estimation has been studied in [3,
4, 5]. Their benefits over conventional methods such as frequency-
domain independent component analysis (ICA) [6, 7, 8] are the ab-
sence of permutation problem, and the utilization of audio spectro-
gram redundancy in estimating audio objects, i.e. NMF components,
that span over frequency and time. The previous approaches estimate
SCMs separately for each frequency of each source, without placing
any constraints on the SCMs.

The unconstrained estimation of source SCMs causes several
problems. Estimating SCMs separately for each frequency leads to
not only the permutation problem [9], but may also produce solu-
tions that are not spatially coherent. Using the NMF as a source
magnitude model introduces frequency dependency, but sources at
different spatial locations with similar spectral characteristics may
become modeled using a single NMF component. Therefore es-
timating SCMs for NMF components or a group of them still not
guarantee a spatially coherent solution.

In this paper, we introduce a direction of arrival (DoA) based
SCM model for spatial audio separation and use NMF as the source
magnitude model. We propose to model the source SCMs as a

weighted combination of DoA kernels which are derived similarly
to array manifold vectors towards a certain look direction as in the
field of beamforming [10]. A benefit of the model over ones used in
[4, 5, 11] is that the proposed structure of the SCMs is constrained
by geometrically possible source directions by knowing the array
geometry and phase difference caused by each DoA. Additionally,
parameterizing the source SCMs by a set of DoA kernels with fixed
look directions and their weights results in a model that unifies the
phase difference over frequency and thus its parameters are inde-
pendent of frequency. The proposed model ensures that the SCM
for a source is spatially coherent. Furthermore, conventional DoA
analysis tools can be used to initialize its parameters.

This paper proposes an improved version of the system [12] and
differs from it by estimating the SCM model for entire sources in-
stead of individual NMF components. Additionally, we propose a
blind DoA analysis front-end to initialize the SCM model direction
weights. We evaluate the performance of the proposed method com-
pared to the method proposed in [4] and to conventional ICA sepa-
ration [6].

The rest of the paper is organized as follows. In Section 2 we
give the problem definition of spatial source separation and source
mixing in the spatial covariance domain. The proposed DoA kernel
based SCM model is given in Section 3 and a source DoA estimation
front-end for initialization of its parameters is explained in Section 4.
A complex-valued NMF model incorporating the direction of arrival
based SCM model and the optimization of its parameters is presented
in Section 5. Simulations for separation quality evaluation with the
proposed method are presented in Section 6.

2. PROBLEM DEFINITION

We assume convolutive mixing of sources in time domain, which is
approximated by instantaneous mixing in frequency domain. The
mixing model is defined as

P P
X4l R~ Z hipsip = Zyilp (D
p=1 p=1

where x;; = [Zii1, .-, Til M]T is the short-time Fourier transformed
(STFT) mixture signal consisting of M channels, and ¢ = 1...1
and [ = 1...L are the frequency and frame index, respectively.
The source index is denoted by p = 1...P and mixing filters by
hip = [Rip1, - - - , hipar] T . The STFTs of the sources are denoted by
Sitp. Sources convolved with their impulse responses are denoted
by yiip = hipsip.
As proposed in [4] we use magnitude square rooted STFT

i = [Jwan | sign(@an), .. |wan| 2 sign(zaa)]T ()



for the calculation of the spatial covariance matrices X;; = Xu%X1; €
CM*M _With the above definitions the magnitude spectrum of each
channel is at the diagonal of X;;, and the spatial properties of the
mixture are represented by its off-diagonal values, which encode the
magnitude cross correlation and the phase difference between each
microphone pair. The spatial covariances are invariant of the ab-
solute phase, which allows estimation of their spatial properties by
phase difference only.
The mixing model (1) in SCM domain equals to

P
X ~ Z Hipsip, (3)
p=1

where H;,, is the covariance matrix for each source at each frequency
and 3, = (sup%)l/ 2 is the corresponding source magnitude
spectrum. The problem now becomes estimating the source spec-
trum and its covariance matrices in such a way that they correspond
to spatially coherent sources.

3. SPATIAL COVARIANCE MATRIX MODEL

The proposed SCM model for a single source consists of a weighted
sum of DoA kernels that each correspond to a fixed look direction.
Each DoA kernel represent the phase difference of a source at a spe-
cific spatial location and is obtained by knowing the array geometry.
The DoA kernels sample the spatial space around the array approxi-
mately uniformly. By estimating the weights corresponding to each
direction, the estimation of SCMs is constrained to a search space of
geometrically feasible solutions. Additionally, the direction weights
are independent of frequency which further unifies the estimation of
phase difference over frequency.

