
Learning Effective Binary Representation with

Deep Hashing Technique for Large-Scale

Multimedia Similarity Search

Gengshen Wu

School of Computing and Communications

Lancaster University

A thesis submitted for the degree of

Doctor of Philosophy

September 2020

I would like to dedicate this thesis to my family

Declaration

This thesis has not been submitted in support of an application for another degree

at this or any other university. It is the result of my own work and includes nothing

that is the outcome of work done in collaboration except where specifically indicated.

Many of the ideas in this thesis were the product of discussion with my supervisor

Dr. Jungong Han.

Parts of this thesis have been publised previously in the following publications:

[Chapter 3]

G. Wu, Z. Lin, G. Ding, Q. Ni and J. Han. “On Aggregation of Unsupervised

Deep Binary Descriptor with Weak Bits,” IEEE Transactions on Image Processing,

2020. (Accepted)

[Chapter 4]

G. Wu, L. Liu, Y. Guo, G. Ding, J. Han, J. Shen, and L. Shao. “Unsupervised

deep video hashing with balanced rotation,” in International Joint Conference on

Artificial Intelligence, 2017, pp. 3076-3082.

G. Wu, J. Han, Y. Guo, L. Liu, G. Ding, Q. Ni, and L. Shao. “Unsupervised Deep

Video Hashing via Balanced Code for Large-Scale Video Retrieval,” IEEE Transac-

tions on Image Processing, vol. 28, no. 4, pp. 1993-2007, April 2019.

[Chapter 5]

G. Wu, Z. Lin, J. Han, L. Liu, G. Ding, B. Zhang, and J. Shen. “Unsuper-

vised Deep Hashing via Binary Latent Factor Models for Large-scale Cross-modal

Retrieval,” in International Joint Conference on Artificial Intelligence, 2018, pp. 2854-

2860.

G. Wu, J. Han, Z. Lin, G. Ding, B. Zhang and Q. Ni. “Joint Image-Text Hashing

for Fast Large-Scale Cross-Media Retrieval Using Self-Supervised Deep Learning,”

IEEE Transactions on Industrial Electronics, vol. 66, no. 12, pp. 9868-9877, Dec.

2019.

Gengshen Wu

September, 2020

ii

iii

Acknowledgements

First of all, I would like to thank my supervisor Dr. Jungong Han, who

allowed me to complete my Ph.D. study at Lancaster University. Under

his supervision, we enjoy unprecedented freedom of research in the aca-

demic field. He has been providing me with continuous support, insightful

guidance, inspiring ideas and shaping me to be a qualified researcher.

I would like to extend the sincerest thanks to the following people, who

have all helped in the completion of this thesis.

I would like to thank Prof. Qiang Ni, Dr. Matthew Broadbent, Dr. Zheng

Wang and Dr. Hossein Rahmani in our school for their kind support and

suggestions.

I would like to thank the previous and current visiting scholars in our lab,

including Prof. Heng Liu, Prof. Hai Li, and Dr. Yi Liu, Dr. Yuanjun

Huang and Dr. Shanfeng Wang for their helpful discussions and research

ideas.

I would also like to thank my co-authors, Prof. Ling Shao, Prof. Guiguang

Ding, Dr. Jialie Shen, Dr. Baochang Zhang, Dr. Yuchen Guo, Dr. Zijia

Lin and Dr. Li Liu, who have improved my research outcomes from many

aspects.

I would like to thank Dr. Yi Zhou, who introduced me to Dr. Jungong

Han as a Ph.D. candidate and let the story began.

I would also like to thank all previous members from Northumbria Univer-

sity, Lancaster University, Warwick University, and East Anglia Univer-

sity, including Dr. Yuming Shen, Dr. Bingzhang Hu, Dr. Yijun Shen, Dr.

Jingtian Zhang, Dr. Shanfeng Hu, Dr. Tianhao Guo, Dr. Zheming Zuo,

Dr. Xiaowei Gu, Dr. Zhaoxu Yang, Dr. Haiyang Liu, Dr. Bintao He, Dr.

Ning Gao, Dr. Wenda Tang, Shoujiang Xu, Jiaojiao Zhao, Shuo Zhang,

Yao Zhang, Matthew Gingfung Yeung, Binbin Su, Peng Cheng, Yunqi

iv

Miao, Mingqi Gao, and Zhuang Shao. Thank them for their friendly help

during my Ph.D. study.

I would like to thank Northumbria University and Lancaster University,

they provided the financial support for me to complete my Ph.D. research.

Many thanks to my family for their unconditional support during my

Ph.D. study.

Abstract

The explosive growth of multimedia data in modern times inspires the

research of performing an efficient large-scale multimedia similarity search

in the existing information retrieval systems. In the past decades, the

hashing-based nearest neighbor search methods draw extensive attention

in this research field. By representing the original data with compact hash

code, it enables the efficient similarity retrieval by only conducting bitwise

operation when computing the Hamming distance. Moreover, less memory

space is required to process and store the massive amounts of features for

the search engines owing to the nature of compact binary code. These

advantages make hashing a competitive option in large-scale visual-related

retrieval tasks. Motivated by the previous dedicated works, this thesis

focuses on learning compact binary representation via hashing techniques

for the large-scale multimedia similarity search tasks. Particularly, several

novel frameworks are proposed for popular hashing-based applications like

a local binary descriptor for patch-level matching (Chapter 3), video-to-

video retrieval (Chapter 4) and cross-modality retrieval (Chapter 5).

This thesis starts by addressing the problem of learning local binary de-

scriptor for better patch/image matching performance. To this end, we

propose a novel local descriptor termed Unsupervised Deep Binary De-

scriptor (UDBD) for the patch-level matching tasks, which learns the

transformation invariant binary descriptor via embedding the original vi-

sual data and their transformed sets into a common Hamming space. By

imposing a `2,1-norm regularizer on the objective function, the learned

binary descriptor gains robustness against noises. Moreover, a weak bit

scheme is applied to address the ambiguous matching in the local binary

descriptor, where the best match is determined for each query by compar-

ing a series of weak bits between the query instance and the candidates,

thus improving the matching performance.

vi

Furthermore, Unsupervised Deep Video Hashing (UDVH) is proposed to

facilitate large-scale video-to-video retrieval. To tackle the imbalanced

distribution issue in the video feature, balanced rotation is developed to

identify a proper projection matrix such that the information of each

dimension can be balanced in the fixed-bit quantization, thus improv-

ing the retrieval performance dramatically with better code quality. To

provide comprehensive insights on the proposed rotation, two different

video feature learning structures: stacked LSTM units (UDVH-LSTM)

and Temporal Segment Network (UDVH-TSN) are presented in Chapter

4.

Lastly, we extend the research topic from single-modality to cross-modality

retrieval, where Self-Supervised Deep Multimodal Hashing (SSDMH) based

on matrix factorization is proposed to learn unified binary code for dif-

ferent modalities directly without the need for relaxation. By minimiz-

ing graph regularization loss, it is prone to produce discriminative hash

code via preserving the original data structure. Moreover, Binary Gra-

dient Descent (BGD) accelerates the discrete optimization against the

bit-by-bit fashion. Besides, an unsupervised version termed Unsupervised

Deep Cross-Modal Hashing (UDCMH) is proposed to tackle the large-scale

cross-modality retrieval when prior knowledge is unavailable.

List of Publications

Conference Papers

1. G. Wu, L. Liu, Y. Guo, G. Ding, J. Han, J. Shen, and L. Shao.

“Unsupervised deep video hashing with balanced rotation,” in Inter-

national Joint Conference on Artificial Intelligence, 2017, pp. 3076-

3082. (CORE A* conference)

2. G. Wu, Z. Lin, J. Han, L. Liu, G. Ding, B. Zhang, and J. Shen.

“Unsupervised Deep Hashing via Binary Latent Factor Models for

Large-scale Cross-modal Retrieval,” in International Joint Confer-

ence on Artificial Intelligence, 2018, pp. 2854-2860. (CORE A*

conference)

Journal Papers

1. G. Wu, J. Han, Y. Guo, L. Liu, G. Ding, Q. Ni, and L. Shao.

“Unsupervised Deep Video Hashing via Balanced Code for Large-

Scale Video Retrieval,” IEEE Transactions on Image Processing, vol.

28, no. 4, pp. 1993-2007, April 2019. (IF: 6.79)

2. G. Wu, J. Han, Z. Lin, G. Ding, B. Zhang and Q. Ni. “Joint

Image-Text Hashing for Fast Large-Scale Cross-Media Retrieval Us-

ing Self-Supervised Deep Learning,” IEEE Transactions on Industrial

Electronics, vol. 66, no. 12, pp. 9868-9877, Dec. 2019. (IF: 7.503)

3. G. Wu, Z. Lin, G. Ding, Q. Ni and J. Han. “On Aggregation of Un-

supervised Deep Binary Descriptor with Weak Bits,” IEEE Transac-

tions on Image Processing, 2020. (IF: 6.79; Accepted)

viii

Co-Authored Papers

1. Y. Qi, J. Gu, Y. Zhang, G. Wu, and F. Wang. “Supervised Deep

Semantics-Preserving Hashing for Real-Time Pulmonary Nodule Im-

age Retrieval,” Journal of Real-Time Image Processing, 2020.

2. S. Zhang, G. Wu, and J. Han. “Pruning Filter with Attention Mech-

anism for Deep Networks Compression on Remote Sensing Image,”

Remote Sensing, 2020.

Contents

Declaration ii

Acknowledgements iii

Abstract v

List of Publications vii

List of Tables xiv

List of Figures xvi

List of Acronyms xx

List of Algorithms xxv

1 Introduction and Background Theory 1

1.1 Research Background . 1

1.2 Fundamental Theory of Hashing Technique 4

1.2.1 Hash Function . 4

1.2.2 Objective Function Construction 6

1.2.3 Optimization Strategy . 7

1.2.3.1 Continuous Relaxation 7

1.2.3.2 Alternative Optimization 8

1.2.3.3 Coordinate Descent 8

1.2.4 Fast Similarity Search with Hash Code 9

1.2.4.1 Hash Code Ranking 9

1.2.4.2 Hash Table Lookup 10

1.2.5 Evaluation Metrics . 11

1.2.5.1 Precision@K . 11

ix

CONTENTS x

1.2.5.2 Mean Average Precision 11

1.2.5.3 Precision-Recall Curve 12

1.2.5.4 Receiver Operating Characteristic Curve 12

1.3 Research Problems and Challenges 13

1.3.1 Local Binary Descriptor . 13

1.3.2 Video Hashing . 15

1.3.3 Cross-Modality Hashing . 16

1.4 Overview of Contributions . 19

1.5 Thesis Outline . 21

2 Literature Review on Hashing-Based Similarity Search 23

2.1 Single-Modality Similarity Search . 23

2.1.1 Image Hashing . 24

2.1.2 Local Feature Descriptor . 27

2.1.2.1 Handcrafted Feature Descriptors 27

2.1.2.2 Learning-Based Feature Descriptors 28

2.1.3 Video Hashing . 30

2.1.3.1 Early Video Hashing 30

2.1.3.2 Deep Learning Based Video Hashing 31

2.2 Cross-Modality Similarity Search . 33

2.2.1 Supervised Cross-Modal Hashing 33

2.2.2 Unsupervised Cross-Modal Hashing 36

2.3 Chapter Summary . 37

3 Unsupervised Deep Binary Descriptor 39

3.1 Introduction . 39

3.2 Methodology . 43

3.2.1 Framework Overview . 43

3.2.2 Learning Unified Binary Descriptor 44

3.2.2.1 Collective Binary Embedding 44

3.2.2.2 Unsupervised Graph Learning 45

3.2.3 Optimization Algorithm . 46

3.2.3.1 Wv Step . 47

3.2.3.2 B Step . 47

3.2.3.3 αv Step . 48

3.2.4 Generating Out-of-Sample Binary Descriptor 49

3.2.5 Refined Matching via Weak Bit Selection 49

CONTENTS xi

3.3 Experiment . 51

3.3.1 Dataset Descriptions . 51

3.3.1.1 Brown . 51

3.3.1.2 Cifar-10 . 51

3.3.1.3 HPatches . 52

3.3.2 Implementation Details . 52

3.3.3 Comparisons with State-of-The-Arts 52

3.3.3.1 Results on Brown Dataset 52

3.3.3.2 Results on Cifar-10 Dataset 55

3.3.3.3 Results on HPatches Dataset 57

3.3.4 Further Analysis . 58

3.3.4.1 Ablation Study . 58

3.3.4.2 Transformation Invariance 59

3.3.4.3 Weak Bit Study . 60

3.3.4.4 Loss Term . 60

3.3.4.5 Parameter Analysis 61

3.4 Chapter Summary . 61

4 Unsupervised Deep Video Hashing 63

4.1 Introduction . 63

4.2 Proposed Unsupervised Deep Video Hashing 66

4.2.1 Deep Video Feature Learning 67

4.2.1.1 UDVH-LSTM . 67

4.2.1.2 UDVH-TSN . 69

4.2.2 Feature Embedding with Pseudo Labels 70

4.2.3 Balanced Rotation . 71

4.2.4 Objective Function and Optimization 73

4.2.4.1 R Step . 75

4.2.4.2 B Step . 76

4.2.4.3 Θ Step . 76

4.2.5 Complexity Analysis . 77

4.2.6 Discussion . 78

4.3 Experiments . 79

4.3.1 Datasets and Experimental Setting 79

4.3.1.1 FCVID . 79

4.3.1.2 YFCC . 79

CONTENTS xii

4.3.1.3 ActivityNet . 80

4.3.2 Baselines . 80

4.3.3 Implementation Details . 80

4.3.4 Evaluation Metrics . 81

4.3.5 Comparison with State-of-The-Arts 82

4.3.5.1 Results from UDVH-LSTM 83

4.3.5.2 Results from UDVH-TSN 84

4.3.5.3 Discussion . 88

4.3.6 Architecture Investigation . 89

4.3.6.1 Parameter Analysis 89

4.3.6.2 Binarization Investigation 90

4.3.6.3 Loss Function . 90

4.3.7 Feature Selection . 92

4.3.8 Efficiency Analysis . 93

4.4 Chapter Summary . 94

5 Deep Cross Modal Hashing 97

5.1 Introduction . 97

5.2 Proposed Method . 101

5.2.1 Problem Definition . 101

5.2.2 Deep Architecture . 102

5.2.3 Regularized Binary Latent Model 103

5.2.3.1 Binary Reconstruction Loss 103

5.2.3.2 Graph Regularization Loss 104

5.2.4 Deep Hash Function Learning 104

5.2.5 Objective Function and Optimization 105

5.2.5.1 Ui Step . 105

5.2.5.2 B Step . 105

5.2.5.3 αi Step . 107

5.2.5.4 Θi Step . 107

5.2.6 Computational Complexity . 108

5.2.7 Extension to Unsupervised Cross-Modal Hashing 108

5.3 Experiment . 109

5.3.1 Dataset Descriptions . 110

5.3.1.1 Wiki . 110

5.3.1.2 MIRFlickr . 110

CONTENTS xiii

5.3.1.3 NUS-WIDE . 110

5.3.2 Experiment Settings . 110

5.3.3 Results and Analysis . 112

5.3.3.1 Architecture Investigation 112

5.3.3.2 Overall Comparisons with Baselines 112

5.3.3.3 Top-5 Retrieved Examples for SSDMH 113

5.3.3.4 Effect of Training Data Size 116

5.3.3.5 Parameter Sensitivity Analysis 119

5.3.3.6 Convergence Study 119

5.3.3.7 BGD versus One Entry 119

5.3.3.8 Training Efficiency 121

5.3.4 Quantitative Results for UDCMH 122

5.3.4.1 Comparison With State-of-The-Arts 122

5.3.4.2 Training Data Size 125

5.4 Chapter Summary . 125

6 Conclusions and Future Work 126

6.1 Thesis Summary . 126

6.1.1 Unsupervised Deep Binary Descriptor 126

6.1.2 Unsupervised Deep Video Hashing 127

6.1.3 Deep Cross-Modal Hashing . 127

6.2 Future Research Topics . 128

6.2.1 Hashing for Deep Binary Neural Network 128

6.2.2 Online Hashing . 128

6.2.3 Fine-Grained Retrieval with Weighted Hamming Distance . . 129

6.2.4 Fast Person Re-Identification 130

Bibliography 131

List of Tables

3.1 Mathematical symbols and their short descriptions. 44

3.2 Comparison of the proposed UDBD to the state-of-the-art binary de-

scriptors in terms of FPR@95% on Brown dataset. Dim, SP and USP

denote dimension, supervised and unsupervised, respectively. † and ‡
indicate the train and testing subsets. The results from SIFT and su-

pervised methods are provided as references. Bold values are the best

results in unsupervised binary descriptors. 53

3.3 mAP of Top 1,000 (%) returned images at different code length from

various unsupervised descriptors on Cifar-10 dataset. Bold values are

the best results. 56

3.4 Precision at Top 1 on Cifar-10 dataset when using DeepBit, BinGAN,

GraphBit and UDBD at different bit sizes. 56

3.5 Comparison of the proposed UDBD to the state-of-the-art descriptors

in terms of mAP (%) on HPatches dataset. Dim, SP and USP denote

dimension, supervised and unsupervised, respectively. The real-valued

descriptor (SIFT) and the supervised methods are provided as refer-

ences. Bold values are the best results in unsupervised binary descriptors. 58

3.6 Ablation study on Brown (FPR@95%): Liberty→Notre Dame and

Yosemite→Liberty, HPatches: matching (mAP) and Cifar-10 at 64 bits

(mAP@1000) when γ = 0 (i.e., UDBDγ=0) and β = 0 (i.e., UDBDβ=0). 59

3.7 mAP variations on HPatches with/without using weak bit scheme

(UDBD‡/UDBD†). Bold values show the best results. 60

3.8 Performance variations on Brown (FPR@95%): Notre Dame→Liberty

and Liberty→Notre Dame, HPatches: matching (mAP) at 256 bits,

and Cifar-10 at 32 bits (mAP@1,000) when using `2,1-norm and `2,2-

norm loss terms. 61

4.1 Mathematical symbols and their short descriptions. 67

xiv

LIST OF TABLES xv

4.2 The network configurations UDVH-LSTM and UDVH-TSN. Other lay-

ers like pooling and activation are omitted for concise descriptions. . . 70

4.3 mAP@20 of different cluster numbers at 128 bits on three datasets

under UDVH-LSTM and UDVH-TSN. 89

4.4 mAP@K of 128 bits when using various banarization schemes sepa-

rately in the code learning of UDVH-LSTM and UDVH-TSN. 91

4.5 mAP@20 at 128 bits when applying various loss functions accordingly

during the hash function learning of UDVH-LSTM and UDVH-TSN. 92

4.6 The training time at various code lengths on FCVID when using SSTH,

UDVH-LSTM and UDVH-TSN. The time unit for network training is

hour (h) and the rest processes are reported in second (s). 94

5.1 The Network Configurations for Two Modalities. Other layers like

pooling and activation are omitted for concise descriptions. 101

5.2 Mathematical symbols and their short descriptions. 102

5.3 mAP results at the code length of 128 when involving various loss terms

deployed in the proposed method: SSDMHbrl and SSDMHbrl+grl. . . . 112

5.4 The variations on αi(i = 1, 2) during the optimization iteration at 128

bits on three datasets. αi are initialized as 0.5. 113

5.5 mAP results for Image→Text and Text→Image tasks on three datasets

at various code lengths (bits) when using different methods. The best

performance is shown in boldface. 114

5.6 Effect of training data size on MIRFlickr and NUS-WIDE at the code

length of 64. 119

5.7 Time costs (in seconds) in the training processes of SSDMH on three

datasets at 128 bits for one loop (T). 121

5.8 mAP results for Image→Text and Text→Image tasks on three datasets

at various code lengths (bits) when using different unsupervised meth-

ods and UDCMH. The Best Performance is shown in boldface. 123

5.9 Effect of training data size on NUS-WIDE at 64 bits. k indicates 1, 000.125

List of Figures

1.1 The general procedure of CBIR. 2

1.2 An example of linear and nonlinear models. Given two different data

distributions (triangle and parallelogram), the nonlinear model can

better fit the complicated data distributions than the linear one. . . . 5

1.3 The search procedure of hash code ranking. The ranked results are

obtained based on the Hamming distances (Dh) in an ascending order. 9

1.4 (a) 4-bit hash code is used as an example. The returned items would be

x1, x4, x5, x2, x3 and x6 if the Hamming radius is 1; (b)M(M > 1) hash

tables are constructed in the multiple table lookup and the neighbor

search is conducted across these tables afterward. 10

1.5 The work pipeline of traditional image matching using local feature de-

scriptor, which consists of three major steps: interest point detection,

feature descriptor learning and feature matching. The feature learning

and matching processes are conducted at the patch level. The input

images might be photographed from different views or even processed

with various affine transformations. 13

1.6 The general pipeline of video retrieval. 15

1.7 The general workflow of cross-modality retrieval. Two cross-modal

retrieval tasks: image→text and text→image, are used as examples. . 17

3.1 (a) An example of the Hamming distance distribution on Cifar-10

dataset at 64 bits, where 3 candidates are returned from the database

with the same minimum Hamming distance of 16 to the query; (b)

Noise effects on Brown dataset (train: Y osemite and test: Liberty)

at 256 bits under `2,1-norm and `2,2-norm losses, where a sharper per-

formance decline from `2,2-norm against `2,1-norm loss is observed at

certain noise level. 40

xvi

LIST OF FIGURES xvii

3.2 The proposed binary descriptor learning framework is made up of deep

feature extraction, unified binary code learning and deep embedding

function learning. The descriptor size is set to 3 as an example. Best

viewed in color. 41

3.3 An example on the weak bit selection process. The red circles denote

the marked weak bits with the values between (−th, th). 50

3.4 The ROC curves under different settings on Brown dataset when using

various unsupervised binary descriptors. Best viewed in color. 54

3.5 The matching results of Notre Dame, Yosemite and Liberty of UDBD

on Brown dataset, which includes three matched pairs and two mis-

matched pairs for each subset. 55

3.6 Precision-Recall curves of the proposed method and the baselines on

Cifar-10 dataset at 16, 32 and 64 bits. 56

3.7 The top-10 retrieved images on Cifar-10 dataset by UDBD at the code

length of 64. The query images are selected from four categories: cat,

car, airplane and bird. Red rectangle indicates the wrong results. . . 57

3.8 Performances variations under different rotation angles on test in-

stances from GraphBit, DeepBit and UDBD. 59

3.9 Performance variations at varying code lengths with/without using

weak bit scheme. (a) FPR@95% on Brown: Notre Dame (ND)→Liberty

(Lib) and Liberty→Notre Dame; (b) Precision@Top 1 on Cifar-10. . . 60

3.10 Parameter sensitivity analysis of γ and β at various bit sizes on Cifar-10

dataset. 61

4.1 (a) Suppose that two data samples (red and green) from a benchmark

are projected into a two-dimensional feature space with the coordinates

of (x1, y1) and (x2, y2) and encoded by two bits subsequently, where

|x1| > |y1|, |x2| > |y2| and |x1 − x2| > |y1 − y2|. After the proposed

balanced rotation, the coordinates of two data points change to (xr1, y
r
1)

and (xr2, y
r
2) accordingly, where |xr1| = |yr1| and |xr2| = |yr2|. Obviously,

compared to the original features, the variances contained in the X

and Y axis can be balanced with such rotation strategy applied. That

indicates two dimensions of the rotated data points will have the same

impact on the calculation of the Hamming distances when encoding

them with the fixed number of bits; (b) The variance within each

dimension of image and video feature. 65

LIST OF FIGURES xviii

4.2 The basic framework of UDVH-LSTM. The whole process consists of

three subsections: video feature extraction, unsupervised code learning

and deep hash function learning, which are performed iteratively to

obtain the solution. 68

4.3 The basic framework of UDVH-TSN. The only difference between UDVH-

TSN and UDVH-LSTM is that they adopt LSTM and TSN separately

to evaluate the video representation. 70

4.4 The graph illustration of Algorithm 2. 77

4.5 The mAP@K curves at different bit sizes under UDVH-LSTM. 82

4.6 The Precision-Recall curves at 128 bits under UDVH-LSTM. 83

4.7 The Precision@100 curves at various bit sizes under UDVH-LSTM. . 83

4.8 Top-5 retrieval results when using SSTH and UDVH-LSTM at the code

length of 128 bits. 85

4.9 The mAP@K curves at different bit sizes under UDVH-TSN. 86

4.10 The Precision-Recall curves at 128 bits under UDVH-TSN. 87

4.11 The Precision@100 curves at various bit sizes under UDVH-TSN. . . 87

4.12 Top-5 retrieval results when using SSTH and UDVH-TSN at the code

length of 128 bits, where examples are randomly selected from the

video datasets. The left column shows the query videos, the middle

blocks and right blocks show the top-5 returned videos by SSTH and

UDVH-TSN, respectively. Red rectangles indicate mistakes. 88

4.13 The variance distribution from FCVID at 128 bits under UDVH-TSN. 92

4.14 The mAP@5 variations when using CNN and TSN features separately

in the image-based hashing methods, where the solid and dot lines

represent the results on TSN and CNN features, respectively. 93

4.15 The mAP@5 variations when using CNN and TSN features separately

in the video-based hashing methods, where the solid and dot lines

represent the results on TSN and CNN features, respectively. 93

4.16 An example of cross-modality similarity search: text query image, in

Google Images. 95

LIST OF FIGURES xix

5.1 The overview of our Self-Supervised Deep Multimodal Hashing. There

are three subsections in the training process: deep feature learning

(left), deep hash function learning (middle) and regularized binary la-

tent representation learning (right). Specifically, the regularized binary

latent model consists of two loss terms: binary reconstruction loss and

graph regularization loss. The yellow arrows indicate the deep feature

learning. The blue arrows show the iterative directions when learning

deep hash functions with the guidance of the unified binary code B.

Better viewed in color. 99

5.2 The Precision-Recall curves at 128 bits on three datasets. 115

5.3 The top-5 retrieved results at 128 bits on Wiki dataset. 116

5.4 The top-5 retrieved results at 128 bits on MIRFlickr dataset. 117

5.5 The top-5 retrieved results at 128 bits on NUS-WIDE dataset. 118

5.6 mAP versus γ, β and λ at 64 bits on three datasets. 120

5.7 (a) Objective function values after each iteration (t) when solving the

unified binary code at 128 bits; (b) Euclidean losses after every itera-

tion (T) when learning the deep hash functions at 128 bits. 121

5.8 Time costs (in seconds) in optimizing one row of the unified binary code

at 128 bits on three datasets when using BGD and One Entry [153]

separately. 122

5.9 The precision@N curves at 128 bits on all datasets. 124

List of Acronyms

AGH Anchor Graph Hashing

ANN Approximate Nearest Neighbor

AVH Attention-based Video Hashing

BLSTM Binary Long Short Term Memory

BOLD Binary Online Learned Descriptor

BGD Binary Gradient Descend

BRE Binary Reconstructive Embedding

BRIEF Binary Robust Independent Elementary Features

BRISK Binary Robust Invariant Scalable Keypoints

BQP Binary Quadratic Programming

CAH Correlation Autoencoder Hashing

CA-LBFL Context-Aware Local Binary Feature Learning

C-CBFD Coupled Compact Binary Face Descriptor

CBIR Content-Based Image Retrieval

CCA Canonical Correlation Analysis

CDbin Compact Discriminative binary descriptors

CDQ Collective Deep Quantization

CMFH Collective Matrix Factorization Hashing

CMLA Cross-Modal correlation Learning with Adversarial samples

CMSSH Cross-Modal Similarity Sensitive Hashing

CNN Convolutional Neural Network

xx

LIST OF FIGURES xxi

CNNH Convolutional Neural Network Hashing

CT Computed Tomographic

CVH Cross-View Hashing

CYC-DGH Cycle-Consistent Deep Generative Hashing

DBD-MQ Deep Binary Descriptor with Multi-Quantization

DBRC Deep Binary Reconstruction

D-BRIEF Discriminative BRIEF

DCC Discrete Cyclic Coordinate Descent

DCMH Deep Cross-Modal Hashing

DDBC Discriminant Direction Binary Code

DLFH Discrete Latent Factor model based cross-modal Hashing

DGH Discrete Graph Hashing

DH Deep Hashing

DHH Deep Heterogeneous Hashing

DisCMH Discriminant Cross-Modal Hashing

DJSRH Deep Joint-Semantics Reconstructing Hashing

DNNH Deep Neural Network Hashing

DOAP Descriptors Optimized for Average Precision

DSADH Dual-Supervised Attention Network for Deep Hashing

DSH Deep Sketch Hashing

DVB Deep Variational Binaries

DVH Deep Video Hashing

DVSH Deep Visual-Semantic Hashing

EGDH Equally-Guided Discriminative Hashing

FCVID Fudan-Columbia Video Dataset

FPR@95% False Positive Rate at 95% true positive recall rate

FREAK Fast Retina Keypoint

LIST OF FIGURES xxii

GAN Generative Adversarial Network

GCH Graph Convolutional Hashing

GCN Graph Convolutional Network

GPU Graphics Processing Unit

HamH Harmonious Hashing

HER Hashing across Euclidean space and Riemannian manifold

HPatches Homography Patches

IMH Inter-Media Hashing

IMVH Iterative Multi-View Hashing

IsoH Isotropic Hashing

ITQ Iterative Quantization

ITQ+ Iterative Quantization Plus

JMVH Joint Multi-View Hashing

KAEs K-AutoEncoders

KD-tree K-Dimensional tree

KLSH Kernelized Locality Sensitive Hashing

KMH K-Means hashing

KNN K Nearest Neighbour

KSH Kernel Supervised Hashing

LBP Local Binary Pattern

LCMH Linear Cross-Modal Hashing

LDAHash Linear Discriminant Analysis Hashing

LDLP Local Diagonal Laplacian Pattern

LSH Locality Sensitive Hashing

LSSH Latent Semantic Sparse Hashing

LSTM Long Short-Term Memory

MAP Mean Average Precision

LIST OF FIGURES xxiii

MFH Multiple Feature Hashing

MGAH Multi-pathway Generative Adversarial Hashing

MLP Multi-Layer Perceptrons

MSAE Multi-modal Stacked Auto-Encoder

NDH Nonlinear Discrete Hashing

NN Nearest Neighbor

NP Non-deterministic Polynomial

NPH Neighborhood Preserving Hashing

NSH Nonlinear Structural Hashing

ORB Oriented fast and Rotated BRIEF

OKH Online Kernel-based Hashing

OSH Online Sketching Hashing

PCA Principal Component Analysis

PR curve Precision-Recall curve

Precision@K Precision at top-K retrieved candidates

QCH Quantized Correlation Hashing

RFDH Robust and Flexible Discrete Hashing

RNN Recurrent Neural Network

RPN Region Proposal Network

RFDH Robust and Flexible Discrete Hashing

RI-LBD Rotation-Invariant Local Binary Descriptor

SAE Semantic Auto-Encoder

SBIR Sketch-Based Image Retrieval

SCM Semantic Correlation Maximization

SCMFH Supervised Collective Matrix Factorization Hashing

SDCH Semantic Deep Cross-modal Hashing

SDH Supervised Discrete Hashing

LIST OF FIGURES xxiv

SePH Semantics-Preserving Hashing

SGD Stochastic Gradient Descent

SIFT Scale-Invariant Feature Transform

SLBFLE Simultaneous Local Binary Feature Learning and Encoding

SMVH Stochastic Multi-view Hashing

SpH Spherical Hashing

SP SPectral hashing

SPDTH Similarity-Preserving Deep Temporal Hashing

SRBD Superpixel Region Binary Descriptor

SSDMH Self-Supervised Deep Multimodal Hashing

SSTH Self-Supervised Temporal Hashing

SSE Semantic Similarity Embedding

SSVH Self-Supervised Video Hashing

SUBIC SUpervised structured BInary Code

Submod Submodular video hashing

SURF Speeded Up Robust Features

SVM Support Vector Machine

TDH Triplet-based Deep Hashing

TSN Temporal Segment Network

TVDB Textual-Visual Deep Binaries

UDBD Unsupervised Deep Binary Descriptor

UDCH-
VLR

Unsupervised Deep Cross-modal Hashing with Virtual Label Regres-

sion

UDCMH Unsupervised Deep Cross-Modal Hashing

UDVH Unsupervised Deep Video Hashing

YFCC Yahoo Flickr Creative Common

List of Algorithms

1 Unsupervised Deep Binary Descriptor 50

2 Unsupervised Deep Video Hashing 76

3 Self-Supervised Deep Multimodal Hashing 108

xxv

Chapter 1

Introduction and Background
Theory

1.1 Research Background

Living in the Internet era of big data, the explosive amount of data, which varies

in diverse forms like image, text, audio, and video, has become extremely challeng-

ing more than ever for the existing multimedia search engines and recommendation

systems. According to recent public statistics from two popular social media web-

sites, the average number of photos being shared every day on Flickr 1 is more than

1 million. In comparison, over 500 hours of videos are uploaded per minute by the

active users on Youtube2. To tackle such overwhelming data sources, how to perform

accurate and efficient content-based similarity retrieval, which is a core technology of

the current multimedia systems, has aroused extensive attention from both industry

and academia.

The similarity retrieval problem, also known as Nearest Neighbor (NN) search,

can be described as a search process of finding the most relevant semantic (similar)

candidates from a large gallery set for a given query sample [149, 165, 193]. Particu-

larly, given a query feature vector xq ∈ Rd, a gallery set consists of n feature vectors

X = [xi]
n
i=1 ∈ Rd×n, d is the dimensionality, the nearest neighbor search problem can

be formulated as:

NN(xq) = arg min
x∈X

dist(xq, x), (1.1)

1https://expandedramblings.com/index.php/flickr-stats/
2https://www.tubefilter.com/2019/05/07/number-hours-video-uploaded-to-youtube-per-

minute/

1

1.1. RESEARCH BACKGROUND 2

Feature

Extraction

Encoding

Feature

Extraction
Encoding

Gallery
Feature
Vectors

Query
Feature
Vector

Retrieval

Gallery

Query

Relevant
Images

Content-Based Image Retrieval

Figure 1.1: The general procedure of CBIR.

where dist(.) represents a specific distance metric (e.g., Euclidean distance) that de-

termines the closest candidates to xq in the feature space. To further clarify the

similarity retrieval process, a simple flowchart of the general content-based image re-

trieval (CBIR) [165] is presented in Fig. 1.1, which could be easily extended to other

related tasks involving different data types. In CBIR, images are firstly represented

with various feature vectors and then encoded into alternative representations follow-

ing certain patterns (i.e., encoding function). Here, the encoding function, which is

also the learning objective in most search frameworks, should be carefully designed

to obtain better performance in the upcoming retrieval tasks. Then, the gallery and

query data are pre-computed by the learned encoding function and their encoded

feature vectors are measured under a distance metric. By sorting those distances

in an ascending order, the candidates from the gallery with the smallest distances

are returned as the relevant (i.e., similar) neighbors to one specific query. Generally

speaking, the search efficiency depends on the computational complexity of the re-

trieval phase. At the same time, the search accuracy is usually determined by the

proper design of the encoding mechanism when using fixed feature extractor [7,193].

The earliest works in the research of similarity retrieval perform the exhaus-

tive/exact Nearest Neighbor (NN) search in the retrieval process. However, such

a search strategy (i.e., linear scan) shows weakness in tackling large-scale datasets

1.1. RESEARCH BACKGROUND 3

with numerous samples in practical applications. Later on, some tree-based search

schemes are proposed to subdivide the feature space for data samples via employing

various tree structures for fast search. Two representative methods are K-Dimensional

tree (KD-tree) and Randomized KD-tree [46, 132], which indexes the data for quick

query responses. However, these methods cannot handle the high-dimensional cases,

known as the curse of dimensionality, where the computational costs grow exponen-

tially along with the increasing dimension, thus making it less favorable in large-scale

retrieval applications [149,193].

Consequently, Approximate Nearest Neighbor (ANN) search has been developed

rapidly, where the hashing-based approaches draw considerable attention in this

research field to overcome the limitations via conducting efficient retrieval in low-

dimensional (i.e., compact) Hamming space [78]. The core idea of hashing is to rep-

resent the high-dimensional real-valued original data with a series of compact binary

codes while preserving the semantics as much as possible during the code learning,

thus accelerating the retrieval process without compromising the accuracy [193,194].

Two advantages of hashing algorithms3 are presented as follows:

• By representing data with compact binary code, it enables efficient similarity

retrieval by only conducting bitwise operation when computing the Hamming

distance between data samples;

• It reduces the memory space to the maximum extent in storing the massive

features and conducting the large-scale retrieval due to the nature of compact

binary code [51,165,177,193,197].

These unique characteristics make hashing extremely competitive in conducting

large-scale visual-related similarity search tasks. In this thesis, we will focus on

learning compact binary representation via a hashing algorithm for the large-scale

multimedia similarity search tasks. Particularly, we propose several new hashing

frameworks and apply them in three major applications like local binary descriptors

for patch-level4 matching and retrieval (Chapter 3), video-to-video retrieval (Chapter

4) and cross-modality retrieval (Chapter 5). The proposed methods cover various

forms of the similarity search tasks, from single-modality to cross-modality, and also

enable to tackle different forms of multimedia data, e.g., image, text, and video [50,

186].

3Hashing algorithm and hashing technique are used interchangeably in this thesis.
4Patch (i.e., small image) with small size (e.g., 64× 64, 32× 32) is generated as the composition

of a detected interest point and its surrounding pixels from a global image.

1.2. FUNDAMENTAL THEORY OF HASHING TECHNIQUE 4

In the following subsections, we provide further insights on the fundamental theory

of the hashing algorithm first and briefly present the motivations when proposing

those novel methods. Then we summarize the contributions for each chapter. Finally,

the organization of this thesis is given.

1.2 Fundamental Theory of Hashing Technique

Given a data sample represented by a feature vector x ∈ Rd, the ultimate goal of

hashing technique (i.e., learn to hash) is to design an optimal hash function h(.)

that projects x from the original high-dimensional space into compact binary space

b ∈ {−1, 1}p (Rd → Rp and d >> p), while keeping its true nearest neighbors as

closer as possible in the Hamming space [193, 194, 197]. In other words, the similar

data samples in the original feature space should be represented with similar (low

Hamming distance) binary codes, thus improving the retrieval efficiency dramatically

with decent accuracy.

To achieve that learning goal, several crucial problems should be considered when

designing a robust hashing framework. In this thesis, we address them concisely from

five different aspects: hash function, objective function construction, optimization

strategy, fast similarity search with hash code, and evaluation metrics.

1.2.1 Hash Function

As discussed above, hash function plays a crucial role in determining the retrieval

accuracy in the applications of hashing technique and the code generalization effi-

ciency [194]. Notably, we can formulate the general hashing process as follow:

h(x)→ b, (1.2)

where the hash function h(.) can be summarized into two main types: linear and

nonlinear functions. An example of the generalized linear hash function is given as

below:

sign(Wx+ y)→ b, (1.3)

where W ∈ Rp×d and y ∈ Rp represent the linear projection matrix and bias vector,

respectively. Hard thresholding function sign(x) equals 1 if x ≥ 0, otherwise −1.

However, in real applications, linear hash function usually suffers from less discrimi-

native power though simplicity itself [111].

1.2. FUNDAMENTAL THEORY OF HASHING TECHNIQUE 5

h(x) = 1

h(x) = 0

Linear

Nonlinear

Feature Space

Figure 1.2: An example of linear and nonlinear models. Given two different data
distributions (triangle and parallelogram), the nonlinear model can better fit the
complicated data distributions than the linear one.

To overcome the discussed limitation of the linear hash function, nonlinear hash

functions have been widely developed in recent studies, where kernel, spherical func-

tion, or boosting model can be applied to the original feature before the binarization.

Compared to the linear hash function, such nonlinear operation enables to enhance

the feature expressive ability, which is more compatible with the real data collected

from complex real-world scenarios [23]. Fig. 1.2 gives a simple example in such a case.

Without loss of generality, the widely-used kernel-based hash function is presented as

below:

sign(
∑
i

Wiφ(ci, x) + y)→ b, (1.4)

where ci denotes the randomly-sampled data point or cluster center from the dataset.

φ(.) is the kernel function [91] and Wi represents the weight matrix.

With the recent development of deep learning technologies, deep neural networks

have been widely incorporated into the hashing frameworks, which can also be treated

as an advanced form of nonlinear hash functions with various activation functions [23,

43,94,219]. In this thesis, deep networks are also adopted as hash functions to improve

the performance of our methods.

1.2. FUNDAMENTAL THEORY OF HASHING TECHNIQUE 6

1.2.2 Objective Function Construction

Constructing a proper objective (i.e., loss) function is the most crucial factor in

obtaining better retrieval performance for a hashing framework. Generally, most

existing methods build their loss functions with two essential elements: learning the

hash function while keeping the similarity consistency between feature spaces at the

same time [194]. For the hash function learning part, one of the most commonly

adopted solutions is to minimize the loss between hash code b and hash function

h(x), which can be generalized as a loss term below:

min‖b− h(x)‖2
F , (1.5)

where Frobenius norm (i.e., ‖.‖F) is used here as an example, and the distance metrics

might vary in different methods. The hash function h(x) can be in the forms of linear

or nonlinear, as discussed in the previous section. The underlying meaning of Eq.

(1.5) is to bridge the original feature space and compact Hamming space via learning

the hash function, which is also described as a projection (i.e., mapping) procedure

in most related works [51,193].

Regarding the similarity-preserving criterion, the core concept focuses on keeping

the consistency between the original and binary spaces for the similar data samples

during the learning process such that they are more likely to be represented by similar

hash codes. In most existing hashing works, the similarity-preserving criterion can

be achieved by including pairwise-, multiwise- or quantization-based solutions in the

objective function [194,197], where a simple example is provided for each solution to

clarify the problem. Particularly, in the pairwise similarity-preserving criterion, the

distances or similarities of a pair of data samples are aligned in the loss term. One

of the most representative works is SPectral hashing (SP) [211], where the similarity-

preserving term is formulated as:

min
∑
i,j

sijdij =
∑
i,j

sij‖bi − bj‖2. (1.6)

Here, the similarity sij is calculated as e−
‖xi−xj‖

2

σ2 for a pair of data points xi and xj.

Eq. (1.6) measures the average Hamming distance between similar neighbors [211].

While in the multiwise similarity-preserving criterion, the distances or similarities of

more than one pair of data points are considered, where the triplet loss is widely

employed in previous methods like [137]. Given a triplet set of data points x, x+, x−

1.2. FUNDAMENTAL THEORY OF HASHING TECHNIQUE 7

and their binary codes as b, b+, b−, x+ is more similar to x than x−, the triplet loss

term is written as follow:

max(1− ‖b− b−‖1 + ‖b− b+‖1, 0). (1.7)

According to Eq. (1.7), the loss term would be penalized when b− is more (or

equally) similar to b than b+, thus preserving the similarity structure during the

optimization. In the quantization-based methods, the reconstruction loss function

is generally employed to find the optimal approximations of original data points in

the compact Hamming space. A good example of this case is Iterative Quantization

(ITQ) [51] and its objective function can be formulated as below:

min
B,R
‖B−RTV‖2

F = ‖B−RTPTX‖2
F , (1.8)

where V = PTX denotes the projected feature after Principal Component Analysis

(PCA) [213] on the centralized input X. To be specific, ITQ aims at exploiting

an orthogonal rotation matrix R via iterative optimization such that similar data

points could be aligned properly in the binary space [51]. The performance from

these quantization-based methods significantly relies on the feature distribution (e.g.,

zero-centered) and projection quality.

In the above discussions, we have presented two essential elements of constructing

a hashing objective function. It worth noting that the solutions above could be

expanded as different forms but not limited to merely Eq. (1.5), (1.6), (1.7) and

(1.8) [194]. Many extra problem-oriented components (e.g., regularization terms or

restrict conditions) could be added to the loss function for better similarity search

quality.

