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Abstract

Distribution of electricity is changing. Energy production is increasingly
distributed, weather dependent and located in the distribution network, close
to consumers. Energy consumption is increasing throughout society and the
electrification of transportation is driving distribution networks closer to the
limits.

Operating the networks closer to their limits also increases the risk for faults.
Continuous monitoring of the distribution network closest to the customers is
needed in order to mitigate this risk. The Advanced Metering Infrastructure
introduced smart meters throughout the distribution network. Data stream
processing is a computing paradigm that offers low latency results from analysis
on large volumes of the data. This thesis investigates the possibilities and
challenges for continuous monitoring that are created when the Advanced
Metering Infrastructure and data stream processing meet.

The challenges that are addressed in the thesis are efficient processing of un-
ordered (also called out-of-order) data and efficient usage of the computational
resources present in the Advanced Metering Infrastructure.

Contributions towards more efficient processing of out-of-order data are
made with eChIDNA and TinTiN. Both are systems that utilize knowledge
about smart meter data to directly produce results where possible and storing
only data that is relevant for late data in order to produce updated results when
such late data arrives. eChIDNA is integrated in the streaming query itself,
while TinTiN is a streaming middleware that can be applied to streaming queries
in order to make them resilient against out-of-order data. Eventual determinism
is defined in order to formally investigate the deterministic properties of output
produced by such systems.

Contributions towards efficient usage of the computational resources of the
Advanced Metering Infrastructure are made with the application LoCoVolt.
LoCoVolt implements a monitoring algorithm that can run on equipment that
is localized in the communication infrastructure of the Advanced Metering In-
frastructure and can take advantage of the overlap between the communication
and distribution networks.

All contributions are evaluated on hardware that is available in current
AMI systems, using large scale data obtained from a real production AMI.
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Chapter 1

Overview

1.1 Introduction

The power distribution network takes electricity from local producers as well
as the transmission network and distributes this to the energy consumers on
the network. To minimize losses on the network, incoming electricity from
the transmission network is distributed at a medium voltage (1kV-50kV) to
substations where the voltage is transformed to low voltage (100V-240V) to
which most customers are connected [1].

Measuring is an integral part of power distribution. The medium voltage
distribution network can be connected to a Supervisory Control And Data
Acquisition (SCADA) system [2]. Such systems contain sensors and remote
controlled devices that operators use to monitor and control the distribution
network. The low voltage distribution network is typically not connected to a
SCADA system. Measurements in the low voltage distribution network were
historically mainly for billing.

Smart Meters were introduced in the electricity grid in order to automate
meter readings. The smart meters are part of the Advanced Metering In-
frastructure (AMI) together with a communication network and servers [3].
This infrastructure can read the meters at a regular interval without human
intervention.

Before the introduction of the AMI, meters were read manually by utility
personnel, e.g. once a year. The AMI made it possible to increase the reading
frequency and legislators have used this opportunity. Utilities in Sweden are
required to be able to read smart meters every 15 minutes, starting 2025 [4].

The introduction of the AMI has not been the only change in the energy
distribution network. Roof based photo-voltaic systems are installed in the
distribution network, introducing local power generation. Electricity consump-
tion patterns are also changing with for example the increasing penetration of
electric cars.

Changes like these put increasing amounts of stress on the low voltage
distribution network. For example reversing the flow of power when the sun
shines, or power consumption close to the maximum ratings when customers
in neighbourhoods come home from work and start charging their cars.

More stress on the low voltage distribution network increases the risk for
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faults. Faults are inconvenient, can be dangerous and are expensive to repair.
Continuous and near real time monitoring can mitigate this risk by allowing
the utility to take appropriate action before the fault occurs. The AMI with
its smart meters offer the possibility for monitoring, however this means that
the measurements for hundreds of thousands of meters must be processed
continuously and with low latency in order to provide information while it is
still relevant.

It would also be advantageous to be able to process parts of the data
collected by smart meters closer to the source. Energy consumption data needs
to be collected and stored for billing, but there is, for example, hardly any need
to store voltage data from every smart meter in the grid. Voltage data can
instead be processed and analyzed close to the source, forwarding only relevant
results to the central server. This can reduce the load on the communication
network as well as the cost of data transport.

Possibilities

The data stream processing paradigm allows processing of massive, unbounded
data sets while producing results in near real time [5]. The massive amount of
smart meters in the AMI continuously produce data and monitoring applications
benefit from results with low latency. Therefore, the data stream processing
paradigm could be a good match for such monitoring applications. In this
paradigm, a continuous query processes input without the need to first store
this input on disk. The need to store data is reduced, since data can be
processed immediately and only the relevant results need to be stored. The
store-then-process paradigm on the other hand first stores all input data before
periodically running the query on a batch of input data.

Monitoring the low voltage distribution network ensures its reliability. More
general analysis of the data produced by smart meters can result in valuable
information, for example detection of fraud or non-technical losses [6]. Such
information has economic value for the utility, but is also important for the
safety of the distribution network and its users. Matching of demand and
supply [7,/8] is another example of an application that can benefit from the
data gathered through continuous monitoring.

Challenges

However, the data stream processing paradigm, applied to the AMI, comes
with new challenges. The following challenges are in the scope of this thesis:

Out-of-order data Readings from the smart meters do not necessarily arrive
to the utilities’ servers in timestamp order. Data that does not arrive
in timestamp order is throughout this thesis referred to as out-of-order
data. A main reason for this is latency in the communication network.
Data that arrives out-of-order is problematic if the analysis depends on
multiple readings, which is often the case. The analysis could for example
consist of identifying occurrences of a pattern in the energy consumption
of an individual smart meter. Analyzing the data out-of-order might miss
occurrences of patterns or even find occurrences where there are none if
data is analyzed in order. A straightforward solution to data arriving
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out-of-order would be to wait until all data has arrived, sort the data
and then process it. However such a solution also means that results are
delayed by the amount of time that is spent waiting. Smart meter data
can be days or even weeks late. A monitoring application that monitors
the state of the low voltage network several weeks ago is not very useful.
A more sophisticated solution is required for monitoring applications.

Deployment strategy Related to the out-of-order challenge is the question
where to run the analysis of the data. Every device in the AMI, from the
smart meters to the servers, comes with some amount of computational
resources. This enables the possibility to analyze data at different places
in the infrastructure. Running analysis at the smart meter means that all
data will be in order, but the computing resources are limited. Computing
resources are more readily available at the central servers, but the amount
of out-of-order data will be larger, since every transportation step towards
the server can cause delays.

1.2 Preliminaries

This section presents the Advanced Metering Infrastructure as well as the data
stream processing paradigm in more detail.

1.2.1 Advanced Metering Infrastructures

Every customer of a utility pays for the energy that they consume. A smart
meter measures the consumed energy and ensures that the customer pays for
the right amount of energy. The meter is installed close to where the energy is
consumed. Most smart meters are installed in the low-voltage (400 V line to
line) distribution network since that is where most customers are connected.

History in Sweden

AMI rollouts are taking place all over the world and have reached various states
of completion [9]. Sweden was the first European country to complete the large
scale introduction of the Advanced Metering Infrastructure (AMI) in 2009 [10].
The main driver for the introduction was the requirement to read meters every
month starting July 2009. Prior to July 2009, meters were manually read, e.g.
once per year.

Automated Meter Reading was the main use case for the AMI systems
introduced in Sweden in 2009. The smart meters in the systems read the
active energy consumption and send this to the utility on a monthly basis.
Since 2009, the legal requirements on the smart meters have increased. All
customers in Sweden can opt to have their meter read every hour since 2012. All
installed smart meters must be able to read every 15 minutes starting January
2025. From that date meters must also be able to read both production and
consumption of active and reactive energy as well as voltage, current and
power [4].



4 CHAPTER 1. OVERVIEW

Smart Meters

Smart meters are metering devices that perform measurements, send these
measurements to the utility and send events or alerts. Smart meters can be
equipped with a breaker that can be used to remotely connect or disconnect a
customer from the grid [11].

Smart electricity meters measure the voltage, current and the phase angle
between these in order to calculate power and electricity consumption. Con-
sumed active electric energy has been of most interest for utilities since that
is what customers are billed for. Meters can measure the cumulative energy
consumption, i.e. the total amount of energy consumed since the meter was
installed, the amount of energy consumed during predefined intervals, or both.
All readings are timestamped using a local clock in the smart meter.

An important property of smart meter readings is that they are periodic.
The utility sets the periodicity, for example daily, hourly or every 15 minutes.
For example, a smart meter with hourly periodicity creates a reading every
time a new hour starts for the internal clock in the meter. This also implies
that the timestamp of every reading is the start of an hour. For example, a
reading that is taken at midnight on new year’s day 2020 will have timestamp
2020-01-01 00:00:00.

Modern smart meters can measure and report production and consumption
of active and reactive power, voltage, current and phase angle. Some meters can
even measure the harmonic distortion on the voltage and current, a measure
that indicates the amount of high frequency noise on the grid.

Aside from reporting measurements, smart meters can also generate and
send events. Such events can for example be generated when there is a power
outage or when the measured voltage is outside of a predefined interval.

Communication Networks

An integral part of the AMI is the communication network, which allows the
smart meters to communicate with the servers at the utility. Many different
kinds of communication networks are used over the world [12]. The most
prevalent techniques are presented in the following list.

Powerline communication utilizes the grid for communication [13]. Smart
meters send their data to a concentrator unit located in the transformer
that the electricity cable connects to. The electricity cables that deliver
power to the smart meter are the same as the cables that are used for
communication. For this reason, there is perfect overlap between the
communication network and the low voltage grid.

Cellular communication is point to point between smart meters and the
central server. A cellular technology such as GPRS, 3G, 4G/LTE is used.
More modern technologies include LTE-M and NB-IoT [14].

Radio mesh allows smart meters to connect to concentrator units with radio
technology, e.g. ZigBee |15]. Smart meters serve as repeater nodes
in order to increase the range of the network. Radio mesh networks
can be dynamic, in which case smart meters can connect to another
concentrator unit if the connection quality is insufficient [16]. Like
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powerline communication, radio mesh networks provide overlap between
the communication network and the low voltage grid. The overlap is not
perfect however, since the optimal radio links do not necessarily follow
the power lines.

Common for all networks is that there can be temporary failures that can
cause data to arrive late or not at all. Packet routing is another common cause
for out-of-order data [17].

Communication networks consist of different components where some are
common to all networks. Starting at the smart meter, all networks require
a communication module present in, or connected to, the smart meter. The
module is the link between the smart meter and the rest of the communication
network. Radio mesh networks or powerline communication have intermediary
nodes that collect data from multiple smart meters. Different manufacturers
have different names for such nodes, throughout the thesis they are referred
to as Concentrator Units (CU). Finally, there is one or more central servers
located at the utility with the possibility to scale out to the private or public
cloud [18].

Servers

CUs

Smart Meters

Figure 1.1: Hierarchy of components in the AMI. A large number of smart meters
make up the bottom layer. The middle layer containing CUs is optional. Smart meters
either connect to a CU or directly to the server layer at the top.

The components of the communication network can be structured in a
hierarchy as illustrated in Smart meters make up the bottom
layer in the hierarchy. If CUs are present in the network they make up the
middle layer and the central servers the top layer. shows a schematic
overview of a part of a low voltage distribution network where smart meters
are connected to CUs with a radio mesh network.

Analysis of data could take place on all layers in the communication network.
Every layer offers their own advantages and disadvantages.

The edge-computing paradigm |19] utilizes the nodes on the edge, in this
case the smart meters, for analysis. The computational resources of a smart
meter are limited. A smart meter doesn’t have access to more data than what it
can measure itself. For example, analysis that compares the measured voltage
with the voltage measured by another meter, connected to the same cable, is
not possible. An advantage of analysis at the smart meter is that data has not
been transported and is therefore in order.
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Figure 1.2: Smart meters (SM) are connected to a transformer (T1/T2) in the
distribution network. A radio link to a concentrator unit (CU1/CU2) connects the
smart meters to the communication network. Note that there is overlap between the
two networks.

Fog computing [20] moves the analysis of data closer to the source, but not
directly at the source like the edge computing paradigm. In the smart meter
case, fog computing could take place on the middle layer of the communication
infrastructure, containing the CUs. This layer offers more, but still limited,
computational resources, compared with the bottom layer. Concentrators can
connect to multiple smart meters and therefore the example where the voltage
of two smart meters is compared is possible on this layer. Since data needs to
be transported from the smart meter to the concentrator, it is possible that
data is out-of-order.

The central server at the top layer has virtually unlimited access to com-
putational resources by having the possibility to scale out to the cloud. All
data that is collected by the AMI is available at the server, enabling advanced
analysis. It is even possible to connect to other servers at the utility to obtain
more data, for example the topology of the grid. A disadvantage of analysis on
the servers is that data received from either smart meters or concentrators can
be out-of-order.

1.2.2 Data stream processing

In the data stream processing paradigm, data is continuously processed by a
streaming query |21]. The query produces results while data is passing through
it, enabling data stream processing to deliver results with very little latency.
The paradigm can be implemented with custom programming, but is also
implemented in more general Stream Processing Engines (SPE).

Aurora [22] was one of the first SPEs to be introduced. The goal of
the system was to enable real-time monitoring applications with unbounded
data. The Borealis SPE [23| introduced scalability to multiple machines, and
StreamCloud [24] added elasticity. These developments made stream processing
engines an alternative to traditional databases.

One of the main differences between running queries on a databases and
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Table 1.1: Example of smart meter data received by the central server.

Arrival time Meter ID  Reading (kWh) Timestamp

2020-01-01 12:03 123456 1000 2020-01-01 12:00
2020-01-01 13:04 123456 1002 2020-01-01 13:00
2020-01-01 15:58 123456 1005 2020-01-01 15:00
2020-01-08 21:38 123456 2876 2020-01-01 14:00

a streaming query, is that the query on the database is executed on demand
while the streaming query is executed continuously with incoming data. The
difference between the approaches as well as the general concepts in data stream
processing will be illustrated with the following example from the AMI domain.

Illustrative example The amount of energy used by a customer during one
hour is limited by a fuse. A fuse will break if a current larger than its rating
flows through it. This provides an upper limit on the energy consumption
during an hour and any consumption exceeding this limit must be due to a
faulty meter reading. Faulty meter readings are problematic for many reasons,
including billing and any further analysis based upon the faulty reading. A
utility might for example be interested in the sum of all energy consumption
and production in a neighbourhood to know the direction of power flow. A
faulty reading could make the difference between power flowing towards the
neighbourhood or from it. Therefore a utility will want to validate all readings
and identify faulty readings in order to solve the underlying problem as fast as
possible.

Often, smart meters only measure the cumulative energy consumption,
which means that the hourly consumption needs to be calculated by subtracting
the reading of hour ¢t — 1 from the reading of hour ¢.

An example of smart meter data is provided in The reading for
timestamp 2020-01-01 14:00 arrives at the central server one week after it was
created by the meter. The hourly consumption between 13:00 and 14:00 cannot
be calculated before this reading has arrived, i.e. not before 2020-01-08 21:38.

If a query, run on a database, is used for this validation, first all incoming
data is stored in the database. Periodically, the query is executed and selects
all new readings to combine those with the readings for the hour before. If
the difference between these consecutive readings exceeds the fuse limit, the
readings can be updated and written to the database again. Note that data
might arrive out-of-order as mentioned in so a reading for the hour
before might not exist in the database yet. Data might need to be read multiple
times before it is either possible to verify whether the hourly consumption does
not exceed the limit set by the fuse, or that it will never be possible to verify
this because the earlier reading will never arrive.

The next section introduces the concepts in data stream processing that are
required to understand the data stream processing approach to the validation
example.
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Operators and continuous queries

A Stream Processing Engine (SPE) continuously reads new input data and
feeds this data to the continuous query which consists of operators arranged
in a directed graph. Operators are located at the nodes in the graph and the
edges that connect them represent streams. shows the query for the
data validation example.

Data travels through the graph in the form of tuples, the streaming equivalent
of a row in a database table. Tuples in a specific stream in the graph all share
the same schema, analogous to all rows in a database table sharing the same
columns. A schema consists of a number of attributes. The smart meter
readings from our example consist of three attributes: an ID for the smart
meter, the timestamp when the reading was created and the reading itself.
The schemas for all streams in the example can be found in angle brackets in
The SPE transports the input tuples to the first operator in the
graph.