Assuming direct path propagation, a point source at a specific
spatial location causes a set of TDoAs between all the microphone
pairs, which translates into a phase difference in the frequency do-
main. We introduce a look direction vector k, pointing from the
geometric center of the array to the source determined by azimuth ¢
and elevation 0. By knowing the array geometry, we can calculate
the time delays between every microphone pair n = 1...M and
m = 1...M asource at this direction causes. This is analogous to
finding array steering vectors for a sum-and-delay beamformer.

We denote the time delay between microphone pair (n, m) cor-
responding to look direction k, as

7n. (ko) = (ko (n —m)) /v, @)

where v is the speed of sound and n and m are vectors representing
the locations of microphones n and m, respectively. The time delay
translates into a phase difference that is linearly proportional to fre-
quency f; in Hertz. The spatial covariance matrix of a specific look
direction k,, termed here as the DoA kernel, is given as

(Wiolum = exp (127 fitum (o)), fi = (i— DEL/N, ()
for each STFT frequency index . The sampling frequency is denoted
by Fs and N is the FFT length.

Each DoA kernel W;, € CM*M hag a fixed look direction
index by o = 1... O which sample the spatial space around the ar-
ray approximately uniformly. In case of a point source in anechoic
capturing conditions, a single look direction would be enough to de-
scribe the SCM of the source using Equation (5). However, due to
reverberation and diffraction, a more complex model is needed. We

Source 1 Source 2 Source 3

y-axis
o
N
o
o
o o
< o
o o

-0.05 0 0.05 -01 0 041
x—axis

Fig. 1: Illustration of the weighted look direction vectors zpok, of
the SCM model projected on to the xy-plane. Sources are at 0, 90
and 180 degrees in azimuth.
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Fig. 2: Illustration of the initialization of the spatial search space for
three sources corresponding to Figure 1

propose to use a weighted superposition of DoA kernels, i.e. point
sources, resulting in the proposed SCM model

o
Hip - Z W’Lozp07 (6)
o=1

where zp, are the direction weights corresponding to DoA kernels
into each look direction k.

By estimating the direction weights that are independent of fre-
quency, the proposed model produces an estimate of H,, that is spa-
tially coherent over frequency. We restrict the direction weights zp,
to be non-negative and in Section 5 we introduce an estimation al-
gorithm for them. An example of the direction weights estimated as
described later in Section 5 is illustrated in Figure 1.

4. INITIALIZATION OF DIRECTION WEIGHTS

The parameterization of the source SCM by direction weights 2,
allows initializing the spatial search space for each source based on
DoA analysis of the mixture prior to the model parameter estimation.
Based on estimated DoAs defined by azimuth ¢, for each source
p = 1...P, the direction weights z,, are initialized as follows.
For each source p the direction weights z,, corresponding to look
direction indices o within £25 degrees from the estimated azimuths
(p are set to one and all other direction weights of the source are
set to zero. The spatial window of 50 degrees accounts for possible
errors in the estimation of the source direction in this preprocessing
step. An example of the search space used for obtaining the source
direction weights in Figure 1 is illustrated in Figure 2.

In the simulations we use the following process to obtain the
initial DoA estimates of the sources. Steered response power (SRP)
with phase transform (PHAT) [10] is calculated from the STFT of
the array signal. The SRP is evaluated for ¢ = [—180,180] de-
grees in azimuth with one degree increments and at zero elevation
(6 = 0). The maximum of the SRP function at each time frame is
scaled to one. The resulting SRP function at each time frame rep-
resents the likelihood of a source in each direction. The separation
model assumes stationary sources we can therefore average the SRP
functions over time. Before averaging, the 15 largest values of the



SRP function are taken from each time frame and the rest of the val-
ues are set to zero. Taking only the largest values is equivalent to
considering only likelihoods with high confidence. Local maxima
that are at least 20 degrees apart from each other are searched from
the averaged SRP function. Found locations are set as the initial
source DoA estimates. If the number of the found maxima is higher
than the number of target sources, the largest maxima are chosen.

5. SEPARATION MODEL

In this section we present the model for the NMF-based spatial sound
source separation utilizing the proposed SCM model. Estimation of
the parameters of the model follows the framework proposed origi-
nally in [4].

The separation model consist of a NMF magnitude model for
source spectra §;;, = Zqul bpqtiquqi, Where bpg,tig, v > 0.
Each ¢., represents the magnitude spectrum of an NMF component,
and v, is its gain in each frame. One NMF component models a
single spectrally repetitive event from the mixture and one source is
modeled as a sum of multiple components. Parameter b, represents
a soft decision of NMF component g belonging to source p. The
second part of the separation model comprises the spatial properties
of the sources denoted by H;,,, which are represented using the DoA
kernel based SCM model 200:1 W io2po as defined in Equation (6).
Parameters b, tiq and vq; are constrained to non-negative values.

