50,967 research outputs found

    Multi-View Dynamic Shape Refinement Using Local Temporal Integration

    Get PDF
    International audienceWe consider 4D shape reconstructions in multi-view environments and investigate how to exploit temporal redundancy for precision refinement. In addition to being beneficial to many dynamic multi-view scenarios this also enables larger scenes where such increased precision can compensate for the reduced spatial resolution per image frame. With precision and scalability in mind, we propose a symmetric (non-causal) local time-window geometric integration scheme over temporal sequences, where shape reconstructions are refined framewise by warping local and reliable geometric regions of neighboring frames to them. This is in contrast to recent comparable approaches targeting a different context with more compact scenes and real-time applications. These usually use a single dense volumetric update space or geometric template, which they causally track and update globally frame by frame, with limitations in scalability for larger scenes and in topology and precision with a template based strategy. Our templateless and local approach is a first step towards temporal shape super-resolution. We show that it improves reconstruction accuracy by considering multiple frames. To this purpose, and in addition to real data examples, we introduce a multi-camera synthetic dataset that provides ground-truth data for mid-scale dynamic scenes

    A Parallel Mesh-Adaptive Framework for Hyperbolic Conservation Laws

    Full text link
    We report on the development of a computational framework for the parallel, mesh-adaptive solution of systems of hyperbolic conservation laws like the time-dependent Euler equations in compressible gas dynamics or Magneto-Hydrodynamics (MHD) and similar models in plasma physics. Local mesh refinement is realized by the recursive bisection of grid blocks along each spatial dimension, implemented numerical schemes include standard finite-differences as well as shock-capturing central schemes, both in connection with Runge-Kutta type integrators. Parallel execution is achieved through a configurable hybrid of POSIX-multi-threading and MPI-distribution with dynamic load balancing. One- two- and three-dimensional test computations for the Euler equations have been carried out and show good parallel scaling behavior. The Racoon framework is currently used to study the formation of singularities in plasmas and fluids.Comment: late submissio

    An adaptive space-time phase field formulation for dynamic fracture of brittle shells based on LR NURBS

    Get PDF
    We present an adaptive space-time phase field formulation for dynamic fracture of brittle shells. Their deformation is characterized by the Kirchhoff–Love thin shell theory using a curvilinear surface description. All kinematical objects are defined on the shell’s mid-plane. The evolution equation for the phase field is determined by the minimization of an energy functional based on Griffith’s theory of brittle fracture. Membrane and bending contributions to the fracture process are modeled separately and a thickness integration is established for the latter. The coupled system consists of two nonlinear fourth-order PDEs and all quantities are defined on an evolving two-dimensional manifold. Since the weak form requires C1-continuity, isogeometric shape functions are used. The mesh is adaptively refined based on the phase field using Locally Refinable (LR) NURBS. Time is discretized based on a generalized-α method using adaptive time-stepping, and the discretized coupled system is solved with a monolithic Newton–Raphson scheme. The interaction between surface deformation and crack evolution is demonstrated by several numerical examples showing dynamic crack propagation and branching

    Numerical Structure Analysis of Regular Hydrogen-Oxygen Detonations

    Get PDF
    Large-scale numerical simulations have been carried out to analyze the internal wave structure of a regular oscillating low-pressure H2 : O2 : Ar-Chapman-Jouguet detonation in two and three space-dimensions. The chemical reaction is modeled with a non-equilibrium mechanism that consists of 34 elementary reactions and uses nine thermally perfect gaseous species. A high local resolution is achieved dynamically at run-time by employing a block-oriented adaptive finite volume method that has been parallelized efficiently for massively parallel machines. Based on a highly resolved two-dimensional simulation we analyze the temporal development of the ow field around a triple point during a detonation cell in great detail. In particular, the influence of the reinitiation phase at the beginning of a detonation cell is discussed. Further on, a successful simulation of the cellular structure in three space-dimensions for the same configuration is presented. The calculation reproduces the experimentally observed three-dimensional mode of propagation called "rectangular-mode-in-phase" with zero phase shift between the transverse waves in both space-directions perpendicular to the detonation front and shows the same oscillation period as the two-dimensional case

    Adaptive computation of gravitational waves from black hole interactions

    Get PDF
    We construct a class of linear partial differential equations describing general perturbations of non-rotating black holes in 3D Cartesian coordinates. In contrast to the usual approach, a single equation treats all radiative m\ell -m modes simultaneously, allowing the study of wave perturbations of black holes with arbitrary 3D structure, as would be present when studying the full set of nonlinear Einstein equations describing a perturbed black hole. This class of equations forms an excellent testbed to explore the computational issues of simulating black spacetimes using a three dimensional adaptive mesh refinement code. Using this code, we present results from the first fully resolved 3D solution of the equations describing perturbed black holes. We discuss both fixed and adaptive mesh refinement, refinement criteria, and the computational savings provided by adaptive techniques in 3D for such model problems of distorted black holes.Comment: 16 Pages, RevTeX, 13 figure
    corecore