268 research outputs found

    Zero-Shot Sketch-Image Hashing

    Get PDF
    Recent studies show that large-scale sketch-based image retrieval (SBIR) can be efficiently tackled by cross-modal binary representation learning methods, where Hamming distance matching significantly speeds up the process of similarity search. Providing training and test data subjected to a fixed set of pre-defined categories, the cutting-edge SBIR and cross-modal hashing works obtain acceptable retrieval performance. However, most of the existing methods fail when the categories of query sketches have never been seen during training. In this paper, the above problem is briefed as a novel but realistic zero-shot SBIR hashing task. We elaborate the challenges of this special task and accordingly propose a zero-shot sketch-image hashing (ZSIH) model. An end-to-end three-network architecture is built, two of which are treated as the binary encoders. The third network mitigates the sketch-image heterogeneity and enhances the semantic relations among data by utilizing the Kronecker fusion layer and graph convolution, respectively. As an important part of ZSIH, we formulate a generative hashing scheme in reconstructing semantic knowledge representations for zero-shot retrieval. To the best of our knowledge, ZSIH is the first zero-shot hashing work suitable for SBIR and cross-modal search. Comprehensive experiments are conducted on two extended datasets, i.e., Sketchy and TU-Berlin with a novel zero-shot train-test split. The proposed model remarkably outperforms related works.Comment: Accepted as spotlight at CVPR 201

    Similarity learning for person re-identification and semantic video retrieval

    Full text link
    Many computer vision problems boil down to the learning of a good visual similarity function that calculates a score of how likely two instances share the same semantic concept. In this thesis, we focus on two problems related to similarity learning: Person Re-Identification, and Semantic Video Retrieval. Person Re-Identification aims to maintain the identity of an individual in diverse locations through different non-overlapping camera views. Starting with two cameras, we propose a novel visual word co-occurrence based appearance model to measure the similarities between pedestrian images. This model naturally accounts for spatial similarities and variations caused by pose, illumination and configuration changes across camera views. As a generalization to multiple camera views, we introduce the Group Membership Prediction (GMP) problem. The GMP problem involves predicting whether a collection of instances shares the same semantic property. In this context, we propose a novel probability model and introduce latent view-specific and view-shared random variables to jointly account for the view-specific appearance and cross-view similarities among data instances. Our method is tested on various benchmarks demonstrating superior accuracy over state-of-art. Semantic Video Retrieval seeks to match complex activities in a surveillance video to user described queries. In surveillance scenarios with noise and clutter usually present, visual uncertainties introduced by error-prone low-level detectors, classifiers and trackers compose a significant part of the semantic gap between user defined queries and the archive video. To bridge the gap, we propose a novel probabilistic activity localization formulation that incorporates learning of object attributes, between-object relationships, and object re-identification without activity-level training data. Our experiments demonstrate that the introduction of similarity learning components effectively compensate for noise and error in previous stages, and result in preferable performance on both aerial and ground surveillance videos. Considering the computational complexity of our similarity learning models, we attempt to develop a way of training complicated models efficiently while remaining good performance. As a proof-of-concept, we propose training deep neural networks for supervised learning of hash codes. With slight changes in the optimization formulation, we could explore the possibilities of incorporating the training framework for Person Re-Identification and related problems.2019-07-09T00:00:00

