6,269 research outputs found

    STREAM-EVOLVING BOT DETECTION FRAMEWORK USING GRAPH-BASED AND FEATURE-BASED APPROACHES FOR IDENTIFYING SOCIAL BOTS ON TWITTER

    Get PDF
    This dissertation focuses on the problem of evolving social bots in online social networks, particularly Twitter. Such accounts spread misinformation and inflate social network content to mislead the masses. The main objective of this dissertation is to propose a stream-based evolving bot detection framework (SEBD), which was constructed using both graph- and feature-based models. It was built using Python, a real-time streaming engine (Apache Kafka version 3.2), and our pretrained model (bot multi-view graph attention network (Bot-MGAT)). The feature-based model was used to identify predictive features for bot detection and evaluate the SEBD predictions. The graph-based model was used to facilitate multiview graph attention networks (GATs) with fellowship links to build our framework for predicting account labels from streams. A probably approximately correct learning framework was applied to confirm the accuracy and confidence levels of SEBD.The results showed that the SEBD can effectively identify bots from streams and profile features are sufficient for detecting social bots. The pretrained Bot-MGAT model uses fellowship links to reveal hidden information that can aid in identifying bot accounts. The significant contributions of this study are the development of a stream based bot detection framework for detecting social bots based on a given hashtag and the proposal of a hybrid approach for feature selection to identify predictive features for identifying bot accounts. Our findings indicate that Twitter has a higher percentage of active bots than humans in hashtags. The results indicated that stream-based detection is more effective than offline detection by achieving accuracy score 96.9%. Finally, semi supervised learning (SSL) can solve the issue of labeled data in bot detection tasks

    Privacy, Space and Time: a Survey on Privacy-Preserving Continuous Data Publishing

    Get PDF
    Sensors, portable devices, and location-based services, generate massive amounts of geo-tagged, and/or location- and user-related data on a daily basis. The manipulation of such data is useful in numerous application domains, e.g., healthcare, intelligent buildings, and traffic monitoring, to name a few. A high percentage of these data carry information of users\u27 activities and other personal details, and thus their manipulation and sharing arise concerns about the privacy of the individuals involved. To enable the secure—from the users\u27 privacy perspective—data sharing, researchers have already proposed various seminal techniques for the protection of users\u27 privacy. However, the continuous fashion in which data are generated nowadays, and the high availability of external sources of information, pose more threats and add extra challenges to the problem. In this survey, we visit the works done on data privacy for continuous data publishing, and report on the proposed solutions, with a special focus on solutions concerning location or geo-referenced data

    Profiling relational data: a survey

    Get PDF
    Profiling data to determine metadata about a given dataset is an important and frequent activity of any IT professional and researcher and is necessary for various use-cases. It encompasses a vast array of methods to examine datasets and produce metadata. Among the simpler results are statistics, such as the number of null values and distinct values in a column, its data type, or the most frequent patterns of its data values. Metadata that are more difficult to compute involve multiple columns, namely correlations, unique column combinations, functional dependencies, and inclusion dependencies. Further techniques detect conditional properties of the dataset at hand. This survey provides a classification of data profiling tasks and comprehensively reviews the state of the art for each class. In addition, we review data profiling tools and systems from research and industry. We conclude with an outlook on the future of data profiling beyond traditional profiling tasks and beyond relational databases

    Proceedings of 2010 Kentucky Water Resources Annual Symposium

    Get PDF
    This conference was planned and conducted as part of the state water resources research annual program with the support and collaboration of the Department of the Interior, U.S. Geological Survey and the University of Kentucky Research Foundation, under Grant Agreement Number 06HQGR0087. The views and conclusions contained in this document and presented at the symposium are those of the abstract authors and presenters and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government or other symposium organizers and sponsors

    The Best Explanation:Beyond Right and Wrong in Question Answering

    Get PDF

    Data stream processing meets the Advanced Metering Infrastructure: possibilities, challenges and applications

    Get PDF
    Distribution of electricity is changing.Energy production is increasingly distributed, weather dependent and located in the distribution network, close to consumers.Energy consumption is increasing throughout society and the electrification of transportation is driving distribution networks closer to the limits.Operating the networks closer to their limits also increases the risk for faults.Continuous monitoring of the distribution network closest to the customers is needed in order to mitigate this risk.The Advanced Metering Infrastructure introduced smart meters throughout the distribution network.Data stream processing is a computing paradigm that offers low latency results from analysis on large volumes of the data.This thesis investigates the possibilities and challenges for continuous monitoring that are created when the Advanced Metering Infrastructure and data stream processing meet.The challenges that are addressed in the thesis are efficient processing of unordered (also called out-of-order) data and efficient usage of the computational resources present in the Advanced Metering Infrastructure.Contributions towards more efficient processing of out-of-order data are made with eChIDNA and TinTiN. Both are systems that utilize knowledge about smart meter data to directly produce results where possible and storing only data that is relevant for late data in order to produce updated results when such late data arrives. eChIDNA is integrated in the streaming query itself, while TinTiN is a streaming middleware that can be applied to streaming queries in order to make them resilient against out-of-order data.Eventual determinism is defined in order to formally investigate the deterministic properties of output produced by such systems.Contributions towards efficient usage of the computational resources of the Advanced Metering Infrastructure are made with the application LoCoVolt.LoCoVolt implements a monitoring algorithm that can run on equipment that is localized in the communication infrastructure of the Advanced Metering Infrastructure and can take advantage of the overlap between the communication and distribution networks.All contributions are evaluated on hardware that is available in current AMI systems, using large scale data obtained from a real production AMI

    A survey on opinion summarization technique s for social media

    Get PDF
    The volume of data on the social media is huge and even keeps increasing. The need for efficient processing of this extensive information resulted in increasing research interest in knowledge engineering tasks such as Opinion Summarization. This survey shows the current opinion summarization challenges for social media, then the necessary pre-summarization steps like preprocessing, features extraction, noise elimination, and handling of synonym features. Next, it covers the various approaches used in opinion summarization like Visualization, Abstractive, Aspect based, Query-focused, Real Time, Update Summarization, and highlight other Opinion Summarization approaches such as Contrastive, Concept-based, Community Detection, Domain Specific, Bilingual, Social Bookmarking, and Social Media Sampling. It covers the different datasets used in opinion summarization and future work suggested in each technique. Finally, it provides different ways for evaluating opinion summarization
    corecore