Placing the above definitions into the SCM mixing model de-
fined in Equation (3) results in

. P Q O
G~ Xy = Z Z ZW 0ZpobpqliqUql. @)

The cost function for the parameter optimization is the squared
Frobenius norm summed over frequency and time as  , , || X —

XZZH% As proposed in [4], finding the optimal parameters 0 =
{W,Z,B, T, V} for model (7) is shown to be equivalent to mini-
mizing the following negative log-likelihood

£re,c)= Y

3,1,p,q,0

Wiozpobpqtiqvqlui“’ (®)

Hcilpqo -

Tilpgo

with latent components obeying >
defined as

Ciipgo = X and being

p,q,0

Cilpqo = Wiozpobpqtiqvql + Tilpqo(X'Ll - g Wiozpobpqtiqvql)-

q,o
©
The parameters 7;;pq0 > 0 are defined as
ZpobpatiqUagl R
Tilpgo = %7 Til = Z Zpobpqtiqvql (10)
il

For optimizing the model parameters multiplicative update
equations are derived. The procedure for solving the update rules
is based on setting the partial derivatives of (8) with respect to each
updated parameter bpq, 2po, tiq, Vg1 and Wy, to zero. Substituting
Ciipgo by its definition (9) and applying simple manipulations, this
leads to the multiplicative updates

0 ZootiaUVatt (Ei i We
bpa ¢ bp [1 + Zz,l,o poliqqitr( Al )] (1)
Zi,l,o ZpoliqUqiTil
. b tl v tr(E; Wio
Zp0  Zpo [1 + Zz,l,q patiqVqtr(Eil )] (12)

Zi,l,q bpqliqUqi it

ZpobpqUqitr (B Wi,
tig < tig [1+ 20 Zpobravartrl f )] (13)
2 1,p,0 ZpobpaVaEit
) Zpobpatiotr (B W
’Uql - Uql [1 + Ez,p,o po¥pqliq ( - o)i|7 (14)
Zi,p,o ZpobpgtiqTil

where E; = X — Z o WioZpobpgtiquq is the error of the
model in each time- frequency point. To ensure numerical stability,
the scale of the parameters are normalized as

=2 zpo ¢ 2po/ia, bpg 4 bpatiy  (15)
o=1

L
=)'
=1

The diagonal entries of W, model the relative source magni-
tude level in each channel, and its off-diagonal values model the
cross-channel magnitude and phase difference. This means that their
unit magnitude as defined by (6) has to be updated in order to model
the magnitude level differences in each channel. The update has to
maintain the original phase difference, i.e. the original delay caused
by a certain look direction.

For updating the magnitudes of W;,, we apply the following
scheme, also used in [12]. An initial update with a modified phase is
calculated as given by the partial derivation of (8)

Vgl < vql/éq, tig < tigCq. (16)

Wio — Wio [ Z bpquotiqvql (lizl + Ezl):| . (]7)

I,p,q

In order to avoid a subtractive model, matrices Wio are forced to be
positive semidefinite, which is achieved as proposed in [4] by cal-
culating an eigenvalue decomposition Wi, = VDV and setting
negatlve eigenvalues to zero. Usmg the modified eigenvalue matrix
D the update is reconstructed as Wi, + VDV The final update
preserving the original DoA kernel phase difference is obtained by

Wio  [Wio| expl(i arg(Wio)). (18)

The overall estimation algorithm is implemented as follows.
Values of z,, are initialized as explained in Section 4 and other
parameters are initialized with positive random numbers. The DoA
kernels are initialized according to Equation (5). The updates (11) -
(14) and (17) - (18) are repeated for a fixed amount of iterations and
the parameter scaling as defined by Equations (15) - (16) are applied
between iterations. The procedure results in optimizing the model
parameters with respect to the squared Frobenius norm between the
observations and the model.

The sources are reconstructed as

Zqo bpgZpotiqUql

)
qu‘o‘ bpg: ZpotiqUq:l

Yilp = Xil (19)
which represents Wiener estimates of the sources as seen by the ar-
ray, i.e. convolved with their spatial impulse responses. The time-
domain signals are obtained by inverse STFT and frames are com-
bined by weighted overlap-add.

6. SIMULATIONS

We evaluate the separation quality of the proposed method using
separation metrics proposed in [13] and compare its performance
against the following methods: NMF with component-wise DoA



Mic|x (mm) y (mm) z (mm)
1 0 -46 6
2 -22 -8 6 £
3 22 -8 6
4 0 61 -18

Table 1: Geometry of the array.
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Fig. 3: Room layout, array (tetragon) and source positions ([S]).

kernel SCM, where the NMF components are grouped to sources
by clustering [12], NMF with unconstrained SCM estimation [4] and
frequency domain ICA with TDoA based permutation alignment [6].