Operators can either be stateless or stateful. Stateful operators accumulate
state from previous input in order to calculate the output. The amount of
state that is accumulated is controlled by the window of the operator. For our
example, an operator with a window of size two, performing keyed analysis by
meter ID, could be used to find the difference between two readings. The output
from this operator would have a different schema, for example smart meter ID,
timestamp, reading, difference with previous reading. Stateful operators can
perform their operation on the incoming tuples either based upon a key or not.
It is for example possible to get the daily energy consumption per smart meter,
or for all meters combined.

Basic stateful operators are:

Aggregate operators have a single input stream and use multiple tuples from
the stream for an operation. The operation can either be computed
incrementally, for example a sum, or can be computed on buffered data
if incremental computation is not possible. It outputs a stream with the
result of the operation.

Join operators buffer tuples from two input streams and join these based on a
predicate. A join operator could for example join a tuple a from stream
A with a tuple b from stream B if the value of one of the attributes of a
exceeds a threshold. The join operator outputs a stream with tuples that
are joined, i.e. the schema of the output stream contains attributes from
both input streams.

Stateless operators perform an operation on a tuple without requiring more
information than what is carried by that tuple. Basic stateless operators are:

Filter operators allow tuples to pass if a condition based on the value of one
or more attributes is fulfilled. For example, only tuples where the value
of an attribute exceeds a bound are allowed to pass.

Map operators apply a change to the schema of the input stream to create a
new schema for the output stream. A map operator could for example
remove one of the attributes of the incoming tuples.
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Figure 1.3: The continuous query for the validation example. An aggregate operator
processes the input data. The window size (WS) of the operator is two hours and
window advance (WA) is one hour. The operator calculates the difference between
the readings in the window and outputs tuples where this delta is included. The filter
operator allows only tuples to pass where the delta exceeds a threshold. The schemas
of the streams are noted in angle brackets.

Time

Stream processing engines can use time to track stream progress, group tuples
or to decide when an operator should execute its operation. However there are
two different notions of time in data stream processing. Time can either be
processing time or event time.

Processing time is the wall clock time of the machine that is running the
analysis. For example, an operator with a window with size two hours and
advance one hour (all in processing time) will contain all input that the operator
receives during two hours. The window will shift every hour.

Event time on the other hand uses the timestamps in the input data as
clock. The same example operator where the window size and advance is
instead measured in event time, will contain all input data that has timestamps
in the interval spanned by the window. The window will shift based upon the
progressing of time by the timestamps in the input stream.

Windows

As mentioned in stateful operators work on a window of tuples.
The window can either be a sliding window which moves over the input stream
to keep a specific portion of the stream, or it can be a landmark window.
Landmark windows are separated by so called landmarks in the stream, e.g.
tuples where the value of an attribute exceeds a threshold [25]. One could also
use the start of the execution as a landmark, for example to keep track of the
largest value ever observed for a certain attribute.

The work described in this thesis does not use any landmark windows, all
windows from here on refer to sliding windows.

All windows have a size and an advance, controlling how the window moves
over the stream. A window covering a specific portion of the stream, is referred
to as a window instance. For example, a window with size five and advance
four, has a window instance that starts at every multiple of four. Tumbling
windows are a special case of sliding windows where the advance of the window
equals the size. The units for the size and advance are either time based or
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count based. The example query contains an aggregate operator with a (event)
time-based window. The window size is two hours, the advance one hour.

The aggregate operator in the example query calculates the hourly electricity
consumption. It does this by taking the difference between two readings from
a smart meter that are one hour apart in time. It is necessary to use a time
based window since the readings might arrive out-of-order. If readings are
periodic and always arrive in order, the window could instead be count based.
In that case the window size would be two and the advance one.

Note that the example is simple for illustrative purposes, a more advanced

query can be found in

Metrics

The performance of a streaming query can be assessed with the following
metrics:

Throughput measures the amount of tuples that a streaming query can
process per unit of time. This metric is dependent on the SPE used
and the computational resources of the used hardware. This must be
taken into account when comparing the throughput of different streaming
queries.

Processing latency measures the wall-clock time between (i) the production
of a result by the streaming query and (ii), the ingestion of the last input
required for this result to be produced. Like throughput, this metric
depends on the SPE and hardware used.

Logical latency is similar to processing latency, but is instead measured with
event time. The logical latency of a result is the difference between
the timestamp of the result and the highest timestamp observed by the
SPE when this result is produced. For example, if a result for 08:00 is
produced when the SPE is processing data with timestamp 18:00, the
logical latency of the result with timestamp 08:00 is ten hours. This
metric is independent of the hardware used, but instead depends on the
out-of-orderness of the input stream and the strategy used to deal with
the out-of-order tuples.

Determinism is not a quantitative metric, but instead qualitative. A stream-
ing query is deterministic if the results produced are independent of
the order of the input data. This property is especially important for
streaming queries that e.g. identify occurrences of patterns. For example,
consider the data validation query and the data in The reading
for 2020-01-01 14:00 arrives one week late. If the query does not wait for
this reading to arrive, it can not determine that the reading is invalid. A
query that doesn’t wait for late arrivals would be able to determine the
reading invalid only if it would have arrived in order.

1.3 Research Challenges

Data stream processing offers new possibilities when combined with data from
AMI systems. Continuous validation of data from all smart meters enables
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monitoring and analysis of events in the low voltage distribution grid. However
applying data stream processing to smart meter data introduces new challenges.

1.3.1 Out-of-order data

As mentioned in [section 1.2.1] some AMI data is prone to arrive out-of-order.
Common causes are network latencies and temporary problems in the commu-
nication network. Out-of-order data in data stream processing is not something
that is exclusive to AMIs. Different approaches to deal with out-of-order data
exist [26]. All approaches try to find a balance between logical latency and
determinism, since it is not possible to produce deterministic results when not
all the relevant data is present for the computation.

The best approach for an application depends on the requirements. Some
applications require deterministic results, while others benefit from fast yet
possibly incomplete results [27],28].

A straightforward approach to data that arrives out-of-order would be to
wait until all the late data has arrived before sorting and processing it. This
sacrifices logical latency but enables determinism. Such an approach is often
impractical though, because there might not be a good answer to the question:
How long to wait before one can be certain that all data has arrived. Even if
the question has an answer, it might not be feasible to store and sort incoming
data before processing. The amount of data to store could for example be
prohibitively large. The logical latency of results also increases with longer
waiting times, reducing the timeliness of the results.

Methods that utilize the concept of slack [22] try to balance logical latency
and determinism. Methods based on slack will wait some amount of time for
late arrivals before processing data. This results in deterministic results if all
input data arrives within this slack time. Data that arrives later is discarded
and cannot contribute to the results that the query produces.

Modern slack-based methods such as EQ-K-slack [29] use dynamic slack,
where the system analyzes the lateness distribution of late arrivals in order to
achieve a chosen result accuracy while minimizing the amount of slack.

An alternative approach to deal with out-of-order data is incorporated
in the dataflow model [5] which is the model behind major SPEs as Apache
Flink [30], Apache Beam [31] and Google Cloud Dataflow [32]. An allowed
lateness parameter in the model controls which late data is allowed in a window
instance and which data is discarded. The model allows multiple evaluations
of a single window instance, e.g. once when the majority of the input data
has arrived and once more when late data may have arrived in the window
instance. This approach can produce multiple results for any single timestamp
and key in the output but gives no guarantees on determinism.

A concept that controls the logical latency in systems based on the dataflow
model is watermarks. Watermarks track the progress of event time throughout
the streaming query. A watermark with timestamp ts tells operators that no
tuples with timestamps smaller than ts will arrive. Operators can use water-
marks to determine which window instances should be evaluated. Watermarks
can either flow through the graph as punctuation [33] or be tracked by a central
server as in Google Cloud Dataflow [5].

All of these approaches lead to results that either have a unusable large
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logical latency, i.e. results can not be delivered timely, or are not deterministic,
i.e. the results are not calculated with all the relevant data. Besides, none of
the approaches can take advantage of the fact that AMI data is periodic, which
leads to the following research question:

Research question 1

Given that readings from smart meters are periodic, is it possible to improve
regarding logical latency and to balance the trade-off between determinism and
logical latency?

1.3.2 Deployment strategy

The AMI infrastructure can be viewed as a hierarchy as described in
and in This infrastructure could be utilized for analysis since
computing power exists on all layers in the hierarchy. Every layer comes with
its own advantages and disadvantages, influencing the deployment strategy of
a streaming query.

The bottom layer of the hierarchy consists of the smart meters themselves.
One of the main advantages of running analysis on the smart meter is that
data access is fast and free. There is no need to transfer data over the network,
instead only the results from the analysis need to be transferred, minimizing
costs associated with data transport. Minimizing the amount of data that is
transported over the network is also preferable from a privacy point of view [34].
Another advantage that stems from processing data at its source is that the
data is guaranteed to be ordered.

While there advantages for analysis on the bottom layer, there are significant
disadvantages as well. Smart meters have limited computational resources
and have only access to local data, i.e. data from the meter itself. Data that
needs to be transported to the central server might undergo changes along the
way. Such changes could be intentional, e.g. some calculation or correction, or
unintentional due to hardware problems or software bugs. There is little point
in analyzing data that might be changed or corrected at the central server,
providing another disadvantage of running analysis at the smart meter.

A more promising layer for analysis is the middle layer. Any Concentrator
Units (CUs) in the infrastructure are located in the middle layer of the hierarchy.
Computational resources are still limited on this level, but useful amounts
are available, comparable with single-board devices like RaspberryPi [35] or
Odroid [36]. CUs connect to multiple smart meters, allowing analysis that de-
pends on data from multiple meters. The number of meters that are connected
to a single CU can range from tens to thousands or even tens of thousands,
depending on the communication technology and implementation choices [37].
Which specific meters connect to a CU depends on the communication tech-
nology as well as the topology of the distribution network and the physical
topology, e.g. hills or buildings in the area. Wireless mesh networks can be
dynamic, allowing meters to switch between CUs [16]. There will nonethe-
less be overlap between the topology of the communication network and the
distribution network. Smart meter data can arrive to the CU out-of-order,
datapoints could even be missing due to faults or meters switching to another
CU.
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The central servers in the top of the hierarchy have best access to computa-
tional resources. Even scaling out to cloud-infrastructure could be an option at
this level. Another advantage of this level is that data from all smart meters
is available, as well as data from other systems at the utility. Disadvantages
of running analysis in the top level include that data can be out-of-order and
the cost to transport all data through all components of the communication
infrastructure.

There is an abundance of work that utilizes central servers or cloud infras-
tructure for streaming applications related to AMIs and the possibilities for
analysis on the smart meters themselves are limited. This leaves the following
research question:

Research question 2

Given that the middle layer in the communication infrastructure has over-
lap with the distribution network, is it possible to design and run efficient
monitoring applications on the concentrator units that leverage this?

1.4 Contributions

The contributions of this thesis to the research questions are presented in this
section.

1.4.1 Intra-query out-of-order processing

presents eChiDNA: a streaming validation system for energy con-
sumption data from the AMI. eChIDNA calculates and validates the hourly
consumption and identifies patterns of invalid hourly consumptions. Alerts for
invalid readings are triggered as a step towards automatic correction of errors.

Since smart meter data is not perfectly ordered, there must be a trade
off between determinism and logical latency. The system capitalizes on the
fact that smart meter readings are periodic to optimize the trade off. The
aggregation operators in eChIDNAs continuous query produce results on the
available input and store only input that will be relevant for late arrivals.
Late arrivals are processed as soon as they arrive. This approach produces all
results that a deterministic system operating on sorted data would produce at
significant lower logical latency.

eChIDNA is implemented in Apache Storm [38] and evaluated with real
world data collected from 270 000 smart meters from a production AMI. The
validation results are compared with the ground truth, as provided by system
experts, and show that identification of patterns of invalid readings can reduce
the time required from human operators. The performance results show that
thousands of tuples per second can be validated with low processing latency.

1.4.2 Middleware-based out-of-order processing

contributes to the research question in [subsection 1.3.1| by formaliz-

ing the concept of D-bounded eventual determinism and proposing TinTiN, a
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streaming middleware that can deliver such determinism for streaming aggre-
gation applications.

D-bounded eventual determinism allows for multiple results for a given key
and timestamp, but guarantees that the final result, produced for this key and
timestamp, is equal to the deterministic result which would have been obtained
if the input data was ordered.

TinTiN supplies eventual determinism for applications by storing input
data that is required to process late arrivals, similar to eChIDNA. Yet where
eChIDNA stores data in all of its aggregation operators, TinTiN stores relevant
data directly from the input stream.

TinTiN minimizes the logical latency for results that can be obtained with
the data that arrives in order by forwarding such data directly to the streaming
application it is providing eventual determinism for. Upon arrival of late
data, the relevant input is forwarded so that updated results can be produced.
TinTiN is implemented in Apache Flink [30] and evaluated with real world
data from 50 000 smart meters.

Not only does TinTiN drastically reduce the logical latency, also the pro-
cessing performance is improved with an order of magnitude compared with a
state-of-the-art solution that waits for time proportional to D before processing
the data and generating deterministic results.

1.4.3 Distributed voltage monitoring

An alternative approach to handling out-of-order data is to run the analysis
closer to the source, where a smaller amount of data will be out-of-order, if any.
This approach is chosen in where analysis of smart meter voltage
data takes place at the CU level in the communication infrastructure.

Apart from providing an alternative answer to research question 1,
also addresses research question 2, by proposing LoCoVolt (Local Comparison
of Voltages).

LoCoVolt’s purpose is to identify smart meters that stop accurately mea-
suring the voltage. Inaccurate voltage measurements influence the energy
consumption readings, leading to incorrect bills. Being able to detect such
faulty meters also increases safety, since undetected high voltages can be
dangerous for both humans and installed equipment.

Detection of faulty meters is accomplished by monitoring the actual and
historical voltage difference for every pair of smart meters that are connected
to the same CU and hence are physically close. Smart meters can report other
meters as suspicious based upon the voltage differences and the correlation in
the voltage measurements.

LoCoVolt contributes to research question 2 by proposing and implementing
the algorithm described above, detecting malfunctioning smart meters at
the middle layer of the AMI’s communication infrastructure. The system
is implemented in Apache Flink and evaluated with real world voltage data
collected from 939 smart meters at 26 CUs, and runs on resource-constrained
hardware with computational resources that are comparable to a CU. LoCoVolt
shows that streaming processing on the CUs on the middle layer can deliver
efficient and effective monitoring tools that can take advantage of the overlap
between the communication infrastructure and the low voltage distribution
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network.

1.4.4 Industrial Relevance

This thesis does not only provide contributions targeting the research questions
in it also shows that the contributions could be implemented
directly in existing AMI systems. All proposed systems are evaluated on
hardware that is currently available in existing AMI systems. The data used
for evaluation is large scale and gathered directly from an AMI system that is
running production data in Gothenburg, Sweden. A validation system based
upon the work in this thesis has been implemented in a prototype system and
is currently being tested.

1.5 Conclusions and Future Work

Continuous monitoring of the low voltage distribution network is increasingly re-
quired when the stress on the network is increased by local electricity production
and increased consumption.

This thesis shows that one way to achieve this monitoring lies in the meeting
between data stream processing and the Advanced Metering Infrastructure.

Out-of-order processing of AMI data and efficient usage of the computational
resources present in the AMI are challenges that are studied in this thesis.
Out-of-order processing is addressed in this thesis by (i) modified aggregation
operators that are capable to deal with data that arrives out-of-order, (ii) a
middleware solution that can take care of the out-of-order data as well as
(iii) optimal placement of the analysis in the infrastructure. The thesis also
shows that placement of analysis at the middle layer of the communication
infrastructure is especially efficient for monitoring applications that can leverage
the overlap between the communication network and the low voltage distribution
network.

All contributions are evaluated on hardware that is available in current
AMI systems, using large scale data obtained from a real production AMI. The
proposed systems can be deployed at utilities with minimal effort, prototype
solutions have already been implemented at Géteborg Energi and are currently
under evaluation.

A future line of research that could improve out-of-order handling even
more is to investigate if the Stream Processing Engine itself can become aware
of missing input data and how this affects the results that it produces.

