17 research outputs found

    A comprehensive survey of multi-view video summarization

    Full text link
    [EN] There has been an exponential growth in the amount of visual data on a daily basis acquired from single or multi-view surveillance camera networks. This massive amount of data requires efficient mechanisms such as video summarization to ensure that only significant data are reported and the redundancy is reduced. Multi-view video summarization (MVS) is a less redundant and more concise way of providing information from the video content of all the cameras in the form of either keyframes or video segments. This paper presents an overview of the existing strategies proposed for MVS, including their advantages and drawbacks. Our survey covers the genericsteps in MVS, such as the pre-processing of video data, feature extraction, and post-processing followed by summary generation. We also describe the datasets that are available for the evaluation of MVS. Finally, we examine the major current issues related to MVS and put forward the recommendations for future research(1). (C) 2020 Elsevier Ltd. All rights reserved.This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2B5B01070067)Hussain, T.; Muhammad, K.; Ding, W.; Lloret, J.; Baik, SW.; De Albuquerque, VHC. (2021). A comprehensive survey of multi-view video summarization. Pattern Recognition. 109:1-15. https://doi.org/10.1016/j.patcog.2020.10756711510

    Discovery of Shared Semantic Spaces for Multiscene Video Query and Summarization.

    Get PDF
    The growing rate of public space CCTV installations has generated a need for automated methods for exploiting video surveillance data including scene understanding, query, behaviour annotation and summarization. For this reason, extensive research has been performed on surveillance scene understanding and analysis. However, most studies have considered single scenes, or groups of adjacent scenes. The semantic similarity between different but related scenes (e.g., many different traffic scenes of similar layout) is not generally exploited to improve any automated surveillance tasks and reduce manual effort. Exploiting commonality, and sharing any supervised annotations, between different scenes is however challenging due to: Some scenes are totally un-related -- and thus any information sharing between them would be detrimental; while others may only share a subset of common activities -- and thus information sharing is only useful if it is selective. Moreover, semantically similar activities which should be modelled together and shared across scenes may have quite different pixel-level appearance in each scene. To address these issues we develop a new framework for distributed multiple-scene global understanding that clusters surveillance scenes by their ability to explain each other's behaviours; and further discovers which subset of activities are shared versus scene-specific within each cluster. We show how to use this structured representation of multiple scenes to improve common surveillance tasks including scene activity understanding, cross-scene query-by-example, behaviour classification with reduced supervised labelling requirements, and video summarization. In each case we demonstrate how our multi-scene model improves on a collection of standard single scene models and a flat model of all scenes.Comment: Multi-Scene Traffic Behaviour Analysis ---- Accepted at IEEE Transactions on Circuits and Systems for Video Technolog

    NASA CORE: Central Operation of Resources for Educators-Educational Materials Catalog

    Get PDF
    The NASA Central Operation of Resources for Educators (CORE), established in cooperation with Lorain County Joint Vocational School, serves as the worldwide distribution center for NASA-produced educational materials. For a minimal charge, CORE will provide a valuable service to educators unable to visit one of the NASA Educator Resource Centers by making NASA educational audiovisual materials available through its mail order service. Through CORE's distribution network, the public has access to more than 200 videocassette, slide, and CD-ROM programs, chronicling NASA!s state-of-the-art research and technology. Through the use of these curriculum supplement materials, teachers can provide their students with the latest in aerospace information. NASAs educational materials on aeronautics and space provide a springboard for classroom discussion of life science, physical science, astronomy, energy, Earth resources, environment, mathematics, and career education

    Evaluating Copyright Protection in the Data-Driven Era: Centering on Motion Picture\u27s Past and Future

    Get PDF
    Since the 1910s, Hollywood has measured audience preferences with rough industry-created methods. In the 1940s, scientific audience research led by George Gallup started to conduct film audience surveys with traditional statistical and psychological methods. However, the quantity, quality, and speed were limited. Things dramatically changed in the internet age. The prevalence of digital data increases the instantaneousness, convenience, width, and depth of collecting audience and content data. Advanced data and AI technologies have also allowed machines to provide filmmakers with ideas or even make human-like expressions. This brings new copyright challenges in the data-driven era. Massive amounts of text and data are the premise of text and data mining (TDM), as well as the admission ticket to access machine learning technologies. Given the high and uncertain copyright violation risks in the data-driven creation process, whoever controls the copyrighted film materials can monopolize the data and AI technologies to create motion pictures in the data-driven era. Considering that copyright shall not be the gatekeeper to new technological uses that do not impair the original uses of copyrighted works in the existing markets, this study proposes to create a TDM and model training limitations or exceptions to copyrights and recommends the Singapore legislative model. Motion pictures, as public entertainment media, have inherently limited creative choices. Identifying data-driven works’ human original expression components is also challenging. This study proposes establishing a voluntarily negotiated license institution backed up by a compulsory license to enable other filmmakers to reuse film materials in new motion pictures. The film material’s degree of human original authorship certified by film artists’ guilds shall be a crucial factor in deciding the compulsory license’s royalty rate and terms to encourage retaining human artists. This study argues that international and domestic policymakers should enjoy broad discretion to qualify data-driven work’s copyright protection because data-driven work is a new category of work. It would be too late to wait until ubiquitous data-driven works block human creative freedom and floods of data-driven work copyright litigations overwhelm the judicial systems