The test material was generated from anechoic samples that
were convolved with room impulse responses (RIR) captured using
an array consisting of four omnidirectional microphones enclosed
in a metal casing of size 30 mm x 60 mm x 1150 mm. Locations of
the microphones are given in Table 1. A Genelec 1029 loudspeaker
was used to capture the RIRs from different directions around the
array. The height of the loudspeaker was set to 1.40 m and the array
was placed on a tripod with elevation of 1.08 m. The distance of the
loudspeaker to the array was approximately 1.50 m. The recording
location was a meeting room with dimensions of 7.95 m x 4.90 m
x 3.25 m and the reverberation time averaged over all the impulse
responses from all directions was Ts9 = 350 ms. The room layout
and directions are shown in Figure 3.

The anechoic samples consisted of male and female speech, pop
music and various everyday noise sources. The speech samples were
obtained from Librivox audiobooks database, the music samples are
from RWC Music Genre Database [14] and the noise sources were
recorded at an anechoic chamber. Each sample was 10 seconds in
duration and they were downsampled from sampling frequency of
48 kHz to Fs = 24 kHz. Different datasets for two and three simul-
taneous sources were generated by convolving the anechoic material
with the measured RIRs and summing separate sources from dif-
ferent angles. The used angles are given in Table 2. Using eight
combinations of source types for dataset one and seven combina-
tions for dataset two resulted in 48 different mixture signals for two
simultaneous sources and 42 different mixture signals for three si-
multaneous sources.

Dataset 1 Dataset 2
source 1 source 2| [source 1 source 2 source 3
45° 90 0 45° 90
135° 180° 45° 90° 135°
0° 90° 0° 45° 305°
45° 135° 0° 90° 180°
0° 135° 0° 135° 180°
45° 180° 45° 135° 305°

Table 2: Angle combinations for both datasets given in degrees.

Method SDR SIR SAR ISR
Proposed 56 68 131 99

NMF clustering [12] | 4.8 8.1 10.3 10.5
NMF Unconstrained [4]| 3.7 4.5 12.7 8.4
ICA [6] 20 45 82 69

Table 3: Separation metrics for dataset with two sources. All figures
in decibels.

Method
Proposed

SDR SIR SAR ISR
3.0 2.6 10.7 6.0
NMF clustering [12] 1.9 38 7.6 6.2
NMF Unconstrained [4]| 2.0 04 99 4.7
ICA [6] 05 13 56 50

Table 4: Separation metrics for dataset with three sources. All fig-
ures in decibels.

The parameters of the algorithms were set to values similar to
the ones used in related studies and are as follows. The window
length of the STFT was set to N = 2048 with 50% overlap, the
window function was square root of Hanning window. The number
of NMF components was set to () = 60 and the algorithms were
run for 500 iterations. The true number of sources was given to the
methods. The DoA kernels for the proposed SCM model consists of
110 directions which sample the unit sphere surface around the array
approximately uniformly. The lateral resolution at zero elevation is
10 degrees, and the different elevations are at 22.5 degrees spacing.
The azimuth resolution is decreased close to the poles of the unit
sphere.

The separation performance is determined by objective mea-
sures, the signal-to-distortion ratio (SDR), image-to-spatial distor-
tion ratio (ISR), signal-to-interference ratio (SIR) and signal-to-
artefact ratio (SAR). The results averaged over all test samples and
all separated sources are given in Tables 3 and 4. The method in
[12] is denoted in the tables by "NMF clustering”.

The results show that the separation performance of the pro-
posed method exceeds the unconstrained SCM estimation method
and frequency-domain ICA across all the measured quantities. The
separation measured by SDR when comparing to [4] is increased
by 1.9 dB and 1.0 dB in the dataset with two and three sources, re-
spectively. The SIR score denoting source interference is slightly
decreased from the NMF component-wise SCM estimation, but it is
mostly due to the method in [12] using binary NMF component to
source clustering.

7. CONCLUSION

We have presented a spatial audio separation method based on the
NMF magnitude model combined with a source SCM model consist-
ing of direction of arrival (DoA) kernels. The strength of the method
is the parameterization of the spatial properties of sources by their
direction instead of unconstrained estimates which also allows the
initialization of the model parameters by a DoA analysis preprocess-
ing step. The separation based on the NMF magnitude model was
shown to exceed the quality of the most recent spatial separation
method which use unconstrained SCM estimation. An additional
benefit of the proposed spatial parameterization is the possibility of
the reconstruction of the 3D spatial sound field by positioning the
separated sources by their analyzed direction.
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