This thesis focuses on continuous monitoring of the low voltage distribution
network. Continuous monitoring is one of the two major parts of a low voltage
SCADA system, with the second part being control. The introduction of
connected inverters for solar power as well as demand side flexibility with for
example smart chargers for electric cars, increase the possibility to actively
control the state of the low voltage distribution network. More research is
needed to investigate the role of AMI data and data stream processing in this
control of the low voltage distribution network in order to complete the low
voltage SCADA system.
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Abstract

New laws and regulations increase the demands for a more data-intense metering
infrastructure towards more adaptive electricity networks (aka smart grids).
The automatic measuring, often involving wireless communication, introduces
errors both in software and during data transmission.

These demands, as well as the large data volumes that need to be validated,
present new challenges to utilities. First, measurement errors cannot be allowed
to propagate to the data stored by utilities. Second, manual fixing of errors after
storing is not a feasible option with increasing data volumes and decreasing
lead times for new services and analysis. Third, validation is not only to be
applied to current readings but also to past readings when new types of errors
are discovered.

This paper addresses these issues by proposing a hybrid system, eChIDNA,
utilizing both the store-then-process and the data streaming processing paradigms,
enabling for high throughput, low latency distributed and parallel analysis.
Validation rules are built upon this paradigm and then implemented on the
state of the art Apache Storm Stream Processing Engine to assess performance.
Furthermore, patterns of common errors are matched, triggering alerts as a
first step towards automatic correction of errors.

The system is evaluated with production data from hundreds of thousands
of smart meters. The results show a performance in the thousands messages
per second realm, showing that stream processing can be used to validate
large volumes of meter data online with low processing latency, identifying
common errors as they appear. The results from the pattern matching are
cross-validated with system experts and show that pattern matching is a viable
way to minimize time required from human operators.
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2.1 Introduction

The development of an enhanced electricity grid has moved forward both
technologically and politically in recent years. One driving force is an increased
measurement rate, as a number of countries introduce mandatory hourly billing.
When consumers are given the option to pay for their electricity based on the
demand at that particular time of day, they gain a higher degree of control
over their energy bills by facilitating energy efficiency. Shorter measurement
intervals also open up new possibilities in load forecasting with the potential of
tailoring electricity production to the consumption and increasing the amount
of renewable energy.

These new requirements have lead to the construction of Advanced Metering
Infrastructures (AMIs): networks of smart meters and data concentrator units
that measure consumption and report it to the utility. These devices offer
reduced computational power and can be remotely controlled.

Together with AMIs, the utility data analysis infrastructure also needs
to be adjusted to accept the roughly 700 times increase in data that hourly
readings give compared to monthly readings. Shorter sampling periods, such
as 15 minutes, have been evaluated in a research setting and can improve load
forecasting accuracy compared to hourly readings [1]. It is therefore reasonable
to expect further increases in data rates.

This increasing amount of data collected by AMIs is known to be error
prone, far from the clean and complete measurement series required for load
forecasting or billing. Measurements can arrive out-of-order, duplicated or
not at all, sometimes owing to communication losses and re-transmissions
particularly common in wireless infrastructures. Erroneous measurements can
be caused by meters that are broken, software issues or even by malicious
users looking to decrease their electricity costs by unlawful means. These
errors threaten the increasing quality demanded from the meter values by new
applications such as demand-response and real time pricing. Therefore, all
data collected must be swiftly validated and corrected if necessary.

2.1.1 Challenges

A system aiming to solve this validation problem faces several challenges. The
first challenge is to process and validate this large volume of data with low
latency before storing, billing or other analysis is run on the data. Fluctuating
data rates and out-of-order readings contribute to this challenge as well as
erroneous measurements.

The second challenge is continuously updating the validation rules and
leveraging system expert knowledge. This is needed because new errors may
arise at any moment and are usually identified by a human operator at some
point in time. Closing the control loop creates an iterative learning process
where the human controller finds new problems and subsequently uses the
validation engine to find other instances of these problems (possibly re-running
the validation for previous data to find earlier occurrences of a certain error).

Finally the third challenge is to run the analysis in a distributed and parallel
fashion leveraging the cumulative computational power of AMIs’ smart meters
and data concentrators. Data concentrators could for example validate and
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compare voltage levels in the network for all meters in a specific area, forwarding
only validated data to the utility.

2.1.2 Related work

Since the early 2000s, the data streaming paradigm has emerged as an alter-
native to traditional databases when it comes to processing large amounts
of data in real-time. Among the many applications are financial trading and
market analysis, as well as network intrusion detection and monitoring of
denial of service attacks. Traditional databases are not designed to support
this kind of streaming data and in response to these new challenges, Aurora
was developed as one of the first SPEs [2]. Aurora was designed to run on
a single machine without the possibility of distributing the work. Building
upon the functionality of Aurora, among other works, Borealis, an SPE that
can scale to several machines, was developed [23]. More recently, systems like
StreamCloud [4] have been presented for improved scalability. Others have
been released as open source software, like Apache Flink [30], Apache Spark [6],
Apache Storm [38] and S4 [§].

Stream processing in the context of AMIs has been explored since 2010.
Several different applications have been found for SPEs in this area, including
Intrusion Detection Systems (IDSs) [9], real-time pricing [10] and adaptive
measurement rates [11]. Data validation with a simplified system model was
investigated in [12]. Here we designed and implemented a system that is directly
deployable at a real world utility.

Out-of-orderness is a problem where two concepts have become prevalent:
punctuation [13] and variations thereof (heartbeats |14, Window ID [15], out-
of-order-processing [16]) and K-slack [17]. Common for these methods is that
processing is halted until missing data has arrived unless too much time has
passed after which special action is needed. Here we instead implemented a
custom sorting mechanism that allows for processing all arrived data even if
some values are missing.

2.1.3 Contributions

In this paper we introduce eChIDNA, a Kappa architecture [18] that ad-
dresses these challenges relying both on the traditional store-then-process
(database) paradigm and the data streaming processing paradigm. The stream-
ing paradigm has been proposed as an alternative to the traditional store-
then-process (database) paradigm by applications demanding high processing
capacity and low processing latency.

A prototype of eChIDNA has been implemented, extending the system of
the utility providing the real use-cases we studied. The streaming analysis is
performed relying on the state of the art Apache Storm [38] Stream Processing
Engine (SPE). We evaluate the system both in terms of efficiency as well as
performance and the results are compared with the ground truth provided by
system experts.

The rest of the paper is organized as follows: the system model is introduced
in Section In Section we discuss the architecture of eChIDNA. The
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Table 2.1: Format of tuples containing meter readings.

Attribute Description

tn timestamp

met, meter ID

loc location ID

cc cumulative consumption
cd consumption delta

evaluation is presented in Section Finally the conclusions are presented in

Section 2.5

2.2 System model

Metering data at a utility typically goes from the smart meters in the AMI
through concentrator units and the head-end before being stored and processed
in a Meter Data Management system (MDM).

2.2.1 Advanced Metering Infrastructure

AMIs are composed of a multitude of different devices; smart meters that
measure the energy or water consumption, concentrators that collect the
readings from the meters and forward these to the central server. The meters
and concentrators in the field have limited memory and processing capabilities
and can be organized in different topologies (e.g., point-to-point, hierarchical
or mesh ones).

The smart meters can save the amount of consumed energy in different
ways. The cumulative consumption since startup can be stored together with
a timestamp at regular time intervals, a consumption delta - the amount of
energy used between two timestamps - can be stored, or both. Readings are
sent to the central server regularly after which they are stored in the Meter
Data Management (MDM) system. The bulk of the data will have arrived
within 24 hours but the server will continue waiting for data to arrive. If it has
not arrived with a certain amount of days D4, it is considered lost. Dy, is
typically in the order of days or weeks, yet regulations and future applications
like real time pricing demand fast processing of data. Data must therefore be
processed as soon as it is available even if some intermediate readings in the
stream may not have arrived yet.

2.2.2 Data streaming

In the streaming data paradigm, a Stream Processing Engine (SPE) is used
to process streams of data in a distributed and parallel fashion. Data is
represented in tuples with a common schema, composed by a timestamp ¢,, and
a set of attributes (Aj, As, ..., Ay). A schema for tuples with meter readings
is presented in table The operation of an SPE relies on viewing data as a
flow of such tuples from beginning to end. The incoming data therefore consists
of an unbounded stream of tuples. To extract meaningful information from



2.3. ARCHITECTURE 25
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Figure 2.1: A topology that finds the highest consumption value, the highest number
of kWh drawn for specified time period, in a stream of consumption values. The first
group of “Find largest” nodes are running in parallel, possibly on different machines.
The last “Find largest” needs to be a single process to summarize the results.

these tuples, continuous queries in the form of Directed Acyclic Graphs, DAGs,
are formed. Edges in the DAG correspond to the flow of data between the
operations, represented by vertices. Operations can be for example filters that
drop tuples that do not fulfill certain criteria, mappers that transform tuples or
union operations that merge several streams into one. All these are examples of
stateless operations, they consider only a single tuple when producing a result.
Another type of operators are the stateful ones, for example aggregate which
performs a computation over several tuples in a single stream and join which
combines tuples from several streams. A common way of performing aggregate
operations is by using a (sliding) window. To handle the unbounded stream of
tuples, only the latest tuples are considered. For example, a time-based window
can contain all tuples from the last five hours and a tuple-based window can
contain the 10 latest tuples.

The results of a continuous query can be alarms that are triggered or
a modified data stream saved to a dedicated database. An example of a
continuous query that finds the highest measured power consumption in a
distributed manner can be found in figure [2.1}

2.3 Architecture

Here we describe the architecture of a system that can deal with the problems
and challenges mentioned in Section 2.1} eChIDNA consists of two modules:
data ingestion and validation. The latter in turn is composed of two submodules,
single- and composite event detection, as shown in figure[2.2] The data ingestion
module takes care of the incoming real time data from the different AMI systems
as well as the historical data from the MDM system. The module parses the
incoming data into tuples with a uniform format in order to maximize the
systems interoperability. The tuples outputted from the data ingestion module
are read into the validation module. Errors identified by the single event
detection are sent to the composite event detection submodule, which finds
common composite errors made up by sequences of these single events.
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Composite event
detection

rule changes pattern
changes
validation B matches

errors

validated
readings

SYSTEM EXPERT

Figure 2.2: An overview of the eChIDNA architecture. Data from one or more
AMI systems and/or historical data from the MDM are read by the data ingestion
module. The validation module is composed by two submodules: The single event
triggers validate individual tuples and the composite event detection that looks for
patterns in the single events. Validated data is stored in the MDM, while validation
errors are sent to a system expert. New validation rules and patterns can be submitted
by the system expert.

2.3.1 Data ingestion

The data that is read into eChIDNA can either come from one or more AMI
systems or, when data needs to be reprocessed, from the MDM. The data
from different AMI systems, which in turn could have multiple meter brands
and models, can have different formats. For example meters could send the
cumulative consumption, a consumption delta for a fixed time period (eg. day,
hour, 15 minutes), or both. Therefore the data ingestion module parses the data
into a uniform tuple format presented in table Because many validation
rules require a consumption delta, these are calculated by eChIDNA, if not
already present, by taking two consecutive tuples and computing the difference
in the cumulated consumption. Data that has been processed by the entire
system can be moved away or simply removed since reprocessing can always
be done from the persistent storage in the MDM.

The calculation of the consumption delta is straightforward when all tuples
arrive in order, but becomes more challenging when tuples are missing or out of
order. There is extensive research dealing with tuples arriving out of order, as
described in Section Common for these methods is that the processing for
a meter is halted until missing tuples have arrived. This makes these methods
not compliant with the system requirements:

[a] Data must be processed as soon as possible.
[b] Data may arrive with a maximum delay D,,qz

Therefore we developed a tailored sorting mechanism described below.

A tuple 7.t,, with timestamp ¢, is used to calculate the consumption delta
between t,,_; and t,, as well as the delta between ¢,, and ¢,,+1. This implies
that 7.t,, cannot be discarded until both 7.t,,_; and 7.t,41 have arrived.

The sorting mechanism must thus keep track of which tuples have been
fully processed and does this by using intervals. An interval spans between two
timestamps and denotes that all tuples inside of the interval have been processed.
An interval [n..m] for example indicates that tuples with a timestamp between
n and m have been processed. A tuple 7.t,, which can not attach to a existing
interval will start a new interval [n..n], spanning between n and n. At the
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Table 2.2: Single event triggers and their identifiers.

Representation Validation error

N Negative consumption
Z Zero consumption
H Above fuse level

arrival of 7.t,1, this interval is expanded to [n..n 4+ 1] while neither of the
tuples is discarded yet. As T.f,42 arrives the interval is expanded to [n..n + 2]
and 7.t,41 is discarded after the consumption deltas have been calculated.
This approach allows us to store only the tuples that are still waiting to be
processed. In case of out-of-order tuples, multiple intervals will be present
to account for the tuples that are processed. Two intervals merge when the
missing tuples between them arrive and are processed. Intervals and tuples
with timestamps that exceed the maximum allowed delay D,, .. are deleted.

This mechanism accumulates state during system operation, the tuples
that have not been processed completely as well as the intervals themselves.
Persisting the state at a regular time interval and saving the input tuples
processed during this interval ensures a robust system that can cope with
crashes.

2.3.2 Validation modules and rule design

A basis for further analysis, the validation rules lay the groundwork on which
the system is built. eChIDNA’s architecture allows for rapid implementation
and testing of new validation rules, both for single- and composite events.

2.3.2.1 Single event detection sub-module

Single event triggers contain a check for some condition and will output an
identifier if this condition is met. The identifiers are stored for every meter in
a sliding window of size D,,.,. Triggers can indicate an error of some kind
in the meter reading, but can also be used to find other events. These events
could then be used as a building block for composite events. Some examples
for both types of triggers are described below.

la) Negative values: As described in Section the system model does
not allow negative consumption deltas. Such deltas therefore always indicate
an error of some kind.

1b) Zero consumption: Zero consumption is not an error in itself, but can
be part of a bigger problem. This trigger but can be a useful building block
for finding composite errors. For example, a longer period without energy
consumption may be important to look at more closely.

1c) Above fuse level: As a maximum value for electricity consumption, the
fuse provides a hard limit. For every individual meter, information about the
installed fuses is available and has been used to calculate this limit. Although
a fuse may temporarily allow values above its rating, it cannot sustain it over
time and therefore consumption above this limit triggers an alert. This alert
can be caused by a technical error, but it can also be caused by a customer
who has installed a fuse with higher rating. Whether intentional or not, this



28 CHAPTER 2. ECHIDNA

needs to be corrected since the network tariffs for the consumer depends on
the installed fuse.

2.3.2.2 Composite event detection sub-module

The errors described above can be part of a larger problem. Issues with
hardware or software can give rise to so-called composite errors that can be
identified by considering the ordering and kind of errors that have been reported
for a smart meter. Automatic identification of these errors is a first step towards
automated correction, which would save substantial amounts of time for human
operators. In order to identify such errors automatically, a formal pattern
matching framework is needed.

One common system for pattern matching is reqular expressions, a search
pattern defined by a character string. In order to apply regular expressions
to the errors caught by the validation rules, they first need to be transformed
into a string that can be matched by a regular expression. There is additional
information that needs to be captured apart from the string of errors, for
example finding if an error occurred at a specific time of day. If a match is
found that also passes through these kinds of validation, it can be considered
an instance of a composite error.

The sliding window where the errors found by the validation rules are
saved contains timestamp ordered errors. Since there is a maximum delay
for meter values, the size of the window is bounded by D,,q,. Matching is
performed every time an error is found. The patterns for composite errors have
a maximum length which is used to only look for matches within a partition
of the stored errors. Matching an error with length [ at timestamp t,, will
consider values with a timestamp between ¢,,_;_1) and Z,, 1) to ensure that
every possible interval of length [ containing the timestamp ¢,, is processed.

In order to match the errors with a regular expression, representations of
the errors within the matching interval are concatenated into an error string.
The expression "HN’ for example, using the identifiers specified in table
will match every time a consumption delta exceeding the fuse value is followed
by a negative consumption value. Matches to the regular expression are
complemented with the start and end times for the match, so that additional
properties, like the timestamp of a specific event, may be tested for.