1.2.3 Optimization Strategy

Due to the discrete constraints introduced by the sign function, it is exceptionally

challenging to optimize the non-convex objective functions (i.e., mixed-binary-integer

optimization problem) directly in most hashing methods [194, 197]. Subsequently,

various discrete optimization strategies have been proposed in previous works, and

they can be roughly categorized into three mainstream types as follows.

1.2.3.1 Continuous Relaxation

During the optimization, the binary constraints are relaxed to continuous variables

(i.e., approximated hash codes) via using different relaxation functions (e.g., sigmoid :

1.2. FUNDAMENTAL THEORY OF HASHING TECHNIQUE 8

x → 1
1+e−x

∈ (0, 1) and tanh : x → ex−e−x
ex+e−x

∈ (−1, 1)) [117, 166] or even discarding

the sign function (i.e., sign(x) ≈ x) [118]. The purpose of performing continuous

relaxation is to make the objective function differentiable such that standard gradient-

based optimization schemes can be applied. However, the direct optimization over the

relaxed variable cannot guarantee the optimal solution because of the gaps between

approximated and real hash codes.

1.2.3.2 Alternative Optimization

In this learning paradigm, the discrete optimization procedure is decomposed into

two distinct stages, namely, learn hash codes first and build hash functions afterward

based on the learned codes (i.e., two-stage optimization) [105, 238]. In other words,

there is no need to update the hash function during each iteration of code learning,

which reduces the computational costs to some extent. For example, in [238], the

binary codes are generated via exploiting the eigenvalues in a relaxed version of the

Laplacian graph and then train the Support Vector Machine (SVM) classifiers as

hash functions by using the learned binary codes as class labels. However, such a

learning strategy usually leads to locally optimal solutions because of the separate

optimization steps.

1.2.3.3 Coordinate Descent

Instead of applying relaxation strategy, the binary constraints remain unchanged dur-

ing the optimization process, and the objective function is optimized iteratively via

flipping each entry within hash code sequentially, which indicates that a single bit

is learned based on the rest fixed bits in one binary vector [153]. However, the ob-

jective function is usually required to follow specific patterns (e.g., Binary Quadratic

Programming problem [228]) or adopt a proper initialization strategy to make the

coordinate-descent optimization tractable. More worriedly, the bit-by-bit optimiza-

tion scheme is extremely low-efficient, which is also addressed in Chapter 5.

Generally speaking, the presented optimization strategies are all double-edged

swords. Nevertheless, they provide flexible solutions when tackling such discrete

optimization problems in hashing applications. Some of those strategies are also

adopted in our works, which will be detailed in the following chapters.

1.2. FUNDAMENTAL THEORY OF HASHING TECHNIQUE 9

Hash Function

1 0 1 0 1 1 0 1

1 0 1 0 1 1 0 1

1 1 0 1 1 0 1 1

Dh=1

1 0 1 0 0 1 0 1

1 1 1 0 1 1 0 1

……

Dh=2

Dh=6

Dh=1

GalleryQuery

Ranked Results

Figure 1.3: The search procedure of hash code ranking. The ranked results are
obtained based on the Hamming distances (Dh) in an ascending order.

1.2.4 Fast Similarity Search with Hash Code

As long as we can obtain binary codes for the data from the proposed hash function,

efficient nearest neighbor search can be conducted by using one of the following search

strategies: hash code ranking and hash table lookup [194,197].

1.2.4.1 Hash Code Ranking

As the most straightforward hashing-based search strategy, in the hash code rank-

ing, the Hamming distances between the binary codes of query and gallery data

are exhaustively calculated via bitwise XOR operation and then sorted in ascending

order, where the candidates with smallest Hamming distances are returned as the

nearest neighbors to that query. This search strategy exhibits one main advantage

of using hash codes rather than real-valued representations, where the Hamming dis-

tance between hash codes can be computed efficiently with much lower computational

costs, comparing to that under other distance metrics (e.g., Euclidean distance) in

the original feature space [194]. Besides, hash code ranking adopts an exhaustive

search strategy to provide coarse-level retrieved candidates for query data and more

re-ranking techniques can be further applied for the fine-grained retrieval results. A

1.2. FUNDAMENTAL THEORY OF HASHING TECHNIQUE 10

x1, x4, x5

x2

x3, x6

………

xn

0110

1110

0100

1111

Hash Table

Query

0110

h(.)

(a) Single table lookup

x2, x4

x8

x3, x6

………

xn

Hash Table 1

Query
hM(.)

x2

x3， x9

x1, x10

………

x5

Hash Table M

h1(.)

………

(b) Multiple table lookup

Figure 1.4: (a) 4-bit hash code is used as an example. The returned items would be
x1, x4, x5, x2, x3 and x6 if the Hamming radius is 1; (b) M(M > 1) hash tables are
constructed in the multiple table lookup and the neighbor search is conducted across
these tables afterward.

simple example of the hash code ranking is presented in Fig. 1.3 and it has been

widely adopted to evaluate the system performance of our methods and the state-of-

the-arts.

1.2.4.2 Hash Table Lookup

Theoretically, the search process of the hash table (i.e., hash map) lookup is more

complicated than the hash code ranking. Precisely, the hash table consists of multiple

buckets, where each bucket is indexed by unique hash code and assigned with at

least one item (i.e., data sample) from the gallery under the perfect condition. One

fundamental principle in constructing such a hash table is maximizing the probability

of similar items being stored in the same bucket and vice versa. It speeds up the

search process via reducing the frequency of distance computations in the inverse

lookup when given a query data [22,194].

There are two different types: single table and multiple tables, in the hash table

lookup. In single table lookup, all gallery items (e.g., x1, x2, ..., xn in Fig. 1.4(a))

are placed in one table and the query needs to visit more buckets to guarantee the

retrieval accuracy. In multiple tables lookup, a bunch of tables (e.g., M in Fig. 1.4(b))

are constructed to store multiple copies of those gallery items. By placing the item

copies in multiple hash tables, it obtains satisfactory performance by improving the

possible hit number of each relevant item though relatively high space costs. Fig.

1.4 briefly presents the hash table indexing procedures. The hash table lookup is

1.2. FUNDAMENTAL THEORY OF HASHING TECHNIQUE 11

widely employed to evaluate the retrieval performance of those LSH-based methods

and more details on hash table lookup can be found in [160,194,197,211].

1.2.5 Evaluation Metrics

Several popular performance evaluation metrics used to measure the search quality are

elaborated in this section, including Precision@K, Mean Average Precision, Precision-

Recall Curve and Receiver Operating Characteristic Curve.

1.2.5.1 Precision@K

Precision at top-K retrieved candidates (Precision@K) is one of the most fundamental

performance evaluation metrics in large-scale information retrieval. In this thesis,

Precision@K can be computed as:

Precison@K =
|{Relevant Data}

⋂
{Top K Retrieved Data}|
K

, (1.9)

where |.| denotes the size of the common subset. This metric has been used in the

experiments of Chapter 3, Chapter 4 and Chapter 5.

1.2.5.2 Mean Average Precision

In the information retrieval, mean Average Precision (mAP)5 is a crucial retrieval

performance metric. To calculate the mAP score, the average precision of each query

should be computed first during the retrieval. To be specific, the average precision

on the retrieved results for one query is calculated as:

Average Precison =

∑Nc
k=1(Precision@k ×Rel(k))

|{relevant data}|
. (1.10)

where Nc denotes the retrieved candidates number. Rel(k) refers to an indicator

function, which equals 1 if the relevant item to the query is retrieved at rank k and

otherwise 0 [185]. Therefore, the mAP value for all the queries during the retrieval

can be calculated as below:

mAP =

∑Nq
i=1Average Precision(qi)

Nq

, (1.11)

where Nq is the queries number. This metric has been used in the experiments of

Chapter 3, Chapter 4 and Chapter 5.

5Sometimes it could be Mean Average Precision (MAP).

1.2. FUNDAMENTAL THEORY OF HASHING TECHNIQUE 12

1.2.5.3 Precision-Recall Curve

In information retrieval, precision is a measure of result relevancy, while recall is a

measure of how many genuinely relevant results are returned. The Precision-Recall

(PR) curve shows the tradeoff between precision and recall for different thresholds.

A high area under the curve represents both high recall and high precision, where

high precision relates to a low false-positive rate, and high recall refers to a flat

false-negative rate. High scores of both metrics show that the classifier is returning

accurate results (high precision), as well as returning a majority of all positive results

(high recall).

Particularly, precision is defined as the number of true positives (Tp) over the

number of true positives plus the number of false positives (Fp), which is formulated

as:

Precision =
Tp

Tp + Fp
. (1.12)

Recall is defined as the number of true positives (Tp) over the number of true

positives plus the number of false negatives (Fn), which is computed as:

Recall =
Tp

Tp + Fn
. (1.13)

This metric has been used in the experiments of Chapter 3, Chapter 4 and Chapter

5.

1.2.5.4 Receiver Operating Characteristic Curve

Receiver Operating Characteristic (ROC) curve is determined by True Positive Rate

(TPR) and False Positive Rate (FPR). To be specific, TPR is defined as the number

of true positives (Tp) over the number of true positives (Tp) plus the number of false

negatives (Fn), which is formulated as:

TPR =
Tp

Tp + Fn
. (1.14)

FPR is defined as the number of false positives (Fp) over the number of true

negatives (Tn) plus the number of false positives (Fp), which is calculated as:

FPR =
Fp

Tn + Fp
. (1.15)

This metric has been used in the experiments of Chapter 3.

1.3. RESEARCH PROBLEMS AND CHALLENGES 13

Feature

Descriptor

Learning

Feature

Matching

Interest

Point

Detection

Matched Pairs Non-Matched Pairs

Images Patches

Figure 1.5: The work pipeline of traditional image matching using local feature de-
scriptor, which consists of three major steps: interest point detection, feature descrip-
tor learning and feature matching. The feature learning and matching processes are
conducted at the patch level. The input images might be photographed from different
views or even processed with various affine transformations.

In the next section, we will present the concrete research problems and challenges

in designing the hashing algorithms for various applications in this thesis.

1.3 Research Problems and Challenges

Although considerable success has been achieved by the modern hashing methods in

a wide range of various similarity search tasks, there are still several limitations that

need to be addressed for better system performance. In this thesis, we mainly focus on

three popular hashing applications: image matching/retrieval with the local binary

descriptor, video hashing, and cross-modality hashing, where the existing challenges

that motivate our works in these applications are elaborated.

1.3.1 Local Binary Descriptor

Fig. 1.5 shows the traditional image matching process by using a local feature de-

scriptor. To be specific, it first generates local patch sets for each image by the in-

terest point detectors, such as Scale Invariant Transform Invariant (SIFT) [121] and

1.3. RESEARCH PROBLEMS AND CHALLENGES 14

Hessian-Affine [129], and learns the corresponding local feature descriptor for each

patch. Then the feature matching can be conducted by measuring the distance (e.g.,

Euclidean distance) between those descriptors. Especially, matching can be treated

as a particular case of retrieval, where only one exact candidate is returned for the

query in the matching process. The fundamental principle of designing local feature

descriptors is that the descriptor should be robust against various geometric transfor-

mations like rotation, translation, and scaling, etc. [97,121]. In the earlier works, they

mainly focus on learning the real-valued feature descriptors for the matching process.

Hundreds of interest points per image would be selected and the high-dimensional

feature vectors for each patch are usually required, which leads to high computation

complexity and memory costs in the upcoming matching process. Consequently, the

binary descriptor has drawn extensive attention to accelerate the matching process

while consuming low computing resources. In this thesis, we discuss several limita-

tions of the existing binary descriptors below.

• Earlier binary descriptors (e.g., Binary Robust Independent Elementary Fea-

tures (BRIEF) [17], Binary Robust Invariant Scalable Keypoints (BRISK) [97])

generally adopt shallow handcrafted sampling patterns and perform pairwise

intensity comparisons to generate the feature descriptors [231]. For example,

in BRIEF, a bunch of specific location pairs are selected from the smoothened

image patch and pixel-level intensity comparison is conducted between each

pair [17]. However, such handcrafted descriptors are extremely vulnerable to

the distortions/transformations, which yields unstable performance when tack-

ling large-scale visual recognition tasks [182,183,231].

• The learning-based binary descriptor is becoming a popular research topic for its

desirable performance against those handcrafted ones. Most previous methods

adopt hashing ideas and pay intense attention to novel discrete optimization

strategies, however, the basic principle in designing local feature descriptors,

anti-geometric transformation, is not considered during the optimization [97,

183]. Moreover, most learning paradigms fail to preserve the manifold structure

during the discrete optimization, which makes binary descriptor less effective in

the large-scale nearest neighbor search tasks [56, 107,153].

• Traditional binary descriptors measure the similarity between database and

query via performing exhaustive Hamming distance calculations in the testing

phase, which is more likely to return many candidates with equal Hamming

1.3. RESEARCH PROBLEMS AND CHALLENGES 15

Feature

Fusion
Hashing Retrieval

Video

Gallery
Hashing

Relevant

Videos

Feature

Extraction

… …

Video

Frames

Feature

Extraction

Feature

Extraction

Feature

Extraction

Feature

Extraction

Feature

Extraction

Figure 1.6: The general pipeline of video retrieval.

distances to one specific query compared to using the real-valued feature de-

scriptors [120]. However, the ultimate goal of the feature matching is to find one

exact candidate (with the lowest Hamming distance) to a specific query rather

than returning a bunch of ambiguous options (with equal minimum Hamming

distance) in the general retrieval process.

Those defects give rise to the less favorable performance from the previous binary

descriptors and should be carefully addressed in the descriptor learning to improve

the matching accuracy.

1.3.2 Video Hashing

Fig. 1.6 presents the general pipeline of video retrieval based on the hashing algo-

rithm. Compared with images, videos, which can be treated as more complicated 3D

signals, are more difficult to be hashed because of variable lengths and tremendous

redundancies. To tackle those issues, video is firstly represented as a certain number

of consecutive keyframes prior to employing various hashing algorithms, as shown

in Fig. 1.6 [243]. However, two major limitations in previous works impede their

performance in large-scale video retrieval, which are presented as follows:

• In earlier video hashing methods [28,38,172], they generally wrap the keyframe-

level features up as a single video feature first via employing various feature

1.3. RESEARCH PROBLEMS AND CHALLENGES 16

fusion strategies, and then apply the binarization tactics from image hash-

ing [51, 211] on the concentrated feature directly. Some of them even perform

image hashing on each frame independently and generate video hash code by

thresholding the average value of all frame-level binary codes [24]. However,

such learning paradigms degrade the quality of video hash code significantly

because of the improper hashing mechanisms and the ignorance of the video’s

temporal nature [109,197,200,225].

• As revealed in recent studies on video representation learning, it is more likely

to obtain better video features via incorporating the frame-level spatial infor-

mation with the temporal information of a video sequence, thus improving the

system performance in various vision tasks [175,226,235]. Currently, two main-

stream ways to obtain such video feature are presented as follows: 1) feeding

the sparsely-sampled frame-level image features from a video clip into Recur-

rent Neural Network (RNN) or Long-Short Term Memory (LSTM) [73] in order

to explore the temporal nature and then aggregating into the global video-level

feature [109, 197, 217]; 2) fusing the spatial and temporal features (e.g., optical

flow) from the two-stream networks to generate the unified video representation

via various pooling schemes [200]. However, those operations usually make the

synthetic video feature with more scattered (less correlated) distribution and

unbalanced dimensions compared to the pure image feature [86, 175]. When

projecting these video features into the low-dimensional compact space before

the binarization step, the data variances on projected dimensions tend to be

large (i.e., unbalanced) [35, 57, 58]. Especially for the fixed bit quantization,

this imbalanced projection will degrade the performance of the generated hash

codes because each dimension will be treated equivalently and allocated with

the same number of bits (e.g., 1 bit in most existing works) in the quantization

step afterward. It is unable to achieve effective hash codes for video retrieval

due to such an unfair bit assignment scheme.

1.3.3 Cross-Modality Hashing

Fig. 1.7 depicts the general process of cross-modality hashing, where the pairs of

image and text are utilized in the training phase and the cross-modal retrieval tasks:

image→text and text→image6, are performed afterward. Compared with the single-

6Image
text is used as an example here. Other data types (e.g., audio and video) can also be
applied.

1.3. RESEARCH PROBLEMS AND CHALLENGES 17

France

Presidency

Eiffel

Tower

Blue

Stars

European Union

Feature

Extraction

(sift, CNN, etc.)

Feature

Extraction

(Bag-of-Words)

Image

Feature

Space

Hash

Function

𝑯𝒊𝒎𝒈

Text

Feature

Space

Hash

Function

𝑯𝒕𝒙𝒕

Binary

Code

𝑩𝒊𝒎𝒈

Binary

Code

𝑩𝒕𝒙𝒕

Modality Gap

Image

Text

Text

Gallery

Binary

Code

𝑩𝒊𝒎𝒈

Relevant

Texts

Binary

Code

𝑩𝒕𝒙𝒕

Image

Gallery

Relevant

Images

Image → Text Text → Image

Figure 1.7: The general workflow of cross-modality retrieval. Two cross-modal re-
trieval tasks: image→text and text→image, are used as examples.

modality retrieval (e.g., video-to-video retrieval discussed in the previous section), the

data instances are not in the same feature space when conducting the cross-modality

similarity search. One of the main challenges in this research field is how to tackle the

semantic gaps within different modalities (i.e., modality gap) properly. Many types

of research have been devoted to handling this problem, however, some defects from

these methods become the hard barriers of retrieval performance gains.

• Most existing methods, both in unsupervised [35, 170, 190] and supervised [10,

108, 180, 223] manners, concentrate on exploring a common latent space for

the data from various modalities during the training process such that the

heterogeneity among modalities can be minimized [35, 108]. For instance, as

a classical work in the common latent space learning, matrix factorization is

adopted in [34] to model the relations among different modalities. Specifically,

a two-stage learning strategy is applied in learning unified binary code, where

the original features of data points from different modalities are first projected

into a real-valued common latent space, and then the latent space is quantized

1.3. RESEARCH PROBLEMS AND CHALLENGES 18

to obtain the binary code. Recently, deep learning technology has been widely

incorporated in the cross-media hashing, which improves retrieval performance

with better feature representation and nonlinearity modeling ability [210]. How-

ever, most of those deep-based methods still employ a two-step scheme in the

code learning following [34], where large quantization errors exist in the bina-

rization step [189]. That is to say, the two-stage learning paradigm yields large

quantization errors, and such errors will be further magnified after the itera-

tive code learning, thus leading to suboptimal results because of the bad code

quality.

• Moreover, most previous works focus on learning the unified representation for

the multimodal inputs. However, neighborhood structures from the original

feature space are not well preserved, thus compromising the retrieval perfor-

mance significantly because of less discriminative code. In another word, only

instances within data pairs (e.g., a pair of image and its description) are repre-

sented with the same binary code in the simple common latent space learning.

While the positions between data pairs cannot be guaranteed in the binary

space after the projection. Compared to unsupervised methods, supervised

cross-modal hashing addresses this issue with the aid of dedicated prior knowl-

edge (e.g., semantic labels, similarity matrix) [199]. Nevertheless, such similar-

ity preservation is usually performed on approximated (i.e., real-valued) hash

codes without any restrictions on binary codes in the training process, where

the gap between real-valued and binary spaces makes that operation less effec-

tive [108,126,202,204,223].

Based on the discussions above, the retrieval performance would be profoundly

affected by those drawbacks, thus preventing the existing methods from massive de-

ployment in real-world cross-media similarity search applications.

In this section, we have discussed the significant research challenges concisely in

various hashing-based applications. To handle those problems above, several novel

solutions are proposed for those applications separately, which will be further detailed

in the main chapters. In the next subsections, we briefly summarize the contributions

of each work and provide the chapter outlines correspondingly.

1.4. OVERVIEW OF CONTRIBUTIONS 19

1.4 Overview of Contributions

In this thesis, the content covers the research challenges of the compact binary code

learning based on hashing algorithm in three popular applications: ranging from

local binary descriptor to video hashing and finally to cross-modal hashing. The

contributions of this thesis can be presented as proposing novel solutions to tackle the

discussed research challenges while achieving superior similarity search performance

in the above applications. Without loss of generality, the contributions of each work

are briefly summarized as follows:

• Chapter 3: To address the challenges above in Section 1.3.1, a novel method

termed Unsupervised Deep Binary Descriptor (UDBD) is proposed to learn the

transformation invariant binary descriptor, where the original visual data and

their transformed sets are being embedded into a common Hamming space in

an unsupervised manner. Moreover, a graph constraint that preserves the man-

ifold structure from the original feature space is employed in the unified binary

representation learning, thus improving the code quality. Since patch mainly

contains noise-sensitive local features, `2,1-norm loss is proposed to regularize the

binary embedding. On one hand, `1-norm distance at the patch level provides

the robustness against outlier samples. On the other hand, `2-norm measures

the distance along space dimension, which spreads out the errors over each bit

uniformly to lower the possibility that certain bits are mistakenly flipped af-

ter getting significant errors. To this end, an alternating discrete optimization

strategy is proposed to optimize the `2,1-norm constrained objective function,

where the binary code can be solved directly with no need for relaxation. Ad-

ditionally, a weak bit scheme, which considers the reliability of each bit in a

descriptor, is applied along with the proposed binary descriptor to find the best

match when there are multiple candidates with the same distance to the query

after comparing the Hamming distance of descriptors.

• Chapter 4: To boost the large-scale video retrieval performance, a novel un-

supervised deep hash framework termed Unsupervised Deep Video Hashing

(UDVH) is proposed to organize hash code learning in a self-taught manner.

Instead of minimizing feature reconstruction distortion, our structure minimizes

the quantization error of projecting video features to a binary hypercube, thus

allowing the feature extraction and hash function learning to engage with each

1.4. OVERVIEW OF CONTRIBUTIONS 20

other. Involving the feature clustering in the code learning enables the neigh-

borhood structure to be preserved. Specifically, for the unbalanced dimensions

of video features as discussed above, a balanced rotation scheme is proposed

to identify a proper projection matrix such that the variance of each projected

dimension can be balanced. By doing so, the information in each dimension

of video features can be equalized. This operation would greatly benefit the

quantization step, in which each dimension is allocated with the same number

of bits. This binarization scheme taking imbalanced properties of video feature

into account improves the video retrieval performance dramatically. To provide

comprehensive insights on the proposed framework, two different learning struc-

tures: stacked LSTM units (UDVH-LSTM) and Temporal Segment Networks

(UDVH-TSN) are discussed and analyzed.

• Chapter 5: To tackle the problems in Section 1.3.3, a matrix factorization

based supervised cross-modal hashing method termed Self-Supervised Deep

Multimodal Hashing (SSDMH) is proposed, which incorporates deep feature

learning, binarization and deep hash function learning seamlessly into a unified

learning framework. Notably, a novel regularized binary latent model is pro-

posed during the code learning, where the unified binary code is learned via

projecting the original features from various modalities into a common binary

space. Moreover, the discrete unified binary codes can be solved without re-

laxation and the weights of different modalities are optimized dynamically. To

make the most advantage of supervision knowledge, we propose to minimize the

graph regularization loss, which explicitly preserves the neighborhood structures

of the original data and is prone to produce the discriminative hash codes. An

alternating optimization strategy is adopted in solving the discrete-constrained

objective function, where deep parameters and unified binary codes are opti-

mized jointly. Particularly, a novel discrete optimization method, termed as

Binary Gradient Descent, is proposed to accelerate the optimization speed dra-

matically, in contrast to the traditional bit-by-bit fashions. Besides, the pro-

posed algorithm is further extended to an unsupervised version termed Unsu-

pervised Deep Cross-Modal Hashing (UDCMH), which is suitable to be applied

in the large-scale training process with no prior knowledge is available.

1.5. THESIS OUTLINE 21

1.5 Thesis Outline

The rest of this thesis consists of a comprehensive literature review on the existing

works and the proposed state-of-the-art hashing frameworks for three popular ap-

plications of similarity search. Firstly, we propose to learn the robust local binary

descriptor against arbitrary geometric transformations via using matrix factorization

for effective image matching and retrieval tasks. Continuing the topic in the single-

modality domain, we present an unsupervised deep video hashing model for general

video-to-video retrieval. Then we extend the research topic to the cross-modality (i.e.,

multi-modality) domain and propose a novel deep cross-modal hashing network. Fi-

nally, we conclude this thesis and discuss potential research directions. The remaining

chapters are summarized as follows:

Chapter 2: Literature Review on Hashing-Based Similarity Search. A

comprehensive overview of the state-of-the-art hashing-based retrieval algorithms is

given in this chapter, which covers the research works from various domains in differ-

ent similarity search applications.

Chapter 3: Unsupervised Deep Binary Descriptor. In this chapter, we

propose a novel learning-based feature descriptor, namely Unsupervised Deep Binary

Descriptor (UDBD), which learns transformation invariant binary descriptors without

relaxation via projecting the original data and their transformed sets into common

binary space directly. The proposed method can also be applied in the similarity

search tasks like image matching and retrieval. Extensive experimental results on

public datasets: Brown [11], Cifar-10 [89], and HPatches [3] show the superiority of

UDBD in terms of matching and retrieval accuracy over the state-of-the-arts.

Chapter 4: Unsupervised Deep Video Hashing. In this chapter, we propose

a novel video hashing framework named Unsupervised Deep Video Hashing (UDVH)

for large-scale video similarity search tasks to learn compact yet effective binary codes.

Two different video feature learning structures: stacked LSTM units (UDVH-LSTM)

and Temporal Segment Networks (UDVH-TSN) are integrated into the proposed

video hashing framework. Particularly, a smart rotation applied to the video-specific

features that are widely spread in the low-dimensional space such that the variance

of dimensions can be balanced, thus facilitating the subsequent quantization step.

Extensive experiments on three popular video datasets: FCVID [140], YFCC [181],

and ActivityNet [14], show that UDVH is overwhelmingly better than the state-of-

the-arts in terms of various evaluation metrics.

1.5. THESIS OUTLINE 22

Chapter 5: Deep Cross-Modal Hashing. In this chapter, we propose a novel

hashing method termed Self-Supervised Deep Multimodal Hashing (SSDMH), for

large-scale cross-media search. Notably, the hashing system based on the binary la-

tent factor models can generate unified binary codes by solving a discrete-constrained

objective function directly with no need for relaxation. Moreover, we propose a new

discrete optimization solution, termed as Binary Gradient Descent, which aims at

improving the optimization efficiency towards the real-time operation. Besides, an

unsupervised version of the proposed algorithm, termed Unsupervised Deep Cross-

Modal Hashing (UDCMH), is introduced to tackle the cross-modal retrieval applica-

tions without supervision information. Extensive experiments on three benchmark

datasets: Wiki [146], MIRFlickr [77], and NUS-WIDE [25], demonstrate the superi-

ority of the proposed methods over state-of-the-art cross-modal hashing approaches.

Chapter 6: Conclusion and Future Work. Finally, we summarize the con-

tributions of this thesis in this chapter and present future research interests.

Chapter 2

Literature Review on
Hashing-Based Similarity Search

In this chapter, a comprehensive review of previous hashing-based similarity retrieval

methods from both single-modality and cross-modality is presented. Notably, in

this thesis, local binary descriptor, image, and video hashing are concluded as three

sub-topics of the single-modality similarity search in Section 2.1. Without loss of

generality, the literature review starts from the traditional image hashing methods,

which are the fundamentals in the research field. The state-of-the-art local binary

descriptors, where most of them adopt the hashing idea in descriptor learning, are

categorized and discussed as a single-modality retrieval problem in Section 2.1.2.

Then the review topic is changed to the video hashing applications, which can be

treated as an extension of image hashing. Finally, state-of-the-art cross-modal hashing

methods are reviewed in Section 2.2, which motivate our work to address the problems

as mentioned above.

2.1 Single-Modality Similarity Search

In single-modality hashing, the hash function is learned based on one specific type of

data (e.g., image, text, video), and the retrieval is then conducted between the data

samples under the same type. Generally, it covers the methods from the traditional

image and video hashing, where they can be either supervised or unsupervised for

each of them. The difference between supervised and unsupervised hashing is that

whether the supervision knowledge is used or not [193]. Particularly, in supervised

hashing [55, 91, 113, 114, 117, 136, 196], the label or pairwise similarity are adopted

in the training process, which usually yields better retrieval performance than the

unsupervised methods under the same settings. However, the labor-extensive labeling

23

2.1. SINGLE-MODALITY SIMILARITY SEARCH 24

process is required in supervised hashing, which makes it less favorable in conducting

large-scale similarity retrieval. While unsupervised hashing [51, 69, 88, 115, 152, 154,

211] builds the hash function via exploring the data structure (e.g., clustering) with

no need for supervision information, which is also the focus of this thesis. In this

section, we first provide a quick review of image hashing and then discuss the related

works in the local binary descriptor and video hashing to echo the contents in Chapter

3 and Chapter 4.

2.1.1 Image Hashing

Traditional image hashing methods can be generally classified into two domains: data-

independent and data-dependent. A representative data-independent method termed

Locality Sensitive Hashing (LSH) [22] produces the compact binary codes by us-

ing random projections on original high-dimensional features along with thresholding

schemes. Then an extended version of LSH named Kernelized Locality Sensitive

Hashing (KLSH) [92] is proposed, which builds the hash functions with the kernel-

ized pairwise representations. However, these methods that are adopting a random

projection paradigm usually yield unappreciated performance when using short codes,

which makes them unsuitable for hashing applications that require compact binary

codes.

Consequently, data-dependent methods are widely developed, where advanced sta-

tistical learning strategies are utilized in building the hashing functions to produce

compact yet effective binary codes. As mentioned above, those hashing methods can

be further divided into supervised and unsupervised ones. In supervised hashing,

dedicated prior knowledge is involved in the code learning. For example, Binary Re-

constructive Embedding (BRE) [91] builds the kernel hash function via minimizing

the squared reconstruction errors between the original and the Hamming distances

of the to-be-learned binary embeddings. However, the proposed coordinate descent

optimization is not efficient and the retrieval performance is not satisfactory. Kernel

Supervised Hashing (KSH) [117] approximates the Hamming distances between data

samples by utilizing the pairwise similarity calculating from category information.

The drawback of KSH is that the intra-class distance is not optimized in the training

process, which lowers the binary code quality dramatically when dealing with various

categories within one dataset. In [177], Linear Discriminant Analysis hashing (LDA-

Hash) is proposed to alleviate this issue by minimizing the intra-class and maximize

the inter-class variations of binary codes simultaneously. Shen et al. [153] propose Su-

pervised Discrete Hashing (SDH) that solves the binary codes via applying Discrete

2.1. SINGLE-MODALITY SIMILARITY SEARCH 25

Cyclic Coordinate descent (DCC) method, where the label information is used to

approximate the binary code via linear classifiers. However, Support Vector Machine

(SVM) [27] is trained during each iteration to generate auxiliary variables, which is

not efficient when tackling large-scale datasets.

Recently, breakthrough performance has been achieved by the combination of deep

learning techniques and hashing in the large-scale image retrieval tasks [43, 94, 219],

where deep Convolutional Neural Network (CNN) [7, 90] is widely deployed in those

works. In [219], Convolution Neural Network Hashing (CNNH) is proposed to decom-

pose the hash function learning into two stages: hash code learning and deep network

fine-tuning, where the similarity between data pairs is preserved by minimizing the

loss between the inner product of binary code and the similarity matrix. While Deep

Neural Network Hashing (DNNH) in [94], which can be treated as an updated version

of CNNH, outperforms the former framework by jointly conducting in-depth feature

and hash code learning within the deep structure. Despite many supervised deep

hashing frameworks [101, 111, 192, 198, 248] have been proposed for better retrieval

performance, they generally incorporate either labels or pairwise/triplet similarity

in the training process and obtaining such supervision information is usually label-

extensive and expensive, which are not appreciated in the real-world applications.

In unsupervised hashing, the hash function is formulated and built on the training

of unlabeled data. Some representative methods are briefly introduced here. For in-

stance, SPectral hashing (SP) [211] is proposed to build the hash function via solving

the eigenfunctions, where the smallest eigenvalues are thresholded to zero to obtain

the binary codes. However, SP works under the assumption that the data structure

follows a uniform distribution, which impedes it from the complex applications that

involve uncertain distributions. In [71], Spherical Hashing (SpH) learns a series of

spherical functions and the binary codes are generated by quantizing the distances

between the original feature representations and their corresponding centers. The

limitation of SpH is that the optimization is not performed in the binary space,

which yields low code quality. Moreover, the iterative center learning is computation-

ally expensive and time-consuming. Iterative Quantization (ITQ) [51] is proposed

to learn the binary codes via minimizing the quantization errors between the target

codes and the product of their original representations and an orthogonal rotation

matrix. Principal Component Analysis (PCA) [213] or Canonical Correlation Analy-

sis (CCA) [67] can be applied to reduce the high dimensionality of the original feature

before the discrete optimization. While an updated version of ITQ is proposed in [57]

termed ITQ+ with both robustness and generalization capability enhanced by using

2.1. SINGLE-MODALITY SIMILARITY SEARCH 26

a `p-norm distance in the discrete optimization. Some related works of ITQ are also

proposed: Isotropic Hashing (IsoH) [88] and Harmonious Hashing (HamH) [221]. To

be specific, IsoH utilizes a rotation to balance the variance by minimizing the recon-

struction error of the covariance matrix and a diagonal matrix, while HamH minimizes

the distance between the rotated data and a perfectly balanced matrix. However,

the reconstruction on a small covariance matrix in IsoH is unstable in large-scale

and high-dimensional experiments. The strict requirements of HamH and its non-

iterative optimization algorithm may fail to find a good solution. Consequently, Liu

et al. [118] propose Anchor Graph Hashing (AGH) for the large-scale image retrieval,

where a small number of anchors are learned to represent the similarities between

data pairs in the training set, thus preserving the neighborhood structure inherently

in an efficient way. Discrete Graph Hashing (DGH) [116] is further developed to

improve retrieval performance, where the hash codes are directly optimized in such

graph-based hashing. The idea of using anchor points is also introduced in K-Means

hashing (KMH) [69], which generates effective hash codes via minimizing the Ham-

ming distances between anchors after binarization. However, the hash code quality

from both the aforementioned methods heavily relies on the anchor point selection,

where the selection process is sometimes arbitrary and computationally expensive in

most cases.

Consistent with supervised hashing, deep neural networks have been further in-

volved in the recent algorithms of unsupervised hashing, which enables to handle

the data distributions with the nonlinearity nature in the real-world application sce-

narios [193]. In [43], Deep Hashing (DH) is developed to learn the hash function

with multiple hierarchical nonlinear transformations, where independent bits in bi-

nary codes with even distribution can be achieved. Subsequently, an unsupervised

learning-based deep hashing framework is proposed in [122] that trains the deep neu-

ral network by minimizing the compact real-valued codes and their binary codes.

They further extend this work to supervised deep hashing and multi-label supervised

deep hashing, which aims at generating more discriminative binary codes with the aid

of supervision information. In [23], Nonlinear Discrete Hashing (NDH) is proposed

for scalable image search, where the binary codes are optimized with discrete quanti-

zation and the reconstruction errors are minimized between the learned binary codes

and the original data, respectively. The above deep-based methods generally adopt

shallow deep networks as the backbone in the hash code learning, which weakens the

feature representation ability to some extent. Consequently, more advanced deep net-

works like Generative Adversarial Network (GAN) [52] have been incorporated in the

2.1. SINGLE-MODALITY SIMILARITY SEARCH 27

hashing framework, such as HashGAN [49], which improves the retrieval performance

significantly because of the more powerful deep model.

2.1.2 Local Feature Descriptor

Local feature descriptor plays a vital role in many computer vision tasks such as object

recognition, image matching, 3D reconstruction and image retrieval [12,68,121,179].

In fact, the appearance of original data (i.e., patch) is easily affected by many factors

like variations of lighting, scaling, as well as geometric transformations, the local

feature descriptor is supposed to represent the data accurately despite those external

factors [97, 121].

2.1.2.1 Handcrafted Feature Descriptors

Most handcrafted local descriptors are real-valued in the early research stage. Two

classical feature descriptors: Scale Invariant Fourier Transform (SIFT) [121] and

Speeded Up Robust Features (SURF) [6] are widely used in the visual recognition

tasks like image retrieval and feature matching. Particularly, the local gradient his-

tograms are applied in SIFT to generate the scale-invariant descriptors. The compu-

tation process of SIFT is accelerated dramatically by SURF, which takes advantage of

the integral images in the calculations. However, the excellent performance from both

of these real-valued feature descriptors heavily relies on the high dimensionality (i.e.,

long descriptor length), which leads to high storage requirement and computational

complexities for the similarity search tasks when using those descriptors [1, 17].

Consequently, many efforts have been devoted to developing local binary descrip-

tor to address those problems above, such as Local Binary Pattern (LBP) [138], Binary

Robust Independent Elementary Features (BRIEF) [17], Oriented fast and Rotated

BRIEF (ORB) [150], Binary Robust Invariant Scalable Keypoints (BRISK) [97], and

Fast Retina Keypoint (FREAK) [1]. These descriptors generally perform a set of

pairwise intensity comparisons to generate compact binary codes. While the effi-

ciency of these binary descriptors for the similarity search tasks has been improved

significantly because of the XOR operations in Hamming space, their robustness is

relatively worse than that of the real-valued local descriptors. The reason is that these

binary descriptors are mainly built according to some manually predefined sampling

modes and shallow pixel-level intensity comparisons, which are very sensitive to the

affine transformations and quality variations on the original image/patch, thus com-

promising their performance when dealing with complex visual tasks [182,183,231].

2.1. SINGLE-MODALITY SIMILARITY SEARCH 28

Recently, a novel binary RGB-D descriptor termed GEOBIT is presented in [133]

for the textured depth map tracking, where the binary descriptor is claimed to be in-

variant to the non-rigid transformation by integrating the appearance and the geomet-

ric information from RGB-D images in the code learning. Superpixel Region Binary

Descriptor (SRBD) [227] proposes a new kernel-distance-based clustering method to

select the stable superpixels from the templates and encodes the dominant gradient

orientation of each superpixel as its rotation-invariant binary descriptor. The local

binary descriptor also has been applied in separating the Computed Tomographic

(CT) medical images, where Local Diagonal Laplacian Pattern (LDLP) [232] applies

the second-order derivatives to model the relationship between the center pixel and

its diagonal elements in generating the binary descriptor. However, they still adopt

handcrafted patterns like BRIEF [17] and ORB [150], which indicate their weak gen-

eralization ability.

2.1.2.2 Learning-Based Feature Descriptors

More recently, the learning-based feature descriptors, which involve a dedicated train-

ing process of encoding function on massive training data, are widely developed to

boost the descriptor performance and gain better robustness.

Earlier learning-based works learn the shallow projections to obtain the local de-

scriptors. For example, Linear Discriminant Analysis Hashing (LDAHash) [177]

is proposed that uses linear projections combining linear discriminant analysis to

generate binary descriptors. Discriminative BRIEF (D-BRIEF) [184] produces the

descriptors by projecting the training data into a latent subspace. To deal with the

nonlinear data structure, BinBoost [183] learn a set of nonlinear classifiers in encoding

the data, which makes the learned binary codes more discriminative with applying

the boosting algorithm jointly. Online learning is adopted in Binary Online Learned

Descriptor (BOLD) [4], which aims at selecting binary intensity tests to produce low

intra-class and high inter-class distances in the code learning. However, these meth-

ods generally adopt simple binary intensity tests and some critical cues of a patch

cannot be captured in the to-be-learned descriptor. Subsequently, Coupled Compact

Binary Face Descriptor (C-CBFD) [124] is proposed to generate binary codes under

three complementary learning objectives: high variance for information preserva-

tion, low quantization errors and even-distribution at each bit. A one-stage learning

strategy is utilized in Simultaneous Local Binary Feature Learning and Encoding

(SLBFLE) [123], where the binary codes and the encoding codebook are jointly opti-

mized for local face patches. Consequently, they extend these works as Context-Aware

2.1. SINGLE-MODALITY SIMILARITY SEARCH 29

Local Binary Feature Learning (CA-LBFL) [40] and Rotation-Invariant Local Binary

Descriptor (RI-LBD) [39], which learns the robust local binary descriptor further to

improve the efficiency and accuracy in face recognition.

With the development of deep learning techniques, more recent works apply CNN

network and deep features in learning the local feature descriptor. For example, Doso-

vitskiy et al. [37] train a CNN network by optimizing the classification loss, where

the output vectors before the classification layer are used as the patch descriptors.

Particularly, data augmentation is applied to the training data to avoid overfitting for

the upcoming classification process, where the augmented patches are generated by

adding some random variations/noises. Instead of merely optimizing the classification

loss, Siamese loss is introduced in the network training of DeepDesc [162], where the

patch pairs as the network inputs are selected by applying an aggressive searching

strategy. A central-surround two-steam network structure is utilized in [237] to im-

prove the matching performance of the learned feature descriptor, where the center of

a patch is used as input and the similarity between patch pairs is computed through

a Siamese network. HardNet [130] proposes a triplet loss function that explores the

hard examples by an effective mining strategy to mimic the matching procedure in

a batch fashion, where at least one positive pair is guaranteed in building the triplet

input. Descriptors Optimized for Average Precision (DOAP) [70] is proposed to train

the deep network via optimizing a new loss function termed Average Precision (AP)

directly, which improves the ranking-based retrieval performance. Wei et al. [209] in-

troduce a novel pooling method termed Subspace Pooling in the code learning, which

is claimed to obtain the robustness against a range of geometric deformations for the

learned feature descriptor.

More works have been done recently to learn the binary descriptor from deep-based

frameworks. For example, Deep Hashing (DH) [43] optimizes the binary descriptor

with independence and even distribution, while Deep Supervised Hashing (DSH) [111]

optimizes distance loss and Siamese loss jointly to improve the binary descriptor qual-

ity. Subsequently, L2-NET [182] trains a Siamese network for pairwise patches and

produces binary codes by directly quantizing the real-valued outputs, where differ-

ent regularization terms are applied to the intermediate layer outputs to improve

the code quality. More than just pairwise inputs, the triplet loss is incorporated

in the objective function of [233] to further guarantee the code discriminativeness.

Deep Binary Descriptor with Multi-Quantization (DBD-MQ) [41] adopts a multi-

quantization strategy that reduces the quantization errors within the K-AutoEncoders

(KAEs) networks. GraphBit [42] integrates the reinforcement learning with binary

2.1. SINGLE-MODALITY SIMILARITY SEARCH 30

code learning, where the uncertainty of binary codes is minimized by maximizing the

mutual information between the real-valued inputs and the corresponding bits. With

the mighty Generative Adversarial Network (GAN) [52], BinGAN [252] learns the

compact binary descriptors from patches via optimizing two additional losses from

distance matching and entropy regularizers. GAN has also been employed in [169]

to facilitate image retrieval and compression. More recently, Compact Discrimina-

tive binary descriptor (CDbin) [231] is proposed to generate the binary descriptors

via jointly optimizing four complementary loss functions in an end-to-end manner.

In such cases, dedicated prior knowledge (e.g., labels) is required, which is usually

impractical in real application scenarios. Despite the great success achieved by those

descriptors, the transformation-invariant nature of the local feature descriptor is not

considered in the training process. Consequently, DeepBit [106] is proposed to learn

compact binary descriptors via optimizing several loss functions in network training,

one of which minimizes the Hamming distances of the binary codes from the original

patch and their transformed versions in a pairwise manner. Although it encodes the

transformation invariance to some extent, the learned binary codes of original data

and their transformed sets via minimizing the Euclidean distances between them in

the binary space are not identical.

Recently, such learning-based binary descriptors have been widely developed in

many other applications like palmprint and object recognition [45,145]. For example,

Discriminant Direction Binary Code (DDBC) [45] learns a simple mapping function

to project the convolution difference vectors to the neighboring directions of the

templates. While in [145], they propose a stacked convolutional autoencoder structure

to generate the compact binary code for the accurate object detection. In these

applications, the learning-based binary descriptors act as the leading contributing

roles in improving the performance of the specific tasks.

