5,497 research outputs found

    Data-driven performance monitoring, fault detection and dynamic dashboards for offshore wind farms

    Get PDF

    Demonstration of a Standalone, Descriptive, and Predictive Digital Twin of a Floating Offshore Wind Turbine

    Full text link
    Digital Twins bring several benefits for planning, operation, and maintenance of remote offshore assets. In this work, we explain the digital twin concept and the capability level scale in the context of wind energy. Furthermore, we demonstrate a standalone digital twin, a descriptive digital twin, and a prescriptive digital twin of an operational floating offshore wind turbine. The standalone digital twin consists of the virtual representation of the wind turbine and its operating environment. While at this level the digital twin does not evolve with the physical turbine, it can be used during the planning-, design-, and construction phases. At the next level, the descriptive digital twin is built upon the standalone digital twin by enhancing the latter with real data from the turbine. All the data is visualized in virtual reality for informed decision-making. Besides being used for data bundling and visualization, the descriptive digital twin forms the basis for diagnostic, predictive, prescriptive, and autonomous tools. A predictive digital twin is created through the use of weather forecasts, neural networks, and transfer learning. Finally, digital twin technology is discussed in a much wider context of ocean engineering

    Stream Learning in Energy IoT Systems: A Case Study in Combined Cycle Power Plants

    Get PDF
    The prediction of electrical power produced in combined cycle power plants is a key challenge in the electrical power and energy systems field. This power production can vary depending on environmental variables, such as temperature, pressure, and humidity. Thus, the business problem is how to predict the power production as a function of these environmental conditions, in order to maximize the profit. The research community has solved this problem by applying Machine Learning techniques, and has managed to reduce the computational and time costs in comparison with the traditional thermodynamical analysis. Until now, this challenge has been tackled from a batch learning perspective, in which data is assumed to be at rest, and where models do not continuously integrate new information into already constructed models. We present an approach closer to the Big Data and Internet of Things paradigms, in which data are continuously arriving and where models learn incrementally, achieving significant enhancements in terms of data processing (time, memory and computational costs), and obtaining competitive performances. This work compares and examines the hourly electrical power prediction of several streaming regressors, and discusses about the best technique in terms of time processing and predictive performance to be applied on this streaming scenario.This work has been partially supported by the EU project iDev40. This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 783163. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Austria, Germany, Belgium, Italy, Spain, Romania. It has also been supported by the Basque Government (Spain) through the project VIRTUAL (KK-2018/00096), and by Ministerio de Economía y Competitividad of Spain (Grant Ref. TIN2017-85887-C2-2-P)

    2020 Projects Day Booklet

    Get PDF
    https://scholarworks.seattleu.edu/projects-day/1035/thumbnail.jp

    Design and research of VLCC vessel virtual marine engine room

    Get PDF

    Machine learning solutions for maintenance of power plants

    Get PDF
    The primary goal of this work is to present analysis of current market for predictive maintenance software solutions applicable to a generic coal/gas-fired thermal power plant, as well as to present a brief discussion on the related developments of the near future. This type of solutions is in essence an advanced condition monitoring technique, that is used to continuously monitor entire plants and detect sensor reading deviations via correlative calculations. This approach allows for malfunction forecasting well in advance to a malfunction itself and any possible unforeseen consequences. Predictive maintenance software solutions employ primitive artificial intelligence in the form of machine learning (ML) algorithms to provide early detection of signal deviation. Before analyzing existing ML based solutions, structure and theory behind the processes of coal/gas driven power plants is going to be discussed to emphasize the necessity of predictive maintenance for optimal and reliable operation. Subjects to be discussed are: basic theory (thermodynamics and electrodynamics), primary machinery types, automation systems and data transmission, typical faults and condition monitoring techniques that are also often used in tandem with ML. Additionally, the basic theory on the main machine learning techniques related to malfunction prediction is going to be briefly presented

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Artificial intelligence for digital twins in energy systems and turbomachinery: development of machine learning frameworks for design, optimization and maintenance

    Get PDF
    The expression Industry4.0 identifies a new industrial paradigm that includes the development of Cyber-Physical Systems (CPS) and Digital Twins promoting the use of Big-Data, Internet of Things (IoT) and Artificial Intelligence (AI) tools. Digital Twins aims to build a dynamic environment in which, with the help of vertical, horizontal and end-to-end integration among industrial processes, smart technologies can communicate and exchange data to analyze and solve production problems, increase productivity and provide cost, time and energy savings. Specifically in the energy systems field, the introduction of AI technologies can lead to significant improvements in both machine design and optimization and maintenance procedures. Over the past decade, data from engineering processes have grown in scale. In fact, the use of more technologically sophisticated sensors and the increase in available computing power have enabled both experimental measurements and highresolution numerical simulations, making available an enormous amount of data on the performance of energy systems. Therefore, to build a Digital Twin model capable of exploring these unorganized data pools collected from massive and heterogeneous resources, new Artificial Intelligence and Machine Learning strategies need to be developed. In light of the exponential growth in the use of smart technologies in manufacturing processes, this thesis aims at enhancing traditional approaches to the design, analysis, and optimization phases of turbomachinery and energy systems, which today are still predominantly based on empirical procedures or computationally intensive CFD-based optimizations. This improvement is made possible by the implementation of Digital Twins models, which, being based primarily on the use of Machine Learning that exploits performance Big-Data collected from energy systems, are acknowledged as crucial technologies to remain competitive in the dynamic energy production landscape. The introduction of Digital Twin models changes the overall structure of design and maintenance approaches and results in modern support tools that facilitate real-time informed decision making. In addition, the introduction of supervised learning algorithms facilitates the exploration of the design space by providing easy-to-run analytical models, which can also be used as cost functions in multi-objective optimization problems, avoiding the need for time-consuming numerical simulations or experimental campaings. Unsupervised learning methods can be applied, for example, to extract new insights from turbomachinery performance data and improve designers’ understanding of blade-flow interaction. Alternatively, Artificial Intelligence frameworks can be developed for Condition-Based Maintenance, allowing the transition from preventive to predictive maintenance. This thesis can be conceptually divided into two parts. The first reviews the state of the art of Cyber-Physical Systems and Digital Twins, highlighting the crucial role of Artificial Intelligence in supporting informed decision making during the design, optimization, and maintenance phases of energy systems. The second part covers the development of Machine Learning strategies to improve the classical approach to turbomachinery design and maintenance strategies for energy systems by exploiting data from numerical simulations, experimental campaigns, and sensor datasets (SCADA). The different Machine Learning approaches adopted include clustering algorithms, regression algorithms and dimensionality reduction techniques: Autoencoder and Principal Component Analysis. A first work shows the potential of unsupervised learning approaches (clustering algorithms) in exploring a Design of Experiment of 76 numerical simulations for turbomachinery design purposes. The second work takes advantage of a nonsequential experimental dataset, measured on a rotating turbine rig characterized by 48 blades divided into 7 sectors that share the same baseline rotor geometry but have different tip designs, to infer and dissect the causal relationship among different tip geometries and unsteady aero-thermodynamic performance via a novel Machine-Learning procedure based on dimensionality reduction techniques. The last application proposes a new anomaly detection framework for gensets in DH networks, based on SCADA data that exploits and compares the performance of regression algorithms such as XGBoost and Multi-layer Perceptron
    • …
    corecore