Due to the fact that partitions of the stored errors that are matched by
regular expressions can overlap, there is a risk of finding some composite errors
several times. This is illustrated by the following example: Consider the string
with three high values followed by a negative value: '"HHHN’. The expression
"H.0-2N’; a high consumption value followed by a negative consumption and at
most 2 values in between, will match three times for the substrings '"HHHN’,
"HHN’, and "HN’. For this reason, the start and end of any matched composite
error is stored. In case a match is completely covered by a previously matched
error, that match is not considered.

2.4 Evaluation

eChIDNA’s accuracy is evaluated and compared with results from a system
expert. The efficiency is evaluated as well. The throughput measured in
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Table 2.3: Number of matches for each validation rule in thousands. The total
number of values analyzed is approximately 200 million.

Validation rule Matches
Zero consumption 4000
Negative consumption 1.5
Above fuse 5.5

processed tuples per second while the latency is defined as the time between
system output and the most recent tuple that caused the output. The evaluation
ran with 30 days of data for the validation rules, of which 12 days were used
to assess the composite event detection capabilities.

2.4.1 Evalution setup

The data that is used for eChIDNA comes from an AMI with approx. 270 000
meters, 7 000 concentrator units and a central server. The meters register the
cumulative consumption every hour. Produced energy is either not measured
or recorded in a different register, guaranteeing that consumption values are
monotonically increasing. The meters are queried for their readings by the
concentrators twice a day. The concentrators send the data to the central server
for processing. The maximum delay D4, for this AMI is 40 days. eChIDNA
taps into the data stream between the central server of the AMI and the MDM,
where the data is batched and persistent on disk. The tuples contain a meterID,
locationID, timestamp and cumulative consumption for every reading.

The efficiency of the system is evaluated on existing hardware available at
the utility. It runs on a virtual server with two AMD Opteron processing cores
at 2.6 GHz and 4GB of RAM. This server runs Apache Kafka [39] as input and
message queue in the data ingestion module while the consumption deltas are
calculated by the SPE Apache Storm [38]. The validation module also runs
on Apache Storm. Pyleus, a framework enabling the use of Python topologies
on Storm, was used in consultation with system experts for usability reasons.
Storm (and Pyleus) use topologies to represent the Directed Acyclic Graphs.
The vertices in the DAG are called bolts. Reading the persistent file data into
Apache Kafka is also performed on the server.

2.4.2 Validation accuracy

The single event detection was evaluated using the data produced by smart
meters during one month, out of which twelve days were used to compare
the results from the composite event detection with the results from a system
expert.

2.4.2.1 Single event detection

All single event triggers in Section [2.3.2.1] were enabled: zero and negative
consumption, and above fuse. The number of errors found for each validation
rule can be seen in table Approximately 2% of all processed values trigger
a validation rule, the absolute majority of these values have zero consumption.
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Table 2.4: Ezample of consumption values from a meter with a rushing and reversing
pattern.

timestamp 18 19 20 21 22 | 23 24
consumption | 2.1 | 184.6 | 78.9 | 4.7 | 3.8 | 2.7 | -204.2

2.4.2.2 Composite event detection

To evaluate this in eChIDNA, an expression was defined in collaboration with
a system expert, to identify meters suffering from a specific hardware failure
common in the data from the used AMI. This failure expresses itself in the
consumption values with a specific pattern: rushing and reversing. This pattern
contains one or more extremely high consumption deltas during the day and
a large negative consumption delta, that compensates the earlier large ones,
at midnight. An example can be seen in table The regular expression
for this pattern was inputted in the system and was matched 640 times in
one month of data. During a twelve day testing period, a system expert was
asked to note all meters diagnosed with the hardware failure. 190 meters were
identified. eChIDNA diagnosed 116 meters as experiencing this problem during
the testing period, so a true positive rate of 61% was obtained for the hardware
failures using the rushing and reversing pattern. The 39% of false negatives
were investigated with help from the system expert and decomposed in the six
cases following below. See also figure 2.3

Missing data is the main cause for the false negative meters, the hardware
failure not only causes errors in the consumption values but also affects the
communication between the meter and the concentrator unit. Three cases
where the root cause is missing data were identified: 1: only negative, 2: only
high and 3: reversed. The only negative case accounts for 23% of the false
negative meters. For these meters no extremely high consumption deltas were
found, only the negative delta at midnight was identified. The only high case,
accounting for 22%, is the opposite: No negative delta was found, only the
extremely high consumption deltas. Reversed, at 14%, is a combination of the
previous two cases were only the negative delta was found during one day, and
only extremely high values were found the day after, ie. a reversed version of
the original pattern. Another large group of false negatives, 4: end time at
38%, did have both extremely large consumption deltas and negative deltas,
but the negative deltas did not occur at midnight. Instead these deltas occured
at some other hour during the day. A case with 1% of the false negatives, 5:
two days, contains meters where the correcting negative consumption delta
did not occur the same day as the extremely high values but instead the day
after. Finally, 6: unseen data with the last 2% is made up of meters where
the system expert used data that arrived after the twelve day test period to
diagnose the meters. This data was never analyzed by eChIDNA and therefore
the pattern was not matched.

This decomposition shows that the original expression was not broad enough
to identify all meters experiencing the hardware failure. The knowledge gained
by the system expert during the decomposition can now be used to improve
the expression and the kappa architecture can be leveraged to re-validate the
data when new expressions are in place. This shows the importance of system
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1: only negative
2: only high

3: reversed

4: end time

5: two days

6: unseen data

Percentage

Figure 2.3: The siz different cases for errors caused by a specific hardware failure
not being matched by the original pattern.

expert feedback to the system, enabling swift improvements and maximizing
the validation accuracy, closing the control loop.

2.4.3 Efficiency

The throughput of the system is defined as the number of tuples processed per
second and the maximum throughput was found by running the topology with
live data and increasing the input rate step by step until the CPU usage was
at 100%.

The latency of the system is defined as follows: The time between output
from the system and the arrival of the latest tuple that triggered the output.
With this definition, the highest latency observed while processing data from
270 000 smart meters, was 4 seconds.

The throughput measured was 1 500 tuples per second on hardware with
the processing power of contemporary deployed or immediately-deployable
equipment. This means that the system has the potential to validate 5.4
million consumption values every hour. Only 5% of this capacity is required
for the validation of the 270 000 hourly readings in the system. The remaining
capacity can be used to deal with possible arrival bursts or for validation of 19
days of historic data every day.

2.5 Conclusion

The introduction of smart meters and legislation has given rise to a greatly
increasing number of processed meter values at utilities. At the same time
the quality demanded of these values has been increasing as well due to new
applications, driving the need for a fast and accurate validation. Validation
of live production data is complicated by out of order data and fluctuating
data rates as well as the appearance of new problems. These problems can
be cause by updates, hardware failure or other, often hard to foresee, sources.
For this reason a live architecture, with system experts in the loop, is required
until full automation can take over. In this paper, we have discussed how the
data streaming processing paradigm in a kappa architecture can be used to
provide scalable and adaptable validation for both real time and historical
data. An implementation built in Kafka and Storm, eChiDNA, shows that data
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for millions of meters reporting hourly values can be validated on commodity
hardware, with a configurable validation rule set. These results encourage
the continued efforts in this direction, with more advanced types of validation
detecting deviations from known distributions, rapid changes, even patterns
that may indicate malfunctioning measurements.
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Abstract

Cyber-Physical Systems (CPS) rely on data stream processing for high-throughput,
low-latency analysis with correctness and accuracy guarantees (building on
deterministic execution) for monitoring, safety or security applications. The
trade-offs in processing performance and results’ accuracy are nonetheless
application-dependent. While some applications need strict deterministic exe-
cution, others can value fast (but possibly approximated) answers. Despite the
existing literature on how to relax and trade strict determinism for efficiency
or deadlines, we lack a formal characterization of levels of determinism, needed
by industries to assess whether or not such trade-offs are acceptable. To bridge
the gap, we introduce the notion of D-bounded eventual determinism, where D
is the maximum out-of-order delay of the input data. We design and imple-
ment TinTiN, a streaming middleware that can be used in combination with
user-defined streaming applications, to provably enforce D-bounded eventual
determinism. We evaluate TinTiN with a real-world streaming application for
Advanced Metering Infrastructure (AMI) monitoring, showing it provides an
order of magnitude improvement in processing performance, while minimizing
delays in output generation, compared to a state-of-the-art strictly determinis-
tic solution that waits for time proportional to D, for each input tuple, before
generating output that depends on it.
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3.1 Introduction

Data stream processing [1] is widely adopted for analysis of continuous streams
of data produced in Cyber-Physical Systems (CPSs), for extraction of informa-
tion useful for the operation, protection and dependability of the systems (e.g.,
smart meters data validation |2|/3] or vehicular data analysis [4-6]). Moreover,
it is compliant with the needs for decentralized processing and furthermore, the
research community is investing significant efforts in encompassing parallelism
for stream processing for a large spectrum of devices, from embedded edge
units to high-end servers.

Streams consist of sequences of tuples and are unbounded by definition.
Therefore one-pass analysis is commonly performed on windows of data, whose
boundaries change following the time carried by tuples’ timestamps. A key
challenge in processing data from distributed sources resides in its processing
order, since the latter can influence the results. Simply put, the results for a
certain window of tuples are accurate and can be produced as deterministic
outcomes, depending on the condition that there are no still-to-be-processed
tuples (because of late arrivals) contributing to such window. In this sense,
totally ordered streams with no late arrivals simplify the generation of accurate,
deterministic results.

Tools such as Viper [4] make sure that results from processing parallel
streams are deterministic, by building on sorting techniques. Relazed determin-
ism guarantees are nonetheless desirable and preferable for some applications
for which fast (but possibly not accurate) results are more valuable than
accurate but late ones [27,[28]. Notice that, sorting of all input data and
delaying processing due to few late arrivals, can unnecessarily penalize parts
of the analysis that do not depend on late arrivals. An example application
is data validation in an Advanced Metering Infrastructure (AMI) system of an
electricity grid, to distinguish out-of-range values or value-patterns by Smart
Meters (SM) that malfunction [2].

Why existing approaches fall short?

Available approaches for relaxed determinism fall short for at least three reasons.
First, there is lack of a formal characterization of the possible results produced
by a streaming application with relaxed determinism guarantees. Such a
characterization is needed by data analysts in order to understand and estimate
whether the effects of relaxed determinism are adequate or not for sensitive
applications, when the latter’s outcomes influence the dependability of a system.

Second, existing approaches that deal with out-of-order tuples are either
integrated within a specific Stream Processing Engine (SPE) or require ad-
hoc coding to maintain fine-grained control. The Apache Flink Streaming
APT [30] and Apache Beam Streaming pipelines [31] are examples of SPE-specific
solutions. Both allow for processing of out-of-order tuples by introducing
watermarks and multiple evaluations of windows, as discussed in the Dataflow
model [5]. However, both require careful considerations about how duplicate or
updated results are handled within the query. Enhanced stateful operators [12]
or storing and restoring state for late arrivals [13] are other example approaches
that, by requiring additional functionality of the SPE, can result in limited
usability. Data analysts might not have the option to choose which SPEs



3.1. INTRODUCTION 37

should be used and could also lack the advanced programming skills needed to
integrate an approach in a given SPE. Avoiding enhanced operators allows the
analysts to use any SPE that supports basic aggregation operators.

Third, existing solutions can have prohibitive memory overheads when
keeping all data in memory for a given lateness interval, as detailed later in
the paper. Hence, their usage in large CPSs, composed of computationally-
constrained devices, can also be limited.

Contributions

Motivated by these observations, we formalize the concept of D-bounded even-
tual determinism (D being a known bound on the timestamp-based out-of-order
delay of late input tuples). We also propose TinTiN; a streaming middleware,
that can top-up the guarantees of aggregation applications that originally
ensure determinism for sorted input sequences, to enforce D-bounded eventual
determinism for out-of-order input sequences, without requiring modification of
the application or the SPE, if the application conforms to a set of assumptions
(essentially providing some information about its semantics and the data fed
to it; cf. .

TinTiN does not delay results that can be accurately generated when no data
is missing, while it “replays” portions of input data, when there are late arrivals.
The “replayed” data is fed to an application’s replica; to prevent the arbitrary
time order (and possible overlap) of the relayed data, TinTiN manipulates their
timestamps, (hence, their “time travelling”) safely and according to the applica-
tion’s semantics. Since data can be “replayed” by TinTiN, some results are not
guaranteed to be delivered exactly once. Such a behavior has been proposed
in pioneer SPEs such as Borealis [27] (with the introduction of special UNDO
or TENTATIVE tuples) and more recently in the Dataflow model [5]. Existing
approaches, nonetheless, have large memory requirements since they maintain
large windows and also demand that all operators can handle updated results.

In summary, we show that TinTiN enables, without changes on an SPE’s
operators, (i) timely processing of data, i.e. as soon as it is available, allowing
the user to act on preliminary results immediately, (ii) the generation of final
results, identical to the ideal case of no late arrivals, as soon as the relevant data
has arrived, and (iii) small memory and time overheads, compared with state-
of-the-art solutions (e.g. Apache Flink), which can guarantee determinism by
processing data when the D bound expires (i.e., when late arrivals can no longer
be seen), with output latency proportional to D and large memory overheads.
These properties can make the difference between an approach being impossible
and possible to consider in deployments, as we show in the example massive-
data industrial use-case on data validation in our evaluation; in particular this
use-case has been the key motivation for working on the problem.

The rest of the paper is organized as follows: the preliminaries are covered
in after which we describe our system model in followed
by the formal definition, goals and evaluation metrics of D-bounded eventual
determinism in TinTiN’s overview and core functionality, including
algorithmic design are in [section 3.5| and [section 3.6] while evaluates
TinTiN with our real-world application. Other related work and concluding

remarks are discussed in [section 3.8 and lsection 3.91
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3.2 Preliminaries

3.2.1 Stream processing

In data streaming applications, data is processed by queries, i.e., Directed
Acyclic Graphs of streams and operators, deployed and run by SPEs. In the
remainder, we use the terms query and application interchangeably. Each

stream carries tuples sharing a schema (ts, Aj,..., A,), where ts is the tuple’s
event timestamp (which carries the notion of time for the query’s operators [5]),
and Aq,..., A, are application-specific attributes.

We focus on applications composed by a sequence of one or more stateful
aggregate operators, as well as by an arbitrary number of stateless operators.
We use the term user-defined application (UDA) to refer to one such application.
Stateful aggregate operators (also refered to as Aggregates) produce results that
depend on multiple input tuples (e.g., to compute an average value). Stateless
operators on the other hand process tuples without maintaining state that
depends on the processed tuples (e.g., by filtering tuples based on their values or
mapping their input schema to a different output schema). Stateless operators
do not change timestamps, as in e.g. Apache Flink [30].

Commonly each Aggregate maintains a sliding window, a portion of the
recent input tuples, that are processed to deliver results as output tuples. More
specifically, we consider that the stateful aggregation of each Aggregate of
a UDA is defined over a time-based sliding window W, characterized by its
size WS and advance WA, and a set of functions {f1, fa,...}.For example, an
Aggregate could maintain a sliding window with WS 2 hours and WA 1 hour
to maintain consecutive readings for a smart meter (SM) in order to calculate
the hourly consumption by taking the difference between the readings. Notice
that different Aggregates of the same UDA can have different size and advance
parameters for their windows.

Each Aggregate defines an optional key-by parameter (a subset of the input
tuples’ schema). If such a parameter is set, the aggregate maintains dedicated
windows for each distinct set of key-by values observed in the stream. For
the AMI measurements validation example, the input schema is (ts, smID, cc),
where smID is the ID for the SM and cc is the cumulative consumption that
the meter has registered at timestamp ts. For ease of notation, we assume such
a key attribute, denoted by k, is defined for all tuples. This does not affect
generality, since all input tuples can share the same k value if they are to be
aggregated in the same window.

In the remainder, we use the term window to refer to the object that is
maintained by an Aggregate for each key-by value and evolves according to the
tuples being processed, while we use the term window instance to refer to the
window covering a specific time interval. As an example, for an Aggregate with
WS and WA set to 1 hour and 30 minutes, respectively, a window instance could
refer to the window covering the interval [08:00,09:00), while the subsequent
instance is the one covering the interval [08:30,09:30).