2.1.3 Video Hashing

2.1.3.1 Early Video Hashing

As the video is becoming a crucial information carrier in modern times, however, a

minimal amount of effort has been made to push forward the development of video

hashing. Early research on video hashing mainly focused on learning proper video

representation by fusing the frame-level features such that the existing image hashing

techniques can be applied directly to generate video hash codes. Many methods dis-

cussed in the image hashing part have been widely used as baselines in recent video

2.1. SINGLE-MODALITY SIMILARITY SEARCH 31

hashing works [65,109]. In this section, we mainly focus on the original video hashing

methods. For example, Douze et al. [38] conduct the video copy detection by us-

ing binary codes generating from the uniform-sampled individual video frames. The

spatial-temporal consistency between those frames is considered in the frame match-

ing process. Multiple Feature Hashing (MFH) [171] obtains effective binary codes

by utilizing multiple types of hand-crafted features and different local frame-level

structures. A multi-view video hashing method termed Joint Multi-View Hashing

(JMVH) [134] is proposed by preserving the global and local structures of multiple

features jointly when learning the hash function. Submodular (Submod) video hash-

ing [18] learns the hash function based on some relevant keyframes from videos,

which continues the idea of image hashing in binary code learning. Generally, such

methods suffer from two drawbacks: 1) the handcrafted frame-level features have

tremendous limitations in the comprehensive video representation; 2) the direct de-

ployment of image hashing in video hash code leaning compromises the binary code

quality dramatically, thus leading to suboptimal retrieval performance [38,90,94].

Later on, the temporal nature over successive frames is becoming more attractive

in expressive video representation, including motion trajectory [191] and temporal

consistency [230]. The experimental results reveal that such dedicated temporal in-

formation, rather than those with spatial features adopted only, indeed enhances

the video retrieval performance. For example, a supervised structural video hashing

method is proposed in [230], which exploits the temporal consistency between suc-

cessive frames to learn the linear hashing functions. However, the linear projection

may not be able to capture the nonlinear nature of video data truly. A video hashing

model termed Hashing across Euclidean space and Riemannian manifold (HER) [104]

learns hashing functions based on the kernel max-margin framework for the face video

retrieval. Their work represents videos with a single feature representation in the form

of a covariance matrix, which cannot fully exploit the spatial-temporal information in

videos. Subsequently, a low-rank tensor approximation method is introduced in [99]

to model the video clips both in 2D and temporal evolution in the third dimension,

thus producing robust video hash codes.

2.1.3.2 Deep Learning Based Video Hashing

Inspired by the recent boosting performance of deep image hashing, deep architec-

tures have been incorporated in the recent video hashing frameworks to improve

the retrieval accuracy further. One of the most typical examples is a supervised

CNN-based hashing framework [109], namely Deep Video Hashing (DVH), which can

2.1. SINGLE-MODALITY SIMILARITY SEARCH 32

generate similar binary codes for videos belonging to the same category by exploiting

the discriminative temporal nature of the video. However, pairwise information is

required to compute hash codes in DVH, which might not be easily obtained when

dealing with large-scale retrieval tasks. Meanwhile, inspired by the advance of inter-

nal video structure in the content modeling, Nonlinear Structural Hashing (NSH) [24]

is developed to exploit the nonlinear relationship between videos and structural in-

formation between frames via subspace clustering. However, temporal information

is completely ignored in NSH. The same problem also occurs in [66], where the pro-

posed Stochastic Multi-View Hashing (SMVH) converts multiple types of keyframe

features into binary codes by exploring the relationship between the original feature

and its approximated hash code. In [65], they substantially upgrade the working

mechanism of SMVH via adopting Student t-distribution and deep neural networks

in the similarity preservation and hash function learning separately.

Subsequently, Self-Supervised Temporal Hashing (SSTH) is proposed in [240],

where Binary Long Short Term Memory (BLSTM) unit is incorporated into a deep

encoder-decoder structure and it directly encodes the video features into compact

binary codes. To be specific, the reconstruction losses between the real-valued fea-

tures and their binary codes are minimized during the batch-wise training, where

the hash function learning and the temporal feature learning are uniformly engaged.

However, SSTH suffers from serious efficiency issues because of the time-consuming

de-binarization and de-LSTM processes in the decoder network. Moreover, directly

minimizing the reconstruction error cannot guarantee the preservation of the orig-

inal neighborhood structure in the code learning, which is crucial for the accurate

nearest neighbor search. Despite the potential drawbacks analyzed above, SSTH is

viewed as a pioneer work in unsupervised deep video hashing with temporal sequence

modeling and a strong competitor in many recent video hashing paradigms [173,217].

Extension work of SSTH has been released recently in [173] termed Self-Supervised

Video Hashing (SSVH), which incorporates a hierarchical binary auto-encoder and

neighborhood structure in the code learning. One of the main drawbacks of SSVH

is that the similarity matrix is only constructed in the initialization stage without

considering the temporal information, which limits the hash code quality improve-

ment. Instead of treating each LSTM step equally as previous works, Attention-based

Video Hashing (AVH) [208] adopts an attention mechanism to learn different weights

for the LSTM time steps, which enables to capture the temporal information in the

video, thus improving the retrieval performance significantly. In [100], Neighborhood

Preserving Hashing (NPH) integrates a neighborhood attention mechanism into an

2.2. CROSS-MODALITY SIMILARITY SEARCH 33

RNN-based autoencoder structure to generate the effective binary codes via capturing

the consistent spatial-temporal information in a video sequence.

Recently, the triplet loss is adopted in Similarity-Preserving Deep Temporal Hash-

ing (SPDTH) [157] for video hashing. Accurately, a new loss function termed `2All loss

is optimized in the end-to-end network training, which aims at preserving the intra-

class and inter-class similarity in a mini-batch optimization. Despite the great perfor-

mance achieved by SPDTH, constructing such triplet input pairs is extremely com-

putationally expensive, thus making it difficult to be deployed in large-scale video

retrieval. In Deep Heterogeneous Hashing (DHH) [144] for the face video retrieval,

it adopts Riemannian kernel mapping to project data (i.e., covariance matrices of

frames) from Euclidean space into the manifold tangent space and optimize the triplet

losses between videos afterward, thus preserving the intra-space discriminability and

the inter-space compatibility at the same time. However, lacking temporal informa-

tion in the video modeling of DHH compromises its similarity search performance.

2.2 Cross-Modality Similarity Search

Compared to the single-modality hashing in previous sections, cross-modal hashing

aims at tackling the similarity retrieval problems between different modalities. In this

section, a typical case of cross-modal hashing termed image and text retrieval is used

here as an example. As discussed in Chapter 1, the current research challenge in the

cross-modal hashing is how to tackle the modality gap between different modalities

properly. A popular solution in this research field is to map the data samples from

different modalities (e.g., image, text) into a shared latent feature space such that

those data can be measured directly in this space. Similar to the single-modal hashing,

existing cross-modal methods can also be classified into supervised and unsupervised

ones, which are presented separately in the following sections [199].

2.2.1 Supervised Cross-Modal Hashing

Supervised cross-modal hashing involves dedicated supervision information (e.g., se-

mantic labels, affinity matrix)in the training process, which usually obtains consider-

able performance gain over unsupervised methods [199]. Several state-of-the-arts are

discussed briefly. One of the earliest works is proposed in [10] termed Cross-Modal

Similarity Sensitive Hashing (CMSSH). Particularly, the label information is used to

assist the preservation of the inter-modality correlation, and two different projection

matrices are learned independently for each modality. A cross-modal semantic affinity

2.2. CROSS-MODALITY SIMILARITY SEARCH 34

matrix is constructed in Semantic Correlation Maximization (SCM) [239] based on

the data labels and then is approximated from the to-be-learned binary codes. How-

ever, such a matrix reconstruction is usually storage expensive when dealing with

large amounts of training data.

Consequently, the semantic data affinity is utilized as a probability distribution

model in Semantics-Preserving Hashing (SePH) [108] to alleviate the limitations.

The approximated affinity is then obtained by computing the distance in Hamming

space via minimizing the Kullback-Leibler divergence (KL divergence), which is rel-

atively low efficiency in the code learning process. Quantized Correlation Hashing

(QCH) [214] introduces the quantization loss across the modalities, where the inter-

modality correlation is optimized and the quantization error is minimized at the same

time. However, the intra-modality correlation is not taken into account during the

optimization, which lowers the code quality and leads to unsatisfactory retrieval re-

sults. While Discriminant Cross-Modal Hashing (DisCMH) [223] improves the quality

of hash codes by means of the label information in the shallow linear classifier. How-

ever, all the above methods employ the two-step schemes in code learning, which

inevitably yields suboptimal results because of large quantization errors. More im-

portantly, they generally use handcrafted features, such as SIFT [121] for images and

Bag-of-Words (BoW) for texts, in their methods, which make the learned code less

discriminative [75,215,234].

Recently, deep learning technology has been widely incorporated in cross-media

hashing [210]. Several representative works are discussed briefly in this section. For

instance, Jiang and Li [84] adopt a negative log-likelihood criterion in a deep end-

to-end framework named Deep Cross-Modal Hashing (DCMH), where the similarity

structure between the real-valued representations is retained. However, such similar-

ity preservation is only performed on the approximated hash codes without restric-

tions on the true binary codes in the training process. In [32], a Triplet-based Deep

Hashing (TDH) method is proposed, which combines the triplet labels and a graph

regularization term on the binary codes to ensure the retrieval accuracy. While Deep

Visual-Semantic Hashing (DVSH) [20] employs a metric-based approach to train the

visual semantic fusion network with cosine hinge loss. However, the label informa-

tion is not fully exploited and the performance compromises because of the noisy

annotations. Subsequently, Textual-Visual Deep Binaries (TVDB) [158] is proposed

to exploits the region proposals from the image network and preserves the semantic

similarity by using the affinity matrices constructed from the image and text domains

2.2. CROSS-MODALITY SIMILARITY SEARCH 35

separately. Despite the great performance achieved by TVDB, the similarity preser-

vations are performed in different domains independently, which indicates that the

modality gap is not reduced in this case and the performance could be improved by

using a unified semantic relationship between modalities.

To address this issue, in [141], Dual-Supervised Attention Network for Deep Hash-

ing (DSADH) is proposed, which involves better feature learning with attention mech-

anisms and a regression term that links the binary codes to the labels. However, the

code quality heavily relies on the label quality in the direct mapping, which may be

noisy in the large-scale datasets because of the manual labeling process. To overcome

this issue, Semantic Deep Cross-modal Hashing (SDCH) [224] proposes a deep learn-

ing framework that explores the cross-modal correlation in both between and within

modalities by using the correlation similarity matrix in the end-to-end learning. Con-

sequently, Discrete Latent Factor model based cross-modal Hashing (DLFH) [83] is

proposed to model the supervised information in a discrete latent factor model and

a corresponding discrete optimization algorithm is presented. Nevertheless, the pro-

posed optimization suffers from the high computational cost in calculating the gra-

dients on the discrete latent variables. Alternatively, Equally-Guided Discriminative

Hashing (EGDH) [159] presents a new angle-based connection between the semantic

structures across modalities, where the semantic matrix is encoded to build a common

semantic classifier in the hash function learning. One limitation is that it only works

under an assumption that the norms of the binary codes and the classifier weights

equal to the square root of the code length. Cross-Modal correlation Learning with

Adversarial samples (CMLA) [98] proposes a novel way to integrate the inter- and

intra- modality similarity regularizations by using the adversarial samples from the

cross-modal data. As a matter of fact, adversarial training is required in the code

learning process.

Recently, more complex networks like GAN and Graph Convolutional Network

(GCN) [13] are applied in the cross-modal hashing frameworks to improve the multi-

modal retrieval performance further. For example, Cycle-Consistent Deep Generative

Hashing (CYC-DGH) [218] adopts an adversarial training scheme via optimizing a

cycle consistency loss. Particularly, it enable us to maximize the correlation between

the input-output correspondence and minimize the information loss simultaneously.

Graph Convolutional Hashing (GCH) [222] utilizes GCN in exploring the inherent

similarity structure among the data from multiple modalities. GAN and GCN are

the main contributing factors to the great performance boost in their methods.

2.2. CROSS-MODALITY SIMILARITY SEARCH 36

2.2.2 Unsupervised Cross-Modal Hashing

Regarding unsupervised cross-modal hashing, Cross-View Hashing (CVH) [93], Inter-

Media Hashing (IMH) [170] and Linear Cross-Modal Hashing (LCMH) [251] are

three representatives in this research field. The first two methods can be regarded

as an extension of SH [211] in the cross-modal application. Similar to SH, CVH

still assumes the training data follows a uniform distribution, which is unsuitable for

the cross-modal data. While IMH performs the relaxed optimization in Euclidean

distance instead of Hamming space, thus compromising the code quality. In LCMH,

some cluster centroids are picked up to represent the original data, and the intra-

modality similarity is preserved by keeping code distances close to the clustering

centers. However, the eigenvalue decomposition in LCMH compromises the hash

code quality because of arbitrary mapping and the time complexity is highly related

to the dataset size [188].

Consequently, Collective Matrix Factorization Hashing (CMFH) [34] adopts ma-

trix factorization to model the relations among different modalities, where the unified

binary codes are being learned via projecting the multimodal data into a common

latent space. Accordingly, Latent Semantic Sparse Hashing (LSSH) [249] integrates

the sparse coding into matrix factorization to learn binary codes for different modal-

ities. However, in both CMFH and LSSH, various relaxation and rounding schemes

are utilized in generating hash codes, namely a two-step learning paradigm, which

usually leads to large quantization errors in the binarization. Subsequently, Robust

and Flexible Discrete Hashing (RFDH) is proposed in [189] to directly optimize and

generate the unified binary codes for various views in an unsupervised manner via

matrix factorization such that large quantization errors caused by relaxation can be

relieved to some extent. Despite the claimed contributions from RFDH, the neigh-

borhood structures of inter-modal and intra-modal existed in the original data are

not explored.

Similar to the supervised methods, recent works tend to combine the deep learn-

ing techniques in unsupervised cross-modal hashing, where most of them utilize the

auto-encoder structure in their methods. For example, Multi-modal Stacked Auto-

Encoders (MSAE) [206] adopts several auto-encoders to formulate the hash functions

for heterogeneous data, where two-phase training procedures: pre-training and fine-

tuning, are required. However, this two-phase optimization doubles the training time

and the intra-modality data similarities are no longer preserved after fine-tuning. Dif-

ferent from MSAE, a stacked auto-encoder architecture termed Correlation Autoen-

coder Hashing (CAH) is proposed in [21], where the feature and semantic correlation

2.3. CHAPTER SUMMARY 37

across modalities are jointly maximized. In [102], another auto-encoder framework

for unsupervised cross-modal hashing termed Deep Binary Reconstruction (DBRC) is

proposed, which reconstructs the original features from the joint binary representation

without considering the similarity relations. As discussed in RFDH, such ignorance

on the neighbor relationships across different domains inevitably lowers the discrimi-

nativeness of the hash codes, thus compromising the retrieval performance. In light

of this issue, Unsupervised Deep Cross-modal Hashing with Virtual Label Regression

(UDCH-VLR) [205] establishes a link between the virtual labels and the to-be-learned

binary codes for different modalities. However, the code quality could be affected dra-

matically by the initialization ways of virtual labels, which is sometimes intractable

when optimizing the objective function.

More recently, Deep Joint-Semantics Reconstructing Hashing (DJSRH) [178] is

proposed to learn the binary codes while preserving the original manifold structure

via integrating a joint-semantics affinity matrix in the code learning. In the training

process, the binary codes from two modalities (image and text) are not identical.

While in [242], they propose a multi-pathway GAN-based hashing framework termed

Multi-pathway Generative Adversarial Hashing (MGAH), where the GAN is trained

along with a correlation graph-based approach that captures the manifold structures

across different modalities for better retrieval performance. However, the training

process is somewhat intractable due to the complicated GAN structure.

2.3 Chapter Summary

In this chapter, we have reviewed most but not limited to related hashing-based

works on three popular application scenarios: single-modality similarity search, such

as image hashing, local feature descriptor, and video hashing, and cross-modality

hashing. More hashing methods can be found in [193, 194, 197] Our works in this

thesis are greatly inspired by the related works discussed in previous sections. In

the main chapters, some of these works are further analyzed and picked up as the

state-of-the-art baselines in our experiments.

In the following chapters, we focus on detailing our proposed methods regarding

different applications and testing the system performance on the public datasets.

Particularly, Chapter 3 presents a new deep binary descriptor for the large-scale

matching/retrieval tasks. This work is inspired by the idea of unsupervised multi-view

embedding via matrix factorization and the matching performance is further improved

by imposing a weak bit scheme on ambiguous matching. Then Chapter 4 addresses the

2.3. CHAPTER SUMMARY 38

large-scale video-to-video retrieval via jointly engaging the deep video feature learning

with the proposed balanced rotation. Chapter 5 presents the proposed cross-modal

hashing frameworks that integrate the binary code with the hash function learning

to improve the cross-media retrieval performance.

Chapter 3

Unsupervised Deep Binary
Descriptor

3.1 Introduction

Recently, the local binary descriptor has attracted wide attention in many visual

applications, such as patch matching, image retrieval, object recognition and 3D re-

construction [12,68,121,179]. Benefiting from the characteristics of high compactness

and efficient bitwise calculation, binary descriptor is a more favorable option in con-

ducting matching and retrieval in large-scale database over the traditional floating-

point descriptors (e.g., SIFT [121], FAST [148] and SURF [6]) [2, 183]. This paper

focuses on applying binary descriptor in both patch matching and image retrieval,

where patches can be obtained from full image via keypoint detection technology in

the former applications [11].

Consistent with traditional feature descriptors, binary descriptor is supposed to

represent data (image/patch) accurately in despite of geometric transformations (e.g.,

rotation, translation and scaling) [97,121]. Earlier binary descriptors (e.g., BRIEF [17],

BRISK [97], ORB [150] and FREAK [1]) are generally data-independent, which adopt

various hand-crafted sampling patterns and perform a series of pairwise intensity com-

parisons afterwards [231]. However, such predefined sampling modes and intensity

comparisons are extremely vulnerable to the distortions/transformations, thus yield-

ing unstable performance when tackling large-scale visual recognition tasks [182,183,

231]. Consequently, many efforts have been devoted to developing learning-based bi-

nary descriptors. Existing methods draw on the soul idea from hashing techniques

(e.g., LSH [2], ITQ [51], CMFH [35]), where the data points are projected from their

original feature space into the compact binary space and the similar points could be

represented by the similar binary descriptors (low Hamming distance) [41, 177, 231].

39

3.1. INTRODUCTION 40

0 10 20 30 40 50

Hamming Distance

0

20

40

60

80

F
re

q
u
e
n
c
y

64 bits

(a) Noise effects on matching

0 2 4 6 8 10

Noise Ratio (%)

44

46

48

50

52

54

56

<
<

<
 F

P
R

@
9
5
%

Yosemite->Liberty

l
2,1

-norm

l
2,2

-norm

(b) Hamming distance distribution

Figure 3.1: (a) An example of the Hamming distance distribution on Cifar-10 dataset
at 64 bits, where 3 candidates are returned from the database with the same minimum
Hamming distance of 16 to the query; (b) Noise effects on Brown dataset (train:
Y osemite and test: Liberty) at 256 bits under `2,1-norm and `2,2-norm losses, where
a sharper performance decline from `2,2-norm against `2,1-norm loss is observed at
certain noise level.

Although the learning-based binary descriptors obtain great performance gains over

the handcrafted ones, some drawbacks become bottlenecks that impede their further

development in large-scale application scenarios.

Firstly, they pay intensive attention to novel discrete optimization strategies, while

the nature of local feature descriptor, anti-geometric transformation, cannot be fully

guaranteed [97,183]. That is crucial to the success of binary descriptor in large-scale

visual recognition tasks. More worriedly, most learning paradigms fail to preserve the

manifold structure during the discrete optimization, which makes binary descriptor

less effective in large-scale neighbor search tasks [56, 107, 153]. Supervised methods

address this issue by using prior knowledge (e.g., pair-wised labels). However, they

are not preferred in real-world applications because of intensive labeling work.

Furthermore, traditional binary descriptors measure the similarity between database

and query via exhaustive Hamming distance calculations in the testing phase. In

practice, however, it is more likely to return many candidates with equal Hamming

distances to one specific query [120]. To clarify the problem, we plot the Hamming

distance distribution of a query to the database (with randomly-selected 1, 000 can-

didates) on Cifar-10 dataset in Fig. 3.1(a). For instance, 3 candidates are returned

from the database with the same minimum Hamming distance of 16 to the query

at the code length of 64. That reduces the discriminative power of binary descrip-

tor dramatically. It is especially harmful to the matching performance, where each

query is expected to be matched with one exact candidate (with the lowest Hamming

3.1. INTRODUCTION 41

4

0

9

6

4

0

9

6

4

0

9

6

4

0

9

6 000

001

010

100

011

101

111

110

𝑿𝒐𝒓𝒈

𝑿𝒗

𝑾𝒐𝒓𝒈

𝑾𝒗

×

≈

≈

k

k

1
0
1Backpropagation

𝑿𝒐𝒓𝒈

𝑿𝒗

𝑩

𝑩

Unsupervised Graph Learning

𝑿𝒐𝒓𝒈

Collective Binary Embedding

Input

Geometric
Transformation

Feature Learning&Deep Embedding Function Learning Unified Binary Descriptor Learning

Sharing Parameters

Figure 3.2: The proposed binary descriptor learning framework is made up of deep
feature extraction, unified binary code learning and deep embedding function learning.
The descriptor size is set to 3 as an example. Best viewed in color.

distance) rather than a bunch of ambiguous options (with equal minimum Hamming

distance).

In this chapter, we propose a novel learning-based framework, termed Unsupervised

Deep Binary Descriptor (UDBD), to overcome the above limitations in compact bi-

nary descriptor learning. Fig. 3.2 shows the flowchart of UDBD. Particularly, the

original visual data and their transformed counterparts are projected into common

Hamming subspace directly during the binary code learning. By doing so, transforma-

tion invariance could be conserved along with the binary embedding process, which is

theoretically more advanced than the primitive approach [106] that simply minimizes

the differences between the binary codes of original data and those transformed ones.

In the meantime, `2,1-norm loss is employed together with the proposed binary em-

bedding to improve the robustness of our binary descriptor against data noises/outliers

for the patch-level recognition tasks [56, 85]. To make it clear, we plot the match-

ing performance variations with increasing noise ratios using ITQ+ [56] on Brown

dataset [11] in Fig. 3.1(b). As can be seen, there is a sharper performance de-

cline from `2,2-norm against `2,1-norm loss function at certain noise level. The main

cause is that patches mainly contain low-level texture features, which are more

prone to the noises/outliers compared to general global images [179]. Without notic-

ing it, previous methods directly adopt the squared `p-norm regularization to build

3.1. INTRODUCTION 42

their loss functions [56], which may exaggerates the adverse effects caused by severe

noises/distortions, thus leading to worse results [56,112]. That implies `2,1-norm loss

is more suitable for the patch-level recognition.

Then an unsupervised graph constraint is formed and added into the loss function

so as to preserve the original manifold structure of training data in the Hamming

space [153, 211]. With an alternating optimization scheme, the binary code can be

solved directly without relaxation, which avoids the accumulated quantization errors

from the two-step learning strategy [19,51,180]. By training an unified deep network

with the guidance of the learned binary descriptors, the deep embedding function is

able to generate robust binary codes for various visual tasks.

In the feature matching procedure, a weak bit scheme, where the Hamming dis-

tance is recalculated based on the reliability of each bit, is further applied to find

the best match among the returned candidates with the same initial Hamming dis-

tance [59,161]. In summary, our work differs the previous algorithms in the following

three aspects:

• To the best of our knowledge, this is the first work that learns the transformation

invariant binary descriptor via embedding the original visual data and their

transformed sets into a common Hamming space in an unsupervised manner.

Moreover, a graph constraint that preserves the manifold structure from the

original feature space is employed in the unified binary representation learning,

thus improving the code quality.

• Since patch mainly contains noise-sensitive local features, `2,1-norm loss is pro-

posed to regularize the binary embedding. On one hand, `1-norm distance at

the patch level provides the robustness against outlier samples. On the other

hand, `2-norm measures the distance along space dimension, which spreads out

the errors over each bit uniformly to lower the possibility that certain bits are

mistakenly flipped after getting large errors. To this end, an alternating dis-

crete optimization strategy is proposed to optimize the `2,1-norm constrained

objective function, where the binary code can be solved directly with no need

for relaxation.

• As a means of distance re-measure, a weak bit scheme, which considers the

reliability of each bit in a descriptor, is applied along with the proposed binary

descriptor. It helps to find the best match if there are multiple candidates

with the same distance to the query when comparing the Hamming distance of

descriptors.

3.2. METHODOLOGY 43

The rest of this work is organized as follows. In Section 3.2, the proposed method

is elaborated along with the comprehensive analysis. Extensive experimental results

are provided and analyzed in Section 5.3. Finally, the conclusion is given in Section

3.4.

3.2 Methodology

3.2.1 Framework Overview

Some mathematical symbols are defined to ease the following explanations on the

framework. Assuming that the training set consists of n data samples (images/patches)

and each one has m different transformation sets, where the transformed versions of

each sample could be obtained by rotation, scaling and translation [106]. We denote

the training set as O = {oi}ni=1, oi = {xiv}mv=1, where v denotes the index of the

transformation set, xiv ∈ Rpv is a feature vector and pv represents the dimensional-

ity of xiv in the set. For each transformation set, we denote the feature matrix as

Xv = [x1
v, x

2
v, ..., x

n
v] ∈ Rpv×n. Given the code length k, the goal of the proposed

method is to learn the unified binary descriptor B ∈ {−1,+1}k×n for the training

samples within all transformation sets. Particularly, each sample and its transformed

versions should be encoded as the same binary code because the semantics of those

samples keeps unchanged even after certain transformations.

To achieve this learning goal, the deep features of different input sources are first

extracted from the fully-connected (fc) layers of a pre-trained VGG-16 network [164].

Then the features are fed into binary code learning that generates the uniformed

binary descriptor for various transformation sets via exploring their common binary

space. With sharing network parameters Θ, an unified deep embedding function H is

built via projecting all transformation sets into the learned binary code to generate

new descriptors for the query. In the online stage, a weak bit scheme that excludes the

contributions of unreliable bits in distance calculation is adopted to further improve

the matching performance. The major mathematical symbols used in this chapter are

summarized in Table 3.1 for the ease of explanation. Other symbols like Gv and X̃v

are applied as the auxiliary parameters in the equation deduction, which are omitted

in this table.

3.2. METHODOLOGY 44

Table 3.1: Mathematical symbols and their short descriptions.

Symbol Description Symbol Description

O training set n number of training samples
xv feature vector m transformation set number
Xv feature matrix S affinity matrix
v transformation set index L Laplacian matrix
B unified binary descriptor k code length

Wv latent embedding matrix αv weight factors
β,γ balance parameters z weak bit mark
H(.) deep embedding function Θ network parameter
f real-valued feature vector th threshold

3.2.2 Learning Unified Binary Descriptor

In this section, we analyze two involved sub modules within the unified binary de-

scriptor learning: collective binary embedding and unsupervised graph learning.

3.2.2.1 Collective Binary Embedding

The ideas of this module can be explained from two aspects: 1) the original image

patch and its transformed versions should be encoded with the same binary descriptor,

which can be achieved via embedding all the those sets into a common Hamming

space; 2) the unified binary code is learned from different transformation sets, which

encodes the nature of transformation invariance to the maximum. Particularly, we

formulate the objective function of this part as below:

min
B,Wv ,αv

m∑
v=1

(αv)
γ‖Xv −WvB‖2,1,

s.t. B ∈ {−1,+1}k×n,
m∑
v=1

αv = 1, αv > 0.

(3.1)

where B ∈ {−1,+1}k×n,
∑m

v=1 αv = 1 and αv > 0. Here, Xv are the deep features

extracted from the fc7 layer of the pretrained VGG-16 model, Wv ∈ Rpv×k are

the latent embedding matrices that connect the unified binary descriptor with the

deep features. αv are the weight factors that measure the contributions of different

transformation sets in learning the binary descriptor. γ is the balance parameter. `2,1-

norm is defined as ‖Y ‖2,1 =
∑n

i=1‖yi‖2 for a matrix Y = [y1, y2, ..., yn] ∈ Rp×n [112].

3.2. METHODOLOGY 45

Generally speaking, this module is proposed to encode the transformation invari-

ance maximally in the to-be-learned binary descriptor via applying affine-transformation

and performing matrix factorization on every single patch. It is worth noting that

this module differs data augmentation in traditional classification tasks. From the

functionality perspective, data augmentation involves the process of creating new

data points by manipulating the original data to increase the training data diversity,

thus avoiding overfitting. However, the overfitting issue is not our concern here and

the transformed data is provided merely for the proposed invariance encoding. From

the technical perspective, being identified as the same category label is the only opti-

mization goal for the original image and its augmented ones in the classification. The

same category label does not necessarily guarantee the same feature descriptor. In our

method, Eq. (3.1) regularizes all transformation sets of each patch to be represented

by a unified binary descriptor (i.e., feature). Therefore, our learning objective is more

stringent and optimizing such complicated loss functions is much more challenging.

More importantly, the proposed embedding function has been upgraded to make

it more compatible with the local binary descriptor learning [35, 180]. Firstly, `2,1-

norm is introduced into the discrete optimization model to reduce the negative effects

caused by severe noises/distortions. In contrast to the widely-used squared `2-norm

that is extremely prone to noises/outliers, `2,1-norm is a more rational choice in the

patch-level transformation invariant descriptor learning. On one hand, `1-norm dis-

tance at the patch level provides the robustness against outlier samples after random

transformations in this case (see Fig. 3.1(b)). On the other hand, `2-norm distance

enables the error allocations to each bit uniformly across the space dimension. Doing

so lowers the possibility that certain bits are mistakenly flipped after getting large er-

rors [56,85,112,143,229]. Those flipped bits may dramatically disturb the subsequent

Hamming distance measure. Moreover, we solve the unified binary representation B

directly under the restrictions of `2,1-norm in the proposed model, where the accu-

mulated quantization errors from the two-step learning paradigms [35,56,88,153,180]

are avoided and the robustness of the learnt binary code is further enhanced.

3.2.2.2 Unsupervised Graph Learning

As discussed above, the essence of the binary descriptor learning can be described

as a process of projecting the high-dimensional original features into the compact

binary space properly [2, 51, 56]. During the projection, the neighbourhood relation-

ship preservation plays an important role in generating the similar binary descriptors

for those data (images/patches) that belong to the same category. In this work, a

3.2. METHODOLOGY 46

unsupervised Laplacian constraint is derived from the original data set and imposed

on all the transformation sets during the optimization, which shares the similar idea

in common dictionary learning [19, 56, 247]. The reason is that the relative positions

of data points in the feature space will be inevitably shifted after geometric trans-

formations and provide unreliable neighborhood structures within the transformation

sets [68, 85, 131]. That will mislead the unified binary descriptor learning and thus

adversely affect the code quality. The basic functionality of using such a Laplacian

term is to keep the consistency between the original and binary feature spaces during

the code learning [116, 153, 211]. Let B∗,j and B∗,l denote the j-th and l-th columns

of B, the affinity matrix S ∈ Rn×n from the original patch set, the graph problem

can be formulated as follow:

min
B

1

2

∑n

j=1

∑n

l=1
‖B∗,j −B∗,l‖2

FSj,l = tr(BLBT),

s.t. B ∈ {−1,+1}k×n,L ∈ Rn×n,S ∈ Rn×n,
(3.2)

where B ∈ {−1,+1}k×n. L ∈ Rn×n is the Laplacian constraint and computed as

L = diag(S1) − S. diag(S1) represents the diagonal matrices with each diago-

nal element being calculated as the sum of values in the corresponding row of S,

where S is constructed via k-Nearest-Neighbour (kNN). Particularly, the anchor graph

scheme [118] can be adopted to reduce the computational complexity following the

previous works [116,155].

Based on the discussions, the unified binary code for the training data can be

learned via jointly optimizing the above learning objectives. By incorporating Eq.

(5.19) into Eq. (3.1), the overall objective function of unified binary descriptor learn-

ing can be formulated as:

min
B,Wv ,αv

m∑
v=1

(αv)
γ

(
‖Xv −WvB‖2,1 + βtr(BLBT)

)
, (3.3)

where
∑m

v=1 αv = 1, αv > 0. Wv ∈ Rpv×k, L ∈ Rn×n and B ∈ {−1,+1}k×n. β is the

balance parameter.

3.2.3 Optimization Algorithm

It is intractable to solve the objective function Eq. (3.3) directly because of the

discrete-constrained conditions and the non-convex `2,1-norm term, which refers to

an NP-hard problem [56,72,190]. Consequently, an alternating optimization strategy

is employed to tackle this issue, which is presented as the following steps.

3.2. METHODOLOGY 47

3.2.3.1 Wv Step

For Wv with other parameters fixed, the objective function in Eq. (3.3) can be

simplified as follow:

ψv = min
Wv

‖Xv −WvB‖2,1 = min
Wv

n∑
i=1

‖Xi
v −WvB

i‖2, (3.4)

where Wv ∈ Rpv×k, Xi
v and Bi are the i-th columns of Xv and B, respectively. Then

we can calculate the gradient of ψv with respect to Wv as:

∂ψv
∂Wv

=
n∑
i=1

WvB
i(Bi)T −Xi

v(B
i)T

‖Xi
v −WvBi‖2

= (WvB−Xv)DvB
T .

(3.5)

Here, the diagonal matrix Dv are led into the problem and its i-th diagonal element

is obtained as (Dv)i,i = 1
‖Xi

v−WvBi‖2 . Although there is no closed-form solution for Wv

in the above equation, the calculation of (Xv −WvB) can be leveraged to compute

Dv and ∂ψv
∂Wv

directly with the minimal efforts. Then a gradient descent strategy can

be employed to optimize the objective function [16].

3.2.3.2 B Step

For B with other parameters fixed, the objective function (3.3) can be further rewrit-

ten as follow:

min
B

m∑
v=1

(αv)
γ

(
‖Xv −WvB‖2,1 + βtr(BLBT)

)
, (3.6)

where B ∈ {−1, 1}k×n. Inspired by recent coordinate descent based methods [153],

the objective loss can be minimized via optimizing all the bits in B sequentially. Here,

we denote bT ∈ {−1, 1}1×n as the i-th row of B, and B′ the matrix of B excluding

bT . Let wv ∈ Rpv be the i-th column of Wv, W′
v be the matrix of Wv excluding wv.

Considering WvB = W′
vB
′+wvb

T , tr(BLBT) = tr(B′LB′T)+bTLb and tr(B′LB′T)

is const, Eq. (3.6) with respect to b ∈ {−1, 1}n can be formulated as:

min
b

m∑
v=1

(αv)
γ

(
‖Xv −W′

vB
′ − wvbT‖2,1 + βbTLb)

)
. (3.7)

Let X̃v = Xv −W′
vB
′, Eq. (3.7) is further simplified as:

3.2. METHODOLOGY 48

min
b

m∑
v=1

(αv)
γ

(
‖X̃v − wvbT‖2,1 + βbTLb)

)
. (3.8)

The above derivations transform the objective function into the similar form like

Binary Quadratic Problem (BQP), but more complex. The closed-form solution of

b cannot be obtained directly from Eq. (3.8). Following the previous works, it is

still feasible to optimize the objective function via flipping each bit sequentially in

b, where the bit would be flipped if the flipping operation decreases the objective

function loss [153]. Fortunately, the initial values for b , denoted as b0, can be set

properly to minimize the first term in Eq. (3.8). Namely, the j-th bit in b0 is

calculated as:

b0
j = sign

(
m∑
v=1

(αv)
γ(‖X̃j

v + wv‖2 − ‖X̃j
v − wv‖2)

)
, (3.9)

where b0
j ∈ {−1, 1} and X̃j

v ∈ Rpv is the j-th column of X̃v. Sign(x) = 1 if x ≥ 0

and otherwise −1. After getting b0, we can flip each bit sequentially as in [153] to

optimize the objective function.

3.2.3.3 αv Step

For αv with other parameters fixed and let Gv = ‖Xv −WvB‖2,1 + βtr(BLBT), we

can rewrite Eq. (3.3) as:

min
αv

m∑
v=1

(αv)
γGv, s.t.

m∑
v=1

αv = 1, αv > 0. (3.10)

By introducing the Lagrange multiplier η, the above problem is then transformed

to:

min E(αv, η) =
m∑
v=1

(αv)
γGv − η(

m∑
v=1

αv − 1), (3.11)

where the partial derivatives with respect to αv and η are calculated as:{ ∂Ev
∂αv

= γ(αv)
γ−1Gv − η,

∂Ev
∂η

=
∑m

v=1 αv − 1.
(3.12)

By setting those derivatives as 0, we have the optimal solution of αv as:

αv =
(Gv)

1
1−γ∑m

v=1(Gv)
1

1−γ
. (3.13)

3.2. METHODOLOGY 49

By repeating the above steps, the objective function converges to local minimum

after a few iterations (the iteration number t ≤ 10 in the experiment), thus obtaining

unified binary descriptors for the training data. The major difference against the pre-

vious discrete optimization strategies [153,180,190] is that only the gradient descent

is performed to make the overall objective function keep decreasing in the proposed

method. There is no need to find the closed-form solution for each variable during

each optimization iteration [36].

3.2.4 Generating Out-of-Sample Binary Descriptor

After learning the binary descriptors for training data, an unified deep embedding

function H(Xv; Θ) is trained as the code generator for out-of-sample data. Particu-

larly, the input data Xv from multiple sets (v = 1, ...,m) are sequentially fed into the

deep network and the Euclidean distances between feature vectors from the last out-

put layer and their corresponding binary representations B are minimized, as shown

in Fig. 3.2. By doing so, the geometric transformation invariance could be preserved

maximally during the deep embedding function learning. Moreover, the computa-

tional complexity can be reduced by updating the sharing weight Θ for the original

data and its transformation sets simultaneously, instead of training different deep

networks for them separately as in [106]. The objective function of this process is

presented as:

min
Θ

m∑
v=1

‖H(Xv; Θ)−B‖2
F , s.t. B ∈ {−1,+1}k×n. (3.14)

The optimization problem can be solved by fine-tuning the deep network with

Stochastic Gradient Descent (SGD), where the sharing weight Θ is iteratively opti-

mized until convergence. Given a query instance xq, we can obtain its binary descrip-

tor by simply calculating sign(H(xq; Θ)). The proposed algorithm is summarized in

Algorithm 1.

3.2.5 Refined Matching via Weak Bit Selection

Once we have obtained binary descriptors for both query and gallery data, the match-

ing can be done by simply comparing their Hamming distance. However, as the binary

representation reduces the discriminative power of data, it is very often that there

are multiple candidates with the same minimum Hamming distance (even 0 in the

worst-case scenarios) to a specific query (see Fig. 3.1(b)). It might be acceptable for

3.2. METHODOLOGY 50

Algorithm 1 Unsupervised Deep Binary Descriptor

Input: Deep features Xv for different transformation sets, code length k, parameters
β and γ, Laplacian matrix L, maximum epoch T . Randomly initialize binary code
B, latent embedding matrices Wv and deep parameters Θ. Set average weights
αv, v = {1, ...,m}.

Output: Deep hash functions H(Xv; Θ);
1: Extract the feature matrices Xv from fc7 layers;
2: for t = 1 to T do
3: Update the latent embedding matrices Wv by Eq. (3.5);
4: Update the unified hash code B by Eq. (3.7)∼(3.9);
5: Update the weight factors αv by Eq. (3.13);
6: end for
7: Update the network parameters Θ by Eq. (3.14);
8: return H(Xv; Θ);

1

0

-1

th

-th

dim

f

1 … k2 k-13

Figure 3.3: An example on the weak bit selection process. The red circles denote the
marked weak bits with the values between (−th, th).

applications like retrieval, but is definitely a problem for local feature points match-

ing, where one true match should be provided. In this case, a means to conduct the

second distance measurement is required. Inspired by the advocate of weak bit (i.e.,

unreliable bit) in fingerprinting systems [5, 59, 127, 160], we found that the contribu-

tion/reliability of each bit within the binary codes differs. Hence, such information

can be useful to refine the initial Hamming distance computation. Concretely, the

unreliable bits (with values closed to 0) for each input x ∈ Rp are selected based on

3.3. EXPERIMENT 51

its real-valued vector f ∈ Rk, which is extracted from the last output layer of the

deep embedding network. With a certain threshold th > 0, the weak bit z ∈ {0, 1}k

in its binary code b ∈ {−1, 1}k can be defined as:

zk =

{
1, |fk| < th;
0, |fk| ≥ th,

(3.15)

where the bits with values in the range of (−th, th) are marked as weak bits (ie,

zk = 1). The weak bit selection process is briefly presented in Fig. 3.3. Here,

the intuition is that the closer the real-valued feature gets to 0 the weaker it will

be. This does make sense because the value closer to 0 is likely to be mistakenly

flipped in the existence of noises, considering the fact that we use a sign function to

convert a real value to a binary bit. In this second matching procedure, a sequence

of binary digits of a query, formed by weakness indications at each bit location, will

be compared against the counterpart digits of a candidate. As a result of doing this,

the aggregated distance enables to find the best match, thus improving the matching

performance.

3.3 Experiment

In this section, we conduct extensive experiments on three public datasets to evaluate

the matching and retrieval performance of the proposed binary descriptor.

3.3.1 Dataset Descriptions

3.3.1.1 Brown

Brown1 [11] is the most popular dataset in the evaluation of local feature descriptors,

which contains three subsets: Notre Dame, Yosemite, and Liberty collected from the

Photo Tourism reconstructions. In each subset, there are more than 400, 000 gray-

scale patches with the size of 64× 64. Those patches are split into training and test

sets, which contains 200, 000 pairs (100, 000 matched and non-matched pairs) and

100, 000 pairs (50, 000 matched and non-matched pairs), respectively.

3.3.1.2 Cifar-10

Cifar-102 [89] consists of 60, 000 images with the size of 32 × 32 from 10 different

categories, which are split into training and test sets with 50, 000 and 10, 000 images

1http://matthewalunbrown.com/patchdata/patchdata.html
2https://www.cs.toronto.edu/ kriz/cifar.html

3.3. EXPERIMENT 52

separately. The training set is employed for the code learning, and use the test set as

the queries for retrieval evaluation.

3.3.1.3 HPatches

Homography Patches (HPatches)3 [3] consists of about 1 million patches extracted

from 116 images using the combination of various interest point detectors, where

the patches are collected from the 3D reconstructions of several landmarks in Rome.

Each patch is annotated with its ground truth label and then post-processed after

extraction with the fixed size of 65× 65. We follow the default settings in [231] and

test the performance on the full split within the dataset.

3.3.2 Implementation Details

The experiments are carried out on Linux Ubuntu Server with the configuration of

Intel i7-5960X CPU@3.0GHz, 64GB RAM and NVIDIA GTX 1080 Ti GPU. Most

source codes of the baselines are publically available online, which can be tuned

via open source softwares (e.g., Caffe [82], OpenCV [9]) according to the papers.

Specifically, the geometric transformation of the input patches are implemented by

following the data augmentation in [106], where the rotation angles are within the

range of [−10, 10]. Particularly, 5 different rotation angles: [−10,−5, 0, 5, 10], are

imposed on each input patch, which simulates the small viewpoint variations from

human perspective [106]. Their deep features are extracted from the fc7 layer (4096-

d) of the pre-trained VGG-16 [164].

In the proposed method, γ and β are set as 5 and 10−3 during the discrete opti-

mization, while the discrete optimization usually converges within 10 iterations. In

the network training phase, VGG-16 model is used as the backbone with the output

size of k and tanh as activation function in the last fc layer. The basic learning rate

as 0.0001, momentum as 0.9 and weight decay as 0.0005. The batch sizes is 32 and

the maximum iteration is 30000. The threshold is set to 0.3 via cross-validation in

the weak bit selection.

3.3.3 Comparisons with State-of-The-Arts

3.3.3.1 Results on Brown Dataset

On Brown dataset, we conduct extensive comparisons on the patch matching perfor-

mance between our approach and several state-of-the-art binary descriptors. These

3https://github.com/hpatches/hpatches-dataset

3.3. EXPERIMENT 53

T
ab

le
3.