    Similarity learning for person re-identification and semantic video retrieval

    Full text link
    Many computer vision problems boil down to the learning of a good visual similarity function that calculates a score of how likely two instances share the same semantic concept. In this thesis, we focus on two problems related to similarity learning: Person Re-Identification, and Semantic Video Retrieval. Person Re-Identification aims to maintain the identity of an individual in diverse locations through different non-overlapping camera views. Starting with two cameras, we propose a novel visual word co-occurrence based appearance model to measure the similarities between pedestrian images. This model naturally accounts for spatial similarities and variations caused by pose, illumination and configuration changes across camera views. As a generalization to multiple camera views, we introduce the Group Membership Prediction (GMP) problem. The GMP problem involves predicting whether a collection of instances shares the same semantic property. In this context, we propose a novel probability model and introduce latent view-specific and view-shared random variables to jointly account for the view-specific appearance and cross-view similarities among data instances. Our method is tested on various benchmarks demonstrating superior accuracy over state-of-art. Semantic Video Retrieval seeks to match complex activities in a surveillance video to user described queries. In surveillance scenarios with noise and clutter usually present, visual uncertainties introduced by error-prone low-level detectors, classifiers and trackers compose a significant part of the semantic gap between user defined queries and the archive video. To bridge the gap, we propose a novel probabilistic activity localization formulation that incorporates learning of object attributes, between-object relationships, and object re-identification without activity-level training data. Our experiments demonstrate that the introduction of similarity learning components effectively compensate for noise and error in previous stages, and result in preferable performance on both aerial and ground surveillance videos. Considering the computational complexity of our similarity learning models, we attempt to develop a way of training complicated models efficiently while remaining good performance. As a proof-of-concept, we propose training deep neural networks for supervised learning of hash codes. With slight changes in the optimization formulation, we could explore the possibilities of incorporating the training framework for Person Re-Identification and related problems.2019-07-09T00:00:00

    Hetero-manifold Regularisation for Cross-modal Hashing

    Get PDF
    Recently, cross-modal search has attracted considerable attention but remains a very challenging task because of the integration complexity and heterogeneity of the multi-modal data. To address both challenges, in this paper, we propose a novel method termed hetero-manifold regularisation (HMR) to supervise the learning of hash functions for efficient cross-modal search. A hetero-manifold integrates multiple sub-manifolds defined by homogeneous data with the help of cross-modal supervision information. Taking advantages of the hetero-manifold, the similarity between each pair of heterogeneous data could be naturally measured by three order random walks on this hetero-manifold. Furthermore, a novel cumulative distance inequality defined on the hetero-manifold is introduced to avoid the computational difficulty induced by the discreteness of hash codes. By using the inequality, cross-modal hashing is transformed into a problem of hetero-manifold regularised support vector learning. Therefore, the performance of cross-modal search can be significantly improved by seamlessly combining the integrated information of the hetero-manifold and the strong generalisation of the support vector machine. Comprehensive experiments show that the proposed HMR achieve advantageous results over the state-of-the-art methods in several challenging cross-modal tasks

    Visual Data Association: Tracking, Re-identification and Retrieval

    Get PDF
    As there is a rapid development of the information society, large amounts of multimedia data are generated, which are shared and transferred on various electronic devices and the Internet every minute. Hence, building intelligent systems capable of associating these visual data at diverse locations and different times is absolutely essential and will significantly facilitate understanding and identifying where an object came from and where it is going. Thus, the estimated traces of motions or changes increasingly make it feasible to implement advanced algorithms to real-world applications, including human-computer interaction, robotic navigation, security in surveillance, biological characteristics association and civil structure vibration detection. However, due to the inherent challenges, such as ambiguity, heterogeneity, noisy data, large-scale property and unknown variations, visual data association is currently far from being established. Therefore, this thesis focuses on the studies of associating visual data at diverse locations and different times for the tasks of tracking, re-identification and retrieval. More specifically, three situations including single camera, across multiple cameras and across multiple modalities have been investigated and four algorithms have been developed at different levels. Chapter 3 The first algorithm is to explore an ensemble system for robust object tracking, primarily considering the independence of classifier members. An empirical analysis is firstly given to show that object tracking is a non-i.i.d. sampling, under-sample and incomplete-dataset problem. Then, a set of independent classifiers trained sequentially on different small datasets is dynamically maintained to overcome the particular machine learning problem. Thus, for every challenge, an optimal classifier can be approximated in a subspace spanned by the selected competitive classifiers. Chapter 4 The second method is to improve the object tracking by exploiting a winner-take-all strategy to select the most suitable trackers. This topic naturally extends the concept of ensemble in the first topic to a more general idea: a multi-expert system, in which members come from different function spaces. Thus, the diversity of the system is more likely to be amplified. Based on a large public dataset, a prediction model of performance for different trackers on various challenges can be obtained off-line. Then, the learned structural regression model can be directly used to efficiently select the winner tracker online. Chapter 5 The third one is to learn cross-view identities for fast person re-identification, in a cross-camera setting, which significantly differs from the single-view object tracking in the first two topics. Two sets of discriminative hash functions for two different views are learned by simultaneously minimising their distance in the Hamming space, and maximising the cross-covariance and margin. Thus, similar binary codes can be found for images of the same person captured at different views by embedding the images into the Hamming space. Chapter 6 The fourth model is to develop a novel Hetero-manifold regularisation framework for efficient cross-modal retrieval. Compared with the first two settings, this is a more general and complex topic, in which the samples can be relaxed to the images captured in the very far distance or very long time, even to text, voice and other formats. Taking advantage of the hetero-manifold, the similarity between each pair of heterogeneous data could be naturally measured by three order random walks on this hetero-manifold. It is concluded that, by fully exploiting the algorithms for solving the problems in the three situations, an integrated trace for an object moving anywhere can be definitely discovered