Being W the window an Aggregate maintains for a key-by value, each win-
dow instance W covers the information of all tuples ¢;|¢;.ts € [W},W}), where
W} is the left boundary of W, and W}, = W} + WS is the right boundary of W'.
Initially, W° covers the first WS-long interval at event time 0. Then, the evo-
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lution of window W depends on three methods: add, fire and remove. These
methods are invoked by the SPE maintaining W as specified in the following:

S1 Method add is invoked for each input tuple t|t.ts € [W}, W}) and (op-
tionally) used to update the state of functions {f1, fo,...} (if the latter
can be updated incrementally).

S2 Method fire is invoked as soon as an input tuple t|t.ts > Wi is received.
Then, the outcome of functions {f1, fa,...} is retrieved and forwarded
as an output tuple. The timestamp of such output tuple is set to W7p.
Let that tuple be called the result of that window instance, denoted by
result(Wp,).

S3 Method remove is invoked immediately after the fire method is invoked.
All tuples t|t.ts € [W}, W} + WA) are removed from W and the state of
functions {f1, fa,...} is updated accordingly (if they define one). Then,
W is shifted forward by WA (i.e., Wi and W} are updated to W} + WA
and W}z + WA, respectively), thus moving to window instance W+t

Methods fire and remove are repeatedly invoked, one after the other, until
the input tuple ¢’ triggering the invocation of the fire method falls within
W’s left and right boundaries. Continuing the previous example, if the current
window instance covers [08:00,09:00) and the next input tuple has timestamp
10:15, methods fire and remove would be invoked 3 times each, for W to
eventually cover [09:30,10:30), to which the input tuple falls in.

We assume method fire is only invoked for window instances containing
at least one tuple. Hence, no results are initially produced for window instance
WO, ... ,W? where W7 is the earliest window instance to which the first tuple
of a given key falls in.

We assume that all the windows maintained for the different keys observed
in the input stream are aligned. That is, if a window for a certain key shifts
to a certain [W}, W}) period, so do all the windows of other keys maintained
by the application. This is enforced by invoking methods fire and remove
on all existing windows when an input tuple #'|t'.ts > W}é is processed. Also,
we assume that a window for a new key value is created when an input tuple
carrying such value is processed and deleted if, after invoking the method
remove for it, no tuple is left in the window.

Running Example We introduce an example query, based on a real world
use case to illustrate the concepts in the paper. Smart Meters (SM) can break
down gradually, resulting in unreliable readings. In the example the start of the
breakdown can be detected by a pattern: one or more large hourly consumption
values followed by a negative hourly consumption within four hours. As soon
as the pattern is detected for a specific SM, a technician is deployed to replace
the SM. The pattern is identified by a query consisting of two Aggregates.
Aggregate 1 calculates the hourly consumption by taking the difference between
every two consecutive readings. It therefore has a WS 2 hours and WA 1 hour.
Aggregate 2 has WS 4, WA 1 hour, and produces an alert if the pattern is
matched. The value of the alert is the number of large consumption values in the
match. shows a “cross-section” of an execution of the query and the
results it produces for an input stream consisting of 10 tuples for a single SM.
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Figure 3.1: FEzample “cross-section” of a query execution, processing data for one

v

Smart Meter. The input stream I shows the readings, while their timestamps are
giwen on the time axis t. The query has two aggregate operators. Ay calculates the
hourly consumption by taking the difference between two consecutive readings. As
outputs alerts if a pattern is found in its window. The pattern is one or more large
consumption values (marked in blue) followed by a negative value (marked in yellow)
within four hours. The value of the produced alerts (in red) indicates the number of
large values in the match. A1 has WS 2 and WA 1, while Ay has WS 4 and WA
1. The timestamp of results is equal to the left (inclusive) boundary of the window
instance that produced it. The right boundary of a window is exclusive.

3.2.2 Strict determinism

The execution of a stateful operator is deterministic if the operator’s semantics
are correctly enforced, independently of (i) the operator implementation and
deployment and (ii) the input data ordering. For instance, when running an
aggregate operator counting tuples on a per-key basis over a window with WS
and WA set to one hour, if 5 tuples referring to key k and having timestamps
€ [08:00,09:00) are delivered in the input stream, the Aggregate’s execution is
deterministic if the operator produces the correct count for key & and window
[08:00,09:00) independently of whether (i) the operator is run sequentially by
one thread or in parallel by several threads (e.g., assigning each thread a subset
of keys) and (ii) the input tuples are delivered in timestamp order or not to
the thread(s) running the Aggregate’s analysis.

For a single-threaded aggregate operator whose sliding window’s execution
evolves over time upon the invocations of methods add, fire and remove as

described in [subsection 3.2.1] it is known from the literature that deterministic

execution is enforced if:

[a] Functions’{f1, fa, ...} analysis uses no randomness and depends exclusively
on input tuples’ attributes, and

[b] Input tuples are fed in timestamp order.

If these conditions hold, the method fire is invoked for each window W*
only after the method add is invoked for all the tuples contributing to W?,
and each output tuple depends exclusively on the values carried by the tuples



3.3. SYSTEM MODEL 41

contributing to it (including the timestamp, which determines the order in
which tuples are added to the window). For a multi-threaded aggregate operator,
in which distinct threads carry out the analysis of different keys, the above
set of sufficient conditions to imply determinism, are commonly complemented
with the following one:

[c] Exactly one of the threads running the analysis in parallel is responsible
for the analysis of a given key.

This is a sufficient condition to prevent inconsistencies of state updates in the
analysis. It can be possible to prevent the latter with other methods, however
this is a common one practice.

Regarding guaranteeing determinism for a UDA, a sufficient condition is to
ensure (i) determinism on the operator level and (ii) time-stamp-ordering in the
data flows to the operators, including the internal, inter-operator ones |4}/14}(15].
In the following, we say that a streaming aggregation application enforces strict
determinism if such a condition is met. We use the term strict to differentiate
the determinism from the relaxed one we propose here.

3.3 System Model

Here we specify some more detail about the type of the User-Defined Ap-
plications (UDAs, serial aggregation applications) targeted. We assume the
UDA is fed with one input stream and it can run in parallel the analysis of
different keys. We assume that strict determinism is guaranteed for the UDA
by guaranteeing determinism for all the operators composing the UDA and the
inter-operator flows, as explained in [subsection 3.2.2l We wish to note that
each result t, of the UDA, given that it is a tuple that bears the timestamp of
the last aggregate in the UDA, can be uniquely indexed by that timestamp
(this is due to the fact that output tuples of operators are timestamped using
the left boundary of the window instance they correspond to, as mentioned in
$2 in fection 3.3)

We also require the following to hold (we refer the reader to for
further discussions and the justification of these assumptions):

A1l By observing the last two tuples t4,tp received for a certain key k s.t.
tp.ts > ta.ts, it is possible to know whether a hole exists, i.e. there exists
a tuple with timestamp € (t.ts,tp.ts) that can either arrive late or not
at all. This is the case, for instance, when the input data sampling period
is known or when an enumerator attribute is defined for the input data.

A2 A known maximum out-of-order delay D allows to distinguish late arrivals
that can still be received, from those that will not (i.e., that can be
ignored). More concretely, given any arbitrary point in any arbitrary
execution, being 7 the highest timestamp received by the application, late
arrivals with timestamps € [ — D, 7] can still be received, while those
with timestamps smaller than 7 — D cannot (i.e., they can be ignored).

A3 Analysis of data might be related to its seasonality, i.e. results could
differ depending on e.g. the hour of the day, or the day of the week.
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We define the periodicity P of a UDA as the maximum period that
is relevant for the seasonality of the data; e.g., P is 24 hours if tuples
are treated different depending on the time of day of their timestamp,
while it is one week if treatment also depends on the day of the week. If
the analysis of the UDA is not related to the seasonality of the data, we
consider P = 1, else, we assume that its P is known.

A4 A sorted sequence of tuples, denoted RC f1,4 that triggers at least one
output tuple is made available to TinTiN.

A5 The sequence of stateless and aggregate operators composing the UDA is
known, as well as the finite window sizes and advances of all the aggregate
operators in the UDA.

Note that the UDA developer who wants to use TinTiN to deal with out-of-order
input data will have all the information required.

3.4 D-bounded eventual determinism

As mentioned in outputting information in a timely fashion is useful
or critical in certain applications. We propose D-bounded eventual determinism
to formalize guarantees that enable timeliness of output that depends on timely
available input, while loosening only part of the requirements, compared to
strict determinism.

Definition 1. Given a stream I that is not timestamp-sorted, we say that I is
within lateness bound D if, for any t in I, for all subsequent tuples t' in I
for which t'.ts < t.ts, the condition t.ts —t'.ts < D holds.

Definition 2. Given:

e A, a streaming application that supports deterministic execution for
timestamp-sorted streams,

e [, a timestamp-sorted input stream,

e O, the output stream produced by A when all input tuples from I are fed
to A, and

e E, the set of all possible executions in which A is fed with a permutation
of I that is within lateness bound D (Definition ;

we say that A is extended to a D-bounded eventually deterministic stream-
ing application A’ if, for A, A’ and any e € E, being:

® 0451 € O the tuple output by A for timestamp ts and key k,

® O 1y, Of2y the ordered sequence of output tuples produced by A’ for
timestamp ts and key k (withn > 1),

!
then o5, = ot’;’k.
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Definition 2| says that an eventually deterministic streaming application
A’ (derived from A that is strictly deterministic when it processes timestamp-
ordered tuples), processing a stream within lateness bound D, produces all
tuples that A produces when it processes the same input but sorted. A’ might
produce more tuples than A, but for every tuple produced by A, the latest
tuple with identical timestamp and key produced by A’ will be equal. Note
that, if A can produce multiple output tuples for a specific timestamp and key,
then these should be distinguishable, by e.g. another attribute.

Evaluation metrics

When comparing the results observed for a streaming application A’ with
relaxed deterministic guarantees (when fed with an input stream I that might
be unsorted), with those of a UDA A that enforces strict determinism for a
sorted version of I, we say an output tuple produced by A’ is (i) exact if an
output tuple carrying the same attribute values (for the same timestamp and
key k) is produced by A, (ii) duplicate if another, exact tuple (for the same
timestamp and key k) has already been produced by A’; or (iii) different if
an output tuple with different attribute values for the same timestamp and
key k (i.e. not exact) is produced by A. (iv) It is also possible to have tuples
omitted by A’, i.e. tuples produced by A but not by A’.

Note that if A’ enables D-bounded eventual-determinism for an input stream
I that is within lateness bound D, no omitted output tuples exist and, for each
different output tuple (if any), one or more exact output tuples are also later
produced for a given timestamp and key k. If, on the contrary, A’ does not
enable D-bounded eventual determinism, both omitted and different output
tuples not followed by at least an exact output tuple can be observed.

Example continued: Recall the running example where occurrences of a
specific pattern indicating Smart Meter hardware failure are identified.
ure 3.1| shows the query processing data for a single SM where the pattern
occurs twice. shows the same example, but with two missing input
tuples. The first occurrence of the pattern is not identified when this input is
missing, the alerts from this occurrence are omitted. The second occurrence
is only partially affected by the missing input and is identified. The output
with timestamps 04:00 and 05:00 is different. The output for timestamp 06:00
does not depend on the missing data and is ezact. If exact output is produced
once more, for example by processing the relevant data at a later time when
the missing tuples have arrived, it would instead be duplicate. The figure also
illustrates one of TinTiN’s advantages: by being able to continue the processing
even if data is missing, TinTiN identifies the second occurrence of the pattern
without waiting for the missing data to arrive. A technician can be dispatched
to the affected SM immediately after identification, minimizing the amount of
unreliable data sent by the SM.

Let us also define the logical latency of an output tuple ¢, the difference
between t.ts and the highest timestamp observed in the stream when the exact
result for ¢ is produced.

Note that for each output tuple ¢, if strict determinism is enforced by
simply postponing the processing of each input tuple by D time units from
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its timestamp (e.g., as done by Apache Flink’s Complex Event Processor) its
logical latency is D, while it can be made (significantly) smaller than D, by
leveraging finer-grained techniques for managing out of order data, as we show
with TinTiN, when enforcing D-bounded eventual determinism.

Similarly to logical latency, responsiveness is defined as the difference
between the highest timestamp observed in the stream when a late tuple t;
arrives and the highest timestamp in the stream when the final exact result for
t; is produced. In the case where strict determinism is enforced by postponing
processing as described above, the responsiveness will be D minus the lateness
of ¢;, while it can be made smaller by TinTiN just as the logical latency.

3.5 TinTiN’s overview

Here we give an overview of TinTiN, while in the subsequent section we describe
its core design and its algorithmic implementation.

TinTiN processes data even though some tuples are late. Our pattern
matching example with Smart Meter data shows that this allows some matches
to be identified despite missing data. illustrates this, the alerts with
timestamps 04:00, 05:00 and 06:00 are produced. The alerts from 04:00 and
05:00 have a different value compared with the alerts produced when no data
is missing. The implications of such differences are application specific. In
this particular example a technician will be deployed regardless of the value of
the alert, so there is no direct implication. In order to eventually deliver the
exact output, TinTiN replays portions of data when late data arrives. Such
portions are processed by a copy of the UDA which produces updated results.
This is illustrated in where a portion of data is replayed. The extra
alerts due to replaying might cause another technician to be dispatched; i.e.
the dispatcher has to take extra care when such results are produced.

Considering the example, let us proceed with the description of the middle-
ware: TinTiN does not delay results that can be accurately generated in the
cases of no missing data. When intervals of data with missing tuples have been
processed, as also mentioned in the example, it later replays sufficient portions
of the input, when late data arrives. Moreover, it aims at achieving the afore-
mentioned behaviour efficiently, both from the point of view of computational
and memory overheads, as well as from the perspective of limiting the amount
of “unnecessary”, partial, results. Furthermore, it works as a wrapper of the
UDA in any SPE, without requiring to modify the internals of the latter. The
following list of steps and Figure [3.3] outline at a high level the aforementioned
procedures.

[a] TinTiN forwards to the UDA the input tuples that arrive in increasing
timestamp order.

[b] TinTiN also temporarily maintains a sufficiently large portion of the input
stream that initially contained some hole(s) (caused by tuple(s) being late),
named relevant context of the holes(s).

[c] Later, if late tuples arrive within the bound D, TinTiN “replays” the
relevant context of the respective hole(s), to get refined results. To avoid
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interference with the processing of the in-order data, the replayed data is
fed to a replica of the UDA (UDARg; c.f. Fig|3.3)).

[d] To prevent that the arbitrary time-order and the potential overlap of
relevant context of late tuples to affect consistency of results, when replayed
at UDAg, TinTiN shifts forward by a given offset all the timestamps of
each relevant context (hence, “time travelling”), safely and according to
the application’s semantics and shifts back the final results’ timestamps to
the original ones when forwarding those results to the user.

Why can TinTiN guarantee eventual determinism? The tuples that
arrive in timestamp order and without holes, generate the same result as
the strictly deterministic case when fed to the UDA. If a portion of input
forwarded to the UDA contains a hole though, such a portion is also sent to
the UDAR (at least once) when holes are later filled in (with tuples arriving
with maximum lateness D). This implies that multiple and possibly different,
improved, versions of the same result could be delivered to the user. However
each result will be based on a relevant context of hole(s) that is gradually
filled in by late tuples. Following this procedure, TinTiN eventually delivers
the output that would be generated in the ideal case (in which there would
have been no late arrivals) for the respective window instances, i.e. it satisfies
D-bounded eventual determinism when fed with a stream that is within bound
D.

How is TinTiN’s processing safe and consistent? The aforementioned
4 steps need to be carried out in order to make sure that safety in processing
is preserved, i.e. that state created by the processing of different portions
of data (overlapping intervals, intervals that are forwarded out of order) is
not inconsistently mixed up when data is being replayed. This is achieved by
replication, in a two-folded fashion: (i) for separating the processing of replayed
tuples from the processing of in-order tuples, the replaying of the relevant
context of holes are carried out by UDA g and not by UDA; (ii) for avoiding
UDAR to mix up replaying of overlapping relevant contexts of holes, the latter
are replayed with modified time, which is modified back to the original, when
the result is produced.

For TinTiN to efficiently carry out the above, the following questions need
to be answered, as explained in the next section.