2:
C

om
p
ar

is
on

of
th

e
p
ro

p
os

ed
U

D
B

D
to

th
e

st
at

e-
of

-t
h
e-

ar
t

b
in

ar
y

d
es

cr
ip

to
rs

in
te

rm
s

of
F

P
R

@
95

%
on

B
ro

w
n

d
at

as
et

.
D

im
,

S
P

an
d

U
S
P

d
en

ot
e

d
im

en
si

on
,

su
p

er
v
is

ed
an

d
u
n
su

p
er

v
is

ed
,

re
sp

ec
ti

ve
ly

.
†

an
d
‡

in
d
ic

at
e

th
e

tr
ai

n
an

d
te

st
in

g
su

b
se

ts
.

T
h
e

re
su

lt
s

fr
om

S
IF

T
an

d
su

p
er

v
is

ed
m

et
h
o
d
s

ar
e

p
ro

v
id

ed
as

re
fe

re
n
ce

s.
B

ol
d

va
lu

es
ar

e
th

e
b

es
t

re
su

lt
s

in
u
n
su

p
er

v
is

ed
b
in

ar
y

d
es

cr
ip

to
rs

.

M
e
th

o
d

D
im

T
y
p

e
N

o
tr

e
D

a
m

e
†

N
o
tr

e
D

a
m

e
†

L
ib

e
rt

y
†

L
ib

e
rt

y
†

Y
o
se

m
it

e
†

Y
o
se

m
it

e
†

A
v
e
ra

g
e

L
ib

e
rt

y
‡

Y
o
se

m
it

e
‡

N
o
tr

e
D

a
m

e
‡

Y
o
se

m
it

e
‡

N
o
tr

e
D

a
m

e
‡

L
ib

e
rt

y
‡

F
P

R
@

9
5
%

S
IF

T
[1

21
]

12
8

U
S
P

36
.2

7
29

.1
5

28
.0

9
29

.1
5

28
.0

9
36

.2
7

31
.1

7

B
in

B
o
o
st

[1
83

]
64

S
P

20
.4

9
18

.9
6

16
.9

22
.8

8
14

.5
4

21
.6

7
19

.2
4

L
2
-N

e
t

[1
82

]
12

8
S
P

7.
53

7.
74

5.
92

9.
12

5.
43

9.
25

7.
49

H
a
rd

N
e
t

[1
30

]
12

8
S
P

2.
22

2.
28

0.
57

2.
13

0.
96

2.
35

1.
9

C
D

b
in

[2
31

]
12

8
S
P

6.
81

3.
02

7.
92

3.
02

4.
26

9.
0

6.
46

B
R

IE
F

[1
7]

25
6

U
S
P

59
.1

5
54

.9
6

54
.5

7
54

.9
6

54
.5

7
59

.1
5

56
.2

3
B

R
IS

K
[9

7]
51

2
U

S
P

79
.3

6
73

.2
1

74
.8

8
73

.2
1

74
.8

8
79

.3
6

75
.8

2
O

R
B

[1
50

]
25

6
U

S
P

56
.2

6
54

.1
3

48
.0

3
54

.1
3

48
.0

3
56

.2
6

52
.8

1
D

B
D

-M
Q

[4
1]

25
6

U
S
P

31
.1

57
.2

4
25

.7
8

57
.1

5
27

.2
33

.1
1

38
.5

9
B

in
G

A
N

[2
52

]
25

6
U

S
P

25
.7

6
4
0
.8

27
.8

4
4
7
.6

4
16

.8
8

26
.0

8
30

.8
3

D
e
e
p
B

it
[1

06
]

25
6

U
S
P

33
.8

3
54

.6
3

20
.6

6
56

.6
9

28
.4

9
34

.6
4

38
.1

5
G

ra
p
h

B
it

[4
2]

25
6

U
S
P

24
.2

4
50

.5
4

16
.7

5
49

.1
1

21
.0

9
27

.2
3

31
.4

9

U
D

B
D

25
6

U
S
P

1
8
.9

9
52

.6
1
1
.7

6
52

.1
7

1
4
.6

1
2
0
.7

9
2
8
.4

9

3.3. EXPERIMENT 54

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it

iv
e
 R

a
te

UDBD(256 bits,18.99%)

BinGAN(256 bits,25.76%)

DeepBit(256 bits,32.48%)

GraphBit(256 bits,24.24%)

DBD-MQ(256 bits,33.65%)

BRIEF(256 bits,59.15%)

BRISK(512 bits,79.36%)

ORB(256 bits,56.26%)

(a) Notre Dame→Liberty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s

it
iv

e
 R

a
te

UDBD(256 bits, 52.6%)

BinGAN(256 bits,40.8%)

DeepBit(256 bits,54.63%)

GraphBit(256 bits,50.54%)

DBD-MQ(256 bits,57.24%)

BRIEF(256 bits,54.96%)

BRISK(512 bits,73.21%)

ORB(256 bits,54.13%)

(b) Notre Dame→Yosemite

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s

it
iv

e
 R

a
te

UDBD(256 bits, 14.61%)

BinGAN(256 bits,16.88%)

DeepBit(256 bits,27.28%)

GraphBit(256 bits,21.09%)

DBD-MQ(256 bits,28.25%)

BRIEF(256 bits,54.57%)

BRISK(512 bits,74.88%)

ORB(256 bits,48.03%)

(c) Yosemite→Notre Dame

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s

it
iv

e
 R

a
te

UDBD(256 bits,20.79%)

BinGAN(256 bits,26.08%)

DeepBit(256 bits,34.64%)

GraphBit(256 bits,27.23%)

DBD-MQ(256 bits,33.11%)

BRIEF(256 bits,59.15%)

BRISK(512 bits,79.36%)

ORB(256 bits,56.26%)

(d) Yosemite→Liberty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it

iv
e
 R

a
te

UDBD(256 bits,11.76%)

BinGAN(256 bits,27.84%)

DeepBit(256 bits,20.66%)

GraphBit(256 bits,16.75%)

DBD-MQ(256 bits,25.78%)

BRIEF(256 bits,54.57%)

BRISK(512 bits,74.88%)

ORB(256 bits,48.03%)

(e) Liberty→Notre Dame

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s

it
iv

e
 R

a
te

UDBD(256 bits,52.17%)

BinGAN(256 bits,47.64%)

DeepBit(256 bits,56.69%)

GraphBit(256 bits,49.11%)

DBD-MQ(256 bits,57.15%)

BRIEF(256 bits,54.96%)

BRISK(512 bits,73.21%)

ORB(256 bits,54.13%)

(f) Liberty→Yosemite

Figure 3.4: The ROC curves under different settings on Brown dataset when using
various unsupervised binary descriptors. Best viewed in color.

baselines are categorized into unsupervised (e.g., BRIEF [17], GraphBit [42] and

DeepBit [106], etc.) and supervised approaches (e.g., BinBoost [183], L2-Net [182],

HardNet [130] and CDbin [231]). The results from floating-pointed (SIFT [121])and

supervised methods are provided as reference. Following [106] and [231], False Positive

Rates at 95% (FPR@95%) from the cross-validations on three subsets are provided in

Table 3.2. Lower FPR@95% indicates better performance. As can be seen, the pro-

posed method outperforms unsupervised approaches significantly on most training

3.3. EXPERIMENT 55

Notre Dame

Yosemite

Liberty

Matched Pairs Mismatched Pairs

Figure 3.5: The matching results of Notre Dame, Yosemite and Liberty of UDBD
on Brown dataset, which includes three matched pairs and two mismatched pairs for
each subset.

and test configurations. Particularly, the error rates achieved by UDBD are 18.99%,

52.6%, 11.76%, 52.17%, 14.61% and 20.79% from bottom left to right. However,

our method performs less favorable than BinGAN on Yosemite. The subset contains

too many visually similar patches (e.g., snow and forest), which makes them diffi-

cult to be distinguished [106]. Nevertheless, UDBD still achieves the best average

FPR@95% (28.49%) among unsupervised binary descriptors. Compared with the su-

pervised methods, UDBD is highly competitive, where our method even has better

result (11.76%) against BinBoost [183] (16.9%) on the setting of Liberty and Notre

Dame.

Moreover, the ROC curves of those unsupervised descriptors on different subsets

are plotted in Fig. 3.4 to further verify the above discussions. As shown in the figures,

the ROC curves from UDBD rank at the top under most settings, which indicates its

advantage over those unsupervised binary descriptors.

In Fig. 3.5, some matching results including three matched pairs and two mis-

matched pairs of UDBD under different settings: Liberty→Notre Dame, Liberty→Yosemite

and Notre Dame→Liberty, on Brown [11] dataset are presented. As can be observed

from Fig. 3.5, the proposed method enables to obtain the matched pairs of those

visually-similar patches successfully.

3.3.3.2 Results on Cifar-10 Dataset

Without loss of generality, on Cifar-10 dataset, we first compare our method with

several unsupervised binary descriptors regarding image retrieval performance, in-

cluding the unsupervised binary descriptors and some classical hashing methods. The

3.3. EXPERIMENT 56

Table 3.3: mAP of Top 1,000 (%) returned images at different code length from various
unsupervised descriptors on Cifar-10 dataset. Bold values are the best results.

Method
mAP@1000 (%)

16 bits 32 bits 64 bits

LSH [2] 10.31 11.39 13.74
ITQ [51] 24.85 27.32 30.84
SH [152] 16.25 19.64 20.91
DH [43] 22.43 23.21 25.84
DBD-MQ [41] 21.53 26.5 31.85
BinGAN [252] 30.05 34.65 36.77
DeepBit [106] 26.36 27.92 34.05
GraphBit [42] 27.79 33.45 37.97

UDBD 32.24 36.17 39.6

Recall

0 0.2 0.4 0.6 0.8 1

P
re
c
is
io
n

0.2

0.4

0.6

UDBD

BinGAN

GraphBit

DeepBit

ITQ

DMD-MQ

DH

SH

LSH

(a) Cifar-10 at 16 bits

Recall

0 0.2 0.4 0.6 0.8 1

P
re
c
is
io
n

0.2

0.4

0.6

0.8
UDBD

BinGAN

GraphBit

DeepBit

ITQ

DMD-MQ

DH

SH

LSH

(b) Cifar-10 at 32 bits

Recall

0 0.2 0.4 0.6 0.8 1

P
re
c
is
io
n

0.2

0.4

0.6

0.8
UDBD

BinGAN

GraphBit

DeepBit

ITQ

DMD-MQ

DH

SH

LSH

(c) Cifar-10 at 64 bits

Figure 3.6: Precision-Recall curves of the proposed method and the baselines on
Cifar-10 dataset at 16, 32 and 64 bits.

Table 3.4: Precision at Top 1 on Cifar-10 dataset when using DeepBit, BinGAN,
GraphBit and UDBD at different bit sizes.

Method
Precision@Top 1(%)

16 bits 32 bits 64 bits

DeepBit [106] 24.38 32.51 39.74
BinGAN [252] 33.72 41.48 44.31
GraphBit [42] 32.12 41.39 46.79
UDBD 38.46 46.63 52.06

retrieval performance is evaluated under mean average precision (mAP) at top 1, 000

returned images, which is detailed in Table 3.3 at the code length of 16, 32 and 64.

As observed from Table 3.3, our method improves the mAP@1000 values by 2.19%,

1.52% over BinGAN on 16 and 32 bits, while 1.63% on 64 bits over GraphBit. In

Fig. 3.7, the top-10 retrieved results of UDBD at 64 bits on Cifar-10 [89] dataset are

presented. In particular, four categories: cat, car, airplane and bird, are included. As

3.3. EXPERIMENT 57

Cat

Car

Airplane

Bird

Query Retrieved Images

Figure 3.7: The top-10 retrieved images on Cifar-10 dataset by UDBD at the code
length of 64. The query images are selected from four categories: cat, car, airplane
and bird. Red rectangle indicates the wrong results.

can be seen, UDBD can achieve accurate retrieval results with minor errors in most

cases. Note that the small image size (32× 32) gives rise to the blurred figure.

Moreover, we provide the Precision-Recall curves on Cifar-10 dataset at different

code lengths in Fig. 3.6, where the results are consistent with the above discussions.

Additionally, the matching performance measured by Precision@Top 1 returned can-

didate from the state-of-the-arts are also provided in Table 3.4, where the image is

treated as a big patch. As can be seen, the proposed method obtains the highest

values in term of Precision at top 1, at least 4.74% higher than the most competitive

baseline, which consolidates the contribution on improving the matching accuracy

from the proposed method.

3.3.3.3 Results on HPatches Dataset

Finally, we report mAP values from the three visual tasks: matching, retrieval and

verification, on HPatches dataset to provide broader insights on the binary descrip-

tor performance. Specifically, the matching is conducted by comparing patch sets

between a reference image and a target one. The retrieval aims at finding similar

patches for each query and the verification is to classify whether two patches are

matched or not [3, 231]. Following the evaluation protocols suggested in [3, 231], the

results on the full split are summarized in Table 3.5. We compared UDBD with

several unsupervised binary descriptors and provided the results of SIFT [121], Bin-

Boost [183], L2-Net [182] and CDbin [231] for references. Table 3.5 shows that UDBD

3.3. EXPERIMENT 58

Table 3.5: Comparison of the proposed UDBD to the state-of-the-art descriptors
in terms of mAP (%) on HPatches dataset. Dim, SP and USP denote dimension,
supervised and unsupervised, respectively. The real-valued descriptor (SIFT) and
the supervised methods are provided as references. Bold values are the best results
in unsupervised binary descriptors.

Method Dim Type Matching Retrieval Verification

SIFT [121] 128 USP 25.47 31.98 65.12

BinBoost [183] 64 SP 14.77 22.45 66.67
L2-Net [182] 128 SP 30.89 41.29 70.58
CDbin [231] 128 SP 39.76 46.19 82.68

BRIEF [17] 256 USP 10.5 16.03 58.07
ORB [150] 256 USP 15.32 18.85 60.15
DBD-MQ [41] 256 USP 13.45 23.56 63.43
DeepBit [106] 256 USP 13.05 20.61 61.27
GraphBit [42] 256 USP 14.22 25.19 65.19

UDBD 256 USP 17.27 28.88 69.77

outperforms the most competitive GraphBit by 3.05%, 3.69% and 4.58% on match-

ing, retrieval and verification, respectively, which indicates the superiority of UDBD

in generating effective binary descriptors for various visual tasks.

Based on above discussions, the proposed method can achieve superior perfor-

mance against most existing binary descriptors. Compared to the real-valued de-

scriptor (e.g., SIFT), the results from UDBD are still highly competitive. Moreover,

the dominant advantage on high matching speed from binary descriptors, over 100x

faster than real-valued descriptors in terms of matching time per pair [106], makes

UDBD suitable for large-scale similarity search applications.

3.3.4 Further Analysis

In this section, further insights are provided to address some key features in our

proposed method.

3.3.4.1 Ablation Study

Firstly, the comprehensive analysis on the involved components: view weighting

scheme and Laplacian constraint, during the code learning is provided in Table

3.6. Particularly, two different settings: γ = 0 (i.e., UDBDγ=0: NO view weight-

ing scheme) and β = 0 (i.e., UDBDβ=0: NO graph loss term), are investigated on

3.3. EXPERIMENT 59

Table 3.6: Ablation study on Brown (FPR@95%): Liberty→Notre Dame and
Yosemite→Liberty, HPatches: matching (mAP) and Cifar-10 at 64 bits (mAP@1000)
when γ = 0 (i.e., UDBDγ=0) and β = 0 (i.e., UDBDβ=0).

Method
Brown [11] Cifar-10 [89] HPatches [3]

Liberty→Notre Dame Yosemite→Liberty 64 bits Matching

UDBDγ=0 14.18 23.62 35.33 14.24
UDBDβ=0 12.92 22.36 34.08 14.95
UDBD 11.76 20.79 39.6 17.27

-10 -5 0 5 10

Rotation Angles

0

10

20

30

40

F
P

R
@

9
5

%

Yosemite->Notre Dame

UDBD

GraphBit

DeepBit

(a) Brown at 256 bits

-10 -5 0 5 10

Rotation Angles

0

10

20

30

40

m
A

P
@

1
0

0
0

(%
)

UDBD

GraphBit

DeepBit

(b) Cifar-10 at 64 bits

Figure 3.8: Performances variations under different rotation angles on test instances
from GraphBit, DeepBit and UDBD.

various datasets. For instance, mAP@1000 result at 64 bits on Cifar-10 when β = 0

would decrease dramatically to 34.08%, and that with γ = 0 is 35.33%, which are far

below than the original value (39.6%) achieved by UDBD in Table 3.3. That indi-

cates the importance and necessity of the involved graph loss term and view weighting

scheme in the proposed framework, respectively.

3.3.4.2 Transformation Invariance

Then we investigate the performance variations: FPR95% on matching and mAP@1000

on retrieval, under certain affine transformation imposing on test images, where rota-

tion is given as an example as plotted in Figure 3.8. The variations are calculated at 64

bits from GraphBit, DeepBit and UDBD. Large rotation angles usually reduce visual

similarity on the images, thus yielding worse performance [106]. However, UDBD still

outperforms the others significantly at all angle ranges. Particularly, mAP@1000 for

UDBD is 34.1% when rotating 10 degrees, which is much higher than those achieved

by DeepBit (27.26%) and GraphBit (23.51%). That indicates the proposed binary

descriptor is more robust to rotation. More analysis on other transformations (e.g.,

scaling, translation and occlusion) will be made in the future work.

3.3. EXPERIMENT 60

3.3.4.3 Weak Bit Study

Moreover, the impact of weak bit scheme on the system performance is investigated

in Fig. 3.9 and Table 3.7, under three measurements as FPR@95%, Precision@Top

1 and mAP on different datasets. As can be seen, noticeable performance gains have

been achieved with the weak bit scheme on Brown and Cifar-10 datasets, especially

when using shorter codes. For instance, Precision@Top 1 is 46.63% (with weak bit)

and 42.33% (without weak bit) on Cifar-10 using 32 bits. Slight improvements also

have been achieved when tackling three tasks (1.44%, 0.13% and 1.3%) at 256 bits on

HPatches by applying weak bit scheme. The results show that the proposed weak bit

scheme plays vital role in improving the matching performance, which further verifies

the claimed contribution.

32 64 128 256

Code Length

10

15

20

25

30

35

40

<
<

<
 F

P
R

@
9
5
%

)

Brown

ND->Lib:With Weak Bit

ND->Lib:Without Weak Bit

Lib->ND:With Weak Bit

Lib->ND:Without Weak Bit

(a) Brown

16 32 64

Code Length

35

40

45

50

55

P
re

c
is

io
n

@
T

o
p

 1
Cifar-10

With Weak Bit

Without Weak Bit

(b) Cifar-10

Figure 3.9: Performance variations at varying code lengths with/without using weak
bit scheme. (a) FPR@95% on Brown: Notre Dame (ND)→Liberty (Lib) and Lib-
erty→Notre Dame; (b) Precision@Top 1 on Cifar-10.

Table 3.7: mAP variations on HPatches with/without using weak bit scheme
(UDBD‡/UDBD†). Bold values show the best results.

Method Matching Retrieval Verification

UDBD† 15.83 28.75 68.47
UDBD‡ 17.27 28.88 69.77

3.3.4.4 Loss Term

Then we report the performance variations when using different loss terms (i.e., `2,1-

norm vs `2,2-norm) in the code learning process, as shown in Table 3.8. For example,

on Liberty→Notre Dame, FPR@95% is 15.81% under `2,2-norm, which is 4.05% lower

than 11.76% when applying `2,1-norm. Generally, `2,1-norm loss yields better results

3.4. CHAPTER SUMMARY 61

Table 3.8: Performance variations on Brown (FPR@95%): Notre Dame→Liberty and
Liberty→Notre Dame, HPatches: matching (mAP) at 256 bits, and Cifar-10 at 32
bits (mAP@1,000) when using `2,1-norm and `2,2-norm loss terms.

Loss Term
Brown [11] Cifar-10 [89] HPatches [3]

Notre Dame→Liberty Liberty→Notre Dame 32 bits Matching

`2,2-norm 22.51 15.81 34.24 14.81
`2,1-norm 18.99 11.76 36.17 17.27

2 4 6 8 10
γ

20

25

30

35

40

m
A

P
@

10
00

 (
%

)

64 bits

32 bits

16 bits

(a) γ

10
-4

10
-3

10
-2

10
-1

β

20

25

30

35

40

m
A

P
@

1
0
0
0
 (

%
)

64 bits

32 bits

16 bits

(b) β

Figure 3.10: Parameter sensitivity analysis of γ and β at various bit sizes on Cifar-10
dataset.

compared to the widely used `2,2-norm, which are consistent with the previous dis-

cussions on `p,q-norm based similarity search and other regularizers even obtain worse

performance [56].

3.3.4.5 Parameter Analysis

Finally, more experiments are conducted on Cifar-10 as examples in the retrieval per-

formance analysis with varying hyperparameters (γ and β), as shown in Fig. 3.10. γ

and β are varied in wide ranges from {2, 3, 5, 7, 10} and {10−5, 10−4, 10−3, 10−2, 10−1},
where the best performance is given around the setting of 5 and 10−3. It is worth not-

ing that the performance degrades heavily when small β is being set, which inevitably

weakens the impact of the graph constraint learning, thus yielding worse code quality.

3.4 Chapter Summary

In this chapter, a learning-based unsupervised binary descriptor termed UDBD is pro-

posed to facilitate large-scale visual recognition. Particularly, the binary descriptor is

learned via exploiting the common binary space between the original and transformed

data sets. With `2,1-norm loss as regularization term, the learned descriptor is highly

3.4. CHAPTER SUMMARY 62

robust to potential outliers. An unsupervised graph constraint is further employed to

preserve the original manifold structure in the code learning, thus improving the code

quality dramatically. Then the discrete and `2,1-norm constrained objective function

is solved directly without relaxation following an alternating optimization strategy.

Additionally, a weak bit scheme is used to address the ambiguous matching issue

and further boost the matching performance of the proposed binary descriptor in

the online search stage. Experiments on several public datasets show that UDBD

outperforms the state-of-the-arts significantly.

The presented method focuses on feature matching tasks using the local binary

descriptor, which is a classical similarity search application in the single-modality

domain. In the next chapter, we continue the research topic in this domain but

tackle a more challenging retrieval task, namely video-to-video retrieval, as discussed

in Section 1.3.2. The video, which consists of a series of consecutive frames, can be

viewed as a more advanced and highly redundant 3D signal against a single image.

We aim at proposing a novel video hashing framework for efficient large-scale video

retrieval, where the details will be revealed in the following chapter.

Chapter 4

Unsupervised Deep Video Hashing

4.1 Introduction

With the fast development of Internet and mobile communication technologies, re-

cent decades have witnessed the explosive growth of massive online information.

Consequently, Approximate Nearest Neighbor (ANN) search based on hashing tech-

niques has attracted substantial attentions in the research field of efficient similarity

search [51, 78, 107, 197, 221]. At the core of hashing-based visual search is how to

generate a compound hash function that is able to project high-dimensional floating-

point features into the compact binary Hamming space with vital properties from the

original data preserved.

According to the prior arts, generating binary codes directly from the original

feature is usually an NP-hard problem [72,118,195,211,238]. Most existing methods

adopt a two-stage learning framework, consisting of projection stage and quantiza-

tion stage [58]. At the projection stage, certain linear projection functions, which

are usually learned from the original data to preserve important properties, such

as global Euclidean structure or manifold structure, are built and such functions,

in turn, are exploited to project the data from the original feature space to a low-

dimensional compact space [35,57]. At the quantization stage, the real-value feature

representation on that space is quantified into binary codes by arbitrary threshold-

ing [51, 87]. With effective projections, such a framework has achieved promising re-

sults to some extent. Unfortunately, it has been acknowledged that the performance

of those hashing schemes may degrade significantly if the projected dimensions are

imbalanced [87,118,221], i.e., their variances vary a lot. The major reason is that the

equal-length bit allocation adopted in the quantization stage (e.g., 1 bit in most cases,

and 2 bits in a Double-bit Quantization [87] ends up with a suboptimal situation that

dimensions with lower variances, which contain less information, will have the same

63

4.1. INTRODUCTION 64

influence on Hamming distance computing as high-variance dimensions. The prob-

lem mentioned above is illustrated in Fig. 4.1(a), taking the 2-bit quantization in the

two-dimensional feature space as an example. As can be seen, the X axis of the data

point obviously contains more information than the Y axis in the original feature

space, but both of them are quantized with 1 bit in the Hamming space. This implies

that those dimensions containing various amounts of information equally contribute

to the calculation of Hamming distance, which is likely to make the quantization

intractable.

Recent studies have shown that the spatio-temporal features combining the frame-

level spatial information and the temporal information of a video sequence make great

contribution in boosting the expressive capability of video representation [175, 226,

235]. Currently, the methods that generate deep video features basically follow two

pathways: 1) feeding the sparsely-sampled frame-level image features from video clip

into Recurrent Neural Network (RNN) or Long-Short Term Memory (LSTM) [73]

in order to explore the temporal nature and then aggregating into the global video-

level feature [109, 197, 217]; 2) fusing the spatial and temporal features (e.g., optical

flow) from the two-stream networks to generate the unified video representation via

various pooling schemes [200]. However, we argue that those methods will yield

the imbalanced video representation inevitably due to the following reasons. Firstly,

the sparse-sampling strategy is usually adopted when tackling video representation

learning to reduce the training costs [95]. The contents within those frames are less

correlated, especially for the cases of long videos, implying the features in terms of

distributions are quite different [207, 243]. Therefore, the imbalanced variance dis-

tributions within dimensions can be accumulated when fusing those frame features

directly in the video representation learning. There is no evidence that those temporal

encoders (e.g., RNN or LSTM) can alleviate such a problem. Moreover, the imbal-

anced situation is even getting worse when making the video-level evaluation with the

aggregation of spatial and temporal features in most two-stream based works, which

leads to huge variance fluctuations within dimensions. A reasonable explanation is

that the temporal network is actually designed to capture different visual aspects of

videos compared to the spatial network, which indicates that the feature distribu-

tions are more diverse between those fields (e.g., optical flow and RGB) [86,142,200].

The arbitrary pooling scheme will aggravate the problem of imbalanced video fea-

tures. Here, we plot the curves of variances within each dimension of image and

video features on ActivityNet [14] in Fig. 4.1(b) to evidentiate the above discussions,

where image features are extracted via a spatial ConvNet [200] and video features are

4.1. INTRODUCTION 65

(a) (b)

Figure 4.1: (a) Suppose that two data samples (red and green) from a benchmark
are projected into a two-dimensional feature space with the coordinates of (x1, y1)
and (x2, y2) and encoded by two bits subsequently, where |x1| > |y1|, |x2| > |y2| and
|x1−x2| > |y1−y2|. After the proposed balanced rotation, the coordinates of two data
points change to (xr1, y

r
1) and (xr2, y

r
2) accordingly, where |xr1| = |yr1| and |xr2| = |yr2|.

Obviously, compared to the original features, the variances contained in the X and
Y axis can be balanced with such rotation strategy applied. That indicates two
dimensions of the rotated data points will have the same impact on the calculation of
the Hamming distances when encoding them with the fixed number of bits; (b) The
variance within each dimension of image and video feature.

generated via fusing the output vectors of two sub ConvNets in temporal segment

networks [200]. As can be observed from Fig. 4.1(b), the large variance variations do

exist within each dimension of video features. However, most existing video hashing

methods usually concentrate on selecting the appropriate fusion strategies that can

wrap frame-level features up as a single video feature so that the binarization tactics

existed in image hashing frameworks can be applied directly [109, 197, 200, 225], re-

gardless of the imbalanced features. This would considerably degrade the quality of

video hash codes.

In view of the above analysis, it is clear that such an imbalanced problem needs

to be addressed carefully in designing video hashing method [186], because applying

image feature binarizations to video features directly is suboptimal in producing effec-

tive video hash codes. To the best of our knowledge, this is the first attempt to tackle

the imbalanced problem when binarizing video features. Specifically, we propose

a novel hashing framework termed Unsupervised Deep Video Hashing (UDVH),

which distinguishes from the existing methods in three main aspects:

4.2. PROPOSED UNSUPERVISED DEEP VIDEO HASHING 66

• An unsupervised deep hash framework termed Unsupervised Deep Video Hash-

ing (UDVH) is proposed to organize the hash code learning in a self-taught man-

ner. Instead of minimizing feature reconstruction distortion [240], our frame-

work minimizes the quantization error of projecting video features to a binary

hypercube, thus allowing the feature extraction and hash function learning to

engage with each other. Involving the feature clustering in the code learning

enables the neighborhood structure to be preserved. To solve the objective

function, a novel scheme is proposed, where the rotation matrix, binary code

generation, and the deep framework parameters are jointly optimized.

• During the code learning, a balanced rotation designed for video features is

proposed to identify a proper projection matrix such that the variance of each

projected dimension can be balanced (see Fig. 4.1). By doing so, the informa-

tion in each dimension of video features can be equalized. This would greatly

benefit the quantization step, in which each dimension is allocated with the

same number of bits. An in-depth analysis of the balanced rotation and other

related works is provided.

• Two different video feature learning structures: stacked LSTM units (UDVH-

LSTM) and Temporal Segment Networks (UDVH-TSN), are investigated to

validate the effectiveness of the proposed framework. Comprehensive experi-

mental study has been carried out on three publicly available video datasets:

FCVID [140], YFCC [181] and ActivityNet [14]. The experimental results

demonstrate various advantages of UDVH compared to existing video hashing

approaches.

The rest of this chapter is organized as follows: Section 4.2 introduces the proposed

UDVH. The experimental results are given and analyzed comprehensively in Section

4.3. The paper is concluded with detail summary and introduction of future work in

Section 4.4.

4.2 Proposed Unsupervised Deep Video Hashing

Given a benchmark data set that contains N videos, 20 keyframes are selected aver-

agely for each video. Our goal is to exploit the deep hash function F(.) that encodes

those videos into k-bit binary representation as B ∈ {−1,+1}N×k. Particularly,

the deep networks are treated as to-be-learnt binary encoding functions, defined as

4.2. PROPOSED UNSUPERVISED DEEP VIDEO HASHING 67

Table 4.1: Mathematical symbols and their short descriptions.

Symbol Description Symbol Description

Z input stream N training video number

Z feature matrix from FC7 t training loops
Y pseudo labels R rotation matrix
B binary code k code length
P projection matrix C cluster number
H video feature matrix v variance
F(.) deep hash function s standard deviation
M feasible set Θ network parameters
E tangent space Q Cayley matrix
W skew-symmetric matrix G upgradient
D diagonal matrix r iterations in solving R

F(Z; Θ), where Z represents the input that could be in the form of feature matrix

or original images. The hash function is parameterized by network parameters Θ

including weights and biases. The mathematical symbols used in this chapter are

summarized in Table 4.1 for the ease of explanation.

4.2.1 Deep Video Feature Learning

In this section, we adopt two different deep architectures: LSTM [73] and TSN [200] to

generate the video features, termed as UDVH-LSTM and UDVH-TSN independently

in the next subsections.

4.2.1.1 UDVH-LSTM

LSTM [73] has been widely deployed in the sequence study for its powerful ability

in dealing with the sequential inputs. This characteristic makes LSTM very popular

in video representation learning, video summarization, video captioning, and speech

recognition [151, 175]. Compared with the traditional Recurrent Neural Network

(RNN), memory blocks: input gate, output gate and forget gate, are integrated into

LSTM, which enable to store useful information such that the long-range temporal

relationship could be exploited [26, 73, 175]. Particularly, the input gate controls the

flow of input activations into the memory cell and the output gate controls the output

flow of cell activations into the rest of the network. The forget gate decides what kind

of information should be removed from the cell state to adjust (forget or reset) the

4.2. PROPOSED UNSUPERVISED DEEP VIDEO HASHING 68

1

3

4

56

7

8
2

10

9

𝒀

𝑿

-1

1

-1

1

1

-1

-1

1

Video Feature

CCA(ഥ𝒁，Y)
ഥ𝒁

H

Balance Rotation

B=sign(H*R)

Feature Clustering + Feature Embedding

Feature Extraction and Modelling

Binary Code

Unsupervised Code LearningDeep Hash Function Learning

Mapping

Parameter Inheritance

…… ……

Layer 1 Layer 2

CNN

CNN

CNN

CNN

FC7

FC8

Video frames

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTMLSTM

Mean

Pooling
… …

…… ……

Layer 1 Layer 2

CNN

CNN

CNN

CNN

FC7Video frames

LSTM LSTM

LSTMLSTM

LSTM LSTM

LSTMLSTM

Mean

Pooling

…

Figure 4.2: The basic framework of UDVH-LSTM. The whole process consists of
three subsections: video feature extraction, unsupervised code learning and deep
hash function learning, which are performed iteratively to obtain the solution.

cell’s memory adaptively [48]. The final output of a single LSTM unit is actually

depended on the sequential input, the previous and current cell states.

The proposed framework of UDVH-LSTM is given in Fig. 4.2. Two-layer stacked

LSTM units are constructed to tackle the frame-level features extracting from the pre-

trained VGG-19 model [164] for the temporal-awareness. It also allows the sequential

inputs to go through more nonlinear computations at every step to obtain better fea-

ture representation [48]. In this case, the frame-level features of those training videos

are first encoded by the stacked LSTM units sequentially. Then the encoded frame

features are averagely fused by the connected FC7 layer to generate the video feature

matrix Z ∈ RN×1024 for the upcoming code learning. Thus, a robust representation

for videos can be obtained by taking both spatial and temporal information into ac-

count. FC8 layer is added at the end of FC7 as the hash layer. In this case, the deep

hash function is defined as F(Z; Θ), where Z denotes the frame-level CNN features.

The deep parameters, including weights and biases from the fc layers (FC7 and FC8)

and the stacked LSTM units for UDVH-LSTM, are represented by Θ uniformly for

the concise description.

4.2. PROPOSED UNSUPERVISED DEEP VIDEO HASHING 69

4.2.1.2 UDVH-TSN

Compared to LSTM, TSN evaluates the video-level representation with the two-

stream ConvNets networks [200] consisting of spatial and temporal networks. Here,

spatial networks collect the spatial information of each image, whereas temporal net-

works model the relationships of successive frames over time with the optical flow

fields provided. By fusing these two types of features, TSN ends up exploring both

spatial and temporal information to represent videos. To address the over-fitting

problem when training deep convolution neural networks on small datasets, several

strategies are adopted in training TSN: 1) Cross modality Pre-training is introduced in

the initializations of two ConvNets, where Pre-trained models on ImageNet and RGB

frames are utilized as the initial models for spatial and temporal ConvNets, respec-

tively; 2) Compared to the shallow structure in [163], TSN adopts the Inception with

Batch Normalization (BN-Inception) [79] in the network structure, which speeds up

the training process significantly by converting the activations of the mean and vari-

ance in each batch into the standard Gaussian distribution. In the meanwhile, a good

trade-off between algorithm accuracy and efficiency can be achieved by re-evaluating

those values in the certain layers with the proposed partial BN [200]; 3) they employ

two new methods: corner cropping and scale jittering, in the data augmentation to

avoid the severe overfitting problems in traditional two-stream based networks. To

make it compatible with the proposed framework, we modify the traditional TSN

presented in [200], where the last fc-action layers of the original TSN are removed

and the pooled features from the global-pool layers in spatial and temporal ConvNets

are fused averagely. Afterward, such features are fed to two fc layers (FC7 and FC8)

like UDVH-LSTM, thus constructing the network architecture of UDVH-TSN. The

proposed framework is shown in Fig. 4.3.

As discussed in the previous descriptions, we define the to-be-learned deep hash

function as F(Z; Θ), where the deep parameters including weights and biases from

the fc layers (FC7 and FC8) and modified TSN for UDVH-TSN are represented by

Θ uniformly for the concise description. Z denotes the input streams, which are the

original RGB frames and optical flows (See Section 4.3.3). Those network parameters

will be updated automatically during each iteration of hash function learning, thus

producing the desirable outputs from the last fc layer with the dimension of k after

the training process. Finally, the binary representation for the input can be obtained

by calculating sign(F(Z; Θ)).

The basic structures of UDVH-LSTM and UDVH-TSN are summarized in Table

4.2. The only difference between two networks is that they adopt LSTM and TSN

4.2. PROPOSED UNSUPERVISED DEEP VIDEO HASHING 70

Figure 4.3: The basic framework of UDVH-TSN. The only difference between UDVH-
TSN and UDVH-LSTM is that they adopt LSTM and TSN separately to evaluate
the video representation.

Table 4.2: The network configurations UDVH-LSTM and UDVH-TSN. Other layers
like pooling and activation are omitted for concise descriptions.

Method Network Configuration

UDVH-LSTM
CNN (VGG-19 [164]), 2-layer stacked vanilla LSTM units,

fusion layer, 2 fully-connected layers

UDVH-TSN
Modified TSNs including spatial and temporal ConvNets [200],

fusion layer, 2 fully-connected layers

separately to evaluate the video representation. In the following methodology part,

these two networks are represented uniformly to illustrate the proposed algorithm.

4.2.2 Feature Embedding with Pseudo Labels

At the beginning of the proposed unsupervised code learning, we first roughly estimate

the feature distribution via exploring the pseudo labels, which aims at improving

the effectiveness of the feature embedding afterwards [241]. Particularly, k-means

is adopted to categorize the video features Z ∈ RN×1024 from FC7 layer such that

the similar videos tend to be classified into the same category. To accelerate the

clustering process in the experiment, we randomly sample 10,000 video features from

Z to generate C centroids, where C is the cluster number. Then a 1-of-C vector (C

dimensions with one 1 and C − 1 0s) can be assigned to each video by measuring the

4.2. PROPOSED UNSUPERVISED DEEP VIDEO HASHING 71

smallest l2-norm distance among the corresponding feature and those centroids [244].

Such dedicated pseudo labels Y ∈ {0, 1}N×C are generated for the whole training

set during each iteration, thus preserving the original neighborhood structure to the

maximum extent in the following process of the dimensionality reduction.

Subsequently, the dimensionality of the video features Z is reduced into the re-

quired code length (k) via Canonical Correlation Analysis (CCA) to obtain the pro-

jected video feature matrix H ∈ RN×k, where the correlation between video features

and the corresponding pseudo labels are maximized and well preserved in the low-

dimensional space. In contrast to Principle Component Analysis (PCA) [213], CCA

is more effective in extracting discriminative information with the robustness in anti-

noise [51], thus obtaining more discriminative video features after the projection. We

denote the projection matrix as P ∈ R1024×k and Z ∈ RN×1024 as the video features

from FC7 layer, where P can be pre-trained with Z and Y during CCA. Accord-

ing to the above illustrations, the process of the proposed feature embedding can be

simplified as:

H = Z×P = Z× CCA(Z,Y), s.t. Z ∈ RN×1024,Y ∈ {0, 1}N×C . (4.1)

However, similar to the conventional methods that reduce the feature dimension-

ality via projection schemes, CCA will also concentrate most information on a few top

eigenvectors, thus unbalancing the projected data and lowering the hash code quality

drastically [221]. Consequently, we propose a novel rotation matrix to alleviate this

imbalanced issue, which will be elaborated in the next subsection.

4.2.3 Balanced Rotation

As shown in Fig. 4.1(b), the video features are more dispersed in terms of distribu-

tion compared to image features, which results in larger variance fluctuations among

dimensions. However, in most previous works that allocate the same number of bits

to encode such imbalanced features, the dimensionality containing less information

(low variance) will make the same contribution on calculating the Hamming distance

as those with rich information (high variance), thus significantly reducing the qual-

ity of the hash code [87, 118, 221]. To solve the problem described in Fig. 4.1(a),

this paper proposes a novel balanced rotation that balances the information within

each dimension of video features before undergoing the quantization. The detailed

formula for the proposed rotation is presented as follows. Firstly, the effect of ro-

tation on the variance of data is investigated. Given the optimal projection P, the

4.2. PROPOSED UNSUPERVISED DEEP VIDEO HASHING 72

projected data H = ZP ∈ RN×k can be calculated by Eq. (4.1). Assuming the video

features are zero-centralized, i.e.,
∑N

i=1 Zi = 0, the variance of the j-th dimension

is vj =
1

N

∑N
i=1 H2

ij. Given an orthogonal rotation matrix R and the adjusted data

Hr = HR, the new variance of each dimension is updated as vj
′, where RRT = Ik

and Ik ∈ Rk×k is the identity matrix. Then we obtain the following lemma.

Lemma 1: The sum of variances on all dimensions is invariant after rotation for

the centralized data.

Proof to Lemma 1: Particularly, the sum of variances in all dimensions after

rotation can be calculated as below:

N

k∑
j=1

vj
′ =

k∑
j=1

N∑
i=1

(HR)2
ij = tr(HRRTHT) = tr(HHT) = ‖H‖2

F

=
k∑
j=1

N∑
i=1

(H)2
ij

= N
k∑
j=1

vj,

(4.2)

where tr(.) denotes the trace norm. As observed from the above equation, the total

variance remains unchanged with the original properties (e.g., global Euclidean or

local manifold structure) preserved after the orthogonal rotation [51, 81]. The pur-

pose of the proposed rotation scheme is to balance the variance of each dimension in

the rotated data Hr, where the degree of balance can be measured by the variance

of standard deviation (VSD) of each dimension. Theoretically, smaller VSD implies

more balanced data. If all dimensions have the same data variance or standard de-

viation, the VSD is 0. Denote the standard deviation (SD) of the j-th dimension as

sj =
√
vj, the VSD is computed as:

VSD =
1

k

k∑
j=1

(sj − s)2, (4.3)

where s is the mean of SD. Hence, the goal of balancing the variances can be achieved

by finding a rotation that minimizes the VSD. However, it is not intuitive by solving

Eq. (4.3) directly. This problem can be simplified because of:

Lemma 2: Minimizing the VSD of the data by a rotation is equivalent to maxi-

mizing the sum of standard deviation (SSD).

4.2. PROPOSED UNSUPERVISED DEEP VIDEO HASHING 73

Proof to Lemma 2: Based on the Lemma 1, we have
∑k

j=1 s
2
j =

∑k
j=1 vj = c,

where c is a constant. Then, the VSD of the data in Eq. (4.3) can be further expanded

as:

VSD =
1

k

k∑
j=1

(sj − s)2 =
1

k

k∑
j=1

s2
j + s2 − 2

k

k∑
j=1

sjs

=
c

k
+ s2 − 2(

1

k

k∑
j=1

sj)s

=
c

k
− s2

=
c

k
− (

1

k

k∑
j=1

sj)
2

=
c

k
− 1

k2
SSD2.

(4.4)

From Lemma 2, it is clear that minimizing VSD equals maximizing SSD, where

the SSD can be further expressed as the matrix form:

SSD =
k∑
j=1

sj =
k∑
j=1

√√√√ 1

N

N∑
i=1

H2
ij =

1√
N
‖HT‖2,1, (4.5)

where ‖.‖2,1 is the l2,1-norm of HT . Considering Eq. (4.2), Eq. (4.4) and Eq. (4.5)

jointly, the rotation matrix which aims at balancing the variance of each dimension

can be learned from the elegant optimization formulation:

max
R
‖RTHT‖2,1, s.t. RRT = Ik, (4.6)

where Ik ∈ Rk×k is the identity matrix. Eq. (4.6) is also the objective function of the

proposed balanced rotation and the corresponding optimization process regarding R

will be elaborated in the next subsection.