    Learning effective binary representation with deep hashing technique for large-scale multimedia similarity search

    Get PDF
    The explosive growth of multimedia data in modern times inspires the research of performing an efficient large-scale multimedia similarity search in the existing information retrieval systems. In the past decades, the hashing-based nearest neighbor search methods draw extensive attention in this research field. By representing the original data with compact hash code, it enables the efficient similarity retrieval by only conducting bitwise operation when computing the Hamming distance. Moreover, less memory space is required to process and store the massive amounts of features for the search engines owing to the nature of compact binary code. These advantages make hashing a competitive option in large-scale visual-related retrieval tasks. Motivated by the previous dedicated works, this thesis focuses on learning compact binary representation via hashing techniques for the large-scale multimedia similarity search tasks. Particularly, several novel frameworks are proposed for popular hashing-based applications like a local binary descriptor for patch-level matching (Chapter 3), video-to-video retrieval (Chapter 4) and cross-modality retrieval (Chapter 5). This thesis starts by addressing the problem of learning local binary descriptor for better patch/image matching performance. To this end, we propose a novel local descriptor termed Unsupervised Deep Binary Descriptor (UDBD) for the patch-level matching tasks, which learns the transformation invariant binary descriptor via embedding the original visual data and their transformed sets into a common Hamming space. By imposing a l2,1-norm regularizer on the objective function, the learned binary descriptor gains robustness against noises. Moreover, a weak bit scheme is applied to address the ambiguous matching in the local binary descriptor, where the best match is determined for each query by comparing a series of weak bits between the query instance and the candidates, thus improving the matching performance. Furthermore, Unsupervised Deep Video Hashing (UDVH) is proposed to facilitate large-scale video-to-video retrieval. To tackle the imbalanced distribution issue in the video feature, balanced rotation is developed to identify a proper projection matrix such that the information of each dimension can be balanced in the fixed-bit quantization, thus improving the retrieval performance dramatically with better code quality. To provide comprehensive insights on the proposed rotation, two different video feature learning structures: stacked LSTM units (UDVH-LSTM) and Temporal Segment Network (UDVH-TSN) are presented in Chapter 4. Lastly, we extend the research topic from single-modality to cross-modality retrieval, where Self-Supervised Deep Multimodal Hashing (SSDMH) based on matrix factorization is proposed to learn unified binary code for different modalities directly without the need for relaxation. By minimizing graph regularization loss, it is prone to produce discriminative hash code via preserving the original data structure. Moreover, Binary Gradient Descent (BGD) accelerates the discrete optimization against the bit-by-bit fashion. Besides, an unsupervised version termed Unsupervised Deep Cross-Modal Hashing (UDCMH) is proposed to tackle the large-scale cross-modality retrieval when prior knowledge is unavailable
    • …
    corecore