Q1 Which results can be improved and forwarded to the end-user?
In case of late data, it is straightforward to identify such results for a
query composed by a single aggregate operator, but there is more to
think about for arbitrary UDAs.

Q2 What relevant context to replay? For each result that can be im-
proved, how to identify which source data is sufficient to maintain in
memory, in order to replay if/when late tuples arrive?

Q3 How to replay efficiently? If, due to one or more late tuples, TinTiN
needs to re-produce multiple results, can it do it efficiently without
replaying many times overlapping relevant contexts?
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Figure 3.2: The same “cross-section” as seen in \Figure 8.1}, but with readings from
04:00 and 05:00 missing at the time of processing. All window instances that are
affected by the missing input are dashed.

Q4 How to replay safely? How to ensure that the “time travelling” is
correct, i.e. that the processing state of the UD AR does not get mixed
up with that of other replayed data?

» UDA End user

TinTiN
v

(=)

UDAR (=)

Figure 3.3: Overview of TinTiN’s architecture.

3.6 TinTiN’s core functionality

This section covers TinTiN’s design and its “time travel” mechanism, answering
the questions of the previous section. Then, it presents TinTiN’s algorithmic
implementation and the main argument for satisfying D-bounded eventual
determinism.

3.6.1 Answering Q1: Which results can be improved and
forwarded to the end user

A hole in the input stream of a UDA can affect multiple results, as shown in
The quality of such results can be improved by reprocessing the
relevant context of the holes once the late tuples have arrived. Let us first
determine the results that are affected (i.e., that can be improved) by late
values for a UDA with a single Aggregate:
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Figure 3.4: Ezample “cross-section” of an execution at the UDARr showing the

relevant context of a hole (subsection 3.6.2, |Figure 3.2), in green, as it will be replayed,
when the hole is filled by the encircled late arrival. The timestamps of the input data
have been shifted by TinTiN , e.g. timestamp 00:00 m 18
shifted to 14:00. The output affected by the late arrival, i.e. that can be improved by
the late arrival , is shown in purple. For example, the alert with
timestamp 14:00 could not be produced without the late arrival, cf. .

Lemma 1. Given an Aggregate A with window size WS, the timestamps of A’s
results that are potentially affected by a missing input tuple t with timestamp
ts, are in (ts — WS, ts].

Proof. The timestamp of any affected result, potentially improvable by a late
input ¢, equals the left boundary of any window instance that contains ¢ (cf.
S2 in [section 3.2). The window with the earliest left boundary that contains
t starts no earlier than ts — WS. The window with the latest left boundary
containing ¢ cannot start after ts, since the left boundary of a window is
inclusive and windows with a left boundary larger than ¢s do not include ¢t. [

Consider again the ezample in with two Aggregates. A hole in
the input stream affects results from A, which in turn affects more results

from As. An interval that contains the timestamps for all of the affected results
is given by the following lemma.

Lemma 2. Consider a UDA with n Aggregates in series with window sizes
WS;;i € [1,n], and a missing input tuple t with timestamp ts. The timestamps
of the UDA results that are potentially affected due to the missing input are
in (ts — Y, WS;,ts].

Proof. The timestamps of the affected results of the first Aggregate A; are
contained in the interval (ts — WS1,ts] (Lemma 1)). The same argumentation,
applied for the second Aggregate A, and for ts — WS and ts, allows to find
the bounding interval for timestamps of Asy’s affected results, implying the
interval (ts — (WS1 + WS32),ts]. The same reasoning applied recursively for
any subsequent Aggregate, results in the interval in the lemma statement. [

It should be noted that implies:
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Observation 1. The results to forward to the end user when data is replayed
due to a late input tuple with timestamp ts, are the ones with timestamps

in (ts — Y, WS;,ts].

This is illustrated in where the relevant context for the late
arrival is replayed. The updated results to forward are marked, while results

outside the interval in [Observation 1| (i.e. not to be forwarded) are removed

from the output stream.

3.6.2 Answering Q2: Sufficient input to replay

To determine the exact content of the sufficient relevant context of a hole, we
need to find all input tuples that are relevant to the potentially affected results,
so that those tuples are stored and replayed together with late tuples if/when
the latter arrive.

Lemma 3. Consider a result tuple ¢t with timestamp ts, produced by an
Aggregate A with window size WS. The timestamps of all input tuples to A
that are relevant for (i.e. potentially affect) t are in [ts,ts + WS).

Proof. The lemma follows directly from the fact that a result with timestamp
ts is produced by a window instance whose inclusive left boundary is ts and
exclusive right boundary is ts + WS. O

shows the running example, marking all relevant input tuples
for a set of results from the example-UDA. The bounding interval for these

tuples follows from the following lemma.

Lemma 4. Consider a UDA with n Aggregates in series with window sizes
WS;;i € [1,n], and a result tuple t with timestamp ts. The timestamps of all
input tuples to the UDA that are relevant for t are in [ts,ts + Y, WS;).

Proof. implies that the timestamps of the relevant input to the first
Aggregate are in [ts,ts + WS1). The same argumentation can be applied for
the second Aggregate for ts and ts + WS, to find the bounding interval for
timestamps of affected results from the second Aggregate, implying the interval
[ts,ts+ (WS1+ WS3)). The same reasoning can be applied recursively for any
subsequent Aggregate, resulting in the interval in the lemma statement. [

Combining the lemmas from [subsection 3.6.1] with lemmas [3] and [4] we get:

Lemma 5. Consider a UDA with n aggregate operators in series with window
sizes WS;;i € [1,n], and a hole in the input stream with timestamp ts. The
relevant context of the hole is contained in the interval (ts — Y, WS, ts +

Zi WSi)-

This is illustrated in for the running ezample UDA and the
relevant context of the encircled late arrival.



3.6. TINTIN’S CORE FUNCTIONALITY 49

3.6.3 Answering Q3: Replaying efficiently

The logic with which the relevant contexts of late tuples, temporarily stored
at TinTiN, are replayed, depends on a user-defined triggering condition TC'.
TCs can imply a trade-off between different properties, e.g. between efficient
processing and how fast a result for a late arrival is produced, as explained in
the following.

An eager TC could trigger the replay of a relevant context for a hole as soon
as the late arrival filling it is received. Such a condition, reacting immediately
to each late arrival, minimizes the time between receiving the late arrival and
producing potential results to which it contributes. This could be beneficial
for applications that need up-to-date (possibly different) results as soon as
possible.

Alternatively, a lazy TC could instead trigger the replay of a relevant
context of hole(s) for a certain key & when multiple holes have been filled. For
use cases where late arrivals arrive in batches, this can be achieved by delaying
the firing of the trigger until an on-time tuple is observed for k. Such TC
trades increased logical latency for better processing throughput. Note that
it is possible to construct a TC that favors efficient processing even more by
waiting even longer before triggering. More efficient processing is achieved by
combining the relevant context for multiple late arrivals where it overlaps. This
is possible due to the associative property of the relevant context, shown here:

Lemma 6. Consider a UDA with n aggregate operators and two holes with
timestamps ts and ts + x, for any x > 0 s.t. there is overlap in their respective
relevant contexts. The set of affected results produced by replaying each relevant
context separately is equal to the set of affected results produced by replaying
the union of the relevant contexts once.

Proof. The affected results produced by replaying the relevant context for the
late arrival with timestamp ts have timestamps in the interval (ts—>, WS, ts]
according to Results for the late arrival with timestamp ts + x, have
timestamps in interval (ts+xz—>_, WS;,ts+z]. The size of the relevant context
for the late arrival with timestamp ts is (ts—)_, WS;,ts+ >, WS;), according
to Since the relevant contexts of the two late arrivals overlap,
x <Y, WS;. Therefore ts +x — )", WS; < ts, implying that intervals for the
affected results overlap and are contained in the interval (ts — . WS;,ts + x].
This interval is equal to the interval obtained for the affected results by the
union of the relevant context for ts and ts + x. O

Special consideration is due for holes that are filled after a short amount
of time (ie. before their entire relevant context has arrived), while to obtain
eventual determinism, it is required to replay all tuples that contribute to a
result that can be improved by a late arrival. One way to ensure this, is to
delay replaying until a tuple with timestamp larger than the largest timestamp
in that relevant context arrives.

3.6.4 Answering Q4: Replaying safely

Replaying the relevant context of a late arrival directly to the UDA would cause
the input stream of the UDA to become out of order and interfere with data
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currently being processed. For this reason, TinTiN replays data to a replica
of the UDA, UDAR. Note that UDAR, being a replica of UDA, guarantees
deterministic processing only for timestamp sorted input. However, replaying
the relevant context of two different holes can be problematic for two reasons:

[a] It causes the input stream to UDAR to become out of order if the second
relevant context starts with a timestamp lower than the highest timestamp
of the first relevant context.

[b] Tt can cause erroneous results if the data for the different late arrivals ends
up in common windows.

Intuitively, a straightforward solution to prevent this from happening, is
to deploy a “fresh” UDAp (i.e., that has not yet processed any tuple) before
replaying any past portion of input tuples. Deploying a fresh UDAR incurs
large overhead though. Relying on a method that resets the UDAR’s state is
also not an option, since, for the sake of generality, we do not assume that the
SPE or the UDA’s programmer provide it.

TinTiN’s novel approach is to (i) shift the timestamps of the tuples in the
relevant context with an offset, so that UDApg is fed with an input stream
with strictly monotonically increasing timestamps, and tuples from one replay
cannot interfere with other replays; and (ii) shift back the timestamp of the
result by the same offset.

3.6.4.1 Shifting timestamps of input to UDAR

When processing data in the UDA, an input tuple will belong to a specific
number of window instances for the first Aggregate. The same is true for a
tuple produced by the first Aggregate, it will belong to a specific number of
window instances for the second Aggregate and so on and so forth. The number
of window instances a tuple belongs to depends on its timestamp as well as
the window advance and size of the Aggregate. An example of this can be seen
in where the output of the first Aggregate belongs to either one or
two window instances of the second Aggregate.

In order to obtain correct results when reprocessing data, it is required that
every tuple contributes to the same number of window instances as for the
on-time processing. The way the tuples timestamps can be changed without
affecting the number of window instances they contribute to is based on the
following observations:

Observation 2. Consider a UDA with n aggregate operators in series with
window advances WA;;i € [1,n]. The starting times of the windows for all
aggregate operators are aligned at time 0, since all windows start in 0. Such
alignment also occurs at timestamps that are a multiple of LOCM(WA;) (the
least common multiple of all WA;).

Observation 3. Consider a UDA and an input tuple t with timestamp ts. Let
d denote the difference between ts and the nearest alignment of windows in the
UDA smaller than ts. Now consider another tuple t' with timestamp ts', with
difference equal to d between ts' and its nearest alignment of windows smaller
than ts’. The number of window instances that t contributes to is equal to the
number of window instances that t' contributes to.
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Consider for example a query with two Aggregates, the first one having
WS 3, WA 2 and the second one WS 3, WA 1. Since subsequent windows
for the first Aggregate overlap one hour, input tuples can contribute to either
one or two window instances. Window alignment occurs every multiple of 2
(LCM(1,2)). The tuples with timestamps 5 and 7 both have distance 1 to
their nearest window alignment and both contribute to two window instances.

We conclude from the observations that when changing timestamps, any
multiple of LCM (WA;) can be added to the original timestamps to ensure
that all tuples contribute to the same number of window instances in UDAg
and the on-time UDA.

If the UDA has an internal periodicity P as described in assumption A3, cf.
then this should be taken into consideration as well when shifting
timestamps of data to replay. Tuples should not only contribute to the same
number of window instances, but the periodicity should be preserved as well.
For example if a UDA has P of one week, a tuple with timestamp 12:00 on a
Monday should also have a timestamp 12:00 on a Monday after the timestamp
is changed. This is accomplished based on the following observations:

Observation 4. The periodicity P of a UDA is conceptually the same as a
window with WS and WA equal to P. In other words: a new period starts at
every multiple of P and has a duration of P.

Observation 5. Consider a UDA with n aggregate operators in series with
window advances WA;;i € [1,n] and periodicity P. The windows for all
aggregate operators, as well as the start of period, are aligned at time 0, since
all windows start in 0, as does the periodicity. Alignment also occurs at
timestamps that are a multiple of LCM(WA;, P) (the least common multiple
of all WA; and P).

The final consideration when shifting timestamps is that one sequence of
replayed tuples should not interfere with another sequence of replayed tuples.
This is achieved when the sets of results are produced by the sequences are
disjoint. This can be accomplished by separating the timestamps from both
sequences with a safety distance, SD. The size of SD is given by the following
lemma, which follows directly from

Lemma 7. Given a UDA with n aggregate operators with window sizes WS;
and two sequences of tuples S1 and So where all timestamps in Sy are larger
than any timestamp in S1, no results are affected by tuples from both S1 and
Sy if the smallest timestamp in Sy is separated from the greatest timestamp in
S1 by at least SD =3, WS;.

In conclusion, the following lemma justifies how timestamps can be shifted
in a way to guarantee safety in the processing.

Lemma 8. Consider a UDA with periodicity P and n aggregate operators in
series with window advances WA;;i € [1,n], processing two tuple-sequences
Sy and Sy. Adding z - LCM(WA;, P) to the timestamps of the tuples in Sa,
where LCM (WA;, P) is the least common multiple of all WA; and P, and
z € Z so that z- LCM (WA;, P) > SD, guarantees that (1) all tuples in Sy still
contribute to the same number of window instances as they would have, had
their timestamps not been changed, and (2) no results are produced that are
affected by tuples from both S1 and Ss.



52 CHAPTER 3. TINTIN

Proof. Property 1 follows directly from Property 2 follows
directly from O

3.6.4.2 Restoring timestamps of UDA r results

Results produced by the UDA Rk cannot be forwarded to the end user without
restoring the timestamps, for obvious reasons. Therefore TinTiN should store
a mapping of the changed and original timestamps in order to restore the
timestamps for produced results. There is no guarantee that replaying a
relevant context to UDA g will produce any results. Mappings that were stored
by TinTiN can therefore become stale. Whether a mapping is stale or not
cannot be inferred by setting a timeout for the result of a relevant context,
since the UDA processing latency is outside TinTiN’s control.

Notice that, since UDARg supports deterministic execution and is fed a
timestamp-sorted stream (based on TinTiN’s manipulation of timestamps), it
results in a timestamp-sorted output stream (cf. . Hence, if a
replayed sequence S results in output, stale mappings of changed and original
timestamps for sequences replayed earlier can be safely discarded by TinTiN,
since results for them will not be produced after S’s.

To prevent the size of changed and original timestamp mappings to grow
beyond a maximum size, TinTiN can replay the sample sequence of tuples that

is known to trigger an output (assumption A4 in [section 3.3)) to flush stale
mappings (in this case, without forwarding the result to the UDA user).