4.2.4 Objective Function and Optimization

In this section, we introduce the objective function of UDVH and its optimization

process in details. The core idea behind such self-taught frameworks is that the

binary code B generated by balanced rotation is utilized iteratively to guide the

deep hash function learning, where B is expected to preserve the local structures and

balanced properties from the processes of feature embedding and balanced rotation,

respectively [24]. For the purpose of sharing those properties within the hash function

construction, the learning objective of hash function learning is defined as minimizing

4.2. PROPOSED UNSUPERVISED DEEP VIDEO HASHING 74

the loss between the output of F(Z; Θ) and the learnt binary code B, where l2-norm

distance is used as the measurement. The process can be formulated as following:

L1 = min
Θ,B
‖F(Z; Θ)−B‖2

F , s.t. B ∈ {−1,+1}N×k. (4.7)

Moreover, the balanced rotation is also considered in this case to address the issue

of imbalanced variances during the unsupervised code learning, where its learning

objective is formulated as Eq. (4.6):

L2 = max
R
‖RTHT‖2,1, s.t. RRT = Ik. (4.8)

Without loss of generality, we can integrate Eq. (4.7) and Eq. (4.8) together to

express the overall objective function of UDVH following previous hashing frameworks

as below:

L = L1 + λL2 = min
Θ,B,R

‖F(Z; Θ)−B‖2
F − λ‖RTHT‖2,1,

s.t. B ∈ {−1,+1}N×k, RRT = Ik, H ∈ RN×k,
(4.9)

where λ is the balance parameter between two terms to provide the general expression

of the objective function, i.e., Eq. (4.9). The value of λ is fixed as 1 during the

optimization.

With respect to the optimization, instead of optimizing the objective function in

a single step, an alternating approach that differs from previous works is proposed in

this section, where those two sub-objective functions, namely L1 and L2, are optimized

iteratively and the deep hash functions can be built by updating the parameters,

including R, B and Θ, to facilitate the unique self-taught learning process. This

enables the interaction between deep feature learning and hash function learning

during the optimization procedure so that the parameters of both deep networks and

hash function can be jointly optimized. More importantly, our optimization approach

transforms the hash function learning into a regression problem with binary code B as

the regression target, thus avoiding the use of a relaxation strategy to solve the non-

convex equation with binary constraints in most published works [24, 43, 51, 55, 109,

195,246]. Following the above descriptions, our optimization of UDVH can be solved

by iteratively optimizing L1 and L2. The optimization goal of L2 can be achieved in

the following alternating steps.

4.2. PROPOSED UNSUPERVISED DEEP VIDEO HASHING 75

4.2.4.1 R Step

With given video feature H ∈ RN×k, Eq. (4.8) can be viewed as the orthogonality

constrained l2,1-norm maximization problem, which can be efficiently solved by the

gradient flow method in [212]. Following [212], a feasible set for R is defined as:

Mk = {R ∈ Rk×k : RRT = Ik}, (4.10)

which is also called the Stiefel manifold. Then the tangent space for Mk can be

formulated as:

ER = {E ∈ Rk×k : ETR + RTE = 0}. (4.11)

Here, the basic idea is to find an optimal direction in the tangent space of the

current point R, then project that direction to the feasible manifold, and replace the

current point with the projected one. Finally, a stationary point can be achieved by

repeating the above steps iteratively. To optimize the problem (4.12), the convergence

lemma is illustrated as: given a point Rr in the feasible set, the below updating rule

will lead to larger value unless it has arrived at a stationary point, namely:

Rr+1 = QrRr, (4.12)

where Qr is the Cayley transformation matrix defined as:

Qr = (Ik +
τ

2
Wr)

−1(Ik −
τ

2
Wr). (4.13)

In the above equation, W is the skew-symmetric matrix, which can be calculated

with the upgradient G. They are formulated as follows:

Wr = GrR
T
r −RrG

T
r , (4.14)

Gr = −HT
r HrRrDr, (4.15)

Dr = diag(
1

N0.5sr1
, ...,

1

N0.5sri
, ...,

1

N0.5srk
). (4.16)

Here, the subscript r denotes the r-th iteration. τ is a step size satisfying Armijo-

Wolfe conditions [135], which only controls the convergence rate in updating R. sti

represents the standard deviation of (HRr)∗i and D is the diagonal matrix. The above

steps are iteratively executed until convergence and the obtained R is the rotation

matrix.

4.2. PROPOSED UNSUPERVISED DEEP VIDEO HASHING 76

Algorithm 2 Unsupervised Deep Video Hashing

Input: The input matrix Z; Randomly initialize deep parameters Θ; Initialize R0 =
Ik and r = 0; Code length k;

Output: F(Z; Θ): deep hash function;
1: for t = 1 to T do
2: Compute feature matrix Ht according to Eq. (4.1);
3: repeat
4: Compute Dr by Eq. (4.16);
5: Compute Gr by Eq. (4.15);
6: Compute Wr by Eq. (4.14);
7: Compute Qr by Eq. (4.13);
8: Compute Rr+1 by Eq. (4.12);
9: r = r + 1;

10: until Convergence;
11: Update rotation matrix Rt = Rr+1;
12: Update binary code Bt according to Eq. (4.17);
13: Update deep parameters Θt according to Eq. (4.18);
14: Until Convergence;
15: t = t+ 1;
16: end for
17: return F(Z; Θ);

4.2.4.2 B Step

After solving R, the variance of each dimension in the projected video feature H is

balanced and consequently the binary code B can be calculated via thresholding:

B = sign(H×R), s.t. H ∈ RN×k, R ∈ Rk×k. (4.17)

The obtained balanced codes are prepared to be utilized as the learning objective

of network training afterwards.

4.2.4.3 Θ Step

With fixed Z, R and B, the optimization of L1 in Eq. (4.7) is further derived as

below with the only argument Θ:

min
Θ
‖F(Z; Θ)−B‖2

F , s.t. B ∈ {−1,+1}N×k. (4.18)

This minimization problem can be solved by fine-tuning the deep network with

Stochastic Gradient Descent (SGD) [8] until it gets converged, where the Euclidean

loss is minimized via mini-batch back-propagation and the low bound can be found

(See 4.3.3). The network parameter Θ is updated simultaneously with the balanced

4.2. PROPOSED UNSUPERVISED DEEP VIDEO HASHING 77

Update
R

Update
B

Update
Θ

Update
B

Update
R

Update
Θ

Update
B

Update
R

Update
Θ

𝟏𝒕𝒉 Iteration 𝟐𝒏𝒅 Iteration 𝑻𝒕𝒉 Iteration

Training Sequence

Balanced Rotation Balanced Rotation Balanced Rotation

Network Training Network Training Network Training

Figure 4.4: The graph illustration of Algorithm 2.

properties from B preserved after convergence, such boosting the quality of hash code

in the query process. By repeating above steps iteratively, the deep hash function can

be built finally after several iterations, where t = 3 ∼ 5 in this work. Given a query

video Zq, the hash code can be obtained via compute sign(F(Zq; Θ)). The step by

step description of the proposed optimization scheme is summarized in Algorithm 2

with its graph illustration in Fig. 4.4.

4.2.5 Complexity Analysis

The time complexity of Algorithm 2 basically consists of three parts as discussed

in Section 4.2: deep network training, feature embedding and balanced rotation.

However, calculating the time complexity for first two terms is not straightforward

because the costs in network training and feature clustering are affected dramatically

by the hardware conditions, which will be discussed later in the Section 4.3. Here, we

focus on the time complexity in solving the learning objective of balanced rotation.

In particular, the optimization starts by solving R according to Eq. (4.12)∼(4.16),

in which the time complexity for Eq. (4.16) is O(Nk) and Eq. (4.15) is O(k3),

while computing HTH requires O(Nk2), which can be pre-computed and remains

unchanged with iterations. For Eq. (4.12)∼Eq. (4.14), the time complexity is the

same as O(k3). Thus, the overall complexity in updating R is O(Nk2 + t(Nk + k3))

after t-th iteration which is linear to the size of training data. Actually, considering

that k and t are usually quite small in the algorithm, optimizing Eq. (4.9) can be

highly efficient. In addition, the time complexity is O(k3) in Eq. (4.17) in solving B,

which indicates the fast speed of the code learning.

4.2. PROPOSED UNSUPERVISED DEEP VIDEO HASHING 78

4.2.6 Discussion

Now, we discuss the connection between BR and some previous works. The first one is

Iterative Quantization (ITQ) [51], which finds a rotation to minimize the quantization

error. In fact, ITQ shares a very similar formulation to BR. If closely looking at the

objective function of ITQ, we have:

‖B−HR‖2
F = ‖sgn(HR)−HR‖2

F

= const− 2‖RTHT‖1,1.
(4.19)

Hence, the optimization problem of ITQ can be rewritten into the following for-

mulation,

max
R
‖RTHT‖1,1, s.t. RRT = Ik. (4.20)

Despite the similar formulations, there are several important differences between

ITQ and BR. 1) BR focuses on balancing the variance which can explicitly address

the imbalance between dimensions. Although ITQ maximizes the total variance of

the data in an indirect way via minimizing the quantization errors, the bits are quite

imbalanced; 2) ITQ adopts an iterative strategy with two matrix variables for opti-

mization which can only achieve a local optimal while BR has one matrix variable and

a more effective optimization algorithm so that it can achieve better solution. The

other two related works are Isotropic Hashing (IsoH) [88] and Harmonious Hashing

(HamH) [221]. IsoH aims to find a rotation to balance the variance by minimizing

the reconstruction error of the covariance matrix and a diagonal matrix. But the

reconstruction on a small covariance matrix seems restricted, so it may be unstable

in large-scale and high-dimensional experiments [221] due to the overfitting problem.

HamH seeks for a rotation to minimize the distance between the rotated data and

a perfectly balanced matrix. However, such strict requirement and its non-iterative

optimization algorithm may fail to find a good enough solution as BR which limits

its performance, though it may balance the data to some extent. In addition, IsoH

is based on PCA projection and is derived from spectral hashing [211]. There is

no clue that they have stable results based on other projection learning methods.

Recently, bit-independent constraint has been incorporated in the nonlinear discrete

optimization, where the l2-norm distance is minimized between the hash code and the

real-valued matrix set [24]. Although the information content is increased inevitably

in this case, the quantization errors are accumulated during the iterative optimization

4.3. EXPERIMENTS 79

and the aforementioned imbalanced variance within each dimension is still an open

issue that affects the hash code quality critically.

4.3 Experiments

In this section, three large-scale video datasets are adopted in the experiments, while

the corresponding parameters settings are introduced carefully. Then systematic eval-

uation and analysis of the proposed frameworks: UDVH-LSTM and UDVH-TSN, are

illustrated compared with some state-of-the-art hashing methods.

4.3.1 Datasets and Experimental Setting

We validate the proposed deep hashing learning framework on several large-scale

public datasets for video retrieval, including FCVID1, YFCC2 and ActivityNet3. The

basic information about those datasets are introduced as below.

4.3.1.1 FCVID

Fudan-Columbia Video Dataset (FCVID) [140] collects 91,223 videos from Youtube,

which are classified into 239 categories with accurate manual labels. A wide range of

generic topics are included in this datasets, such as sports, events and various scenes

with the average length of 167 seconds. We randomly select 45,611 videos for the

train split in the unsupervised learning process and the rest is used as the test split

in the retrieval.

4.3.1.2 YFCC

Yahoo Flickr Creative Common (YFCC) [181] is one of the largest public video dataset

available in real-world, which contains over 0.8M video clips with the average length

of 37 seconds as claimed. However, 0.7M videos are downloaded and processed in this

experiment except for some corrupted videos and invalid download links. Particularly,

we split the dataset into two parts: 0.6M unlabeled videos as the train split in the

unsupervised learning and 0.1M labeled videos provided by [240] as the test split in

the retrieval, where there are 80 popular scenes collected from the third level of MIT

SUN scene hierarchy [220] in the second part.

1https://http://bigvid.fudan.edu.cn/FCVID/
2https://webscope.sandbox.yahoo.com/
3http://activity-net.org/

4.3. EXPERIMENTS 80

4.3.1.3 ActivityNet

ActivityNet [14] covers a wide range of complex human activities in the daily living,

which contains around 20, 000 video clips that classified into 200 categories. Particu-

larly, those videos are split into training, validation and testing sets with 10, 024, 4, 926

and 5, 044 videos individually. Generally we follow the settings of above datasets,

where the whole ActivityNet dataset is split into train and test sets averagely, about

10, 000 videos for each set. However, for the purpose of making the best of dataset,

we use the original testing videos in the unsupervised training for the labels of those

are not released and take some instances from training videos to construct the new

test set. For all datasets, 1, 000 videos randomly picked up from the test split are

used as the query instances and others form the gallery in the online retrieval.

4.3.2 Baselines

Several existing hashing methods are adopted as baselines in the experiment, which

are Anchor Graph Hashing (AGH) [118], Submodular video hashing (SubMod) [18],

Iterative Quantization (ITQ) [51] Spectral Hashing (SP) [211], Multiple Feature Hash-

ing (MFH) [171], Deep Hashing (DH) [43] and Self-Supervised Temporal Hashing

(SSTH) [240]. UDVH-LSTM4 is also used as a baseline in evaluating UDVH-TSN.

Deep Video Hashing (DVH) [109] and Nonlinear Structural Hashing (NSH) [24] are

not considered in this case because both of them are supervised methods. For the

consistency of comparison, the experiments are carried out with the identical data sets

and the best performance is tuned according to parameter settings in their papers.

4.3.3 Implementation Details

Without loss of generality, 20 frames are uniformly selected as the representation of

video clips for each instance above datasets. In the feature embedding, 10,000 video

features from Z are randomly picked up and utilized on all datasets. During the code

optimization, r and τ are set to 100 and 0.0005. The experiments are conducted

using Matlab 2014a on the Ubuntu server configured with Intel Core i7-5960X CPU,

64 GB of RAM, and TITAN 1080i GPUs. In the network training of UDVH-LSTM,

the neuron number of LSTM is set to 1, 024 with a step size of 20. The initialization

methods of LSTM weights and bias are uniform and constant. The output numbers

of FC7 and FC8 layers are set to 1024 and k, respectively. Gaussian distribution and

4CNN features are replaced with the frame-level features from the pre-trained TSN models in
the following experiments.

4.3. EXPERIMENTS 81

constant are applied for the initialization of their weights and bias, respectively. The

base learning rate is set to 10−3 with momentum and weight decay tuned as 0.9 and

0.0005. The batch size of the video sequence is fixed to 50. The maximal training

iteration is set to 15, 000. Usually, the proposed networks converge within 10 epochs

during each loop (t) of the hash function learning.

There are minor differences in the implementation processes for network training

for UDVH-TSN when compared to UDVH-LSTM, which are detailed as follows. In

UDVH-TSN, we generally follow the parameter settings in the released codes5 and

its paper of temporal segment network [200] with minor adjustments in the network

model, which is illustrated in Sec 4.2. Particularly, in this case, we utilize the orig-

inal RGB frames and extract their optical flow6 [236] images from videos in above

benchmark datasets by OpenCV as the input streams to the spatial and temporal

networks, where those network models are pre-trained on UCF101 [174] dataset ac-

cording to [200]. The modified version of Caffe [200] is also kindly provided by the

authors to accelerate the training process. It is worth mentioning that we utilize

the original RGB and optical flow frames instead of using extracted CNN feature

vectors (VGG-19 [164]) in UDVH-LSTM and evaluate the video accordingly by the

uniformly-sampled 20 frames following [200] for fair comparison in the experiments.

The pooled video features of 1024-d from global-pool layers of the pre-trained TSN

models (including spatial and temporal ConvNets) are averagely fused and utilized

in evaluating the performance of some baselines, such as AGH, ITQ, SP, and DH.

While for SSTH and UDVH-LSTM, we extract the frame-level features (i.e., 20 frames

uniformly sampled from video clips) from the pre-trained TSN models and then fuse

them frame-by-frame accordingly to obtain the pooled 20 frame features to facilitate

their training processes.

4.3.4 Evaluation Metrics

To evaluate the effectiveness of hashing methods, mean Average Precision at top K

(mAP@K) retrieved videos is adopted as the main performance metric following [240],

which is defined as the mean of average precision of returned relevant videos number

in the top K results [140]. Moreover, Precision-Recall (PR) curve and Precision at

top 100 (Precison@100) returned samples are adopted as assisted measurements for

systematical evaluation [31]. All of those hashing methods are estimated based on

four different bit sizes, i.e, 16, 32, 64, 128.

5https://github.com/yjxiong/temporal-segment-networks
6We adopt TV-L1 optical flow algorithm as [200].

4.3. EXPERIMENTS 82

UDVH-LSTM SSTH ITQ SubMod DH SP MFH AGH

K

0 20 40 60 80 100

m
A
P
@
K

0.1

0.2
16bits

(a) FCVID@16 bits

K
0 20 40 60 80 100

m
A

P
@

K

0.1

0.2

0.3

32bits

(b) FCVID@32 bits

K
0 20 40 60 80 100

m
A

P
@

K

0.1

0.2

0.3

0.4

64bits

(c) FCVID@64 bits

K
0 20 40 60 80 100

m
A

P
@

K

0.1

0.2

0.3

0.4

0.5

128bits

(d) FCVID@128 bits

K

0 20 40 60 80 100

m
A
P
@
K

0.1

0.2

16bits

(e) YFCC@16 bits

K
0 20 40 60 80 100

m
A

P
@

K

0.1

0.2

0.3
32bits

(f) YFCC@32 bits

K
0 20 40 60 80 100

m
A

P
@

K

0.1

0.2

0.3

0.4
64bits

(g) YFCC@64 bits

K
0 20 40 60 80 100

m
A

P
@

K

0.1

0.2

0.3

0.4
128bits

(h) YFCC@128 bits

K

0 20 40 60 80 100

m
A
P
@
K

0.1

0.2
16bits

(i) ActivityNet@16 bits

K
0 20 40 60 80 100

m
A

P
@

K

0.1

0.2

32bits

(j) ActivityNet@32 bits

K
0 20 40 60 80 100

m
A

P
@

K

0.1

0.2

0.3

64bits

(k) ActivityNet@64 bits

K
0 20 40 60 80 100

m
A

P
@

K

0.1

0.2

0.3

0.4
128bits

(l) ActivityNet@128 bits

Figure 4.5: The mAP@K curves at different bit sizes under UDVH-LSTM.

4.3.5 Comparison with State-of-The-Arts

To demonstrate the superiority of our methods: UDVH-LSTM and UDVH-TSN, we

further compare them with some competitive baselines on three large-scale video

datasets independently.

4.3. EXPERIMENTS 83

Recall

0 0.2 0.4 0.6 0.8 1

P
r
e
c
is
io
n

0.2

0.4

0.6

0.8

1
FCVID

UDVH-LSTM

ITQ

SubMod

SP

MFH

AGH

DH

SSTH

(a) FCVID

Recall

0 0.2 0.4 0.6 0.8 1

P
r
e
c
is
io
n

0.2

0.4

0.6

0.8

1
YFCC

UDVH-LSTM

ITQ

SubMod

SP

MFH

AGH

DH

SSTH

(b) YFCC

Recall

0 0.2 0.4 0.6 0.8 1

P
re
c
is
io
n

0.2

0.4

0.6

0.8

1
ActivityNet

UDVH-LSTM

ITQ

SubMod

SP

MFH

AGH

DH

SSTH

(c) ActivityNet

Figure 4.6: The Precision-Recall curves at 128 bits under UDVH-LSTM.

Code Length

16 32 48 64 80 96 112 128

P
re

c
is

io
n

@
1

0
0

0.1

0.2

0.3

FCVID

UDVH-LSTM

SSTH

MFH

SubMod

ITQ

AGH

SP

DH

(a) FCVID

Code Length

16 32 48 64 80 96 112 128

P
re

c
is

io
n

@
1

0
0

0.1

0.15

0.2

0.25

0.3
YFCC

UDVH-LSTM

SSTH

MFH

SubMod

ITQ

AGH

SP

DH

(b) YFCC

Code Length

16 32 48 64 80 96 112 128

P
re

c
is

io
n

@
1

0
0

0

0.05

0.1

0.15
ActivityNet

UDVH-LSTM

SSTH

MFH

SubMod

ITQ

AGH

SP

DH

(c) ActivityNet

Figure 4.7: The Precision@100 curves at various bit sizes under UDVH-LSTM.

4.3.5.1 Results from UDVH-LSTM

Experiment I on FCVID: We first report the comparison results on FCVID dataset,

where Fig. 4.5(a)∼(d) show the mAP@K curves at various code lengths on the

datasets when using different methods separately. Obviously, the proposed method

outperforms the state-of-the-art hashing approaches in all cases substantially. To be

specific, the mAP@5 value of our algorithm is 41.2% when using 128-bit code on

FCVID, which is about 6% higher than the value achieved by the most comparable

SSTH. Moreover, the mAP values decline slowly in contrast to the other methods

when increasing the returned video number, which indicates the stability of UDVH-

LSTM.

In order to validate the effectiveness of the proposed framework, we also plot the

curves of Precision-Recall at 128 bits (Fig. 4.6(a)), Precision at top 100 returned

videos (Fig. 4.7(a)) separately. As can be seen, the best performance is still achieved

by UDVH-LSTM under those evaluation metrics.

Experiment II on YFCC: Then the experiments are conducted on YFCC dataset

and the results are illustrated as follows. Theoretically, the best performance should

be given for all hashing methods on YFCC among three datasets because of more

video clips are utilized in the stage of unsupervised training. However, surprisingly,

4.3. EXPERIMENTS 84

the retrieval performance drops down for all hashing methods compared to those on

FCVID dataset, where the difference between the mAP@5 values of UDVH-LSTM

and SSTH at 128 bits is trivially reduced to around 4% for instance according to Fig.

4.5(h). The main cause is that most videos in YFCC dataset are taken by mobile

equipment from the amateurs instead of the professionals in FCVID [181]. Video

retrieval has become a more challenging task because of the low-quality videos when

testing on YFCC dataset.

In Fig. 4.6(b) and 4.7(b), we also plot the PR and Precision@100 curves on YFCC

dataset as additional evaluations. According to the figures, dominant performance

still has been achieved by UDVH compared to other hashing methods when handling

such challenging retrieval tasks on YFCC dataset, which implies the robustness of

the proposed framework.

Experiment III on ActivityNet: Regarding the experimental results on Activi-

tyNet dataset, the worst performance has been achieved by all hashing methods

among three datasets. However, UDVH-LSTM still holds the dominant position with

around 3% higher than the most comparable SSTH at the code length of 128 and the

gap continues to increase when the code size reduces. A reasonable explanation for

the bad performance on ActivityNet is that the dataset contains too many untrimmed

videos with enormous intra-class variance, which lowers the hash code quality heavily

and makes the retrieval more intractable [14,23].

Followed by the same experiments on the above datasets, other curves such as

PR and Precision@100 are plotted in Fig. 4.6(c) and 4.7(c) separately to verify the

superiority of UDVH-LSTM. As can be seen from these figures, our framework still

ranks top compared to other baselines, even in dealing with such challenging tasks.

In Fig. 4.8, the detailed performance of top-5 returned videos achieved by two

video hashing methods, UDVH-LSTM and SSTH, is illustrated when using 128 bits.

The results of FCVID [140] are used as examples here. Given three different query

videos, the proposed method correctly finds five similar videos for each of them

whereas SSTH makes mistakes in recognizing swimming amateur and dolphin.

4.3.5.2 Results from UDVH-TSN

Experiment I on FCVID: Consistent with UDVH-LSTM, the comparison results

on FCVID dataset between baselines and UDVH-TSN are reported. Fig. 4.9(a)∼(d)

show the mAP@K curves at various code lengths on the datasets when using differ-

ent methods separately. As can be seen, the proposed UDVH-TSN outperforms the

state-of-the-art baselines at all bit sizes significantly. Notably, the mAP@20 value of

4.3. EXPERIMENTS 85

Query

Top-5

Retrieval

Result

SSTH SSTH SSTHUDVH-LSTM

Arm Wrestling Bungee Jumping Swimming Amateur

UDVH-LSTM UDVH-LSTM

Figure 4.8: Top-5 retrieval results when using SSTH and UDVH-LSTM at the code
length of 128 bits.

UDVH-TSN is 50.4% at the code length of 128-bit on FCVID, which is 4.8% higher

than 45.6% achieved by UDVH-LSTM. That mainly owes to the effective video-level

representation learning via the combination of spatial and temporal ConvNets pro-

vided by TSN. For the most comparable external competitor SSTH, the gap against

UDVH-TSN increases to 8.9%, which indicates the tremendous boost on the sys-

tem performance achieved by UDVH-TSN. For those non-deep methods, satisfactory

results still have been obtained because of the powerful feature modeling of the two-

stream architecture adopted in the framework.

Without loss of generality, the PR curves at 128 bits (Fig. 4.10(a)) and Preci-

sion@100 (Fig. 4.11(a)) of all baselines are provided separately. As can be seen,

the best performance is still achieved by UDVH-TSN under those evaluation metrics,

which is consistent with the results from mAP@K curves. For example, the preci-

sion@100 value of UDVH-TSN at 64 bits is 51%, which is at least about 3.6% higher

than the most comparable baselines.

Experiment II on YFCC: Next, extensive experiments are conducted on YFCC

dataset and the results are presented as below. Similar to UDVH-LSTM, signif-

icant performance drop appears on YFCC dataset. The mAP@K cures are plot

in Fig. 4.9(h). Particularly, the gap between the mAP@20 values of UDVH-TSN

(29.8%) and UDVH-LSTM (26.1%) at 128 bits is reduced to around 3.7%, while

4.3. EXPERIMENTS 86

UDVH-TSN UDVH-LSTM SSTH ITQ SubMod DH SP MFH AGH

0 20 40 60 80 100

K

0.1

0.2

0.3

0.4

0.5

m
A
P
@
K

16bits

(a) FCVID@16 bits

0 20 40 60 80 100

K

0.2

0.3

0.4

0.5

0.6

m
A
P
@
K

32bits

(b) FCVID@32 bits

0 20 40 60 80 100

K

0.2

0.3

0.4

0.5

0.6

m
A
P
@
K

64bits

(c) FCVID@64 bits

0 20 40 60 80 100

K

0.2

0.3

0.4

0.5

0.6

m
A
P
@
K

128bits

(d) FCVID@128 bits

0 20 40 60 80 100

K

0.1

0.2

0.3

m
A
P
@
K

16bits

(e) YFCC@16 bits

0 20 40 60 80 100

K

0.1

0.2

0.3

m
A
P
@
K

32bits

(f) YFCC@32 bits

0 20 40 60 80 100

K

0.1

0.2

0.3

m
A
P
@
K

64bits

(g) YFCC@64 bits

0 20 40 60 80 100

K

0.1

0.2

0.3

0.4

m
A
P
@
K

128bits

(h) YFCC@128 bits

0 20 40 60 80 100

K

0.1

0.2

m
A
P
@
K

16bits

(i) ActivityNet@16 bits

0 20 40 60 80 100

K

0.1

0.2

0.3

m
A
P
@
K

32bits

(j) ActivityNet@32 bits

0 20 40 60 80 100

K

0.1

0.2

0.3

m
A
P
@
K

64bits

(k) ActivityNet@64 bits

0 20 40 60 80 100

K

0.1

0.2

0.3

0.4

m
A
P
@
K

128bits

(l) ActivityNet@128 bits

Figure 4.9: The mAP@K curves at different bit sizes under UDVH-TSN.

the value is 5.8% when compared with SSTH (24%). As discussed in the previous

section, the main contributing factor is that YFCC dataset contains too many low-

quality videos [181]. However, it is worth noting that UDVH-TSN still dominates

those baselines with inspiring improvements, even dealing with extremely challenging

tasks.

Consistent with Experiment I, the PR (Fig. 4.10(b)) and Precision@100 (Fig.

4.11(b)) curves on YFCC dataset are plotted as additional evaluations. Specifically,

the precision@100 value at 64 bits when using UDVH-TSN is 30.2%, which is 3.9%

4.3. EXPERIMENTS 87

0 0.2 0.4 0.6 0.8 1

Recall

0.2

0.4

0.6

0.8

1

P
r
e
c
is
io
n

FCVID

UDVH-LSTM

UDVH-TSN

ITQ

SubMod

SP

MFH

AGH

DH

SSTH

(a) FCVID

0 0.2 0.4 0.6 0.8 1

Recall

0.2

0.4

0.6

0.8

1

P
re
c
is
io
n

YFCC

UDVH-LSTM

UDVH-TSN

ITQ

SubMod

SP

MFH

AGH

DH

SSTH

(b) YFCC

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Recall

P
re
c
is
io
n

ActivityNet

UDVH-LSTM

UDVH-TSN

ITQ

SubMod

SP

MFH

AGH

DH

SSTH

(c) ActivityNet

Figure 4.10: The Precision-Recall curves at 128 bits under UDVH-TSN.

16 32 48 64 80 96 112 128

Code Length

0.2

0.3

0.4

0.5

P
re

c
is

io
n
@

1
0
0

FCVID

x

UDVH-LSTM

∗

UDVH-TSN

SSTH

ITQ

SubMod

MFH

SP

AGH

DH

(a) FCVID

16 32 48 64 80 96 112 128

Code Length

0.1

0.15

0.2

0.25

0.3

0.35

P
re

c
is

io
n

@
1

0
0

YFCC

x

UDVH-LSTM

∗

UDVH-TSN

SSTH

ITQ

SubMod

MFH

SP

AGH

DH

(b) YFCC

16 32 48 64 80 96 112 128

Code Length

0.05

0.1

0.15

0.2

0.25

0.3

P
re

c
is

io
n
@

1
0
0

ActivityNet

x

UDVH-LSTM

∗

UDVH-TSN

SSTH

ITQ

SubMod

MFH

SP

AGH

DH

(c) ActivityNet

Figure 4.11: The Precision@100 curves at various bit sizes under UDVH-TSN.

higher than that under SSTH (26.3%). According to the figures, dominant perfor-

mance still has been delivered by the proposed frameworks compared to other hash-

ing methods on such challenging retrieval tasks, which consolidates the superiority of

UDVH-TSN.

Experiment III on ActivityNet: Following the results from the above two datasets,

the worst performance has been achieved by all hashing methods on ActivityNet

dataset. As shown in Fig. 4.9(c), the mAP@20 value of UDVH-TSN is 26.2% on

ActivityNet, which is much lower than those on FCVID (50.4%) and YFCC (29.8%).

The main reason is that ActivityNet contains too many untrimmed videos with enor-

mous intra-class variance, which lowers the hash code quality heavily and makes

the retrieval more intractable [14, 24] compared to the experiments on FCVID and

YFCC. When evaluating the performance on the same dataset under various base-

lines, UDVH-TSN still delivers the best performance according to the mAP@K figures

as expected. Specifically, the mAP@20 values for the two representative competitors:

UDVH-LSTM and SSTH, are 20.7% and 17.8%, respectively, which are at least 5.5%

lower than 26.2% achieved by the proposed framework. Although the improvement is

a bit limited, the retrieval performance by UDVH-TSN is still better than the most

existing hashing methods. Surprisingly, even compared to some supervised meth-

ods like NSH [24] that utilize ActivityNets as the benchmark, UDVH-TSN still gives

4.3. EXPERIMENTS 88

promising results. For example, the mAP value at 64 bits of UDVH-TSN is 22.1%,

which is 7.3% higher than 14.8% as reported in their paper of NSH.

Without loss of generality, the curves of PR and Precision@100 are plotted in Fig.

4.10(c) and Fig. 4.11(c) separately to further verify the superiority of the proposed

UDVH-TSN. As can be seen from those figures, our framework consistently ranks

top compared to other baselines. For instance, the precision@100 at 64 bits reaches

26.1% under the proposed framework and the difference over SSTH (20.4%) is 5.7%.

Those results show the superiority of UDVH-TSN clearly.

Query UDVH-TSNSSTH

Figure 4.12: Top-5 retrieval results when using SSTH and UDVH-TSN at the code
length of 128 bits, where examples are randomly selected from the video datasets.
The left column shows the query videos, the middle blocks and right blocks show
the top-5 returned videos by SSTH and UDVH-TSN, respectively. Red rectangles
indicate mistakes.

In Fig. 4.12, the detailed retrieval results of top-5 returned videos when us-

ing 128 bits achieved by two comparable video hashing frameworks, UDVH-TSN

and SSTH [240], are revealed. We randomly pick up some examples from the video

datasets. Given the query videos of different topics, the proposed algorithm makes

fewer mistakes in retrieving similar videos for each query compared with SSTH. The

major reason is that the neighborhood structure in the original data is well preserved

in UDVH-TSN by incorporating the clustering into the unsupervised hashing pro-

cess, thus producing more discriminative and effective binary codes for the nearest

neighbor search tasks.

4.3.5.3 Discussion

Above all, the proposed UDVH-TSN achieves excellent retrieval performance and

outperforms the state-of-the-arts under extensive experiments on the testing datasets.

4.3. EXPERIMENTS 89

Dataset
UDVH-LSTM

C=100 C=200 C=400 C=800 C=1600

FCVID [140] 0.285 0.336 0.376 0.371 0.375
YFCC [181] 0.133 0.179 0.221 0.22 0.219
ActivityNet [14] 0.104 0.124 0.144 0.143 0.142

(a) UDVH-LSTM

Dataset
UDVH-TSN

C=100 C=200 C=400 C=800 C=1600

FCVID [140] 0.362 0.482 0.504 0.504 0.502
YFCC [181] 0.201 0.274 0.293 0.289 0.291
ActivityNet [14] 0.145 0.198 0.262 0.257 0.261

(b) UDVH-TSN

Table 4.3: mAP@20 of different cluster numbers at 128 bits on three datasets under
UDVH-LSTM and UDVH-TSN.

It is also worth pointing out that DH [43], another deep-based hashing method in those

baselines, yields unsatisfactory performance on all datasets, where three speculations

are illustrated for those results as follows. First of all, it is essentially an image hashing

method, which cannot produce the video hash codes with temporal awareness [240].

Secondly, DH attempts to generate the binary codes via optimizing the approximate

codes in the loss function, which lowers the hash code quality because of the huge

gaps between the binary and real-valued spaces. The last one is that DH still fails to

preserve the similarity structure from the original data in the code learning, which

shares similar drawback in SSTH. For UDVH-LSTM using TSN features, it performs

slightly worse than UDVH-TSN, which is partly because of the motion information

captured by the optical flows are different from LSTM could discover. Moreover, the

flow percepts from the temporal ConvNets overfits heavily, which are likely to be

overtrained by LSTM, thus leading to less favorable on the test sets [175].

4.3.6 Architecture Investigation

4.3.6.1 Parameter Analysis

We first investigate the influence roughly on retrieval performance when selecting

different cluster numbers (C=100, 200, 400, 800, 1600) on three datasets under the

frameworks of UDVH-LSTM and UDVH-TSN. As shown in Table 4.3, mAP@20 in-

creases dramatically with the bigger cluster number picked up at the beginning and

then achieves the best performance when we have about 400 categories. This indicates

4.3. EXPERIMENTS 90

the cluster number indeed affects the system performance, where the similar videos

will be classified into the same category by the sophisticated clustering strategy, thus

producing similar hash codes for those videos. It is a remarkable fact that the perfor-

mance gets saturated when the cluster number reaches 400, even slight decline after

400, for all datasets under both UDVH-LSTM and UDVH-TSN. The reason might be

that those datasets contain less categories than 400, which leads to a quick saturation

and makes the parameter easy to be configured as well.

4.3.6.2 Binarization Investigation

In this section, the retrieval performance when using balanced rotation in the bina-

rization is presented carefully, which validates its positive impacts and the claimed

contributions. In this experiment, three competitive combinations are adopted: CCA-

ITQ, PCA-BR and CCA-BR, where the mAP@K results are illustrated in Table 4.4(a)

and 4.4(b) when using those binarization strategies under UDVH-LSTM and UDVH-

TSN separately at the code length of 128.

The results show that the combination of CCA and BR outperforms the other

two methods on the datasets substantially. Two conclusions can be drawn based

on this phenomenon: 1) Compared with the PCA methods, better performance has

been achieved by applying CCA in the dimensionality reduction since more valuable

information is concentrated and preserved in the top eigenvectors when utilizing the

dedicated supervisory information (pseudo labels) from the clustering. It turns out

that the choice of CCA is more sensible and effective than PCA; 2) The difference

between the results of CCA-ITQ and CCA-BR clearly demonstrates that the retrieval

performance can be improved by balancing the variances of video features via the

proposed balanced rotation, which indicates the superiority of such framework.

In Fig. 4.13, the variance of each dimension on FCVID at 128 bits by using CCA,

CCA-ITQ and CCA-BR under UDVH-TSN is given as an example to validate the

above conclusions. Again, it is pretty clear that our BR scheme can always guarantee

the flat variance of each dimension, regardless of which video features are used.

4.3.6.3 Loss Function

As shown in Table 4.5, we evaluate the system performance under various loss func-

tions: `2-norm, `1-norm and cross-entropy, during the network training of UDVH-

LSTM and UDVH-TSN. Compared to using `2-norm in the objective functions, `1-

norm is supposed to be more robust in anti-noising and cross-entropy converts the

hash function learning into classification problems. According to the results, however,

4.3. EXPERIMENTS 91

M
e
th

o
d

F
C

V
ID

Y
F

C
C

A
ct

iv
it

y
N

e
t

K
=

5
K

=
20

K
=

40
K

=
60

K
=

80
K

=
10

0
K

=
5

K
=

20
K

=
40

K
=

60
K

=
80

K
=

10
0

K
=

5
K

=
20

K
=

40
K

=
60

K
=

80
K

=
10

0

P
C

A
-B

R
0.

35
8

0.
30

2
0.

28
3

0.
27

4
0.

26
6

0.
25

8
0.

19
4

0.
16

6
0.

12
1

0.
08

1
0.

07
0.

06
1

0.
16

9
0.

11
5

0.
07

4
0.

04
8

0.
03

2
0.

02
7

C
C

A
-I

T
Q

0.
38

7
0.

34
2

0.
33

7
0.

32
5

0.
32

1
0.

31
3

0.
21

9
0.

19
8

0.
15

7
0.

15
9

0.
14

6
0.

13
5

0.
19

6
0.

13
1

0.
08

7
0.

08
1

0.
06

1
0.

05
2

C
C

A
-B

R
0
.4

1
2

0
.3

6
3

0
.3

5
4

0
.3

4
0
.3

2
9

0
.3

1
9

0
.2

5
6

0
.2

2
1

0
.1

8
4

0
.1

5
9

0
.1

4
9

0
.1

3
0
.2

2
3

0
.1

5
3

0
.1

0
7

0
.0

8
3

0
.0

6
8

0
.0

5
9

(a
)

U
D

V
H

-L
S

T
M

M
e
th

o
d

F
C

V
ID

Y
F

C
C

A
ct

iv
it

y
N

e
t

K
=

5
K

=
20

K
=

40
K

=
60

K
=

80
K

=
10

0
K

=
5

K
=

20
K

=
40

K
=

60
K

=
80

K
=

10
0

K
=

5
K

=
20

K
=

40
K

=
60

K
=

80
K

=
10

0

P
C

A
-B

R
0.

46
3

0.
36

6
0.

29
1

0.
24

1
0.

20
5

0.
17

9
0.

29
8

0.
25

8
0.

23
5

0.
21

9
0.

19
8

0.
18

3
0.

22
1

0.
19

2
0.

17
6

0.
15

8
0.

14
8

0.
13

9
C

C
A

-I
T

Q
0.

55
5

0.
48

7
0.

41
2

0.
35

6
0.

30
3

0.
29

7
0.

30
4

0.
27

6
0.

24
0.

22
2

0.
20

7
0.

19
6

0.
26

8
0.

23
1

0.
19

7
0.

17
5

0.
16

8
0.

15
2

C
C

A
-B

R
0
.5

9
3

0
.5

0
4

0
.4

2
0
.3

6
2

0
.3

4
7

0
.3

2
8

0
.3

2
6

0
.2

9
3

0
.2

4
6

0
.2

2
8

0
.2

1
5

0
.2

0
2

0
.3

0
1

0
.2

6
2

0
.2

2
3

0
.1

9
5

0
.1

7
4

0
.1

5
9

(b
)

U
D

V
H

-T
S

N

T
ab

le
4.

4:
m

A
P

@
K

of
12

8
b
it

s
w

h
en

u
si

n
g

va
ri

ou
s

b
an

ar
iz

at
io

n
sc

h
em

es
se

p
ar

at
el

y
in

th
e

co
d
e

le
ar

n
in

g
of

U
D

V
H

-L
S
T

M
an

d
U

D
V

H
-T

S
N

.

4.3. EXPERIMENTS 92

0 20 40 60 80 100 120

Dimension

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
a
ri
a
n
c
e

UDVH-TSN

CCA

CCA-ITQ

CCA-BR

Figure 4.13: The variance distribution from FCVID at 128 bits under UDVH-TSN.

Table 4.5: mAP@20 at 128 bits when applying various loss functions accordingly
during the hash function learning of UDVH-LSTM and UDVH-TSN.

Loss Function
UDVH-LSTM UDVH-TSN

FCVID YFCC ActivityNet FCVID YFCC ActivityNet

l2 − norm 0.456 0.261 0.207 0.504 0.293 0.262
l1 − norm 0.442 0.256 0.186 0.483 0.279 0.237

cross− entropy 0.447 0.248 0.192 0.501 0.291 0.252

the effects of using various loss functions are not obvious. Generally, `2-norm achieves

the best performance with limited improvement (less than 3%) on the same dataset.

4.3.7 Feature Selection

In this section, we make brief comparisons on the performance variations when using

CNN and TSN features on three datasets, where the mAP@5 results at various code

lengths for the image-based (e.g., ITQ, AGH, DH) and video-based hashing (SSTH,

UDVH-LSTM and UDVH-TSN) methods are plotted in Fig. 4.14 and Fig. 4.15,

respectively. Particularly, CNN features are extracted from the pre-trained VGG-

19 [164] model and the corresponding results when adopting CNN features are directly

reported from [217]. According to those figures, the great improvements have been

achieved by using TSN features in both shallow and deep based baselines compared

to those on CNN features, which mainly owe to the powerful modelling ability on

4.3. EXPERIMENTS 93

16 32 48 64 80 96 112 128

K

0

0.1

0.2

0.3

0.4

0.5

m
A
P
@
5

FCVID

(a) FCVID

16 32 48 64 80 96 112 128

K

0

0.1

0.2

0.3

m
A
P
@
5

YFCC

(b) YFCC

16 32 48 64 80 96 112 128

K

0

0.1

0.2

m
A

P
@

5

ActivityNet

ITQ+TSN Feature

ITQ+CNN Feature

SubMod+TSN Feature

SubMod+CNN Feature

SP+TSN Feature

SP+CNN Feature

MFH+TSN Feature

MFH+CNN Feature

AGH+TSN Feature

AGH+CNN Feature

DH+TSN Feature

DH+CNN Feature

(c) ActivityNet

Figure 4.14: The mAP@5 variations when using CNN and TSN features separately in
the image-based hashing methods, where the solid and dot lines represent the results
on TSN and CNN features, respectively.

16 32 48 64 80 96 112 128

K

0.1

0.2

0.3

0.4

0.5

0.6

m
A
P
@
5

FCVID

(a) FCVID

16 32 48 64 80 96 112 128

K

0.1

0.2

0.3

m
A
P
@
5

YFCC

(b) YFCC

16 32 48 64 80 96 112 128

K

0.1

0.2

0.3

m
A

P
@

5

ActivityNet

UDVH-TSN

SSTH+TSN Feature

SSTH+CNN Feature

UDVH-LSTM+TSN Feature

UDVH-LSTM+CNN Feature

(c) ActivityNet

Figure 4.15: The mAP@5 variations when using CNN and TSN features separately in
the video-based hashing methods, where the solid and dot lines represent the results
on TSN and CNN features, respectively.

temporal information from TSNs. Here, we focused on the video-based methods,

including SSTH, UDVH-LSTM and UDVH-TSN, in Fig. 4.15, to estimate the feature

impact on video hashing. Specifically, as shown in Fig. 4.15(a), the mAP@5 values

at 128 bits on FCVID are 50.1% and 57.1% for SSTH and UDVH-LSTM, which are

over 15% higher than the values achieved when using CNN features. For the other

two datasets, the gaps are reduced to less than 10% because of the poor data quality

as discussed in previous sections.