    Semantic Spaces for Video Analysis of Behaviour

    Get PDF
    PhDThere are ever growing interests from the computer vision community into human behaviour analysis based on visual sensors. These interests generally include: (1) behaviour recognition - given a video clip or specific spatio-temporal volume of interest discriminate it into one or more of a set of pre-defined categories; (2) behaviour retrieval - given a video or textual description as query, search for video clips with related behaviour; (3) behaviour summarisation - given a number of video clips, summarise out representative and distinct behaviours. Although countless efforts have been dedicated into problems mentioned above, few works have attempted to analyse human behaviours in a semantic space. In this thesis, we define semantic spaces as a collection of high-dimensional Euclidean space in which semantic meaningful events, e.g. individual word, phrase and visual event, can be represented as vectors or distributions which are referred to as semantic representations. With the semantic space, semantic texts, visual events can be quantitatively compared by inner product, distance and divergence. The introduction of semantic spaces can bring lots of benefits for visual analysis. For example, discovering semantic representations for visual data can facilitate semantic meaningful video summarisation, retrieval and anomaly detection. Semantic space can also seamlessly bridge categories and datasets which are conventionally treated independent. This has encouraged the sharing of data and knowledge across categories and even datasets to improve recognition performance and reduce labelling effort. Moreover, semantic space has the ability to generalise learned model beyond known classes which is usually referred to as zero-shot learning. Nevertheless, discovering such a semantic space is non-trivial due to (1) semantic space is hard to define manually. Humans always have a good sense of specifying the semantic relatedness between visual and textual instances. But a measurable and finite semantic space can be difficult to construct with limited manual supervision. As a result, constructing semantic space from data is adopted to learn in an unsupervised manner; (2) It is hard to build a universal semantic space, i.e. this space is always contextual dependent. So it is important to build semantic space upon selected data such that it is always meaningful within the context. Even with a well constructed semantic space, challenges are still present including; (3) how to represent visual instances in the semantic space; and (4) how to mitigate the misalignment of visual feature and semantic spaces across categories and even datasets when knowledge/data are generalised. This thesis tackles the above challenges by exploiting data from different sources and building contextual semantic space with which data and knowledge can be transferred and shared to facilitate the general video behaviour analysis. To demonstrate the efficacy of semantic space for behaviour analysis, we focus on studying real world problems including surveillance behaviour analysis, zero-shot human action recognition and zero-shot crowd behaviour recognition with techniques specifically tailored for the nature of each problem. Firstly, for video surveillances scenes, we propose to discover semantic representations from the visual data in an unsupervised manner. This is due to the largely availability of unlabelled visual data in surveillance systems. By representing visual instances in the semantic space, data and annotations can be generalised to new events and even new surveillance scenes. Specifically, to detect abnormal events this thesis studies a geometrical alignment between semantic representation of events across scenes. Semantic actions can be thus transferred to new scenes and abnormal events can be detected in an unsupervised way. To model multiple surveillance scenes simultaneously, we show how to learn a shared semantic representation across a group of semantic related scenes through a multi-layer clustering of scenes. With multi-scene modelling we show how to improve surveillance tasks including scene activity profiling/understanding, crossscene query-by-example, behaviour classification, and video summarisation. Secondly, to avoid extremely costly and ambiguous video annotating, we investigate how to generalise recognition models learned from known categories to novel ones, which is often termed as zero-shot learning. To exploit the limited human supervision, e.g. category names, we construct the semantic space via a word-vector representation trained on large textual corpus in an unsupervised manner. Representation of visual instance in semantic space is obtained by learning a visual-to-semantic mapping. We notice that blindly applying the mapping learned from known categories to novel categories can cause bias and deteriorating the performance which is termed as domain shift. To solve this problem we employed techniques including semisupervised learning, self-training, hubness correction, multi-task learning and domain adaptation. All these methods in combine achieve state-of-the-art performance in zero-shot human action task. In the last, we study the possibility to re-use known and manually labelled semantic crowd attributes to recognise rare and unknown crowd behaviours. This task is termed as zero-shot crowd behaviours recognition. Crucially we point out that given the multi-labelled nature of semantic crowd attributes, zero-shot recognition can be improved by exploiting the co-occurrence between attributes. To summarise, this thesis studies methods for analysing video behaviours and demonstrates that exploring semantic spaces for video analysis is advantageous and more importantly enables multi-scene analysis and zero-shot learning beyond conventional learning strategies

    The biomechanics of human locomotion

    Get PDF
    Includes bibliographical references. The thesis on CD-ROM includes Animate, GaitBib, GaitBook and GaitLab, four quick time movies which focus on the functional understanding of human gait. The CD-ROM is available at the Health Sciences Library

    3D data fusion from multiple sensors and its applications

    Get PDF
    The introduction of depth cameras in the mass market contributed to make computer vision applicable to many real world applications, such as human interaction in virtual environments, autonomous driving, robotics and 3D reconstruction. All these problems were originally tackled by means of standard cameras, but the intrinsic ambiguity in the bidimensional images led to the development of depth cameras technologies. Stereo vision was first introduced to provide an estimate of the 3D geometry of the scene. Structured light depth cameras were developed to use the same concepts of stereo vision but overcome some of the problems of passive technologies. Finally, Time-of-Flight (ToF) depth cameras solve the same depth estimation problem by using a different technology. This thesis focuses on the acquisition of depth data from multiple sensors and presents techniques to efficiently combine the information of different acquisition systems. The three main technologies developed to provide depth estimation are first reviewed, presenting operating principles and practical issues of each family of sensors. The use of multiple sensors then is investigated, providing practical solutions to the problem of 3D reconstruction and gesture recognition. Data from stereo vision systems and ToF depth cameras are combined together to provide a higher quality depth map. A confidence measure of depth data from the two systems is used to guide the depth data fusion. The lack of datasets with data from multiple sensors is addressed by proposing a system for the collection of data and ground truth depth, and a tool to generate synthetic data from standard cameras and ToF depth cameras. For gesture recognition, a depth camera is paired with a Leap Motion device to boost the performance of the recognition task. A set of features from the two devices is used in a classification framework based on Support Vector Machines and Random Forests
    corecore