3.6.5 Synthesis: TinTiN’s algorithmic design

Table 3.1: Abbreviations and parameters used in Algorithm

Parameter Definition

UDA, UDAgr User-Defined Application and TinTiN’s
replica of it

WA[] All WA in the UDA

D Max delay on UDA’s input tuples

TC Triggering condition

SD Safety distance between successive replays by
UDAR, as defined in [subsection 3.6.4]

P UDA'’s periodicity as defined in [section 3.3

Bl TinTiN’s internal array of sorted tuples (one
array per key k, used to store the most recent
tuples)

B[] TinTiN’s internal array of sorted tuples (one

array per key k, used to store tuples contribut-
ing to the relevant contexts of holes)

T TinTiN’s internal array of timestamps and
corresponding manipulated timestamps

Al TinTiN’s internal array for late arrivals

max_ts highest timestamp seen so far

max_tSman highest manipulated timestamp replayed to
UDAR

RCY The relevant context for tuple ¢

RCfrush Sample data that triggers an output from the

UDA
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Algorithm 1: TinTiN’s algorithm, upon receiving tuple ¢

1 mazx_ts = max(maz_ts,t.ts);
2 if t.ts > max_ts then
3 forward ¢ to UDA and add ¢ to S[t.k];
4 if B[t.k] contains holes then
5 | add B[t.k] to B[t.k] (excluding duplicates);
6 else if t.ts > max_ts — D then
7 add t to B[t.k];
8 add t to A[t.k]
9 for all t' in A[t.k] for which TC holds do
10 ‘ replay (RC,:);
11 if 3! in A[t.k] so that t'.ts < t.ts — D then
12 ‘ replay (RC,:);
13 if 3t" in BJt.k] so that t'.ts < t.ts — (D + size(RC})) then

-
IS

| remove t' from B[t.k];
if size(T'[]) > threshold then
‘ replay (RC fiush)

e
o o

17 replay(RC})

18 tSmin = min(ts € RCY);

19 tSmaz = max(ts € RCY);

20 M = LCM(WA]], P);

21 find min (z € Z) : tSmin + 2 - M > maz_tsman + SD;
22 shift RC tuples’ timestamps with z - M;

23 for results affected by t do

24 ‘ store t.ts, t.tSman pairs in T7|;

25 max_tSman = tSmaz +n - M;

26 send RC': tuples to UDARg in timestamp-order; get results to];
27 flush old state from T'[[;

28 if RC; 76 Rcflush then

29 shift ¢o[]’s timestamps back;

30 forward to[] to output ;

Here we focus on the algorithmic description of TinTiN, also shown in
Algorithm [I] (based on the abbreviations and parameters listed in [Table 3.1)).
For each key k, each input tuple ¢t with a timestamp greater than or equal to
that of the previous input tuple observed by TinTiN is forwarded to the UDA.
When ¢ is observed, TinTiN could identify ¢ as part of the relevant context of
a previously observed hole, if such hole is within time-distance >, WS, from ¢
(Lemma 5)). Even if no such hole has been observed, t could still turn out to
be part of the relevant context for a hole later observed within time-distance
> WS; from ¢ . To be efficient, TinTiN aims at maintaining ¢ only
if ¢ is part of at least one relevant context. To do this, TinTiN initially adds
each new incoming tuple that is not a late arrival into a key-dedicated map
B[t.k] of size ), WS;. If a hole is observed while ¢ is in §[t.k], then t is part of
a relevant context that could be replayed in the future. Only in this case, ¢
is moved to a larger key-dedicated map B[t.k], in which relevant contexts are
kept as long as a late arrival within bound D could still be received ( Iftis
a late tuple, but it is no more than D time units late compared to the highest
timestamp observed so far, ¢ is added to both B[t.k] (I[7) and A[t.k], a map
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that stores late arrivals. If ¢ is more than D time units late, it is discarded.

Subsequently, the triggering condition is checked for all late arrivals in
A[t.k]. For each late arrival for which the triggering condition 7'C' holds (cf.
, method replay ( is invoked. In this case, RCY, i.e.
the tuples in the relevant context for the late arrivals from B[t.k] are forwarded
to UDAR once their timestamp is changed, while respecting the periodicity
P of the UDA as well as the window advances of the UDA, as described in
subsection 3.6.41

Manipulated timestamps for which an affected result can be produced
by the UDA are paired with the original timestamps and stored in T[], to
accommodate shifting back the timestamps. If the size of T[] exceeds a pre-
defined threshold, RCf,sh is replayed to remove stale mappings from the
array (L[L6), as described in If results are produced by UDAR,
from any RC; that is not RCfiysn, the timestamps of the results are then
moved back and the results are forwarded to the end user. All tuples in B]
contributing to a relevant context for which late arrivals will not be received
(based on D) are replayed to UDAg and then removed from B[] (L14)).

Lemma 9. Given a UDA that supports deterministic execution for timestamp-
ordered input streams, Algorithm 1| guarantees D-bounded eventual determinism
when the input is within lateness bound D.

Proof. Based on the questions in we need to ensure that (i) all
relevant contexts for all D-bounded late arrivals are stored; (ii) after all late

arrivals have arrived, the relevant contexts are forwarded in timestamp-order
at least once to UDAR (which will run method fire for all relevant window
instances); (iii) when forwarding relevant context, all tuples in it neither
precede other UDA p-maintained tuples nor contribute to any of the windows
maintained by UDA i (once the timestamps of the tuples in the relevant context
are changed). Algorithm [1| implies this is achieved since (i) all late arrivals are
stored together with other tuples in the relevant context they contribute to
(L[i}] and as described in (ii) tuples are removed from B[t.k|
only when no more late arrivals will be received for the relevant context they
belong to (IJT4) and (iii) method replay is run at least once (after all possible
late arrivals have been added to it in timestamp order) once its timestamps

have been changed according to (L14). O

3.7 Use Case and Evaluation

TinTiN is implemented in Apache Flink [30] and evaluated using a UDA
based on a real-world validation application for Smart Meter (SM) readings
in an Advanced Metering Infrastructure (AMI). 55 days of hourly data from
50.000 SMs are validated in the use case. We evaluate TinTiN’s output (cf.

section 3.4), throughput, processing latency, logical latency, responsiveness and
memory requirements.

Use-case and experiment set-up

The SMs periodically send the cumulative energy consumption to the utility’s
central servers. The readings, used for billing (among other things), are
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validated by calculating SMs’ hourly consumption (by taking the difference
between two consecutive readings) and verifying that the latter is positive and
bounded by the installed fuses. Invalid readings are marked and processed
to identify patterns indicating hardware failure (when readings exceeding the
bounds are followed by a negative one within 24 hours). The data validation
application outputs alerts for matched patterns as well as excessive or negative
consumption values. Hourly readings can reach the utility up to 40 days late.
Hence, parameter D is set to 40 days. There are two Aggregates in the query,
one with WS 2 hours for calculating the hourly consumption and one with WS
24 hours, the pattern’s maximum length. The size of 3[] is therefore set to 26
hours (the sum of the window sizes, cf. . Both aggregates have
WA 1 hour. TinTiN and the UDA are evaluated for (sub)sets of increasing size
of the 50K SMs (statistics are given in [Table 3.2)), and run on a virtual server
with 4 dedicated 2.6 GHz cores and 16 GB RAM. Throughput and processing
latency results are averaged over 10 runs.

Parameters for TinTiN and baselines for comparison

We evaluate TinTiN with the triggering conditions (TCs) from

TC-eager (TinTiN-TCE) reprocesses the relevant context for holes as soon
as late data fills them. This approach minimizes logical latency but its output
(cf. can contain multiple different and duplicate results before the
final exact result is produced.

TC-lazy (TinTiN-TCL) reprocesses relevant context as soon as the next
in-order reading (i.e. t.ts > 7, the largest timestamp seen so far by TinTiN)
arrives. This TC reduces the amount of different and duplicate results at the
cost of a higher logical latency.

TinTiN and these TCs are compared against the following baselines:

SortedNoWait (SN'W): an ideal baseline fed timestamp-sorted input and
thus strictly deterministic. Note SNW cannot be used in practice (data is not
sorted in the real-world application), it is included to characterize TinTiN’s
and other baselines’ output in terms of different, duplicate, omitted and exact
tuples, and logical latency.

UnsortedWait (UW): the baseline where the allowed delay of the input
data is based on D (i.e., 40 days). The UDA processes data after storing it and
waiting for D time units, incurring D time units logical latency penalty and
large memory requirements but enforcing strict determinism. UW is essentially
the option for system experts that are not stream processing experts to get
accurate results.

UnsortedDiscard (UD): a baseline that discards all late arrivals, thus not
validating all data and omitting final results when there are late arrivals. This
can be the fastest but least accurate, hence not really usable in systems where
accuracy and reliability are required.
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Table 3.2: Data statistics for the used datasets.

Dataset size (keys) | 10k 20k 30k 40k 50k

Number of tuples 11.4M  22.8M 34.2M  455M  56.9M
Number of late tuples 90.1k 179k 262k 350k 435k
Number of holes 406k 808k  1.22M 1.66M 2.03M

Number of relevant contexts with 899k 1.79M 2.66M 3.58M 4.41M
holes

Evaluation of quality of output

Table 3.3| compares the output of both TCs and UD. As expected, TinTiN does
not omit any results; UD omits approximately 10 percent of the exact results.
TinTiN-TCL also gives fewer duplicate results than TinTiN-TCE, since the
latter prioritizes reprocessing as soon as possible. This causes a result to be
produced multiple times if it is affected by more than one hole, which in turn
can result in multiple duplicate results.

Table 3.3: Output of TinTiN’s TCs and UD compared with strictly deterministic
output (such as from SNW or UW).

Dataset  AlgID [ Exact Omitted Different Duplicate
10k TinTiN-TCE 240 0 0 351
10k TinTiN-TCL 240 0 0 0
10k UD 213 27 0 0
20k TinTiN-TCE 388 0 0 645
20k TinTiN-TCL 388 0 0 5
20k UD 350 38 0 0
30k TinTiN-TCE 518 0 0 2261
30k TinTiN-TCL 518 0 0 37
30k UD 460 58 0 0
40k TinTiN-TCE 729 0 0 2536
40k TinTiN-TCL 729 0 0 37
40k UD 659 70 0 0
50k TinTiN-TCE 850 0 0 2780
50k TinTiN-TCL 850 0 0 39
50k UD 765 85 0 0

Processing throughput

shows the processing throughput, i.e. the number of processed
tuples per second, for increasing number of parallel keys for TinTiN’s TCs,

SNW, UW and UD. Due to its processing overhead, TinTiN’s throughput is
lower than that of SNW’s or UD’s (notice though the latter baselines cannot
be used in production). Nonetheless, it largely improves UW, which cannot
sustain more than 20K keys (since it runs out of memory for larger number of
keys). As expected, TinTiN-TCE’s throughput is lower than TinTiN-TCL’s
since the former prioritizes low logical latency over the number of times data is
potentially reprocessed.
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Figure 3.5: Ewvaluation graphs

Processing latency

1000

shows the processing latency, i.e. the difference in wall clock time
between the creation time of an output tuple and the ingestion time of the
input tuple that triggers such output. TinTiN adds approximately 100 ms
to the latency when compared with UD and SNW. Also for this metric, it
nonetheless performs significantly better than UW (not plotted since it is orders
of magnitude larger, 98 and 191 seconds for 10K and 20K keys, respectively).
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As discussed in deploying a fresh UDA g before replaying a window
is not a viable solution. In our experiments, the time taken to deploy a fresh
UDA R, instance is 1 order of magnitude larger than TinTiN’s processing latency
(between 3 and 4 seconds).

Logical latency

Figure 3.5d shows the logical latency (cf. [section 3.4); it naturally depends on

the input data’s lateness, which is drawn on the plot for convenience. As shown,
TinTiN-TCE’s logical latency is some hours smaller than TinTiN-TCL’s and,
for both T'Cs, it is substantially better than UW’s (40 days). Since SM late
data often arrives in batches, the logical latency penalty for TinTiN-TCL is
relatively small compared with the throughput gain over TinTiN-TCE.

Responsiveness

shows one of TinTiN’s key strengths: its responsiveness compared
to UW (i.e. the time between the arrival of a late tuple and the processing of
the window this tuple belongs to, cf. . Both TinTiN’s TCs enable
faster processing of late data. While TinTiN-TCE prioritizes swift reprocessing
over performance, TinTiN-TCL offers a compromise between fast reprocessing
of late data and performance. TinTiN reprocesses 90% of late data within 2
hours and 99.8% within 24 hours. For UW, 95% of the late data is processed
more than 37 days after its arrival.

Memory

shows the extra memory (in number of tuples maintained temporar-
ily in order to process all data) required by TinTiN and UW. SNW and UD
are not shown since they do not temporarily maintain tuples. The amount of
memory required by TinTiN is two orders of magnitude smaller than UW’s.
This is expected, since UW needs to keep 1920 tuples in memory for every
key (24 hours-40 days-2 aggregates), while TinTiN keeps 26 tuples per key in
addition to the tuples that belong to a relevant context.

Our results show that TinTiN processes on-time data without delays, pro-
viding timely results for late data, based on its triggering condition, thus
minimizing utilities’ response time for actions.

3.8 Related Work

One of the eight requirements for real time stream processing as defined in [1]
is resiliency against missing and out-of-order data. We propose a way for
resiliency against missing and out-of-order data, one of the key requirements for
streaming processing [1]. Earlier methods to handle such stream imperfections
are slack [22] and punctuation |17], both methods introduce waiting in order
to deal with out-of-order data which we aim to minimize. Recent work [28]
utilizes a Slack-ScaleGate data structure in order to process out-of-order input
strictly deterministic as long as a logical latency constraint can be fulfilled,
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but without guarantees otherwise. Slack can be combined with speculative
processing and buffering for event processing [13], but this method requires the
event processor to be able to export its internal state in order to be consistent.
Our approach does not require any changes to the application, that is wrapped
in order to be able to process out-of-order events.

The term eventual determinism has earlier been used also in a different
context, i.e. algorithms with a probabilistic and a deterministic mode, for prob-
lems where randomization is needed to break symmetries; processes eventually
enter, and stay in, the deterministic mode [18]. Differently, here, the term
is to characterize the output of processing whose input can be influenced by
non-deterministic reorderings due to e.g. varying network delays.

An alternative approach to handle out-of-order data is to enhance the
stateful operators in the streaming queries; |12] is early work in this direction
which allows all stateful operators to store their state when data is late and
to process late data with this stored state. Unlike ours, this method requires
changes in the SPE or the original streaming application, and does not guarantee
determinism.

The dataflow model [5], adopted by SPEs as Apache Flink [30] and Google
Cloud Dataflow [32], allows for multiple evaluations of window instances, if
the late data arrives no later than specified by an allowed lateness parameter.
However the dataflow model cannot identify holes in the input stream and
therefore cannot determine which window instances can receive late arrivals.
For this reason all window instances need to be stored until the allowed lateness
has expired, leading to excessive memory demands.

Orthogonal work, studying efficient merge-sorting of interleaving streams
for strictly deterministic analysis, is presented in [4].

Data stream processing is a good match for smart grid challenges, as shown
in [2}/3] where both applications disregard late data. Yet since occurrence of
late data is common for smart energy meters, both are examples of applications
that could leverage TinTiN.

3.9 Conclusion and Future Work

We introduce the concept of D-bounded eventual determinism to control stream-
ing applications’ trade-offs, in result correctness and quality versus timeliness,
in CPS contexts where data fed to such applications comes out of timestamp
order. We also present TinTiN, a middleware that enforces D-bounded eventual
determinism, and evaluate it for a real-world Smart Grid use case. As shown,
TinTiN induces minimal overhead in logical latency and enables processing of
larger streams of data compared to other state-of-the-art methods. It enables
out-of-order stream processing for 50K keys in parallel, where the strictly
deterministic baseline is bound to 20K.

Future work includes the extension and refinement for different granularity of
eventual determinism, including weak and strong variations (specifying whether
multiple — possibly different — results can be produced for the same window of
tuples) and variations of use-cases [6,121,/22]. Since the processing order also
impacts the cost of parallelization techniques for stream processing [27H29], it
is also worth investigating (i) how TinTiN’s semantics can be encapsulated
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in basic streaming operators, in order to leverage SPEs’ distribution and
parallelization techniques, and (ii) how TinTiN’s methodology can benefit
distribution and parallelization of queries, to provide guarantees about their
degree of determinism.

Acknowledgment

Work partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by Knut and Alice Wallenberg Foundation,
the collaboration framework of Goteborg Energi and Chalmers Energy Area
of Advance project STAMINA, the Swedish Research Council proj. “HARE”
grant nr. 2016-03800, the Swedish Foundation for Strategic Research proj. FiC,
grant nr. GMT14-0032, the Chalmers Energy Area of Advance proj. INDEED,
and the EU Horizon 2020 Framework Programme, grant nr. 773717.



Bibliography

[1] M. Stonebraker, U. Cetintemel, and S. Zdonik, “The 8 requirements of
real-time stream processing,” ACM Sigmod Record, vol. 34, no. 4, pp.
42-47, 2005.

[2] J. van Rooij, J. Swetzén, V. Gulisano, M. Almgren, and
M. Papatriantafilou, “echidna: Continuous data validation in advanced

metering infrastructures,” in 2018 IEEE International Energy Conference.
IEEE, 2018, pp. 1-6.

[3] J. van Rooij, V. Gulisano, and M. Papatriantafilou, “Locovolt: Distributed
detection of broken meters in smart grids through stream processing,” in
Proceedings of the 12th ACM International Conference on Distributed and
Event-based Systems, 2018, pp. 171-182.