Moreover, the UDVH-based methods substantially yield better retrieval perfor-

mance over SSTH, which is consistent with the results reported in Fig. 4.9 and further

demonstrates the superiority of our self-taught training strategy involving clustering

and balanced rotation. For examples, the mAP@5 values at the code length of 128

are 59.3% and 57.1% for UDVH-TSN and UDVH-LSTM on FCVID, which are at

least 7% higher than that in SSTH (50.1%).

4.3.8 Efficiency Analysis

The efficiency issue is addressed in this part because it prevents such deep video hash-

ing frameworks from being widely deployed in the real-world retrieval applications.

4.4. CHAPTER SUMMARY 94

Table 4.6: The training time at various code lengths on FCVID when using SSTH,
UDVH-LSTM and UDVH-TSN. The time unit for network training is hour (h) and
the rest processes are reported in second (s).

Method
16 bits 32 bits 64 bits 128 bits

FC BR NT FC BR NT FC BR NT FC BR NT

SSTH [240] / / 8.21h / / 8.23h / / 8.48h / / 8.55h
UDVH-LSTM 260.5s 0.38s 0.39h 263.2s 0.6s 0.39h 262.4s 1.1s 0.41h 265.1s 2.02s 0.41h
UDVH-TSN 267.3s 0.42s 0.74h 265.2s 0.62s 0.79h 270.2s 1.05s 0.81h 271s 2.1s 0.8h

As mentioned above, SSTH, UDVH-LSTM and UDVH-TSN are specifically designed

for video hashing in those baselines, thus making the comparisons among them more

persuasive. Consequently, the training expenses on FCVID dataset at various code

lengths when using those methods are summarized in Table 4.6. There are three sub

processes during the training of UDVH-LSTM and UDVH-TSN: feature clustering

(FC), balance rotation (BR) and network training (NT). For SSTH [240], we gener-

ally follow the settings in the paper and its released code7 while adjusting network

parameters accordingly and only the network training is required. The experiments

are conducted on the same hardware configuration reported previously.

As can be seen, the training times on FCVID dataset are around 0.5 and 0.9

hours per loop, which are calculated as the sum of the time values in those sub

processes, when using UDVH-LSTM and UDVH-TSN individually. Considering the

deep architectures usually converge within t = 5 loops for the UDVH-based methods,

the total training cost is less than 4.5 hours, which is much shorter than training

SSTH (over 8 hours), thus indicating the high efficiency of the proposed hashing

framework. The most time-consuming parts of SSTH include the backpropagation of

Binary LSTM units when updating their binary outputs and the complex network

structures [240], which are not adopted in our algorithm. Moreover, it is worth

noting that the proposed balanced rotation only costs a few seconds, which is highly

competitive in the hashing applications.

4.4 Chapter Summary

In this chapter, we have presented a novel video hashing method termed Unsupervised

Deep Video Hashing (UDVH) for fast large-scale similarity search. In contrast to the

previous video hashing approaches, feature learning and hash function learning are

jointly integrated in a self-taught manner and optimized in an alternating way within

the deep architecture of UDVH. With the balance rotation applied in processing

7https://github.com/hanwangzhang/BLSTM

4.4. CHAPTER SUMMARY 95

2020/1/14 a cat lying in a sunny window - Google Search

https://www.google.com/search?q=a+cat+lying+in+a+sunny+window&tbm=isch&sxsrf=ACYBGNTGDmQEvfTLw9yEnMQ9VNmo3CuDrg:157899… 1/3

red cat kitten sleeping noisemaker tricolor cat ginger cat vectors beige curtains windowsill beige roller shutte

Grey Cute Tabby Cat Lying In The Sun ...
dreamstime.com

Cute brown cat laying on a sunny window ...
alamy.com

Red Cat Lying On A White Window Sill On ...
istockphoto.com

Two Cats Lying On Bed Face To The
dreamstime.com

Adorable bengal cat laying sleep…
alamy.com

Cute Ginger Cat Lying…
123rf.com

Lazy Lovely Fluffy Cat Lying Window…
depositphotos.com

Cute Ginger Cat Lying…
123rf.com

Dangerous To Let My Cat Lie In The Sun ...
cattime.com

Lazy Lovely Fluffy Cat Lying Win…
depositphotos.com

Red Cat Lies On The Window Beh…
dreamstime.com

Cat Lie In The Sun | C…
pinterest.com

Beautiful White Cat Lying On Window ...
shutterstock.com

Sunny Window Portrait Of A Ca
istockphoto.com

Tricolor Cat Lies On The Windowsill ...
dreamstime.com

MSD Car Windshield Sun Sh…
amazon.com

Cats Toyger And Tabby Lying Down By ...
shutterstock.com

Lazy lovely fluffy cat lying near the ...
stock.adobe.com

Tricolor Cat Lies On The Windowsill ...
dreamstime.com

Beautiful Ginger Long Image & Photo ...
bigstockphoto.com

Tricolor Cat Lies On The Windowsill ...
123rf.com

Lazy Lovely Fluffy Cat Lying Window Hi…
depositphotos.com

All Images Shopping Videos News More Settings Tools Collections SafeSearch

a cat lying in a sunny window

Figure 4.16: An example of cross-modality similarity search: text query image, in
Google Images.

the video features, the variance of dimensions when projecting them into a low-

dimensional space can be balanced, which improves the code quality. Our approach

yields outstanding performance in the extensive experiments on three video datasets,

which outperform the state-of-the-arts significantly in terms of retrieval accuracy and

efficiency. In the future work, we will apply the proposed feature binarization to deal

with other applications such as object detection [63,64], object tracking [33,62], and

feature fusion [61,245].

The chapter above focuses on the research problems of video-to-video retrieval,

which is a special case of the single-modality nearest neighbor search. However, the

data from query and gallery could be varied in different forms in the existing search

engines. For example, a short sentence “a cat lying in a sunny window” is typed

into the search bar of Google Images8 and some relevant images are returned, as

shown in Fig. 4.16. This is a typical search case of text query image in the cross-

modality retrieval. In the next chapter, we will extend the research topic from the

8https://images.google.com/

4.4. CHAPTER SUMMARY 96

single-modality retrieval to the cross-modality retrieval, which aims at proposing novel

solutions in the cases that the query and gallery data come from different modalities.

Chapter 5

Deep Cross Modal Hashing

5.1 Introduction

With the explosive growth of multimedia content, such as text, image/video, and

audio, cross-media retrieval is becoming increasingly attractive, which allows users to

get the results with various media types by submitting one query of any media type. In

the context of big data, we need retrieval algorithms that are able to accurately search

in the large-scale datasets, and meanwhile, ensure the costs related to the processing

overhead and storage requirements do not grow with the quantity of the data being

produced. Hashing, which represents the high-dimensional data with the compact

binary codes, has drawn a considerable attention in the field of similarity retrieval for

its low memory consumption (binary representation) and fast retrieval speed (bit-wise

XOR calculation). These properties make the hashing technique a popular solution

for many applications [47,74,155,176,199,201,203], where the systems that have been

commercialized include Shazam hashing/fingerprinting for music identification [187],

Philips video hashing for broadcast monitoring [139] and Civolution SyncNow for

cross-media search [60].

Regarding cross-media hashing, one of the main challenges is how to tackle the

semantic gaps within different modalities compared to single-modal hashing in Chap-

ter 3. Most existing methods, both in unsupervised [35,170,189] and supervised [10,

108,180,223] manners, concentrate on learning a common latent space for the multi-

modal data during the training process such that the heterogeneity among modalities

can be minimized [35,108]. Specifically for unsupervised methods, Cross-View Hash-

ing (CVH) [93], Inter-Media Hashing (IMH) [170] and Linear Cross-Modal Hashing

(LCMH) [251] are three of the earliest works in the area of unsupervised cross-modal

hashing. The first two methods extend conventional spectral hashing from unimodal

to multimodal data and learn the hash function by solving eigenvalue decomposition

97

5.1. INTRODUCTION 98

with constructed similarity graph. In LCMH, some typical cluster centroids are picked

up to represent the original data, thus reducing the computational cost substantially.

However, such a process of eigenvalue decomposition in LCMH still compromises the

hash code quality because of arbitrary mapping [188].

Consequently, Collective Matrix Factorization Hashing (CMFH) [34] adopts ma-

trix factorization in modelling relations among different modalities, where unified

binary codes are being learned via quantizing real-valued unified latent space. Latent

Semantic Sparse Hashing (LSSH) [249] updates CMFH by using sparse coding in

matrix factorization to learn binary codes for different modalities. However, in both

CMFH and LSSH, various relaxation and rounding schemes are utilized in generat-

ing hash codes, which usually lead to large quantization errors in the binarization.

To deal with large quantization errors in [34], Robust and Flexible Discrete Hashing

(RFDH) [189] is proposed to directly optimize and generate the unified binary codes

for various views in the unsupervised manner via matrix factorization such that large

quantization errors caused by relaxation can be relieved to some extent. However, de-

spite the claimed contributions in RFDH, the neighborhood structures of inter-modal

and intra-modal existed in the original data are not well explored.

Although some promising results have been achieved by the previous unsupervised

methods, the overall performance is still far below satisfactory from the view of the

real-world applications. It is commonly believed that considerable performance gain

can be obtained in supervised methods with the aid of dedicated supervision infor-

mation (e.g, semantic labels, affinity matrix) [199]. Generally, the correlations among

different modalities can be enhanced from the label information for unified hash codes

in the Hamming space. For example, Semantic Preserving Hashing (SePH) [108] in-

troduces the probability distribution to learn unified hash codes with the semantic

affinities. While Discriminant Cross-Modal Hashing (DisCMH) [223] improves the

quality of hash codes by means of the label information in shallow linear classifier.

However, all the above methods employ a two-step like scheme in learning hash code,

which inevitably yields suboptimal results.

Recently, deep learning technology has been widely incorporated in cross-media

hashing, where several representative works are discussed briefly in this section [210].

For instance, a stacked auto-encoder architecture is proposed by Correlation Autoen-

coder Hashing (CAH) [21], where the feature and semantic correlation across modal-

ities are jointly maximized. While another work from Deep Visual-Semantic Hashing

(DVSH) [20] employs a metric-based approach to train the visual semantic fusion

network with cosine hinge loss. However, the label information is not fully exploited

5.1. INTRODUCTION 99

Figure 5.1: The overview of our Self-Supervised Deep Multimodal Hashing. There are
three subsections in the training process: deep feature learning (left), deep hash func-
tion learning (middle) and regularized binary latent representation learning (right).
Specifically, the regularized binary latent model consists of two loss terms: binary re-
construction loss and graph regularization loss. The yellow arrows indicate the deep
feature learning. The blue arrows show the iterative directions when learning deep
hash functions with the guidance of the unified binary code B. Better viewed in color.

and the performance compromises because of the noisy annotations. Subsequently,

Deep Binary Reconstruction (DBRC) [102] suggests another auto-encoder framework

for unsupervised cross-modal hashing, which reconstructs the original features from

the joint binary representation without considering the similarity relations. Deep

Cross-Modal Hashing (DCMH) [84] adopts a negative log likelihood criterion in an

end-to-end deep framework, where the similarity structure between real-valued rep-

resentations is retained. However, such similarity preservation is only performed on

approximated hash codes with no restrictions on binary codes directly in the training

process, thus reducing the effectiveness of that operation [108,126,202,204,223].

As discussed above, we summarize three major limitations in the existing cross-

modal hashing schemes as follows. Firstly, solving the discrete-constrained objective

function usually undergoes a two-step procedure. At the relaxation step, supervised

information is exploited to guide continuous hash codes learning, which are converted

into binary codes by using rounding technology at the second step. Such a two-

5.1. INTRODUCTION 100

stage solution yields large quantization errors, which will be further magnified after

the iterative code learning. Moreover, feature learning and binarization are viewed

as two independent steps in most previous methods, thus giving rise to suboptimal

results. Last but not least, supervision knowledge cannot be fully explored in the

code generation, as well as the hash function learning via simply performing linear

mapping between the training data and their labels, which limits the improvement

space of the hash code quality for the supervised cross-modal hashing [153,223]. The

situation gets even worse when inaccurate or incomplete labels are provided [108,

126,202,204,223]. Obviously, the retrieval performance would be heavily affected by

those drawbacks, thus preventing the existing methods from mass deployment in the

real-world applications.

To address the above issues, we propose a novel supervised cross-modal hashing

method, termed as Self-Supervised Deep Multimodal Hashing (SSDMH), which in-

tegrates deep learning and regularized binary latent representation model jointly in

a unified framework. Specifically, the discrete-constrained objective function is opti-

mized directly without relaxation, and the deep hash functions are built via engaging

deep feature learning with code learning in a self-supervised manner. The frame-

work of SSDMH is illustrated in Fig. 5.1 and the corresponding contributions are

summarized as follows:

• The matrix factorization based supervised cross-modal hashing method termed

as Self-Supervised Deep Multimodal Hashing (SSDMH) is proposed to incorpo-

rate the deep feature learning and binarization seamlessly into a unified deep

learning framework, where the deep hash functions are being built in a self-

supervised manner via projecting the original features from various modalities

into a common binary space.

• A novel regularized binary latent model is proposed during the code learning,

where the discrete unified binary codes can be solved without relaxation and

the weights of different modalities are optimized dynamically. Particularly, to

make the most advantage of supervision knowledge, we propose to minimize the

graph regularization loss, which explicitly preserves the neighborhood structures

of the original data and is prone to produce the discriminative hash codes.

• An alternating optimization strategy is adopted in solving the discrete-constrained

objective function, where deep parameters and unified binary codes are opti-

mized jointly. Particularly, a novel discrete optimization method, termed as

5.2. PROPOSED METHOD 101

Table 5.1: The Network Configurations for Two Modalities. Other layers like pooling
and activation are omitted for concise descriptions.

Modality Layer Description

Image conv1 ∼ conv5 Follow the same configuration as AlexNet [90]

fc6 I, fc7 I, fcb I 4096-d, 4096-d, m-d

Text fc6 T , fc7 T , fcb T 4096-d, 4096-d, m-d

Binary Gradient Descent, is proposed to accelerate the optimization speed dra-

matically, in contrast to the traditional bit-by-bit fashions.

• An unsupervised version of the proposed algorithm, termed Unsupervised Deep

Cross-Modal Hashing (UDCMH), is presented to tackle the cross-modal re-

trieval applications when supervision information is not available. Superior

performance has been achieved by the proposed hashing methods from exten-

sive experiments on three datasets.

The reminder of the chapter is organized as follows. We elaborate the proposed

SSDMH and UDCMH in Section 5.2. Experimental results along with data analysis

are provided in Section 5.3. Finally, the proposed method is concluded in Section 5.4.

5.2 Proposed Method

Fig. 5.1 illustrates the basic structure of the proposed SSDMH. Basically, we extract

the deep features from the corresponding deep networks and then utilize those features

to generate the unified binary representation via a novel regularized binary latent

model. After that, the learned binary code is adopted as supervision information

to re-train the previous deep networks, which exhibits the idea of the self-supervised

manner. Those processes can be repeated iteratively to obtain the deep hash functions

finally. In the next subsections, we will elaborate on the proposed SSDMH.

5.2.1 Problem Definition

Without loss of generality, we use image and text to explain the proposed method.

Assuming that the multimodal dataset contains n training instances, which is denoted

as O = {Xi}2
i=1, i = {1, 2}. Each instance has features from the image and text

modality, which is represented by X1 = {xj1}nj=1 and X2 = {xj2}nj=1, respectively.

5.2. PROPOSED METHOD 102

Table 5.2: Mathematical symbols and their short descriptions.

Symbol Description Symbol Description

Xi input streams from different modalities n number of training samples

S similarity matrix T training loop

Hi deep features from fc7 layer L Laplacian matrix

B unified binary code m code length

Ui latent factor matrix αi weight factors

β,γ,λ balance parameters Ai affinity matrices

Fi(.) deep hash functions D diagonal matrix

Consequently, we use xj1 ∈ Rd1 to denote the feature vector or the raw pixels of the

j-th image and xj2 ∈ Rd2 represents the feature vector of the j-th text, where d1 and

d2 (usually d1 6= d2) are the dimensionalities. The affinity matrix Sn×n ∈ [0, 1] is also

provided as the supervision information, which measures the similarity between data

points. In the proposed SSDMH, the aim is to learn the deep hash functions Fi(Xi; Θi)

that binarize the training data from two modalities into a set of unified binary codes

B = {bi}ni=1 ∈ {−1,+1}m×n, such that the similarities in the original spaces can

be preserved. m denotes the code length, Xi are the input streams to those deep

networks for two modalities. Here, the deep network parameters including weights

and biases are uniformly defined as Θi. The major mathematical symbols used in this

chapter are summarized in Table 5.2 for the ease of explanation. Other symbols like

G and K are applied as the auxiliary parameters in the equation deduction, which

are omitted in this table.

5.2.2 Deep Architecture

Considering the favorable feature expressive ability and the deployment flexibility1,

we adopt AlexNet and Multi-Layer Perceptrons (MLP) as the feature modellers for

the image and textual modalities, as shown in Fig. 3.2. For the purpose of making the

networks compatible with the application, the last fully-connected (fc) layers of the

original networks are replaced with the new bottleneck layers (fcb I and fcb T) com-

prising m hidden units to facilitate the network training afterwards. Tanh function

1The model sizes for AlexNet and MLP are < 240MB and < 90MB after training, which are
affordable on most portable devices.

5.2. PROPOSED METHOD 103

is added at the end of the last layers as the activation function to make the outputs

fall into [−1, 1]. The network configurations are summarized in Table 5.1. In this

paper, the deep architectures not only provide the deep features (e.g. Hi ∈ R4096×n

from fc7 I and fc7 T) in learning the unified binary representation, but also act as

the deep hash functions Fi(Xi; Θi) to generate hash codes for new queries.

5.2.3 Regularized Binary Latent Model

In the hash code learning, we propose a novel regularized binary latent representa-

tion model to generate the unified binary code B for two modalities. Particularly,

the proposed model consists of two loss terms: binary reconstruction loss and graph

regularization loss. We formulate the objective function of the proposed model as

below:

min
B,Ui,αi

2∑
i=1

αγi (‖Hi −UiB‖2
F + βTr(BLBT)), (5.1)

where β and γ are balance parameters. γ is a positive number controlling the weight

of each modality while β estimates the impact of the loss term in (5.1). Hi ∈ R4096×n

are the deep features extracted from fc7 I and fc7 T layers, Ui ∈ R4096×m are the

latent factor matrices, L ∈ Rn×n is the Laplacian matrix. αi(αi > 0) are the weight

factors for two modalities separately and satisfy
∑2

i=1 αi = 1. Tr(.) is the trace norm.

Those terms are elaborated in the next subsections.

5.2.3.1 Binary Reconstruction Loss

As shown in (5.1), the first term measures the reconstruction losses from their latent

common binary representation B to the deep features Hi, which shares similar idea

with CMFH [35]. However, it differs from [35] in two aspects. Firstly, CMFH adopts

a two-step approach in generating the unified binary representation, which solves the

real-valued latent common space V ∈ Rm×n first and binarizes it afterwards, as shown

in the top part of (5.2). This inevitably yields the large quantization errors, no matter

which rounding schemes are used [108, 189]. However, this problem can be avoided

in the proposed model by solving the binary code directly as the bottom of (5.2).

min
Ui,V

α‖H1 −U1V‖2
F + (1− α)‖H2 −U2V‖2

F

⇒ min
Ui,B,αi

2∑
i=1

αγi ‖Hi −UiB‖2
F .

(5.2)

Moreover, the modality weight is set empirically in CMFH (e.g. α = 0.5), while

the weights αi are optimized dynamically in the proposed model. It is more sensible

5.2. PROPOSED METHOD 104

for the important modality to hold the dominant position in the optimization [125,

189].

5.2.3.2 Graph Regularization Loss

In the second term, we introduce graph regularization to preserve the semantic con-

sistency of data points from multiple modalities, which aims at restricting the neigh-

boring relationships in solving the unified binary code [118]. Particularly, the spectral

graph problem can be formulated as:

min
1

2

n∑
i=1

n∑
j=1

‖bi − bj‖2
FSij = Tr(BLBT), (5.3)

where S ∈ Rn×n represents the semantic affinity matrix that can be derived from

manual scoring [108], sij = 1 if xi1 and xj2 share the same label and otherwise 0. D

is the diagonal matrix whose entries are the column sum of S, i.e., Dii =
∑n

j=1 Sij.

The Laplacian matrix L can be calculated as L = D− S.

5.2.4 Deep Hash Function Learning

Having obtained the unified binary representation B, the next step is to train the

deep hash models 2 Fi(Xi; Θi) with Euclidean loss layers, which aims at projecting

the original features from different views into the common binary space. This strategy

integrates the learning processes of deep feature and hash function in a self-supervised

manner, thus predicting the discriminative hash codes for new query instances in the

testing stage [155]. The problem is formulated as:

min
Θi

2∑
i=1

‖Fi(Xi; Θi)−B‖2
F . (5.4)

Particularly, Euclidean distances are minimized between the outputs of the deep

networks and the unified binary code B, while the network parameters Θi can be

updated through the back-propagation with Stochastic Gradient Descent (SGD). It

is worth noting that the original images or features (i.e, Xi) are fixed and used as the

input streams for the deep architecture to facilitate the network training.

2Other predictive models like linear classifier and kernel logistic regression can also be applied
here [108,189], we will leave those in the future research.

5.2. PROPOSED METHOD 105

5.2.5 Objective Function and Optimization

By combining Eq. (5.1) and Eq. (5.4), the overall objective function of SSDMH is

written as below:

min
Θi,B,Ui,αi

2∑
i=1

αγi (‖Hi −UiB‖2
F + βTr(BLBT)) + λ

2∑
i=1

‖Fi(Xi; Θi)−B‖2
F , (5.5)

where B ∈ {−1,+1}m×n. The proposed objective function is an NP-hard problem and

cannot be solved directly because of the binary constraints (i.e., B in this case) [72].

Subsequently, we adopt an alternating strategy to solve Eq. (5.5), where the involved

parameters are optimized iteratively by the following steps.

5.2.5.1 Ui Step

Firstly, by fixing all other variables except for Ui, Eq. (5.5) is reduced as:

min
Ui

2∑
i=1

αγi ‖Hi −UiB‖2
F , s.t. B ∈ {−1,+1}m×n. (5.6)

Then we calculate the derivation of Eq. (5.6) with respect to Ui and the closed-

form solution of Ui can be obtained by setting the derivation as 0:

Ui = HiB
T (BBT)−1. (5.7)

5.2.5.2 B Step

Then, with all variables fixed but B as the only argument, Eq. (5.5) is re-written as:

min
B

2∑
i=1

αγi (‖Hi −UiB‖2
F + βTr(BLBT)) + λ

2∑
i=1

‖Fi(Xi; Θi)−B‖2
F , (5.8)

where B ∈ {−1,+1}m×n. Then we can expand Eq. (5.8) to:

min
B

2∑
i=1

αγi (Tr(B
TUT

i UiB− 2BTUT
i Hi) + βTr(BLBT))

+ λ

2∑
i=1

Tr(BBT − 2BTFi(Xi; Θi))

= min
B
‖GTB‖2

F − 2Tr(BTQ) + Tr(BKBT),

(5.9)

where G = [
√
αγ1U1;

√
αγ2U2]T , K =

∑2
i=1 α

γ
i βL + 2λIn, Q =

∑2
i=1(αγi U

T
i Hi +

λFi(Xi; Θi)). Following discrete cyclic coordinate descent (DCC) [153], we denote bT

5.2. PROPOSED METHOD 106

as the j-th row of B, and B′ the matrix of B excluding b. Similarly, let gT be the

j-th row of G, G′ be the matrix of G excluding g and qT be the j-th row of Q, then

we have

min
b

(gTG′
T
B′ − qT)b+ bTKb = min

b
pT b+ bTKb,

s.t. p = (B′
T
G′g − q) ∈ Rn, B′ ∈ {−1,+1}(m−1)×n.

(5.10)

Obviously, the above equation can be considered as the classical Binary Quadratic

Programming (BQP) problem in most previous papers and it can be optimized via

solving each entry of b sequentially (flip one entry per time) as described in some

coordinate descent based methods [126,153,156].

However, those methods usually suffer from the slow convergence issues, especially

for the cases with long code. In this work, we propose a new solution called Binary

Gradient Descent (BGD), which is detailed in the following paragraphs, to accelerate

the convergence in optimizing Eq. (5.10).

Suppose that the current value of b is b0 and the new value b1 can be obtained

by adding an offset ∆ to b0, namely b1 = b0 + ∆. We substitute b0 and b1 into Eq.

(5.10), the deviation L between the values of Eq. (5.10) is calculated as follows:

L = bT1 Kb1 + pT b1 − bT0 Kb0 − pT b0

= (b0 + ∆)TK(b0 + ∆) + pT (b0 + ∆)− bT0 Kb0 − pT b0

= 2∆TKb0 + ∆TK∆ + pT∆

= ∆TK∆ + (2Kb0 + p)T∆.

(5.11)

Since there is only one entry with the value3 of −2 or 2 in ∆, then we have ∆TK∆ =

4Kj,j, where j is the index for the entry that is non-zero in ∆. Thus, Eq. (5.11) can

be reformed as:

L = 4diag(K) + (2Kb0 + p)T∆, (5.12)

where diag(K) preserves the diagonal elements of K. Therefore, the deviation L must

be negative if we try to find b1 to make the objective function descent and it can be

obtained by calculating another vector h regarding each entry in b0 as:

h = 4δ + (2Kb0 + p)� d, (5.13)

where δ is the column vector of all diagonal elements of K, � denotes the entry-

wise multiplication of the vector, and d satisfies: 1) if the j-th entry of b0 is 1 , then

3The position of −2 or 2 in ∆ is based on the corresponding entry in b0 so as to change −1 to 1
with 2 or 1 to −1 with −2. All the rest entries are 0 in ∆.

5.2. PROPOSED METHOD 107

dj = −2; 2) if the j-th entry in b0 is −1, then dj = 2. The optimization process will be

completed if the smallest value in h is non-negative, otherwise we only retain the value

of the corresponding entry in d, and set other entries to 0 to obtain ∆. After getting b1

with ∆ + b0, we update b0 above and re-calculate the new ∆ accordingly. Essentially,

the proposed method flips all the entries by repeating the above computations and

selects the entry that is most likely to make the objective function descend in a

monotonic discrete manner. As observed from the experiments, it usually requires

n/2 updates on the entries such that the objective function descends. The proposed

BGD only needs 1 iteration to make Eq. (5.10) descent with faster converging speed

compared to the later cases that require at least n iterations, thus obtaining the local

optimal solution efficiently.

5.2.5.3 αi Step

With other parameters fixed except for αi, we formulate Eq. (5.5) as below:

min
αi

2∑
i=1

αγi Ei, s.t. αi > 0, (5.14)

where Ei = ‖Hi − UiB‖2
F + βTr(BLBT). Subsequently, the Lagrange function of

Eq. (5.14) can be formulated as:

2∑
i=1

αγi Ei − µ(
2∑
i=1

αi − 1), (5.15)

where µ is the Lagrange multiplier. Taking
∑2

i=1 αi = 1 into consideration, the

optimal solution of αi is derived as:

αi =
(1
Ei

)
1

γ−1∑2
i=1(1

Ei
)

1
γ−1

. (5.16)

5.2.5.4 Θi Step

When fixing all other parameters but Θi, the objective function (5.5) is reduced to

min
Θi

2∑
i=1

‖Fi(Xi; Θi)−B‖2
F , s.t. B ∈ {−1,+1}m×n, (5.17)

where the deep hash functions Fi(Xi; Θi) can be solved by optimizing the network

parameters Θi under the guidance of the unified binary code via mini-batch back-

propagation [155]. Repeating the above optimization processes until convergence,

5.2. PROPOSED METHOD 108

Algorithm 3 Self-Supervised Deep Multimodal Hashing

Input: Input streams Xi, code length m, parameters β and γ, affinity matrix S.
Randomly initialize binary code B, latent matrices Ui and deep parameters Θi.
Set weights αi = [0.5, 0.5], i = {1, 2}.

Output: Deep hash functions Fi(Xi; Θi);
1: for T = 1 to 5 do
2: Extract the feature matrices Hi from fc7 I and fc7 T layers of two deep net-

works, respectively;
3: for t = 1 to 5 do
4: Update the latent factor matrices Ui by Eq. (5.7);
5: Update the unified hash code B by Eq. (5.8)∼(5.13);
6: Update the weight factors αi by Eq. (5.16);
7: end for
8: Update the network parameters Θi by Eq. (5.17);
9: end for

10: return Fi(Xi; Θi);

the deep hash functions can be learned and deployed for the large-scale multimodal

retrieval application. When giving new query instances Xq
i /∈ O, the new hash codes

can be obtained by calculating sign(Fi(Xq
i ; Θi)). The proposed SSDMH is summa-

rized in Algorithm 3.

5.2.6 Computational Complexity

The computational complexity of SSDMH is composed of two parts: learning binary

code and deep hash function. However, it is not straightforward to calculate the time

complexity for network training, which depends on many external conditions. Regard-

ing the regularized binary latent model, the computational complexity is O(d2n+dn)

during each optimization iteration and d = max{d1, d2,m}. In total, the training

complexity is O((d2n + dn)t), where t is the maximum iteration (less than 5) when

updating the binary code.

5.2.7 Extension to Unsupervised Cross-Modal Hashing

In the real application scenarios, it is difficult to collect the accurate labels for all the

data samples in the training set for the similarity retrieval tasks. In this section, we

extend our cross-modal retrieval algorithm to a unsupervised deep cross-modal hash-

ing (UDCMH) framework. The difference between SSDMH and UDCMH mainly lies

in different ways of the affinity matrix construction. To be specific, the matrix is built

5.3. EXPERIMENT 109

based on manual scoring as Eq. (5.3) in the supervised method. In UDCMH, how-

ever, the associated Laplacian matrices Li ∈ Rn×n are constructed for each modality

independently, which are further defined as below:

Li = diag(Ai1)−Ai, (5.18)

where Ai ∈ Rn×n represent the affinity matrices for two modalities, diag(Ai1) are the

diagonal matrices with each diagonal element being calculated as the sum of values

in the corresponding row of Ai and 1 = [1, ..., 1]T ∈ Rn. The Laplacian constraints

in Eq. (5.1) can be unfolded as:

Tr(BLiB
T) =

1

2

∑n

j,k=1
(Ai)j,k‖B∗,j −B∗,k‖2

F , (5.19)

where B∗,j and B∗,j represent the j-th and k-th columns of B.

Unlike the Laplacian constraints constructed via anchor graph [103, 118] and

Laplacian Eigenmaps [170] that only consider the nearest neighbors of data, both

the nearest and farthest neighbors are exploited by kNN for each data point from

the feature matrix (e.g., H1 and H2). Then, the corresponding values are set to 1

and −1 separately for those neighbors with balanced weights assigned in building the

affinity graph. In such a way, the neighborhood structure can be considered com-

prehensively and well preserved in Laplacian constraints when optimizing the binary

codes. Moreover, by utilizing the affinity matrices with negative weights against tra-

ditional non-negative ones, the trivial solutions, which usually yield identical columns

in optimizing B when (Ai)j,k > 0, can be avoided and thus more compact objective

function can be formulated without the orthogonal constraints.

By substitute Li into the objective function (5.5), the optimization process can

be solved by following Algorithm 3 with minor changes [216].

5.3 Experiment

In this section, extensive experiments are conducted on three datasets to evaluate

the performance of the proposed SSDMH. The comparison results between several

unsupervised methods and UDCMH are also reported at the end of this section.

5.3. EXPERIMENT 110

5.3.1 Dataset Descriptions

5.3.1.1 Wiki

Wiki4 [146] dataset is made up of 2,866 image-text pairs collected from Wikipedia.

Each image is represented by a 128-dimensional SIFT feature vector and a 10-dimensional

topic vector is given to describe the text. These pairs contain 10 semantic categories

and each pair is manually assigned to one of them. All data pairs are split into the

training and query sets with the sizes of 2, 173 and 693.

5.3.1.2 MIRFlickr

MIRFlickr5 [77] dataset collects 25, 000 instances from Flickr, which are annotated by

at least one of 24 provided labels. A 100-dimensional SIFT descriptor is provided to

represent each image, while the text is expressed as a 500-dimensional tagging vector.

We randomly select 2, 000 image-text pairs as the queries and use the remaining pairs

for training.

5.3.1.3 NUS-WIDE

NUS-WIDE6 [25] dataset contains 269,648 images and each image is associated with

a textual tag. Those instances are manually labeled with 81 different concepts. Fol-

lowing [35, 108], we only retain the instances annotated with the 10 most frequent

concepts, thus preserving 186,577 image-tag pairs for the experiment. Each image

is represented by a 500-dimensional SIFT feature vector and an index vector of the

most frequent 1,000 tags is provided for each text. Finally, 2,000 image-tag pairs are

randomly picked up as the queries and the rest pairs are used for training. Each pair

is labeled with at least one of the 10 concepts and two image-tag pairs are considered

to be similar if one of labels matched.

Following previous works, we extract deep features from pre-trained networks for

both image and text modalities to improve the retrieval performance in the experi-

ment. Implementation details will be revealed in the next section.

5.3.2 Experiment Settings

We compare the proposed SSDMH with some extremely competitive works published

previously, including IMH [170], RFDH [189], DBRC [102], DCMH [84], CAH [21],

4http://www.svcl.ucsd.edu/projects/crossmodal/
5http://press.liacs.nl/mirflickr/mirdownload.html
6https://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

5.3. EXPERIMENT 111

SCMFH7 [35], DisCMH [223] and SePHkm
8 [108] in the experiments. For the fair

comparison, the identical training and query sets are utilized in the performance

evaluation and the best results are reported by adopting and tuning the suggested

parameters in their papers. Regarding the evaluation metrics, we generally adopt two

widely-used criteria in the multimodal retrieval: mean Average Precision (mAP) and

Precision-Recall (PR) curve, as the main metrics in the following experiments [35,108].

The number of top returned instances is set to 50 when calculating MAP. In this paper,

we focus on two cross-media retrieval tasks: ‘Image Query versus Text database’

(Image→Text) and ‘Text Query versus Image database’ (Text→Image).

Following the settings in [35,108,170], the whole training set for the Wiki dataset

is utilized in generating the unified binary representation. While for the other two

benchmarks, 5, 000 instances are randomly sampled from their training sets to produce

the binary code. For fair comparison, instead of using the original image features (e.g.

SIFT) in previous papers, the 4096-d deep feature vectors are extracted from the fc7

layer of the pre-trained AlexNet for those non-deep methods (e.g. SCMFH [108])

during the code learning. For the parameter settings in the semantic binary latent

model, γ, β and λ are set to 5, 1 and 1, respectively. The maximum iteration t is set

to 5 in updating the binary code. When building the deep hash functions, the original

image pixels and their tagging vectors are kept fixed and employed as the inputs to

those deep networks for two modalities, respectively. We adopt SGD optimizer in the

network training with the basic learning rates 0.0001 and 0.01 for the image and text

modality, respectively. The batch sizes are fixed as 512 and they take 10 epochs at

most until the networks converge. In this work, we construct the deep architectures

using Caffe [82]. The codes for the above prior arts are implemented by MATLAB

2014a on an Ubuntu 14.04 LTS machine, which is configured with Intel Core i7-6700k

CPU, 64GB RAM and NVIDIA 1080i GPU.

For UDCMH, we generally follow the implementation steps as SSDMH. One minor

difference is that the number of near and far neighbors are set to 50 and 200 in build-

ing the affinity graph. For fair comparison, seven unsupervised multimodal hashing

methods, CVH [93], IMH [170], LCMH [251], CMFH [35], LSSH [249], RFDH [189]

and DBRC [102] are selected based on their original papers against UDCMH in the

experiments. Following the previous works, three popular metrics: mean Average

Precision (mAP), Precision-Recall (PR) and Precision at Top N returned candidates

(Precision@N) curves, are adopted in the performance evaluation accordingly.

7We adopt the supervised version of CMFH in the comparison.
8SePHkm adopts k-means sampling in selecting training data.

5.3. EXPERIMENT 112

5.3.3 Results and Analysis

5.3.3.1 Architecture Investigation

In this section, we first investigate the impact of each loss term in the regularized

binary latent model on the multimodal retrieval performance. Particularly, two differ-

ent cases are analyzed: SSDMHbrl and SSDMHbrl+grl, where brl and grl are shorts for

binary reconstruction loss and graph regularization loss respectively. Here, SSDMHbrl

is realized by setting β as 0 during the optimization. We report the mAP results on

three datasets at 128 bits in Table 5.3. As can be seen, the worst performance has

been achieved by SSDMHbrl without any supervision information. With the graph

regularization loss involved, SSDMHbrl+grl improves the mAP values by approximately

3.4% ∼ 8.5% on two retrieval tasks, implying the importance of preserving the neigh-

borhood structure within the original data in the hash code learning.

Then the value variations of αi(i = 1, 2), which controls the contributions from

two modalities in the discrete optimization, at 128 bits during each learning iteration

(t) on three datasets are provided, as shown in Table 5.4. As can be seen, the values

of α2 are larger than α1 at the beginning of the optimization on all datasets. With

the ongoing optimization steps, the gaps between the values of α1 and α2 reduce

gradually when the binary reconstruction errors decrease and finally remain stable

after t = 3 ∼ 5.

5.3.3.2 Overall Comparisons with Baselines

To validate the superiority of the proposed SSDMH, we compare it with the state-

of-the-arts and report the mAP results at various code lengths on three datasets, as

shown in Table 5.5. Generally, the proposed SSDMH outperforms all baselines in

Table 5.3: mAP results at the code length of 128 when involving various loss terms
deployed in the proposed method: SSDMHbrl and SSDMHbrl+grl.

Method Task
Dataset

Wiki [146] MIRFlickr [77] NUS-WIDE [25]

SSDMHbrl

Image→Text 0.408 0.745 0.774

Text→Image 0.703 0.767 0.802

SSDMHbrl+grl

Image→Text 0.451 0.823 0.834

Text→Image 0.745 0.852 0.836

5.3. EXPERIMENT 113

Table 5.4: The variations on αi(i = 1, 2) during the optimization iteration at 128 bits
on three datasets. αi are initialized as 0.5.

Dataset αi t = 1 t = 2 t = 3 t = 4 t = 5

Wiki [146]
α1 0.3857 0.4123 0.4123 0.4117 0.4116

α2 0.6143 0.5877 0.5877 0.5883 0.5884

MIRFlickr [77]
α1 0.4419 0.4578 0.4585 0.4583 0.4584

α2 0.5581 0.5422 0.5415 0.5417 0.5416

NUS-WIDE [25]
α1 0.4436 0.4660 0.4664 0.4664 0.4665

α2 0.5564 0.5340 0.5336 0.5336 0.5335

terms of mAP on two retrieval tasks. Specifically, regarding Image→Text tasks, the

MAP values from SSDMH are 3.9%, 4.7% and 6.7% higher than those achieved by

the most competitive baselines at the code length of 128 on Wiki, MIRFlickr and

NUS-WIDE, respectively. While for Text→Image task, the gaps have increased to

4.3%, 9.3% and 8.7%. When dealing with the short codes (e.g. 16, 32 bits), SSDMH

still achieves the best performance showing the great potential of SSDMH on wide

deployment in the industrial applications. Moreover, we also plot the PR curves at

128 bits when using those methods on three datasets, as shown in Fig. 5.2. It can be

seen the curves of the proposed SSDMH are always at the top of the figures, which

comply with the results in Table 5.5.

5.3.3.3 Top-5 Retrieved Examples for SSDMH

In Fig. 5.3, the top-5 retrieved results of SSDMH regarding two different tasks:

Image→Text and Text→Image, on Wiki dataset [146] are presented. Two categories

are picked up: sport and warfare. As can be seen, the texts are quite noisy owing to

the disordered and redundant descriptions, which interprets the worst performance

on Wiki compared to that of the other two datasets.

Following the previous section, the top-5 returned candidates of SSDMH regarding

two retrieval tasks: Image→Text and Text→Image, on MIRFlickr dataset [77] are

plotted in Fig. 5.4. Different from the text descriptions in Wiki dataset, MIRFlickr

provides a list of keywords for each image and it is a multi-labelled dataset, where

the query and its retrieved candidates are considered to be similar if at least one of

their labels matched. For example, in the Image→Text task, the query is labelled

5.3. EXPERIMENT 114

T
ab

le
5.

5:
m

A
P

re
su

lt
s

fo
r

Im
ag

e→
T

ex
t

an
d

T
ex

t→
Im

ag
e

ta
sk

s
on

th
re

e
d
at

as
et

s
at

va
ri

ou
s

co
d
e

le
n
gt

h
s

(b
it

s)
w

h
en

u
si

n
g

d
iff

er
en

t
m

et
h
o
d
s.

T
h
e

b
es

t
p

er
fo

rm
an

ce
is

sh
ow

n
in

b
ol

d
fa

ce
.

T
a
sk

M
e
th

o
d

W
ik

i
[1

46
]

M
IR

F
li

ck
r

[7
7]

N
U

S
-W

ID
E

[2
5]

1
6

3
2

6
4

1
2
8

1
6

3
2

6
4

1
2
8

1
6

3
2

6
4

1
2
8

IM
H

[1
70

]
0.

20
1

0.
20

3
0.

20
4

0.
19

5
0.

61
2

0.
60

1
0.

59
2

0.
57

9
0.

47
0.

47
3

0.
47

6
0.

45
9

D
B

R
C

[1
02

]
0.

25
3

0.
26

5
0.

26
9

0.
28

8
0.

61
7

0.
61

9
0.

62
0.

62
1

0.
42

4
0.

45
9

0.
44

7
0.

44
7

R
D

F
H

[1
89

]
0.

24
2

0.
24

6
0.

24
4

0.
24

3
0.

63
2

0.
63

6
0.

64
1

0.
65

2
0.

48
8

0.
49

2
0.

49
4

0.
50

8

D
C

M
H

[8
4]

0.
26

4
0.

26
9

0.
27

9
0.

28
4

0.
73

2
0.

74
7

0.
74

8
0.

75
2

0.
58

4
0.

60
3

0.
61

2
0.

62
3

Im
ag

e→
T

ex
t

C
A

H
[2

1]
0.

24
2

0.
24

8
0.

25
3

0.
26

1
0.

68
8

0.
70

5
0.

70
8

0.
71

5
0.

50
9

0.
54

2
0.

56
7

0.
58

2

S
C

M
F

H
[3

5]
0.

28
4

0.
29

4
0.

29
9

0.
30

5
0.

65
1

0.
65

4
0.

65
5

0.
66

4
0.

49
5

0.
49

9
0.

50
6

0.
62

4

D
is

C
M

H
[2

23
]

0.
37

5
0.

39
4

0.
39

5
0.

39
2

0.
72

0.
72

7
0.

72
1

0.
73

2
0.

68
3

0.
75

8
0.

77
5

0.
76

4

S
eP

H
k
m

[1
08

]
0.

39
9

0.
40

5
0.

40
8

0.
41

2
0.

76
3

0.
76

9
0.

77
3

0.
77

6
0.

73
9

0.
75

0.
76

1
0.

76
7

S
S

D
M

H
0
.4

2
1

0
.4

3
6

0
.4

4
6

0
.4

5
1

0
.7

9
7

0
.8

0
1

0
.8

0
8

0
.8

2
3

0
.8

0
3

0
.8

0
9

0
.8

2
1

0
.8

3
4

IM
H

[1
70

]
0.

46
7

0.
47

8
0.

45
3

0.
45

6
0.

60
3

0.
59

5
0.

58
9

0.
58

0.
47

8
0.

48
3

0.
47

2
0.

46
2

D
B

R
C

[1
02

]
0.

57
4

0.
58

8
0.

59
8

0.
59

9
0.

61
8

0.
62

6
0.

62
6

0.
62

8
0.

45
5

0.
45

9
0.

46
8

0.
47

3

R
D

F
H

[1
89

]
0.

59
0.

59
6

0.
60

3
0.

61
0.

68
1

0.
69

3
0.

69
8

0.
70

2
0.

61
2

0.
64

1
0.

65
8

0.
68

D
C

M
H

[8
4]

0.
62

1
0.

62
8

0.
64

8
0.

65
8

0.
73

3
0.

74
5

0.
74

9
0.

75
3

0.
63

9
0.

65
6

0.
66

1
0.

67
8

T
ex

t→
Im

ag
e

C
A

H
[2

1]
0.

37
3

0.
38

6
0.

39
3

0.
40

2
0.

66
1

0.
67

4
0.

69
4

0.
72

2
0.

51
4

0.
54

5
0.

58
4

0.
60

8

S
C

M
F

H
[3

5]
0.

63
5

0.
64

1
0.

65
6

0.
66

4
0.

68
2

0.
70

3
0.

71
6

0.
72

6
0.

56
9

0.
61

2
0.

65
7

0.
68

4

D
is

C
M

H
[2

23
]

0.
67

6
0.

66
2

0.
66

3
0.

65
4

0.
74

7
0.

75
8

0.
75

0.
75

9
0.

65
2

0.
73

6
0.

75
0.

74
9

S
eP

H
k
m

[1
08

]
0.

66
4

0.
69

6
0.

69
5

0.
70

2
0.

72
7

0.
73

1
0.

74
8

0.
74

3
0.

68
6

0.
69

5
0.

70
9

0.
71

1

S
S

D
M

H
0
.7

1
6

0
.7

3
5

0
.7

3
7

0
.7

4
5

0
.8

3
3

0
.8

3
6

0
.8

4
3

0
.8

5
2

0
.8

1
5

0
.8

2
1

0
.8

3
3

0
.8

3
6

5.3. EXPERIMENT 115

0 0.2 0.4 0.6 0.8 1

Recall

0.2

0.4

P
r
e
c
is
io
n

Wiki: Image -> Text @ 128 bits

SSDMH

SePH
km

DisCMH

RFDH

DBRC

SCMFH

DCMH

IMH

CAH

(a) Wiki: Image→Text

0 0.2 0.4 0.6 0.8 1

Recall

0.2

0.4

0.6

0.8

P
r
e
c
is
io
n

Wiki: Text -> Image @ 128 bits

SSDMH

SePH
km

DisCMH

RFDH

DBRC

SCMFH

DCMH

IMH

CAH

(b) Wiki: Text→Image

0 0.2 0.4 0.6 0.8 1

Recall

0.4

0.6

0.8

1

P
r
e
c
is
io
n

MIRFlickr: Image -> Text @ 128 bits

SSDMH

SePH
km

DisCMH

RFDH

DBRC

SCMFH

DCMH

IMH

CAH

(c) MIRFlickr: Image→Text

0 0.2 0.4 0.6 0.8 1

Recall

0.4

0.6

0.8

1

P
r
e
c
is
io
n

MIRFlickr: Text -> Image @ 128 bits

SSDMH

SePH
km

DisCMH

RFDH

DBRC

SCMFH

DCMH

IMH

CAH

(d) MIRFlickr: Text→Image

0 0.2 0.4 0.6 0.8 1

Recall

0.2

0.4

0.6

0.8

1

P
r
e
c
is
io
n

NUS-WIDE: Image -> Text @ 128 bits

SSDMH

SePH
km

DisCMH

RFDH

DBRC

SCMFH

DCMH

IMH

CAH

(e) NUS-WIDE: Image→Text

0 0.2 0.4 0.6 0.8 1

Recall

0.2

0.4

0.6

0.8

1

P
r
e
c
is
io
n

NUS-WIDE: Text -> Image @ 128 bits

SSDMH

SePH
km

DisCMH

RFDH

DBRC

SCMFH

DCMH

IMH

CAH

(f) NUS-WIDE: Text→Image

Figure 5.2: The Precision-Recall curves at 128 bits on three datasets.

with sky and structure, which indicates that the top-5 retrieved texts share at leat

one of these labels.

In this section, the top-5 returned candidates of SSDMH regarding two retrieval

tasks: Image→Text and Text→Image, on NUS-WIDE dataset [25] are presented in

Fig. 5.5. Similar to MIRFlickr, the text descriptions are formed as a list of keywords

for each image and each data instance is labelled with at least one of the 10 most

5.3. EXPERIMENT 116

Boston College won the

ceremonial pre-game coin toss

to determine first possession

and elected to kick off to begin

the game, ensuring that the

Eagles would receive the ball to

begin the second half. Virginia

……

……

On the first play after the penalty,

Davis was sacked for a loss of

two yards. Harris regained the

lost yardage and more with a

six-yard run, but after Davis

threw an incomplete pass on

third down, the Eagles were

forced to punt again. Before they

could kick the ball, however, the

quarter came to an end. With

three quarters remaining in the

game, Virginia Tech held a 7–0

lead.ESPN.com. Boston College

Eagles vs. Virginia Tech Hokies

Play-by-Play, , ESPN.com.

December 6, 2008. Accessed

December 6, 2008.

The Virginia Tech offense was led

by quarterback Marcus Vick,

brother of former Tech all-star

Michael Vick. Coming off a

season-long suspension in 2004,

Vick threw for 1,855 yards, 14

touchdowns and nine interceptions

in the 2005 season leading up to

the ACC Championship

……

……

(PDF) Virginia Tech Sports

Information, Hokiesports.com. "All

Eyes on Vick", Page 13. E01,

November 27, 2005. Accessed

December 24, 2007. Imoh,

meanwhile, was limited by an

ankle injury suffered during the

course of the season. Heading into

the conference championship

game, he had rushed for 415 yards

and three touchdowns. (PDF)

Virginia Tech Sports Information,

Hokiesports.com. "Finding Imoh",

Page 12. Accessed March 5, 2008.

The 2007 ACC Championship

Game kicked off at 13:10 EST in

Jacksonville, Florida. ESPN.com,

December 1, 2007. Accessed

December 10, 2007. At kickoff, the

weather was partly cloudy, with

winds from the northeast at . The

air temperature was The pre-game

coin toss involved two members of

……

……

rehabilitation of wounded

American combat veterans

returning to the United States from

fighting overseas. One soldier from

Virginia and another from

Massachusetts were chosen to

throw the ceremonial coin that

would determine the game's

starting possession. The Atlantic

Coast Conference, December 1,

2007. Accessed December 10,

2007. Supervising the coin toss

was referee Jack Childress, who

had also officiated the inaugural

ACC Championship Game.

Virginia Tech began the fourth

quarter in possession of the ball

and with a first down, but trailing

by 24 points and virtually out of the

game. The first two plays of the

fourth quarter were similar to what

the Tech offense had shown all

game: an incomplete pass and a

Having recovered the ball, and

……

……

stop the clock, Florida State was

able to run out the remaining time

in the game and secure a

27–22 victory. Towards the

end of the game, players on each

team acted with hostility towards

each other, and several received

personal foul penalties. The

penalties had no effect on the final

outcome of the game, and Florida

State won the ACC Championship

Game and an automatic bid to the

2006 Orange Bowl. ESPN.com,

December 3, 2005. Accessed

December 23, 2007.

USC continued Pac-10 play by

hosting the struggling Stanford

Cardinal, under first-year coach

Jim Harbaugh. In a major upset,

USC stumbled at home to the 41

point underdog, losing 24–

23.Harbaugh made headlines prior

to the season by claiming 2007

would be Carroll's last year

.…..

……

''Los Angeles Times'', October 8,

2007, Accessed July 3, 2008. The

upset landed the Trojans in

ESPN.com's Bottom 10.David

Duffey, , ESPN.com, October 9,

2007, Accessed August 4, 2008.In

an interview the following month,

Carroll assessed the mistakes that

led to the loss as his own:At the

end of the regular season, ''Sports

Illustrated'' chose Stanford's upset

of USC as the second "Biggest

Upset of 2007" after Division I FCS

Appalachian State's upset of No. 5

Michigan.

Query

Top-5 Retrieved Texts

(a) Wiki: Image→Text

Ultimately, a mixed solution named ''Tecnología Santa Bárbara-Bazán'' (Santa Bárbara-Bazán Technology) (or TSB) was chosen.Mazarrasa, ''Carro de Combate AMX-30E'', p. 80 The improvement

of the tank's mobility entailed replacing the HS-110 diesel engine with an MTU 833 Ka-501 diesel engine, producing 850 metric horsepower (625.17 kW), and the transmission with a German ZF

LSG-3000, compatible with engines of up to 1,500 metric horsepower (1103.25 kW). The first 30 engines were to have 50% of the engine manufactured in Spain; the rest, 73% were to be produced

indigenously.Pérez-Guerra, ''Spanish AMX-30 MBT upgrade program'', p. 500 This new engine gave the modernized tank a power ratio of 23 metric horsepower to tonne (21.13 hp/S/T). The new

engine was coupled with the AMX-30B2's improved torsion-bar suspension, which used larger diameter torsion-bars and new shocks.Mazarrasa,

……

……

wind velocity, gun elevation and vehicle inclination. The fire control system also allowed for the future upgrade to a more sophisticated stabilization system for the tank's main gun. Survivability

improvements included the addition of new steel side-skirts, a new smoke generating system linked to the engine and a new fire suppression system.Mazarrasa, ''Carro de Combate AMX-30'', pp.

81–83One hundred fifty AMX-30Es received this modernization package and were designated AMX-30EM2s. The program began in 1989 and ended in 1993.Mazarrasa, ''Carro de Combate AMX-

30E'', p. 85 Ultimately, Spain's AMX-30EM2s were replaced by brand-new Centauro anti-tank vehicles, which were partially manufactured in Spain, in the early 21st century.''Defensa firma un

contrato de 200 millones de euros con Finmeccanica'', El País

Query

Top-5 Retrieved Images

(b) Wiki: Text→Image

Figure 5.3: The top-5 retrieved results at 128 bits on Wiki dataset.

frequent concepts in NUS-WIDE dataset, where the query and its retrieved candidates

are considered to be similar if at least one of their labels matched.

5.3.3.4 Effect of Training Data Size

Moreover, the variations on the mAP results are evaluated when using different

amount of data points in the code learning, as shown in Table 5.9. Specifically,

5.3. EXPERIMENT 117

granada

la

alhambra

canonistas

Madison

Indiana

washington

washingtondc

dc

districtofcolombia

whit

whitehouse

house

usa

america

president

pennslyvaniaave

bilbao

11-16

cielo

sky

polarizado

reflejo

reflection

sanidad

estrenandoMiRegalito

geotagged

geo:lat=43.260867

geo:lon=-2.935705

Madrid

city

ciudad

Spain

España

Lavapies

Rastro

Nikon

D80

Query

Top-5 Retrieved Texts

(a) MIRFlickr: Image→Text

marlee

baby

strobist

book

pets

reading

touch

animals

interestingness

explore

Query

Top-5 Retrieved Images

(b) MIRFlickr: Text→Image

Figure 5.4: The top-5 retrieved results at 128 bits on MIRFlickr dataset.

we report the results on MIRFlickr and NUS-WIDE at 64 bits on two retrieval tasks.

5.3. EXPERIMENT 118

berlin night

germany

deutschland

Bravo

cityscape

webinteger

quality

postcard

spree 169

dri fischerinsel

exposures

spectnight

Impressed beauty

city long exposure

atlanta

sunset

urban skyline

georgia

cityscape

dusk

lighttrails

Platinumphoto

an awesome shot

Diamond Class

Photographer

flickrdiamond

goldstaraward

life

china

Long exposure

travel

urban

skyline

night

hongkong

lights

asia

cityscape

nightshot

minolta

street

city

Long exposure

blue

urban

chien

david

paris

france

architecture

night

landscape

Long exposure

pink

urban

toronto

ontario

canada

david

reflection

tower

skyline

night

skyscraper

Query

Top-5 Retrieved Texts

(a) NUS-WIDE: Image→Text

sunset

mountain

lake

mountains

tongue

Silver

evening

devils

north

glacier

alpine

cascades

Query

Top-5 Retrieved Images

(b) NUS-WIDE: Text→Image

Figure 5.5: The top-5 retrieved results at 128 bits on NUS-WIDE dataset.

5.3. EXPERIMENT 119

Table 5.6: Effect of training data size on MIRFlickr and NUS-WIDE at the code
length of 64.

Dataset Task
Training Data Size

1k 2k 5k 10k 15k

MIRFlickr
Image→Text 0.761 0.769 0.808 0.815 0.821

Text→Image 0.793 0.811 0.843 0.854 0.861

NUS-WIDE
Image→Text 0.761 0.783 0.821 0.834 0.837

Text→Image 0.781 0.803 0.833 0.842 0.85

As can be seen, the mAP values keep increasing with more data points employed in

the initial stage and tend to converge after the size of 10, 000. It is worth pointing out

that SSDMH still achieves competitive results when limited data points (e.g., 5, 000)

available.

5.3.3.5 Parameter Sensitivity Analysis

We further analyze the retrieval performance variations from adjusting the hyper-

parameters in the code learning. By fixing the code length to 64 bits in the exper-

iments, we plot the mAP variations in Fig. 5.6 when altering γ, β and λ. As can

be seen, the mAP results have minor changes when varying the parameters, which

indicates that SSDMH is not very sensitive to the hyper-parameters. Moreover, the

empirical values of γ, β and λ are close to the optimal settings in the figures and they

can make a great contribution in yielding superior retrieval performance.

5.3.3.6 Convergence Study

In Fig. 5.7, we plot to the estimation of the convergence rates in solving the unified

binary code and learning the deep hash functions at 128 bits. As can be seen, the

objective function values converge very fast within 5 iterations in the code learning,

while the deep hash functions for two modalities can be built efficiently after 3 ∼ 5

iterations.

5.3.3.7 BGD versus One Entry

We further compare the efficiency of the proposed BGD and One Entry (namely

flipping one entry per time) [153], where the latter one denotes the most representative

method in the discrete optimization [126, 156]. As can be observed from Fig. 5.8,

5.3. EXPERIMENT 120

2 4 6 8 10

γ

0.4

0.5

0.6

0.7

0.8

0.9

M
A
P

Image -> Text @ 64 bits

Wiki

MIRFlickr

NUS-WIDE

(a) γ: Image→Text

2 4 6 8 10

γ

0.7

0.75

0.8

0.85

0.9

M
A
P

Text -> Image @ 64 bits

Wiki

MIRFlickr

NUS-WIDE

(b) γ: Text→Image

10
-4

10
-2

10
0

β

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
A
P

Image -> Text @ 64 bits

Wiki

MIRFlickr

NUS-WIDE

(c) β: Image→Text

10
-4

10
-2

10
0

β

0.6

0.65

0.7

0.75

0.8

0.85

0.9

M
A
P

Text -> Image @ 64 bits

Wiki

MIRFlickr

NUS-WIDE

(d) β: Text→Image

10
-2

10
-1

10
0

10
1

10
2

λ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
A
P

Image -> Text @ 64 bits

Wiki

MIRFlickr

NUS-WIDE

(e) λ: Image→Text

10
-2

10
-1

10
0

10
1

10
2

λ

0.65

0.7

0.75

0.8

0.85

0.9

M
A
P

Text -> Image @ 64 bits

Wiki

MIRFlickr

NUS-WIDE

(f) λ: Text→Image

Figure 5.6: mAP versus γ, β and λ at 64 bits on three datasets.

the proposed BGD costs much shorter time, averagely over 80%, against One Entry

in solving one row of the unified binary code at 128 bits, thus accelerating the code

optimization dramatically. Although some recent papers [54,126] make minor changes

during the discrete optimization, they all utilize the same entry flipping strategy as

One Entry. There is no evidence showing that such efficiency issue could be alleviated

5.3. EXPERIMENT 121

1 2 3 4 5

Number of Iterations

10
0

10
2

10
4

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

 V
a
lu

e

Wiki@128 bits

MIRFlickr@128 bits

NUS-WIDE@128 bits

(a) Objective function values

1 2 3 4 5
Number of Iterations

0

20

40

60

80

E
u

cl
id

ea
n

 L
o

ss

Wiki:Image->Text

Wiki:Text->Image

MIRFlickr:Image->Text

MIRFlickr:Text->Image

NUS-WIDE:Image->Text

NUS-WIDE:Text->Image

(b) Euclidean losses

Figure 5.7: (a) Objective function values after each iteration (t) when solving the
unified binary code at 128 bits; (b) Euclidean losses after every iteration (T) when
learning the deep hash functions at 128 bits.

Table 5.7: Time costs (in seconds) in the training processes of SSDMH on three
datasets at 128 bits for one loop (T).

Dataset Code Learning
Network Training

Image Text

Wiki 117.3 123.2 15.7

MIRFlickr 614.4 362.3 27.3

NUS-WIDE 582.1 413.1 38.3

in their methods.

5.3.3.8 Training Efficiency

Finally, the training costs of the proposed SSDMH at 128 bits on three datasets are

reported in Table 5.7. There are two main sub processes: code learning and network

training, during the optimization in each loop. As can be seen, the optimization for

each loop can be done within 18 minutes for most cases. Considering the proposed

SSDMH usually converges within T = 5 loops for one code length, the total opti-

mization costs less than 1.5 hours while the values for other cases of short codes are

far below.

5.3. EXPERIMENT 122

Wiki MIRFlickr NUS-WIDE

Dataset

0

0.2

0.4

0.6

0.8

1

1.2

T
im

e

BGD

One Entry

1.18

0.79

0.12
0.16

0.25

0.04

Figure 5.8: Time costs (in seconds) in optimizing one row of the unified binary code
at 128 bits on three datasets when using BGD and One Entry [153] separately.

5.3.4 Quantitative Results for UDCMH

In this section, we briefly discuss the results from UDCMH to provide further insights

on the advantages of the proposed learning strategy.

5.3.4.1 Comparison With State-of-The-Arts

We compare the proposed UDCMH with the baselines and report the mAP results

at various code lengths on three datasets in Table 5.8. As can be seen, the proposed

UDCMH outperforms significantly the state-of-the-arts baselines in terms of mAP at

all bit sizes. Generally, the mAP values on Wiki are slightly lower than those on

NUS-WIDE and MIRFlickr accordingly. The main reason is that the former dataset

contains much fewer instances compared to the others, which limits the learning ca-

pability of deep neural networks. Specifically, for the tasks of Image→Text, the mAP

values are 34.6%, 55.8% and 71.7% on Wiki, NUS-WIDE and MIRFlickr separately

at 128 bits, which are at least 5% higher than those of the baselines. While for an-

other task of Text→Image, the advantages of the proposed UDCMH decline slightly

to about 3%, which are still superior and highly competitive. Compared to those

baselines using matrix factorization such as CMFH and RFDH, the proposed frame-

work integrates deep learning with collaborative binary latent representation model,

5.3. EXPERIMENT 123

T
ab

le
5.

8:
m

A
P

re
su

lt
s

fo
r

Im
ag

e→
T

ex
t

an
d

T
ex

t→
Im

ag
e

ta
sk

s
on

th
re

e
d
at

as
et

s
at

va
ri

ou
s

co
d
e

le
n
gt

h
s

(b
it

s)
w

h
en

u
si

n
g

d
iff

er
en

t
u
n
su

p
er

v
is

ed
m

et
h
o
d
s

an
d

U
D

C
M

H
.

T
h
e

B
es

t
P

er
fo

rm
an

ce
is

sh
ow

n
in

b
ol

d
fa

ce
.

T
a
sk

M
e
th

o
d

W
ik

i
M

IR
F

li
ck

r
N

U
S

-W
ID

E

1
6

3
2

6
4

1
2
8

1
6

3
2

6
4

1
2
8

1
6

3
2

6
4

1
2
8

C
V

H
[9

3]
0.

17
9

0.
16

2
0.

15
3

0.
14

9
0.

60
6

0.
59

9
0.

59
6

0.
59

8
0.

37
2

0.
36

2
0.

40
6

0.
39

IM
H

[1
70

]
0.

20
1

0.
20

3
0.

20
4

0.
19

5
0.

61
2

0.
60

1
0.

59
2

0.
57

9
0.

47
0.

47
3

0.
47

6
0.

45
9

L
C

M
H

[2
51

]
0.

11
5

0.
12

4
0.

13
4

0.
14

9
0.

35
4

0.
36

1
0.

38
9

0.
38

3
0.

55
9

0.
56

9
0.

58
5

0.
59

3

Im
ag

e→
T

ex
t

C
M

F
H

[3
5]

0.
25

1
0.

25
3

0.
25

9
0.

26
3

0.
62

1
0.

62
4

0.
62

5
0.

62
7

0.
45

5
0.

45
9

0.
46

5
0.

46
7

L
S

S
H

[2
49

]
0.

19
7

0.
20

8
0.

19
9

0.
19

5
0.

58
4

0.
59

9
0.

60
2

0.
61

4
0.

48
1

0.
48

9
0.

50
7

0.
50

7

D
B

R
C

[1
02

]
0.

25
3

0.
26

5
0.

26
9

0.
28

8
0.

61
7

0.
61

9
0.

62
0.

62
1

0.
42

4
0.

45
9

0.
44

7
0.

44
7

R
D

F
H

[1
89

]
0.

24
2

0.
24

6
0.

24
4

0.
24

3
0.

63
2

0.
63

6
0.

64
1

0.
65

2
0.

48
8

0.
49

2
0.

49
4

0.
50

8

U
D

C
M

H
0
.3

0
9

0
.3

1
8

0
.3

2
9

0
.3

4
6

0
.6

8
9

0
.6

9
8

0
.7

1
4

0
.7

1
7

0
.5

1
1

0
.5

1
9

0
.5

2
4

0
.5

5
8

C
V

H
[9

3]
0.

25
2

0.
23

5
0.

17
1

0.
15

4
0.

59
1

0.
58

3
0.

57
6

0.
57

6
0.

40
1

0.
38

4
0.

44
2

0.
43

2

IM
H

[1
70

]
0.

46
7

0.
47

8
0.

45
3

0.
45

6
0.

60
3

0.
59

5
0.

58
9

0.
58

0.
47

8
0.

48
3

0.
47

2
0.

46
2

L
C

M
H

[2
51

]
0.

11
5

0.
12

4
0.

13
4

0.
14

9
0.

55
9

0.
56

9
0.

58
5

0.
59

3
0.

35
4

0.
36

1
0.

38
9

0.
38

3

T
ex

t→
Im

ag
e

C
M

F
H

[3
5]

0.
59

5
0.

60
1

0.
61

6
0.

62
2

0.
64

2
0.

66
2

0.
67

6
0.

68
5

0.
52

9
0.

57
7

0.
61

4
0.

64
5

L
S

S
H

[2
49

]
0.

56
9

0.
59

3
0.

59
3

0.
59

5
0.

63
7

0.
65

9
0.

65
9

0.
67

2
0.

57
7

0.
61

7
0.

64
2

0.
66

3

D
B

R
C

[1
02

]
0.

57
4

0.
58

8
0.

59
8

0.
59

9
0.

61
8

0.
62

6
0.

62
6

0.
62

8
0.

45
5

0.
45

9
0.

46
8

0.
47

3

R
D

F
H

[1
89

]
0.

59
0.

59
6

0.
60

3
0.

61
0.

68
1

0.
69

3
0.

69
8

0.
70

2
0.

61
2

0.
64

1
0.

65
8

0.
68

U
D

C
M

H
0
.6

2
2

0
.6

3
3

0
.6

4
5

0
.6

5
8

0
.6

9
2

0
.7

0
4

0
.7

1
8

0
.7

3
3

0
.6

3
7

0
.6

5
3

0
.6

9
5

0
.7

1
6

5.3. EXPERIMENT 124

Number of Retrieved Points

0 500 1000 1500 2000

P
re

c
is

io
n

0.2

0.4
Wiki: Image -> Text @ 128 bits

UDCMH

DBRC

RFDH

LSSH

CMFH

IMH

LCMH

CVH

(a) Wiki: Image→Text

Number of Retrieved Points

0 500 1000 1500 2000

P
re

c
is

io
n

0.2

0.4

0.6

Wiki: Text -> Image @ 128 bits

UDCMH

DBRC

RFDH

LSSH

CMFH

IMH

LCMH

CVH

(b) Wiki: Text→Image

Number of Retrieved Points

0 1000 2000 3000 4000 5000

P
re

c
is

io
n

0.6

0.8
MIRFlickr: Image -> Text @ 128 bits

UDCMH

DBRC

RFDH

LSSH

CMFH

IMH

LCMH

CVH

(c) MIRFlickr: Image→Text

Number of Retrieved Points

0 1000 2000 3000 4000 5000

P
re

c
is

io
n

0.6

0.8
MIRFlickr: Text -> Image @ 128 bits

UDCMH

DBRC

RFDH

LSSH

CMFH

IMH

LCMH

CVH

(d) MIRFlickr: Text→Image

Number of Retrieved Points

0 1000 2000 3000 4000 5000

P
re

c
is

io
n

0.2

0.4

NUS-WIDE: Image -> Text @ 128 bits

UDCMH

DBRC

RFDH

LSSH

CMFH

IMH

LCMH

CVH

(e) NUS-WIDE: Image→Text

Number of Retrieved Points

0 1000 2000 3000 4000 5000

P
re

c
is

io
n

0.2

0.4

0.6

0.8
NUS-WIDE: Text -> Image @ 128 bits

UDCMH

DBRC

RFDH

LSSH

CMFH

IMH

LCMH

CVH

(f) NUS-WIDE: Text→Image

Figure 5.9: The precision@N curves at 128 bits on all datasets.

where unified binary codes can be optimized directly without relaxation, thus im-

proving the hash code quality significantly. For comprehensive investigation, we also

plot the Precision@N curves of various tasks at 128 bits on all datasets in Fig. 5.9.

As observed from those figures, the best performance is still achieved by the proposed

UDCMH and the claimed superiority can be further validated.

5.4. CHAPTER SUMMARY 125

Table 5.9: Effect of training data size on NUS-WIDE at 64 bits. k indicates 1, 000.

Dataset
Training Data Size

2k 5k 10k 15k 20k

Image→Text 0.515 0.524 0.538 0.549 0.557

Text→Image 0.668 0.695 0.698 0.717 0.724

5.3.4.2 Training Data Size

We further analyze the effects on mAP results when varying the training data size, as

shown in Table 5.9. For the limited space, only the results on NUS-WIDE at 64 bits

are reported. The mAP values keep increasing when utilizing more training data. It

is worth noting that competitive results still can be achieved when using only 5, 000

data points by UDCMH, which indicates its powerful ability in producing effective

hash codes with the limited data size.

5.4 Chapter Summary

This section has provided an industrial solution for fast large-scale cross-media re-

trieval. Specifically, a novel self-supervised deep multimodal hashing method, namely

SSDMH, is presented, where the deep feature learning and the semantic binary code

learning are integrated into a unified framework. Notably, by solving the discrete

constrained objective function in an alternating manner, the unified binary code can

be generated directly without relaxation. Moreover, the semantic affinity matrix is

utilized in the code learning with the neighborhood structure of the original data

preserved. Besides, Binary Gradient Descent is proposed to accelerate the discrete

optimization. The proposed algorithm is also extended to an unsupervised version

termed UDCMH, which can be deployed in the applications lacking supervision in-

formation. Extensive experiments on three datasets demonstrate the superiority of

the proposed methods over several state-of-the-art baselines.

The proposed method simulates the unsupervised multi-view embedding process

via matrix factorization, as in Chapter 3. In other words, Chapter 5 can be viewed as

an extension application of Chapter 3 in the research field of cross-modality retrieval

but differs in many details. In the next chapter, we will summarize this thesis and

discuss several possible research directions in the future.

Chapter 6

Conclusions and Future Work

6.1 Thesis Summary

This thesis mainly focuses on learning binary representations for efficient multimedia

similarity retrieval using the hashing algorithm. Particularly, three different challeng-

ing tasks are explored: binary local descriptor (Chapter 3), unsupervised deep video

hashing (Chapter 4) and deep cross-modal hashing (Chapter 5). In each chapter, a

novel learning framework is proposed to handle the target application and the supe-

rior performance has been achieved against state-of-the-art baselines. Each chapter

is briefly concluded and discussed in the following subsections.

6.1.1 Unsupervised Deep Binary Descriptor

In this chapter, we propose a novel learning-based feature descriptor, namely Unsu-

pervised Deep Binary Descriptor (UDBD), to learn transformation invariant binary

descriptors for patch-level recognition tasks. With the dedicated binary embedding

model and weak bit scheme, the proposed binary descriptor outperforms most base-

lines significantly in terms of matching and retrieval accuracy on three public datasets.

To simplify the experiment, only rotation is performed on image patches to sim-

ulate the affine transformation. However, in real applications, other transformations

like scaling and occlusion would impact the search performance from binary descrip-

tors. This could be further investigated in the future work to evaluate the effectiveness

of the proposed methodology when dealing with complicated cases. Moreover, the

employed weak bit scheme could be enhanced by optimizing the mutual information

between bits to make more wise selections on those unreliable bits, thus improving

the matching performance further.

126

6.1. THESIS SUMMARY 127

6.1.2 Unsupervised Deep Video Hashing

In this chapter, a novel video hashing framework named Unsupervised Deep Video

Hashing (UDVH) is proposed to learn compact yet effective binary codes for large-

scale video similarity search tasks. The major contribution of this work is that a

smart rotation is applied to the video-specific features to balance the variance of

dimensions, thus improving the retrieval performance with better code quality. Supe-

rior performance achieved by UDVH on three large-scale video datasets consolidates

the claimed contribution.

In this work, a general video-to-video similarity retrieval is performed and dis-

cussed. However, the research on video retrieval could be further extended and inves-

tigated to tackle more realistic applications like use single frame to search a specific

scene in long movies. Moreover, the overall loss function of UDVH is solved by iter-

atively optimizing two sub-objective functions. Performing the batch-level balanced

rotation during the deep hash function learning might be a feasible solution to unify

those optimization processes, thus yielding a more optimal solution mathematically.

Last but not the least, more advanced video representation learning techniques, more

than LSTM and TSN, could be incorporated in the video hashing framework to im-

prove the overall retrieval performance.

6.1.3 Deep Cross-Modal Hashing

To deal with the cross-modal similarity retrieval problem, a novel method termed

Self-Supervised Deep Multimodal Hashing (SSDMH) is proposed for large-scale cross-

media search. Particularly, the hashing system based on the binary latent factor

models can generate unified binary codes by solving a discrete-constrained objective

function directly with no need for relaxation. Moreover, a new discrete optimization

solution termed Binary Gradient Descent, which aims at improving the optimization

efficiency towards the real-time operation. We also propose an unsupervised deep

cross-modal hashing (UDCMH) at the end of this algorithm, which makes it more

flexible in dealing with different scenarios. Extensive experiments on three benchmark

datasets demonstrate the superiority of our methods over state-of-the-art cross-modal

hashing approaches.

In the optimization of this work, the learning processes of binary code and hash

function are jointly optimized. It implies that we have to update the hash function

during each iteration of the discrete code learning, which leads to extra computational

costs and reduces the efficiency. Moreover, the proposed method learns different hash

6.2. FUTURE RESEARCH TOPICS 128

functions for two modalities (i.e., image and text), where an unified representation

layer could be constructed and optimized in the learning process. Finally, data from

more modalities (e.g., audio and video) can be employed to implement the multi-

modal retrieval via adopting the proposed methodology for complicated recommen-

dation systems.

6.2 Future Research Topics

In this section, we briefly discuss several possible research directions in the future,

which are strictly related to the research topic in this thesis.

6.2.1 Hashing for Deep Binary Neural Network

In the past decade, deep Convolutional Neural Network (CNN) has been widely de-

ployed in many computer vision tasks, which shows excellent performance in most

cases. However, traditional CNN usually contains millions of network parameters

that could occupy ample memory space. Moreover, large amounts of computational

resources (e.g., high-level GPU) are required to run those CNNs successfully. Those

two factors make it infeasible to deploy the complicated CNN directly on smart de-

vices like mobile phones, camera, and pad. This motivates the research of network

compression such that deep CNN could be deployed in such cases.

To this end, network binarization has been widely used in the network compres-

sion, where the network weights and activations are quantized into binary codes to

reduce the memory space required for each parameter [29, 30, 147]. However, most

of existing methods utilize quantization techniques or thresholding schemes in the

binarization, which suffers from large quantization errors and yields unsatisfactory

performance. In this case, the hashing algorithm could be an option to binarize the

weights of the filters at each convolutional layer of the deep network, thus further

reducing the network capacity with high discriminativeness.

6.2.2 Online Hashing

Recently, due to the urgent necessity of research for large-scale data, hashing has be-

come a hot topic in the areas of machine learning and the data mining communities.

However, there are rare online methods of hashing which have been proposed. Tra-

ditional hashing algorithms build the hash functions from the complicated training

process and the performance is being tested with such fixed hash function for the

6.2. FUTURE RESEARCH TOPICS 129

test data. There always exists an assumption that the train and test sets remain

unchanged. However, in the real application scenarios, this assumption no longer

holds, where the data will be streamed into the retrieval system. Nevertheless, tradi-

tional hashing algorithms have to learn the new hash function again, which is usually

extremely time-consuming and computationally expensive.

Online hashing addresses this problem by only making minor changes in the learn-

ing objectives to update the learned hash function [76] when getting new data. That

avoids the redundant retrain process and makes online hashing a promising solution

in tackling large-scale online similarity retrieval problems. However, only a few ef-

forts have been made on this research topic, such as Online Kernel-based Hashing

(OKH) [76] and Online Sketching Hashing (OSH) [96]. More worriedly, the results

from these shallow learning based methods are still far from satisfactory. Our pro-

posed methods in this thesis could be used as backbones to achieve novel fine-grained

online hashing algorithms.

6.2.3 Fine-Grained Retrieval with Weighted Hamming Dis-
tance

As discussed in Chapter 3, the candidates are returned to a specific query by di-

rectly measuring the Hamming distances between them in the test phase for most

existing hashing algorithms. This can be treated as coarse-level retrieval. However,

in many application cases, only one exact candidate is expected to be returned for

a given query. Therefore, fine-grained retrieval is desirable in solving this problem,

where weighted hamming distance (i.e., bit weighting) is a promising solution in this

case [119,167,168].

Nevertheless, the binary code usually contains less information compared to the

real-valued feature descriptor because of the quantization, which makes the fine-

grained retrieval more challenging. In recent applications of bit weighting [119, 120],

the dynamic weighting assignment scheme is adopted to further improve the ranking

precision of binary descriptor in the matching and retrieval tasks, where large weights

should be assigned to important bits in the distance measurement and vice versa [44,

80,119]. The bit significance is usually determined by jointly utilizing the real-valued

representations, as in Chapter 5. However, extra computations and memory space

are required. It is more desirable to develop an advanced bit weighting scheme that

obtains the weights based on the binary code directly, where the entropy and mutual

information could be further utilized to generate the weight for each bit [15].

6.2. FUTURE RESEARCH TOPICS 130

6.2.4 Fast Person Re-Identification

Pedestrian re-identification has become a popular topic in the research field of com-

puter vision and it is widely adopted in applications such as human-computer inter-

action, security surveillance, and criminal detection [128].

The research goal of pedestrian re-identification is to find the same/similar pedes-

trian captured by different cameras or one camera at different times, which can be

viewed as another promising application of instance-level (i.e., pedestrian) similarity

retrieval. Traditional pedestrian re-identification works mainly focus on the feature

learning, namely extract representative feature like global features, pedestrian image

color, texture, edge, shape, for the next re-identification step [53,110].

Even though the considerable efforts have been made, it is still an open problem

due to the dramatic variations caused by different camera viewpoints and person pose

changes [128,250]. The multi-view embedding could be a possible solution in tackling

these problems as discussed in Chapter 3 and the pedestrian search process can be

accelerated significantly by using the binary descriptor.

Bibliography

[1] A. Alahi, R. Ortiz, and P. Vandergheynst, “Freak: Fast retina keypoint,” in

Computer Vision and Pattern Recognition, 2012, pp. 510–517.

[2] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approximate

nearest neighbor in high dimensions,” in Annual IEEE Symposium on Founda-

tions of Computer Science. IEEE, 2006, pp. 459–468.

[3] V. Balntas, K. Lenc, A. Vedaldi, and K. Mikolajczyk, “Hpatches: A benchmark

and evaluation of handcrafted and learned local descriptors,” in Computer Vi-

sion and Pattern Recognition, 2017, pp. 5173–5182.

[4] V. Balntas, L. Tang, and K. Mikolajczyk, “Bold-binary online learned descriptor

for efficient image matching,” in Computer Vision and Pattern Recognition,

2015, pp. 2367–2375.

[5] S. Baluja and M. Covell, “Beyond ’near duplicates’: Learning hash codes for

efficient similar-image retrieval,” in International Conference on Pattern Recog-

nition. IEEE, 2010, pp. 543–547.

[6] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,”

in European Conference on Computer Vision. Springer, 2006, pp. 404–417.

[7] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review

and new perspectives,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[8] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in

Proceedings of International Conference on COMPUTAIONAL STATISTICS

(COMPSTAT). Springer, 2010, pp. 177–186.

[9] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the

OpenCV library. O’Reilly Media, Inc., 2008.

131

BIBLIOGRAPHY 132

[10] M. M. Bronstein, A. M. Bronstein, F. Michel, and N. Paragios, “Data fusion

through cross-modality metric learning using similarity-sensitive hashing,” in

Computer Vision and Pattern Recognition, 2010, pp. 3594–3601.

[11] M. Brown, G. Hua, and S. Winder, “Discriminative learning of local image

descriptors,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 33, no. 1, pp. 43–57, 2010.

[12] M. Brown and D. G. Lowe, “Unsupervised 3d object recognition and recon-

struction in unordered datasets,” in 3DIM, 2005, pp. 56–63.

[13] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally

connected networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.

[14] F. Caba Heilbron, V. Escorcia, B. Ghanem, and J. Carlos Niebles, “Activitynet:

A large-scale video benchmark for human activity understanding,” in Computer

Vision and Pattern Recognition, 2015, pp. 961–970.

[15] F. Cakir, K. He, S. A. Bargal, and S. Sclaroff, “Hashing with mutual infor-

mation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 41, no. 10, pp. 2424–2437, 2019.

[16] F. Cakir and S. Sclaroff, “Adaptive hashing for fast similarity search,” in In-

ternational Conference on Computer Vision, 2015, pp. 1044–1052.

[17] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust in-

dependent elementary features,” in European Conference on Computer Vision.

Springer, 2010, pp. 778–792.

[18] L. Cao, Z. Li, Y. Mu, and S.-F. Chang, “Submodular video hashing: a unified

framework towards video pooling and indexing,” in ACM Multimedia. ACM,

2012, pp. 299–308.

[19] Y. Cao, M. Long, J. Wang, and S. Liu, “Collective deep quantization for efficient

cross-modal retrieval.” in AAAI conference on Artificial Intelligence, 2017, pp.

3974–3980.

[20] Y. Cao, M. Long, J. Wang, Q. Yang, and P. S. Yu, “Deep visual-semantic

hashing for cross-modal retrieval,” in ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining. ACM, 2016, pp. 1445–1454.

BIBLIOGRAPHY 133

[21] Y. Cao, M. Long, J. Wang, and H. Zhu, “Correlation autoencoder hashing for

supervised cross-modal search,” in Proceedings of the ACM on International

Conference on Multimedia Retrieval. ACM, 2016, pp. 197–204.

[22] M. S. Charikar, “Similarity estimation techniques from rounding algorithms,”

in Proceedings of the Annual ACM Symposium on Theory of Computing. ACM,

2002, pp. 380–388.

[23] Z. Chen, J. Lu, J. Feng, and J. Zhou, “Nonlinear discrete hashing,” IEEE

Transactions on Multimedia, vol. 19, no. 1, pp. 123–135, 2017.

[24] ——, “Nonlinear structural hashing for scalable video search,” IEEE Transac-

tions on Circuits and Systems for Video Technology, vol. 28, no. 6, pp. 1421–

1433, 2018.

[25] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “Nus-wide: a real-

world web image database from national university of singapore,” in Proceedings

of the ACM International Conference on Image and Video Retrieval. ACM,

2009, pp. 1–9.

[26] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation

of gated recurrent neural networks on sequence modeling,” arXiv preprint

arXiv:1412.3555, 2014.

[27] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,

vol. 20, no. 3, pp. 273–297, 1995.

[28] B. Coskun, B. Sankur, and N. Memon, “Spatio–temporal transform based video

hashing,” IEEE Transactions on Multimedia, vol. 8, no. 6, pp. 1190–1208, 2006.

[29] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep

neural networks with binary weights during propagations,” in Advances in Neu-

ral Information Processing Systems, 2015, pp. 3123–3131.

[30] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized

neural networks: Training deep neural networks with weights and activations

constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830, 2016.

[31] J. Davis and M. Goadrich, “The relationship between precision-recall and roc

curves,” in International Conference on Machine Intelligence. ACM, 2006, pp.

233–240.

BIBLIOGRAPHY 134

[32] C. Deng, Z. Chen, X. Liu, X. Gao, and D. Tao, “Triplet-based deep hashing

network for cross-modal retrieval,” IEEE Transactions on Image Processing,

vol. 27, no. 8, pp. 3893–3903, 2018.

[33] G. Ding, W. Chen, s. Zhao, J. Han, and Q. Liu, “Real-time scalable visual

tracking via quadrangle kernelized correlation filters,” IEEE Transactions on

Intelligent Transportation Systems, vol. 19, no. 1, pp. 140–150, 2018.

[34] G. Ding, Y. Guo, and J. Zhou, “Collective matrix factorization hashing for mul-

timodal data,” in Computer Vision and Pattern Recognition, 2014, pp. 2075–

2082.

[35] G. Ding, Y. Guo, J. Zhou, and Y. Gao, “Large-scale cross-modality search via

collective matrix factorization hashing,” IEEE Transactions on Image Process-

ing, vol. 25, no. 11, pp. 5427–5440, 2016.

[36] X. Dong, L. Yu, Z. Wu, Y. Sun, L. Yuan, and F. Zhang, “A hybrid collabo-

rative filtering model with deep structure for recommender systems,” in AAAI

Conference on Artificial Intelligence, 2017, pp. 1309–1315.

[37] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, and T. Brox,

“Discriminative unsupervised feature learning with exemplar convolutional neu-

ral networks,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 38, no. 9, pp. 1734–1747, 2015.

[38] M. Douze, H. Jégou, and C. Schmid, “An image-based approach to video copy

detection with spatio-temporal post-filtering,” IEEE Transactions on Multime-

dia, vol. 12, no. 4, pp. 257–266, 2010.

[39] Y. Duan, J. Lu, J. Feng, and J. Zhou, “Learning rotation-invariant local binary

descriptor,” IEEE Transactions on Image Processing, vol. 26, no. 8, pp. 3636–

3651, 2017.

[40] ——, “Context-aware local binary feature learning for face recognition,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 5, pp.

1139–1153, 2018.

[41] Y. Duan, J. Lu, Z. Wang, J. Feng, and J. Zhou, “Learning deep binary de-

scriptor with multi-quantization,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 41, no. 8, pp. 1924–1938, 2019.

BIBLIOGRAPHY 135

[42] Y. Duan, Z. Wang, J. Lu, X. Lin, and J. Zhou, “Graphbit: Bitwise interac-

tion mining via deep reinforcement learning,” in Computer Vision and Pattern

Recognition, 2018, pp. 8270–8279.

[43] V. Erin Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing for

compact binary codes learning,” in Computer Vision and Pattern Recognition,

2015, pp. 2475–2483.

[44] H. Fan, H.-M. Hu, R. Wang, and Y. Zhang, “Adaptive query re-ranking based

on imagegraph for image retrieval,” in IEEE International Conference on Big

Data. IEEE, 2018, pp. 4593–4599.

[45] L. Fei, B. Zhang, Y. Xu, Z. Guo, J. Wen, and W. Jia, “Learning discriminant di-

rection binary palmprint descriptor,” IEEE Transactions on Image Processing,

vol. 28, no. 8, pp. 3808–3820, 2019.

[46] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best

matches in logarithmic expected time,” ACM Transactions on Mathematical

Software (TOMS), vol. 3, no. 3, pp. 209–226, 1977.

[47] Y. Gao, M. Wang, R. Ji, X. Wu, and Q. Dai, “3-d object retrieval with hausdorff

distance learning,” IEEE Transactions on Industrial Electronics, vol. 61, no. 4,

pp. 2088–2098, 2014.

[48] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual

prediction with lstm,” Neural Computation, pp. 2451–2471, 2000.

[49] K. Ghasedi Dizaji, F. Zheng, N. Sadoughi, Y. Yang, C. Deng, and H. Huang,

“Unsupervised deep generative adversarial hashing network,” in Computer Vi-

sion and Pattern Recognition, 2018, pp. 3664–3673.

[50] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high dimensions

via hashing,” in International Conference on Very Large Data Bases, vol. 99,

no. 6, 1999, pp. 518–529.

[51] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quantization: A

procrustean approach to learning binary codes for large-scale image retrieval,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35,

no. 12, pp. 2916–2929, 2013.

BIBLIOGRAPHY 136

[52] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in

Neural Information Processing Systems, 2014, pp. 2672–2680.

[53] D. Gray, S. Brennan, and H. Tao, “Evaluating appearance models for recogni-

tion, reacquisition, and tracking,” in IEEE International Workshop on Perfor-

mance Evaluation for Tracking and Surveillance (PETS), vol. 3, no. 5. Citeseer,

2007, pp. 1–7.

[54] J. Gui and P. Li, “R 2 sdh: Robust rotated supervised discrete hashing,” in

Proceedings of the ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining. ACM, 2018, pp. 1485–1493.

[55] J. Gui, T. Liu, Z. Sun, D. Tao, and T. Tan, “Fast supervised discrete hashing,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 2,

pp. 490–496, 2018.

[56] Y. Guo, G. Ding, and J. Han, “Robust quantization for general similarity

search,” IEEE Transactions on Image Processing, vol. 27, no. 2, pp. 949–963,

2018.

[57] Y. Guo, G. Ding, J. Han, and X. Jin, “Robust iterative quantization for effi-

cient l p-norm similarity search,” in International Joint Conference on Artificial

Intelligence, 2016, pp. 3382–3388.

[58] Y. Guo, G. Ding, L. Liu, J. Han, and L. Shao, “Learning to hash with opti-

mized anchor embedding for scalable retrieval,” IEEE Transactions on Image

Processing, vol. 26, no. 3, pp. 1344–1354, 2017.

[59] J. Haitsma and T. Kalker, “A highly robust audio fingerprinting system.” in

Ismir, vol. 2002, 2002, pp. 107–115.

[60] J. Han and G. C. Langelaar, “Method and device for generating fingerprints of

information signals,” 2018, uS Patent 10,248,723.

[61] J. Han, E. Pauwels, and P. de Zeeuw, “Fast saliency-aware multi-modality image

fusion,” Neurocomputing, vol. 111, pp. 70–80, 2013.

[62] J. Han, E. Pauwels, P. de Zeeuw, and P. de With, “Employing a rgb-d sensor for

real-time tracking of humans across multiple re-entries in a smart environment.”

IEEE Transactions on Consumer Electronics, vol. 58, no. 2, pp. 255–263, 2012.

BIBLIOGRAPHY 137

[63] J. Han, R. Quan, D. Zhang, and F. Nie, “Robust object co-segmentation using

background prior,” IEEE Transactions on Image Processing, vol. 27, no. 4, pp.

1639–1651, 2018.

[64] J. Han, D. Zhang, G. Cheng, N. Liu, and D. Xu, “Advanced deep-learning

techniques for salient and category-specific object detection: A survey,” IEEE

Signal Processing Magazine, vol. 35, no. 1, pp. 84–100, 2018.

[65] Y. Hao, T. Mu, J. Y. Goulermas, J. Jiang, R. Hong, and M. Wang, “Unsu-

pervised t-distributed video hashing and its deep hashing extension,” IEEE

Transactions on Image Processing, vol. 26, no. 11, pp. 5531–5544, 2017.

[66] Y. Hao, T. Mu, R. Hong, M. Wang, N. An, and J. Y. Goulermas, “Stochastic

multiview hashing for large-scale near-duplicate video retrieval,” IEEE Trans-

actions on Multimedia, vol. 19, no. 1, pp. 1–14, 2017.

[67] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical correlation anal-

ysis: An overview with application to learning methods,” Neural Computation,

vol. 16, no. 12, pp. 2639–2664, 2004.

[68] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cam-

bridge University Press, 2003.

[69] K. He, F. Wen, and J. Sun, “K-means hashing: An affinity-preserving quan-

tization method for learning binary compact codes,” in Computer Vision and

Pattern Recognition, 2013, pp. 2938–2945.

[70] K. He, Y. Lu, and S. Sclaroff, “Local descriptors optimized for average preci-

sion,” in Computer Vision and Pattern Recognition, 2018, pp. 596–605.

[71] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon, “Spherical hashing,” in

Computer Vision and Pattern Recognition, 2012, pp. 2957–2964.

[72] D. S. Hochba, “Approximation algorithms for np-hard problems,” ACM Sigact

News, vol. 28, no. 2, pp. 40–52, 1997.

[73] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Compu-

tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[74] W. Hu, G.-P. Liu, and H. Zhou, “Web-based 3-d control laboratory for re-

mote real-time experimentation,” IEEE Transactions on Industrial Electronics,

vol. 60, no. 10, pp. 4673–4682, 2013.

BIBLIOGRAPHY 138

[75] Y. Hu, Z. Jin, H. Ren, D. Cai, and X. He, “Iterative multi-view hashing for

cross media indexing,” in ACM Multimedia. ACM, 2014, pp. 527–536.

[76] L.-K. Huang, Q. Yang, and W.-S. Zheng, “Online hashing,” in International

Joint Conference on Artificial Intelligence, 2013, pp. 1422–1428.

[77] M. J. Huiskes and M. S. Lew, “The mir flickr retrieval evaluation,” in ACM

Multimedia. ACM, 2008, pp. 39–43.

[78] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing

the curse of dimensionality,” in Proceedings of the Annual ACM Symposium on

Theory of Computing. ACM, 1998, pp. 604–613.

[79] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift,” in International Conference on Ma-

chine Learning, 2015, pp. 448–456.

[80] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest neigh-

bor search,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 33, no. 1, pp. 117–128, 2010.

[81] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local descriptors

into a compact image representation,” in Computer Vision and Pattern Recog-

nition, 2010, pp. 3304–3311.

[82] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-

rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature em-

bedding,” in ACM Multimedia. ACM, 2014, pp. 675–678.

[83] Q.-Y. Jiang and W.-J. Li, “Discrete latent factor model for cross-modal hash-

ing,” IEEE Transactions on Image Processing, vol. 28, no. 7, pp. 3490–3501,

2019.

[84] Q. Jiang and W. Li, “Deep cross-modal hashing,” arXiv preprint

arXiv:1602.02255, 2016.

[85] W. Jiang, F. Nie, and H. Huang, “Robust dictionary learning with capped l1-

norm,” in International Joint Conference on Artificial Intelligence, 2015, pp.

3590–3596.

BIBLIOGRAPHY 139

[86] A. Karpathy, J. Johnson, and L. Fei-Fei, “Visualizing and understanding recur-

rent networks,” arXiv preprint arXiv:1506.02078, 2015.

[87] W. Kong and W.-J. Li, “Double-bit quantization for hashing,” in AAAI Con-

ference on Artificial Intelligence, 2012, pp. 634–640.

[88] ——, “Isotropic hashing,” in Advances in Neural Information Processing Sys-

tems, 2012, pp. 1646–1654.

[89] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny

images,” Citeseer, Tech. Rep., 2009.

[90] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in Neural Information Pro-

cessing Systems, 2012, pp. 1097–1105.

[91] B. Kulis and T. Darrell, “Learning to hash with binary reconstructive em-

beddings,” in Advances in Neural Information Processing Systems, 2009, pp.

1042–1050.

[92] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for scalable

image search.” in International Conference on Computer Vision, vol. 9, 2009,

pp. 2130–2137.

[93] S. Kumar and R. Udupa, “Learning hash functions for cross-view similarity

search,” in International Joint Conference on Artificial Intelligence, 2011, pp.

1360–1365.

[94] H. Lai, Y. Pan, Y. Liu, and S. Yan, “Simultaneous feature learning and hash

coding with deep neural networks,” in Computer Vision and Pattern Recogni-

tion, 2015, pp. 3270–3278.

[95] Z. Lan, Y. Zhu, A. G. Hauptmann, and S. Newsam, “Deep local video feature

for action recognition,” in Computer Vision and Pattern Recognition Workshops

(CVPRW). IEEE, 2017, pp. 1219–1225.

[96] C. Leng, J. Wu, J. Cheng, X. Bai, and H. Lu, “Online sketching hashing,” in

Computer Vision and Pattern Recognition, 2015, pp. 2503–2511.

[97] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust invariant

scalable keypoints,” in International Conference on Computer Vision. IEEE,

2011, pp. 2548–2555.

BIBLIOGRAPHY 140

[98] C. Li, S. Gao, C. Deng, D. Xie, and W. Liu, “Cross-modal learning with adver-

sarial samples,” in Advances in Neural Information Processing Systems, 2019,

pp. 10 791–10 801.

[99] M. Li and V. Monga, “Robust video hashing via multilinear subspace projec-

tions,” IEEE Transactions on Image Processing, vol. 21, no. 10, pp. 4397–4409,

2012.

[100] S. Li, Z. Chen, J. Lu, X. Li, and J. Zhou, “Neighborhood preserving hashing

for scalable video retrieval,” in International Conference on Computer Vision,

2019, pp. 8212–8221.

[101] X. Li, G. Lin, C. Shen, A. v. d. Hengel, and A. Dick, “Learning hash functions

using column generation,” arXiv preprint arXiv:1303.0339, 2013.

[102] X. Li, D. Hu, and F. Nie, “Deep binary reconstruction for cross-modal hashing,”

arXiv preprint arXiv:1708.05127, 2017.

[103] ——, “Large graph hashing with spectral rotation,” in AAAI Conference on

Artificial Intelligence, 2017, pp. 2203–2209.

[104] Y. Li, R. Wang, Z. Huang, S. Shan, and X. Chen, “Face video retrieval with

image query via hashing across euclidean space and riemannian manifold,” in

Computer Vision and Pattern Recognition, 2015, pp. 4758–4767.

[105] G. Lin, C. Shen, D. Suter, and A. Van Den Hengel, “A general two-step ap-

proach to learning-based hashing,” in International Conference on Computer

Vision, 2013, pp. 2552–2559.

[106] K. Lin, J. Lu, C.-S. Chen, J. Zhou, and M.-T. Sun, “Unsupervised deep learning

of compact binary descriptors,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 41, no. 6, pp. 1501–1514, 2018.

[107] Z. Lin, G. Ding, J. Han, and J. Wang, “Cross-view retrieval via probability-

based semantics-preserving hashing,” IEEE Transactions on Cybernetics,

vol. 47, no. 12, pp. 4342–4355, 2017.

[108] Z. Lin, G. Ding, M. Hu, and J. Wang, “Semantics-preserving hashing for cross-

view retrieval,” in Computer Vision and Pattern Recognition, 2015, pp. 3864–

3872.

BIBLIOGRAPHY 141

[109] V. E. Liong, J. Lu, Y.-P. Tan, and J. Zhou, “Deep video hashing,” IEEE Trans-

actions on Multimedia, vol. 19, no. 6, pp. 1209–1219, 2017.

[110] C. Liu, S. Gong, C. C. Loy, and X. Lin, “Person re-identification: What features

are important?” in European Conference on Computer Vision. Springer, 2012,

pp. 391–401.

[111] H. Liu, R. Wang, S. Shan, and X. Chen, “Deep supervised hashing for fast image

retrieval,” in Computer Vision and Pattern Recognition, 2016, pp. 2064–2072.

[112] J. Liu, S. Ji, and J. Ye, “Multi-task feature learning via efficient l 2, 1-norm

minimization,” in Proceedings of the Conference on Uncertainty in Artificial

Intelligence. AUAI Press, 2009, pp. 339–348.

[113] L. Liu, Z. Lin, L. Shao, F. Shen, G. Ding, and J. Han, “Sequential discrete

hashing for scalable cross-modality similarity retrieval,” IEEE Transactions on

Image Processing, vol. 26, no. 1, pp. 107–118, 2017.

[114] L. Liu, L. Shao, F. Shen, and M. Yu, “Discretely coding semantic rank orders

for supervised image hashing,” in Computer Vision and Pattern Recognition,

2017, pp. 1425–1434.

[115] L. Liu, M. Yu, and L. Shao, “Latent structure preserving hashing,” Interna-

tional Journal of Computer Vision, vol. 122, no. 3, pp. 439–457, 2017.

[116] W. Liu, C. Mu, S. Kumar, and S.-F. Chang, “Discrete graph hashing,” in

Advances in Neural Information Processing Systems, 2014, pp. 3419–3427.

[117] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised hashing

with kernels,” in Computer Vision and Pattern Recognition. IEEE, 2012, pp.

2074–2081.

[118] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with graphs,” 2011.

[119] X. Liu, C. Deng, B. Lang, D. Tao, and X. Li, “Query-adaptive reciprocal hash

tables for nearest neighbor search,” IEEE Transactions on Image Processing,

vol. 25, no. 2, pp. 907–919, 2015.

[120] X. Liu, J. He, B. Lang, and S.-F. Chang, “Hash bit selection: a unified solution

for selection problems in hashing,” in Computer Vision and Pattern Recognition,

2013, pp. 1570–1577.

BIBLIOGRAPHY 142

[121] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Inter-

national Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[122] J. Lu, V. E. Liong, and J. Zhou, “Deep hashing for scalable image search,”

IEEE Transactions on Image Processing, vol. 26, no. 5, pp. 2352–2367, 2017.

[123] ——, “Simultaneous local binary feature learning and encoding for homo-

geneous and heterogeneous face recognition,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 40, no. 8, pp. 1979–1993, 2017.

[124] J. Lu, V. E. Liong, X. Zhou, and J. Zhou, “Learning compact binary face

descriptor for face recognition,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 37, no. 10, pp. 2041–2056, 2015.

[125] M. Luo, X. Chang, Z. Li, L. Nie, A. G. Hauptmann, and Q. Zheng, “Simple

to complex cross-modal learning to rank,” Computer Vision and Image Under-

standing, vol. 163, pp. 67–77, 2017.

[126] Y. Luo, Y. Yang, F. Shen, Z. Huang, P. Zhou, and H. T. Shen, “Robust discrete

code modeling for supervised hashing,” Pattern Recognition, vol. 75, pp. 128–

135, 2018.

[127] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe lsh:

efficient indexing for high-dimensional similarity search,” in International Con-

ference on Very Large Data Bases. VLDB Endowment, 2007, pp. 950–961.

[128] X.-Q. Ma, C.-C. Yu, X.-X. Chen, and L. Zhou, “Large-scale person re-

identification based on deep hash learning,” Entropy, vol. 21, no. 5, p. 449,

2019.

[129] K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest point detec-

tors,” International Journal of Computer Vision, vol. 60, no. 1, pp. 63–86, 2004.

[130] A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas, “Working hard to know

your neighbor’s margins: Local descriptor learning loss,” in Advances in Neural

Information Processing Systems, 2017, pp. 4826–4837.

[131] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and

accurate method to fool deep neural networks,” in Computer Vision and Pattern

Recognition, 2016, pp. 2574–2582.

BIBLIOGRAPHY 143

[132] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for high dimen-

sional data,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 36, no. 11, pp. 2227–2240, 2014.

[133] E. R. Nascimento, G. Potje, R. Martins, F. Cadar, M. F. Campos, and R. Ba-

jcsy, “Geobit: A geodesic-based binary descriptor invariant to non-rigid defor-

mations for rgb-d images,” in International Conference on Computer Vision,

2019, pp. 10 004–10 012.

[134] X. Nie, W. Jing, C. Cui, J. Zhang, L. Zhu, and Y. Yin, “Joint multi-view

hashing for large-scale near-duplicate video retrieval,” IEEE Transactions on

Knowledge and Data Engineering, pp. 1–1, 2019.

[135] J. Nocedal and S. J. Wright, Sequential quadratic programming. Springer, 2006.

[136] M. Norouzi and D. M. Blei, “Minimal loss hashing for compact binary codes,”

in International Conference on Machine Learning. Citeseer, 2011, pp. 353–360.

[137] M. Norouzi, D. J. Fleet, and R. R. Salakhutdinov, “Hamming distance metric

learning,” in Advances in Neural Information Processing Systems, 2012, pp.

1061–1069.

[138] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and ro-

tation invariant texture classification with local binary patterns,” IEEE Trans-

actions on pattern analysis and machine intelligence, vol. 24, no. 7, pp. 971–987,

2002.

[139] J. Oostveen, T. Kalker, and J. Haitsma, “Feature extraction and a database

strategy for video fingerprinting,” in International Conference on Advances in

Visual Information Systems. Springer, 2002, pp. 117–128.

[140] P. Over, J. Fiscus, G. Sanders, D. Joy, M. Michel, G. Awad, A. Smeaton,

W. Kraaij, and G. Quénot, “Trecvid 2014–an overview of the goals, tasks, data,

evaluation mechanisms and metrics,” in Proceedings of TREC Video Retrieval

Evaluation (TRECVID), 2014, pp. 1–58.

[141] H. Peng, J. He, S. Chen, Y. Wang, and Y. Qiao, “Dual-supervised attention

network for deep cross-modal hashing,” Pattern Recognition Letters, vol. 128,

pp. 333–339, 2019.

BIBLIOGRAPHY 144

[142] Y. Peng, Y. Zhao, and J. Zhang, “Two-stream collaborative learning with

spatial-temporal attention for video classification,” IEEE Transactions on Cir-

cuits and Systems for Video Technology, vol. 29, no. 3, pp. 773–786, 2018.

[143] M. Qian and C. Zhai, “Robust unsupervised feature selection,” in International

Joint Conference on Artificial Intelligence, 2013, pp. 1621–1627.

[144] S. Qiao, R. Wang, S. Shan, and X. Chen, “Deep heterogeneous hashing for face

video retrieval,” IEEE Transactions on Image Processing, vol. 29, pp. 1299–

1312, 2019.

[145] R. Rani, R. Kumar, and A. P. Singh, “Deep learning method based binary

descriptor for object detection,” in Proceedings of International Conference on

Emerging Trends in Information Technology (ICETIT). Springer, 2020, pp.

364–371.

[146] N. Rasiwasia, J. Costa Pereira, E. Coviello, G. Doyle, G. R. Lanckriet, R. Levy,

and N. Vasconcelos, “A new approach to cross-modal multimedia retrieval,” in

ACM Multimedia. ACM, 2010, pp. 251–260.

[147] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet

classification using binary convolutional neural networks,” in European Confer-

ence on Computer Vision. Springer, 2016, pp. 525–542.

[148] E. Rosten and T. Drummond, “Machine learning for high-speed corner de-

tection,” in European Conference on Computer Vision. Springer, 2006, pp.

430–443.

[149] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor queries,” in

ACM Sigmod Record, vol. 24, no. 2. ACM, 1995, pp. 71–79.

[150] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alter-

native to sift or surf,” in International Conference on Computer Vision. IEEE,

2011, pp. 2564–2571.

[151] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory based recurrent

neural network architectures for large vocabulary speech recognition,” arXiv

preprint arXiv:1402.1128, 2014.

[152] R. Salakhutdinov and G. Hinton, “Semantic hashing,” International Journal of

Approximate Reasoning, vol. 50, no. 7, pp. 969–978, 2009.

BIBLIOGRAPHY 145

[153] F. Shen, C. Shen, W. Liu, and H. Tao Shen, “Supervised discrete hashing,” in

Computer Vision and Pattern Recognition, 2015, pp. 37–45.

[154] F. Shen, C. Shen, Q. Shi, A. Van Den Hengel, and Z. Tang, “Inductive hashing

on manifolds,” in Computer Vision and Pattern Recognition, 2013, pp. 1562–

1569.

[155] F. Shen, Y. Xu, L. Liu, Y. Yang, Z. Huang, and H. T. Shen, “Unsupervised deep

hashing with similarity-adaptive and discrete optimization,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 40, no. 12, pp. 3034–3044,

2018.

[156] F. Shen, X. Zhou, Y. Yang, J. Song, H. T. Shen, and D. Tao, “A fast optimiza-

tion method for general binary code learning,” IEEE Transactions on Image

Processing, vol. 25, no. 12, pp. 5610–5621, 2016.

[157] L. Shen, R. Hong, H. Zhang, X. Tian, and M. Wang, “Video retrieval with

similarity-preserving deep temporal hashing,” ACM Transactions on Multime-

dia Computing, Communications, and Applications (TOMM), vol. 15, no. 4,

pp. 1–16, 2019.

[158] Y. Shen, L. Liu, L. Shao, and J. Song, “Deep binaries: Encoding semantic-rich

cues for efficient textual-visual cross retrieval,” in International Conference on

Computer Vision, 2017, pp. 4097–4106.

[159] Y. Shi, X. You, F. Zheng, S. Wang, and Q. Peng, “Equally-guided discrimi-

native hashing for cross-modal retrieval,” in International Joint Conference on

Artificial Intelligence, 2019, pp. 4767–4773.

[160] R. Shinde, A. Goel, P. Gupta, and D. Dutta, “Similarity search and locality

sensitive hashing using ternary content addressable memories,” in Proceedings of

the ACM SIGMOD International Conference on Management of Data. ACM,

2010, pp. 375–386.

[161] H. Shu, W. Jiang, and R. Yu, “Study on weak bit in vote count and its ap-

plication in k-nearest neighbors algorithm,” in IEEE Conference on Industrial

Electronics and Applications (ICIEA). IEEE, 2015, pp. 119–122.

[162] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer,

“Discriminative learning of deep convolutional feature point descriptors,” in

International Conference on Computer Vision, 2015, pp. 118–126.

BIBLIOGRAPHY 146

[163] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action

recognition in videos,” in Advances in Neural Information Processing Systems,

2014, pp. 568–576.

[164] ——, “Very deep convolutional networks for large-scale image recognition,”

arXiv preprint arXiv:1409.1556, 2014.

[165] A. W. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, “Content-

based image retrieval at the end of the early years,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, no. 12, pp. 1349–1380, 2000.

[166] D. Song, W. Liu, R. Ji, D. A. Meyer, and J. R. Smith, “Top rank supervised

binary coding for visual search,” in International Conference on Computer Vi-

sion, 2015, pp. 1922–1930.

[167] J. Song, Y.-Z. Song, T. Xiang, and T. M. Hospedales, “Fine-grained image re-

trieval: the text/sketch input dilemma.” in British Machine Vision Conference,

2017, pp. 1–12.

[168] J. Song, Q. Yu, Y.-Z. Song, T. Xiang, and T. M. Hospedales, “Deep spatial-

semantic attention for fine-grained sketch-based image retrieval,” in Interna-

tional Conference on Computer Vision, 2017, pp. 5551–5560.

[169] J. Song, T. He, L. Gao, X. Xu, A. Hanjalic, and H. T. Shen, “Unified binary

generative adversarial network for image retrieval and compression,” Interna-

tional Journal of Computer Vision, pp. 1–22, 2020.

[170] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen, “Inter-media hashing

for large-scale retrieval from heterogeneous data sources,” in Proceedings of the

ACM SIGMOD International Conference on Management of Data. ACM,

2013, pp. 785–796.

[171] J. Song, Y. Yang, Z. Huang, H. T. Shen, and R. Hong, “Multiple feature hashing

for real-time large scale near-duplicate video retrieval,” in ACM Multimedia.

ACM, 2011, pp. 423–432.

[172] J. Song, Y. Yang, Z. Huang, H. T. Shen, and J. Luo, “Effective multiple feature

hashing for large-scale near-duplicate video retrieval,” IEEE Transactions on

Multimedia, vol. 15, no. 8, pp. 1997–2008, 2013.

BIBLIOGRAPHY 147

[173] J. Song, H. Zhang, X. Li, L. Gao, M. Wang, and R. Hong, “Self-supervised

video hashing with hierarchical binary auto-encoder,” IEEE Transactions on

Image Processing, vol. 27, no. 7, pp. 3210–3221, 2018.

[174] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human

actions classes from videos in the wild,” arXiv preprint arXiv:1212.0402, 2012.

[175] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised learning of

video representations using lstms,” in International Conference on Machine

Learning, 2015, pp. 843–852.

[176] Z. Stejic, Y. Takama, and K. Hirota, “Relevance feedback-based image retrieval

interface incorporating region and feature saliency patterns as visualizable im-

age similarity criteria,” IEEE Transactions on Industrial Electronics, vol. 50,

no. 5, pp. 839–852, 2003.

[177] C. Strecha, A. Bronstein, M. Bronstein, and P. Fua, “Ldahash: Improved

matching with smaller descriptors,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 34, no. 1, pp. 66–78, 2012.

[178] S. Su, Z. Zhong, and C. Zhang, “Deep joint-semantics reconstructing hashing

for large-scale unsupervised cross-modal retrieval,” in International Conference

on Computer Vision, 2019, pp. 3027–3035.

[179] R. Szeliski, Computer vision: algorithms and applications. Springer Science

and Business Media, 2010.

[180] J. Tang, K. Wang, and L. Shao, “Supervised matrix factorization hashing for

cross-modal retrieval,” IEEE Transactions on Image Processing, vol. 25, no. 7,

pp. 3157–3166, 2016.

[181] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland,

D. Borth, and L.-J. Li, “The new data and new challenges in multimedia re-

search,” arXiv preprint arXiv:1503.01817, vol. 1, no. 8, 2015.

[182] Y. Tian, B. Fan, and F. Wu, “L2-net: Deep learning of discriminative patch

descriptor in euclidean space,” in Computer Vision and Pattern Recognition,

2017, pp. 661–669.

BIBLIOGRAPHY 148

[183] T. Trzcinski, M. Christoudias, P. Fua, and V. Lepetit, “Boosting binary key-

point descriptors,” in Computer Vision and Pattern Recognition, 2013, pp.

2874–2881.

[184] T. Trzcinski and V. Lepetit, “Efficient discriminative projections for compact

binary descriptors,” in European Conference on Computer Vision. Springer,

2012, pp. 228–242.

[185] A. Turpin and F. Scholer, “User performance versus precision measures for

simple search tasks,” in Proceedings of the Annual International ACM SIGIR

conference on Research and Development in Information Retrieval. ACM,

2006, pp. 11–18.

[186] R. Veltkamp, H. Burkhardt, and H.-P. Kriegel, State-of-the-art in content-based

image and video retrieval. Springer Science and Business Media, 2013, vol. 22.

[187] A. Wang et al., “An industrial strength audio search algorithm.” in Ismir, vol.

2003. Washington, DC, 2003, pp. 7–13.

[188] D. Wang, X. Gao, X. Wang, L. He, and B. Yuan, “Multimodal discriminative

binary embedding for large-scale cross-modal retrieval,” IEEE Transactions on

Image Processing, vol. 25, no. 10, pp. 4540–4554, 2016.

[189] D. Wang, Q. Wang, and X. Gao, “Robust and flexible discrete hashing for

cross-modal similarity search,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 28, no. 10, pp. 2703–2715, 2017.

[190] ——, “Robust and flexible discrete hashing for cross-modal similarity search,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 28,

no. 10, pp. 2703–2715, 2018.

[191] H. Wang and C. Schmid, “Action recognition with improved trajectories,” in

International Conference on Computer Vision, 2013, pp. 3551–3558.

[192] J. Wang, J. Wang, N. Yu, and S. Li, “Order preserving hashing for approximate

nearest neighbor search,” in ACM Multimedia. ACM, 2013, pp. 133–142.

[193] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for similarity search: A

survey,” arXiv preprint arXiv:1408.2927, 2014.

BIBLIOGRAPHY 149

[194] J. Wang, T. Zhang, N. Sebe, H. T. Shen et al., “A survey on learning to hash,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4,

pp. 769–790, 2017.

[195] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for scalable

image retrieval,” in Computer Vision and Pattern Recognition. IEEE, 2010,

pp. 3424–3431.

[196] ——, “Semi-supervised hashing for large-scale search,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 34, no. 12, pp. 2393–2406, 2012.

[197] J. Wang, W. Liu, S. Kumar, and S.-F. Chang, “Learning to hash for indexing

big data: a survey,” Proceedings of the IEEE, vol. 104, no. 1, pp. 34–57, 2016.

[198] J. Wang, W. Liu, A. X. Sun, and Y.-G. Jiang, “Learning hash codes with

listwise supervision,” in International Conference on Computer Vision, 2013,

pp. 3032–3039.

[199] K. Wang, Q. Yin, W. Wang, S. Wu, and L. Wang, “A comprehensive survey on

cross-modal retrieval,” arXiv preprint arXiv:1607.06215, 2016.

[200] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool, “Tem-

poral segment networks: Towards good practices for deep action recognition,”

in European Conference on Computer Vision. Springer, 2016, pp. 20–36.

[201] Q. Wang, Z. Yuan, Q. Du, and X. Li, “Getnet: A general end-to-end 2-d cnn

framework for hyperspectral image change detection,” IEEE Transactions on

Geoscience and Remote Sensing, pp. 1–11, 2018.

[202] Q. Wang, J. Gao, and Y. Yuan, “A joint convolutional neural networks and

context transfer for street scenes labeling,” IEEE Transactions on Intelligent

Transportation Systems, vol. 19, no. 5, pp. 1457–1470, 2017.

[203] Q. Wang, J. Wan, and Y. Yuan, “Deep metric learning for crowdedness re-

gression,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 28, no. 10, pp. 2633–2643, 2017.

[204] Q. Wang, G. Zhu, and Y. Yuan, “Statistical quantization for similarity search,”

Computer Vision and Image Understanding, vol. 124, pp. 22–30, 2014.

BIBLIOGRAPHY 150

[205] T. Wang, L. Zhu, Z. Cheng, J. Li, and Z. Gao, “Unsupervised deep cross-modal

hashing with virtual label regression,” Neurocomputing, 2019.

[206] W. Wang, B. C. Ooi, X. Yang, D. Zhang, and Y. Zhuang, “Effective multi-

modal retrieval based on stacked auto-encoders,” VLDB Endowment, vol. 7,

no. 8, pp. 649–660, 2014.

[207] X. Wang, L. Gao, P. Wang, X. Sun, and X. Liu, “Two-stream 3-d convnet

fusion for action recognition in videos with arbitrary size and length,” IEEE

Transactions on Multimedia, vol. 20, no. 3, pp. 634–644, 2018.

[208] Y. Wang, X. Nie, Y. Shi, X. Zhou, and Y. Yin, “Attention-based video hashing

for large-scale video retrieval,” IEEE Transactions on Cognitive and Develop-

mental Systems, 2019.

[209] X. Wei, Y. Zhang, Y. Gong, and N. Zheng, “Kernelized subspace pooling for

deep local descriptors,” in Computer Vision and Pattern Recognition, 2018, pp.

1867–1875.

[210] Y. Wei, Y. Zhao, C. Lu, S. Wei, L. Liu, Z. Zhu, and S. Yan, “Cross-modal

retrieval with cnn visual features: A new baseline,” IEEE Transactions on

Cybernetics, vol. 47, no. 2, pp. 449–460, 2017.

[211] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Advances in Neural

Information Processing Systems, 2009, pp. 1753–1760.

[212] Z. Wen and W. Yin, “A feasible method for optimization with orthogonality

constraints,” Mathematical Programming, vol. 142, no. 1-2, pp. 397–434, 2013.

[213] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemo-

metrics and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987.

[214] B. Wu, Q. Yang, W.-S. Zheng, Y. Wang, and J. Wang, “Quantized correla-

tion hashing for fast cross-modal search,” in International Joint Conference on

Artificial Intelligence, 2015, pp. 3946–3952.

[215] F. Wu, Z. Yu, Y. Yang, S. Tang, Y. Zhang, and Y. Zhuang, “Sparse multi-modal

hashing,” IEEE Transactions on Multimedia, vol. 16, no. 2, pp. 427–439, 2013.

BIBLIOGRAPHY 151

[216] G. Wu, Z. Lin, J. Han, L. Liu, G. Ding, B. Zhang, and J. Shen, “Unsuper-

vised deep hashing via binary latent factor models for large-scale cross-modal

retrieval.” in International Joint Conference on Artificial Intelligence, 2018, pp.

2854–2860.

[217] G. Wu, L. Liu, Y. Guo, G. Ding, J. Han, J. Shen, and L. Shao, “Unsupervised

deep video hashing with balanced rotation.” International Joint Conference

on Artificial Intelligence, 2017, pp. 3076–3082.

[218] L. Wu, Y. Wang, and L. Shao, “Cycle-consistent deep generative hashing for

cross-modal retrieval,” IEEE Transactions on Image Processing, vol. 28, no. 4,

pp. 1602–1612, 2018.

[219] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan, “Supervised hashing for image

retrieval via image representation learning.” in AAAI Conference on Artificial

Intelligence, 2014, pp. 2156–2162.

[220] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun database:

Large-scale scene recognition from abbey to zoo,” in Computer Vision and

Pattern Recognition, 2010, pp. 3485–3492.

[221] B. Xu, J. Bu, Y. Lin, C. Chen, X. He, and D. Cai, “Harmonious hashing.” in

International Joint Conference on Artificial Intelligence, 2013, pp. 1820–1826.

[222] R. Xu, C. Li, J. Yan, C. Deng, and X. Liu, “Graph convolutional network hash-

ing for cross-modal retrieval,” in International Joint Conference on Artificial

Intelligence, 2019, pp. 10–16.

[223] X. Xu, F. Shen, Y. Yang, and H. T. Shen, “Discriminant cross-modal hash-

ing,” in Proceedings of the ACM on International Conference on Multimedia

Retrieval. ACM, 2016, pp. 305–308.

[224] C. Yan, X. Bai, S. Wang, J. Zhou, and E. R. Hancock, “Cross-modal hashing

with semantic deep embedding,” Neurocomputing, vol. 337, pp. 58–66, 2019.

[225] C. Yan, H. Xie, S. Liu, J. Yin, Y. Zhang, and Q. Dai, “Effective uyghur language

text detection in complex background images for traffic prompt identification,”

IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 1, pp.

220–229, 2018.

BIBLIOGRAPHY 152

[226] C. Yan, H. Xie, D. Yang, J. Yin, Y. Zhang, and Q. Dai, “Supervised hash coding

with deep neural network for environment perception of intelligent vehicles,”

IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 1, pp.

284–295, 2018.

[227] H. Yang, C. Huang, F. Wang, K. Song, and Z. Yin, “Robust semantic template

matching using a superpixel region binary descriptor,” IEEE Transactions on

Image Processing, vol. 28, no. 6, pp. 3061–3074, 2019.

[228] R. Yang, “New results on some quadratic programming problems,” Ph.D. dis-

sertation, University of Illinois at Urbana-Champaign, 2013.

[229] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou, “L2, 1-norm regular-

ized discriminative feature selection for unsupervised,” in International Joint

Conference on Artificial Intelligence, 2011, pp. 1589–1594.

[230] G. Ye, D. Liu, J. Wang, and S.-F. Chang, “Large-scale video hashing via

structure learning,” in International Conference on Computer Vision, 2013,

pp. 2272–2279.

[231] J. Ye, S. Zhang, T. Huang, and Y. Rui, “Cdbin: Compact discriminative bi-

nary descriptor learned with efficient neural network,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 30, no. 3, pp. 862–874.

[232] P. K. R. Yelampalli, J. Nayak, and V. H. Gaidhane, “A novel binary feature

descriptor to discriminate normal and abnormal chest ct images using dissimi-

larity measures,” Pattern Analysis and Applications, pp. 1–10, 2019.

[233] X. Yu, Y. Tian, F. Porikli, R. Hartley, H. Li, H. Heijnen, and V. Balntas,

“Unsupervised extraction of local image descriptors via relative distance ranking

loss,” in International Conference on Computer Vision Workshops, 2019.

[234] Z. Yu, F. Wu, Y. Yang, Q. Tian, J. Luo, and Y. Zhuang, “Discriminative

coupled dictionary hashing for fast cross-media retrieval,” in Proceedings of

the International ACM SIGIR Conference on Research and Development in

Information Retrieval. ACM, 2014, pp. 395–404.

[235] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and

G. Toderici, “Beyond short snippets: Deep networks for video classification,”

in Computer Vision and Pattern Recognition, 2015, pp. 4694–4702.

BIBLIOGRAPHY 153

[236] C. Zach, T. Pock, and H. Bischof, “A duality based approach for realtime tv-l

1 optical flow,” Pattern Recognition, pp. 214–223, 2007.

[237] S. Zagoruyko and N. Komodakis, “Learning to compare image patches via con-

volutional neural networks,” in Computer Vision and Pattern Recognition, 2015,

pp. 4353–4361.

[238] D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-taught hashing for fast similarity

search,” in Proceedings of the International ACM SIGIR Conference on Re-

search and Development in Information Retrieval. ACM, 2010, pp. 18–25.

[239] D. Zhang and W.-J. Li, “Large-scale supervised multimodal hashing with se-

mantic correlation maximization,” in AAAI Conference on Artificial Intelli-

gence, 2014, pp. 2177–2183.

[240] H. Zhang, M. Wang, R. Hong, and T.-S. Chua, “Play and rewind: Optimizing

binary representations of videos by self-supervised temporal hashing,” in ACM

Multimedia. ACM, 2016, pp. 781–790.

[241] H. Zhang, L. Liu, Y. Long, and L. Shao, “Unsupervised deep hashing with

pseudo labels for scalable image retrieval,” IEEE Transactions on Image Pro-

cessing, vol. 27, no. 4, pp. 1626–1638, 2018.

[242] J. Zhang and Y. Peng, “Multi-pathway generative adversarial hashing for un-

supervised cross-modal retrieval,” IEEE Transactions on Multimedia, vol. 22,

no. 1, pp. 174–187, 2019.

[243] K. Zhang, W.-L. Chao, F. Sha, and K. Grauman, “Video summarization

with long short-term memory,” in European Conference on Computer Vision.

Springer, 2016, pp. 766–782.

[244] P. Zhang, W. Zhang, W.-J. Li, and M. Guo, “Supervised hashing with latent

factor models,” in Proceedings of the International ACM SIGIR Conference on

Research and Development in Information Retrieval. ACM, 2014, pp. 173–182.

[245] Q. Zhang, Y. Liu, R. Blum, J. Han, and D. Tao, “Sparse representation based

multi-sensor image fusion for multi-focus and multi-modality images: A re-

view,” Information Fusion, vol. 40, pp. 57–75, 2018.

BIBLIOGRAPHY 154

[246] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang, “Bit-scalable deep hash-

ing with regularized similarity learning for image retrieval and person re-

identification,” IEEE Transactions on Image Processing, vol. 24, no. 12, pp.

4766–4779, 2015.

[247] Z. Zhang, L. Liu, F. Shen, H. T. Shen, and L. Shao, “Binary multi-view cluster-

ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41,

no. 7, pp. 1774–1782, 2018.

[248] F. Zhao, Y. Huang, L. Wang, and T. Tan, “Deep semantic ranking based hash-

ing for multi-label image retrieval,” in Computer Vision and Pattern Recogni-

tion, 2015, pp. 1556–1564.

[249] J. Zhou, G. Ding, and Y. Guo, “Latent semantic sparse hashing for cross-modal

similarity search,” in Proceedings of the ACM SIGIR Conference on Research

and Development in Information Retrieval. ACM, 2014, pp. 415–424.

[250] F. Zhu, X. Kong, L. Zheng, H. Fu, and Q. Tian, “Part-based deep hashing for

large-scale person re-identification,” IEEE Transactions on Image Processing,

vol. 26, no. 10, pp. 4806–4817, 2017.

[251] X. Zhu, Z. Huang, H. T. Shen, and X. Zhao, “Linear cross-modal hashing for

efficient multimedia search,” in ACM Multimedia. ACM, 2013, pp. 143–152.

[252] M. Zieba, P. Semberecki, T. El-Gaaly, and T. Trzcinski, “Bingan: Learning

compact binary descriptors with a regularized gan,” in Advances in Neural

Information Processing Systems, 2018, pp. 3608–3618.

	Declaration
	Acknowledgements
	Abstract
	List of Publications
	List of Tables
	List of Figures
	List of Acronyms
	List of Algorithms
	Introduction and Background Theory
	Research Background
	Fundamental Theory of Hashing Technique
	Hash Function
	Objective Function Construction
	Optimization Strategy
	Continuous Relaxation
	Alternative Optimization
	Coordinate Descent

	Fast Similarity Search with Hash Code
	Hash Code Ranking
	Hash Table Lookup

	Evaluation Metrics
	Precision@K
	Mean Average Precision
	Precision-Recall Curve
	Receiver Operating Characteristic Curve

	Research Problems and Challenges
	Local Binary Descriptor
	Video Hashing
	Cross-Modality Hashing

	Overview of Contributions
	Thesis Outline

	Literature Review on Hashing-Based Similarity Search
	Single-Modality Similarity Search
	Image Hashing
	Local Feature Descriptor
	Handcrafted Feature Descriptors
	Learning-Based Feature Descriptors

	Video Hashing
	Early Video Hashing
	Deep Learning Based Video Hashing

	Cross-Modality Similarity Search
	Supervised Cross-Modal Hashing
	Unsupervised Cross-Modal Hashing

	Chapter Summary

	Unsupervised Deep Binary Descriptor
	Introduction
	Methodology
	Framework Overview
	Learning Unified Binary Descriptor
	Collective Binary Embedding
	Unsupervised Graph Learning

	Optimization Algorithm
	Wv Step
	B Step
	v Step

	Generating Out-of-Sample Binary Descriptor
	Refined Matching via Weak Bit Selection

	Experiment
	Dataset Descriptions
	Brown
	Cifar-10
	HPatches

	Implementation Details
	Comparisons with State-of-The-Arts
	Results on Brown Dataset
	Results on Cifar-10 Dataset
	Results on HPatches Dataset

	Further Analysis
	Ablation Study
	Transformation Invariance
	Weak Bit Study
	Loss Term
	Parameter Analysis

	Chapter Summary

	Unsupervised Deep Video Hashing
	Introduction
	Proposed Unsupervised Deep Video Hashing
	Deep Video Feature Learning
	UDVH-LSTM
	UDVH-TSN

	Feature Embedding with Pseudo Labels
	Balanced Rotation
	Objective Function and Optimization
	R Step
	B Step
	 Step

	Complexity Analysis
	Discussion

	Experiments
	Datasets and Experimental Setting
	FCVID
	YFCC
	ActivityNet

	Baselines
	Implementation Details
	Evaluation Metrics
	Comparison with State-of-The-Arts
	Results from UDVH-LSTM
	Results from UDVH-TSN
	Discussion

	Architecture Investigation
	Parameter Analysis
	Binarization Investigation
	Loss Function

	Feature Selection
	Efficiency Analysis

	Chapter Summary

	Deep Cross Modal Hashing
	Introduction
	Proposed Method
	Problem Definition
	Deep Architecture
	Regularized Binary Latent Model
	Binary Reconstruction Loss
	Graph Regularization Loss

	Deep Hash Function Learning
	Objective Function and Optimization
	Ui Step
	B Step
	i Step
	i Step

	Computational Complexity
	Extension to Unsupervised Cross-Modal Hashing

	Experiment
	Dataset Descriptions
	Wiki
	MIRFlickr
	NUS-WIDE

	Experiment Settings
	Results and Analysis
	Architecture Investigation
	Overall Comparisons with Baselines
	Top-5 Retrieved Examples for SSDMH
	Effect of Training Data Size
	Parameter Sensitivity Analysis
	Convergence Study
	BGD versus One Entry
	Training Efficiency

	Quantitative Results for UDCMH
	Comparison With State-of-The-Arts
	Training Data Size

	Chapter Summary

	Conclusions and Future Work
	Thesis Summary
	Unsupervised Deep Binary Descriptor
	Unsupervised Deep Video Hashing
	Deep Cross-Modal Hashing

	Future Research Topics
	Hashing for Deep Binary Neural Network
	Online Hashing
	Fine-Grained Retrieval with Weighted Hamming Distance
	Fast Person Re-Identification

	Bibliography