[4] I. Walulya, D. Palyvos-Giannas, Y. Nikolakopoulos, V. Gulisano,
M. Papatriantafilou, and P. Tsigas, “Viper: A module for communication-
layer determinism and scaling in low-latency stream processing,” Future
Generation Computer Systems, vol. 88, pp. 297 — 308, 2018.

[5] S. Costache, V. Gulisano, and M. Papatriantafilou, “Understanding the
data-processing challenges in intelligent vehicular systems,” in 2016 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2016, pp. 611-618.

[6] B. Havers, R. Duvignau, H. Najdataei, V. Gulisano, A. C. Koppisetty,
and M. Papatriantafilou, “Driven: a framework for efficient data retrieval
and clustering in vehicular networks,” in 2019 IEEE 35th International
Conference on Data Engineering (ICDE). 1EEE, 2019, pp. 1850-1861.

[7] M. Balazinska, H. Balakrishnan, S. R. Madden, and M. Stonebraker,
“Fault-tolerance in the Borealis distributed stream processing system,”
ACM Transactions on Database Systems (TODS), vol. 33, no. 1, 2008.

[8] N. Zacheilas, V. Kalogeraki, Y. Nikolakopoulos, V. Gulisano,
M. Papatriantafilou, and P. Tsigas, “Maximizing determinism in stream
processing under latency constraints,” in Proceedings of the 11th ACM
International Conference on Distributed and Event-based Systems. ACM,
2017, pp. 112-123.

[9] “Apache Flink,” https://flink.apache.org/, 2014, last accessed: October
26, 2020.

61


https://flink.apache.org/

62

BIBLIOGRAPHY

[10]

[11]

[14]

[15]

[16]

[17]

“Apache Beam,” |https://beam.apache.org/, 2016, last accessed: October
26, 2020.

T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Ferndndez-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and
S. Whittle, “The dataflow model: A practical approach to balancing
correctness, latency, and cost in massive-scale, unbounded, out-of-order
data processing,” in Proceedings of the VLDB Endowment, 2015, vol. 8,
no. 12, pp. 1792-1803.

I. E. Kuralenok, N. Marshalkin, A. Trofimov, and B. Novikov, “An op-
timistic approach to handle out-of-order events within analytical stream
processing,” in CEUR Workshop Proceedings, vol. 2135. RWTH Aahen
University, 2018, pp. 22-29.

C. Mutschler and M. Philippsen, “Reliable speculative processing of out-of-
order event streams in generic publish/subscribe middlewares,” in DEBS
2013 - Proceedings of the 7th ACM International Conference on Distributed
Event-Based Systems, 2013, pp. 147-158.

G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun, “Internally
deterministic parallel algorithms can be fast,” in Proceedings of the 17th
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP). ACM, 2012, pp. 181-192.

R. M. Karp and R. E. Miller, “Properties of a model for parallel compu-
tations: Determinacy, termination, queueing,” SIAM Journal on Applied
Mathematics, vol. 14, no. 6, pp. 1390-1411, 1966.

D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: a new model and
architecture for data stream management,” The VLDB Journal, vol. 12,
no. 2, pp. 120-139, 2003.

J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson, and D. Maier,
“Out-of-order processing: a new architecture for high-performance stream
systems,” Proceedings of the VLDB Endowment, vol. 1, no. 1, pp. 274-288,
2008.

J. R. Rao, “Eventual determinism: Using probabilistic means to achieve
deterministic ends,” J. of Parallel, Emergent and Distributed Systems,
vol. 8, no. 1, pp. 3-19, 1996.

“Google Cloud Dataflow,” |https://cloud.google.com/dataflow, 2015, last
accessed: October 26, 2020.

V. Botev, M. Almgren, V. Gulisano, O. Landsiedel, M. Papatriantafilou,
and J. van Rooij, “Detecting non-technical energy losses through structural
periodic patterns in ami data,” in Big Data (Big Data), 2016 IEEE
International Conference on. Washington DC, USA: IEEE, 2016, pp.
3121-3130.


https://beam.apache.org/
https://cloud.google.com/dataflow

BIBLIOGRAPHY 63

[21]

[22]

[23]

Z. Fu, M. Almgren, O. Landsiedel, and M. Papatriantafilou, “Online
temporal-spatial analysis for detection of critical events in cyber-physical
systems,” in Big Data (Big Data), 2014 IEEE International Conference
on. Washington DC, USA: IEEE, 2014, pp. 129-134.

V. Gulisano, Y. Nikolakopoulos, I. Walulya, M. Papatriantafilou, and
P. Tsigas, “Deterministic real-time analytics of geospatial data streams
through scalegate objects,” in Proceedings of the 9th ACM International
Conference on Distributed Event-Based Systems, 2015, pp. 316-317.

Y. Ji, H. Zhou, Z. Jerzak, A. Nica, G. Hackenbroich, and C. Fetzer,
“Quality-driven continuous query execution over out-of-order data streams,”
in Proceedings of the ACM International Conference on Management of
Data (SIGMOD). ACM, 2015, pp. 889-894.



64

BIBLIOGRAPHY




Chapter 4

LoCoVolt: Distributed
Detection of Broken
Meters in Smart Grids
through Stream Processing

J. van Rooij, V. Gulisano, M. Papatriantafilou

Proceedings of the 12th ACM International Conference on Distributed
and Event-based Systems (DEBS), 2018.






65

Abstract

Smart Grids and Advanced Metering Infrastructures are rapidly replacing
traditional energy grids. The cumulative computational power of their I'T
devices, which can be leveraged to continuously monitor the state of the grid,
is nonetheless vastly underused.

This paper provides evidence of the potential of streaming analysis run
at smart grid devices. We propose a structural component, which we name
LoCoVolt (Local Comparison of Voltages), that is able to detect in a distributed
fashion malfunctioning smart meters, which report erroneous information about
the power quality. This is achieved by comparing the voltage readings of meters
that, because of their proximity in the network, are expected to report readings
following similar trends. Having this information can allow utilities to react
promptly and thus increase timeliness, quality and safety of their services
to society and, implicitly, their business value. As we show, based on our
implementation on Apache Flink and the evaluation conducted with resource-
constrained hardware (i.e., with capacity similar to that of hardware in smart
grids) and data from a real-world network, the streaming paradigm can deliver
efficient and effective monitoring tools and thus achieve the desired goals with
almost no additional computational cost.
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4.1 Introduction

Smart Grids, in which communication-enabled IT devices can share information
with energy utilities, are replacing traditional energy grids. At the lower-
voltage distribution tiers (i.e., at the level where energy is distributed to private
customers and businesses), this transformation has been enabled by Advanced
Metering Infrastructures (AMIs).

These consist of Smart Meters (SMs) and a communication infrastructure to
communicate with the energy utilities’ data center. A common communication
infrastructure consists of Concentrator Units (CUs) that use either a wireless
radio network or power line communication to communicate with the SMs [1].

In any large system continuous monitoring is needed to detect faulty com-
ponents. This is especially important in an AMI because of safety-related,
economic and administrative implications. To our advantage, AMIs make
available the cumulative distributed computational power of their devices,
which can be used to efficiently monitor the state of an AMI in a continuous
and distributed fashion. In this context, data streaming fits well thanks to its
inherently distributed, parallel and low-latency analysis properties.

In this paper, we show this for the detection of broken SMs that report
incorrect voltage readings. Incorrect voltage readings can indicate that the
SM is broken and will influence the amount of energy billed to the customers.
Furthermore, early detection of broken SMs boosts safety, since undetected
high voltages can cause damage to electric equipment or injury to persons.
We present LoCoVolt (Local Comparison of Voltages). With LoCoVolt the
differences of voltage readings between any pair of close-in-space SMs are
continuously monitored by each CU. Based on the observed differences (instan-
taneous and average) and the correlations between voltage readings from each
SM connected to the same CU, an SM is reported as broken when its number of
suspicious readings exceeds a given threshold (as we explain in detail in §
. LoCoVolt can function in a manner that is agnostic of the precise topology
of the underlying electricity network and this property makes its approach
applicable in a variety of deployments.

We implemented LoCoVolt on top of Apache Flink [30] and tested it with
real-world electricity network data from a deployed network. Our evaluation,
conducted on resource-constrained hardware whose capacity resembles AMI
hardware capacity, shows that the streaming paradigm delivers efficient and
effective monitoring tools.

The rest of the paper is organized as follows. § [£:2] overviews preliminary
concepts. § describes the problem in more detail, explaining also the bigger
challenges. LoCoVolt’s technique to detect broken SMs is presented in §
and evaluated in § § discusses related work while § [£.7] concludes the

paper.
4.2 Preliminaries
In this section we overview introductory and background information about

data streaming applications, AMIs and voltage monitoring, as well as correlation
measures between data streams.
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4.2.1 Data streaming processing applications

Data streaming processing applications are designed as graphs composed by
streams of data and operators.

Each stream carries tuples sharing the schema (ts, Ay, ..., A,), where ts is
the tuple’s creation timestamp and A1, ..., A,, are application-related attributes.
In a DAG, streams specify how tuples flow from the data sources through the
operators and, eventually, to the data sinks (delivering results to analysts or
other applications).

Operators are provided by the Stream Processing Engine (SPE) being
used to run the application. Despite the fact that each SPE provides its own
definition (and implementation) of basic streaming operators, a common subset
of the operators provided by different SPEs includes Aggregate, Join, Stateless
and Merge operators [3].

Aggregate operators apply aggregation functions over sliding windows of
tuples. Windows are defined by their size, their advance and, optionally, by
a group-by parameter referring to one or more of the input tuples’ attributes
when the aggregation function is applied independently to each group of tuples
sharing such attributes. The Join operator matches tuples from two streams
(keeping a sliding window for each stream) and forwards the pairs for which
a given predicate holds. Stateless operators, as the name suggests, do not
maintain a state evolving with the tuples being processed, and can produce
zero, one or more output tuples for each input tuple, applying a user-defined
function that specifies the input tuples’ attributes to be copied to the output
tuples and the functions to be applied to them. Finally, Merge operators allow
to merge multiple streams into a single one. As we discuss in Section [£.4] these
basic operators can be composed to implement LoCoVolt’s analysis.

4.2.2 AMIs and voltage monitoring

Electricity Network: Private customers and businesses, along with their SMs,
are connected to the grid via transformers. Each SM connects to exactly one
transformer while a single transformer can host multiple SMs. Each SM is
connected to a transformer by one, two or three lines as well as a neutral.
Data Network: At the same time, each Smart Meter SM is also connected to
the utilities’ servers, often via a Concentrator Unit (CU) that aggregates data
from multiple SMs. Each SM connects to exactly one CU (but can change
it over time) while a single CU is connected to multiple SMs. SMs that are
physically close (e.g., deployed in the same building) have high chances of
being connected to the same transformer and CU. In the case of wireless
communication between SMs and CU there is nonetheless no guarantee about
the overlap between the SMs and transformers topology and the SMs and CUs
topology (e.g., two physically close SMs could for instance be connected to
different transformers but the same CU). This is illustrated in the schematic
overview in Figure

The voltage measured by the SMs depends on the input voltage at the
transformer, the length of the connecting cable connecting and local loads in
the distribution network. SMs that are not broken and are connected to the
same transformer are thus expected to display a high correlation between their
voltages time series [4]. Figure illustrates this by showing the voltages
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Figure 4.1: A schematic overview of the SMs connected to two transformers and two
CU. Note that the data network overlaps only partially with the electricity network.
SMs are connected to the transformer with at least one and at most three lines. The
line order at the SMs can differ, e.g. here the line order of SM* is reversed compared
to the other SMs. Besides, the set of SMs connected to each CU may vary with time,
e.g. depending on conditions that affect the signal strength.

measured by two SMs that are physically close and connected to the same
transformer.

Among other things, SMs report the voltage readings for each of their
lines with tuples composed by attributes (ts, CU,SM, L), where ts denotes
the timestamp for the reading, CU and SM indicate the corresponding device
identities and L is a 3-entry vector, containing the root-mean-square voltage
readings for the respective lines, i.e. the equivalent steady (DC) value which
gives the same effect as the sinusoid signal [5].

4.2.3 Streams correlation

In LoCoVolt, we make use of correlation of time series. Given two time series
a and b with n elements, the Pearson correlation coefficient, r, is suitable to be
calculated incrementally [6] as:

p_ AB

B
/ra,b: 12 = B27
\/A2*7\/B2*7

where A =3, a;, B=3Y,b;, Ay =) ,a?, Bo =) ,band P =3, a; - b;.
For incremental calculation only the sums and the number of values need to
be stored. The range of r is [—1, 1], where -1 indicates maximum negative
correlation and 1 maximum positive correlation. A correlation coefficient of 0
indicates that there is no correlation between the time series.
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Figure 4.2: The voltage for two SMs that are physically close and connected to the
same transformer during one week. The correlation coefficient for the time series is
0.94.

4.3 Problem description

In AMIs, SMs are expected to report consumption and quality measurements
periodically. Over time, SMs can break and stop reporting or start reporting
measurements that are not correct. An SM is defined to be broken when
its measured voltage differs from the actual voltage. Detection of broken
SMs is challenging since variations in consumption readings cannot be easily
distinguished between customer-dependent variations and variations dependent
on broken SMs. Because of the physical properties of electricity, a broken SM
can be potentially identified by comparing the voltage readings of its lines with
the ones of the lines of a working SM connected to the same transformer (as
explained in Section they are expected to have readings that follow the
same temporal curves) [4].

LoCoVolt aims at detecting broken SMs based on this observation. It should
be noticed that several practical aspects of AMI deployments can make this a
challenging task:

[a] Line ordering: SMs’ lines are not connected to transformers in a fixed
order. That is, the same physical line connecting two SMs to the same
transformer is not necessarily plugged as line 1 (or 2 or 3) in both SMs.

[b] Asynchronous measurements: The primary task of SMs is to measure
the consumed energy. For this reason SMs don’t necessarily take voltage
readings in a synchronized fashion, voltage readings can even be measured
by the CUs sequentially with a coarse-grained periodicity (e.g. 15 minutes,
1 hour). This implies that we might not have simultaneous measurements
at all SMs and hence the differences might be inaccurate. Moreover, due
to intermittent connectivity and noise, not all readings made in nearby
time-intervals reach the CU in time (i.e. the continuous analysis must
tolerate missing values).

[c] Symmetric differences: A suspicious difference between the voltage read-
ings of the lines of two SMs indicates that one of the two is potentially
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broken, but does not give any hint about which one of the two is the
broken one.

[d] Electricity network and communication network topology: The topology
of the electricity network (i.e. which SMs are on the same transformer)
might not be known, due to distinctions between administrative domains
of the utility or for security reasons. Moreover, wireless communication
may imply that the set of SMs connected to the same CU is dynamic.
(cf. Figure . I.e. we are looking for a method that is agnostic to the
transformer - SM network, as mentioned in the introduction.

From an implementation perspective, an additional challenge is to employ
methods that are intuitive to communicate with the utility system experts, as
unnecessary complexity introduces risks of errors due to misunderstandings.
For that reason, we propose to analyze the problem so as to use standard SPE
operators, usable by engineers with common programming skills.

4.4 LoCoVolt

LoCoVolt addresses the challenges described in the previous section, through
continuous monitoring of voltage readings of SMs at the CU level. Following
LoCoVolt’s rules, SMs can “accuse” each other if their voltage readings are
suspiciously far. On a CU containing some broken SMs, this will result in
many-to-few accusations (from the working SMs to the broken ones) and few-
to-many accusations (from the broken SMs to the working ones). Accusations
made by an SM M, are weighed by the number of accusations it receives,
introducing a reliability measure. The weighted accusations for M; are then
summed and compared with the number of SMs expected to accuse M; is the
latter is broken. In the following, we discuss LoCoVolt’s semantics. We present
the stream operators (Figure that implement them and an example in the
following subsections (subsections’ names correspond to the boxes in the figure,
the stream operators are also referenced in the text).

When do SMs accuse each other? The difference measured by two SMs
fluctuates over time due to the reasons mentioned in Section Hence, rather
than having SMs accuse each other when their readings are arbitrarily dis-
tant, we base accusations on the difference between their instantaneous (AV)
and average (AV) difference. Furthermore, we weigh such accusations by the
correlation (c) observed between them, so that accusations from SMs observ-
ing similar differences over time count more than those from SMs observing
fluctuating differences. Two SMs accuse each other when:

|AV*W| *Cab > 0

where (i) 0 is a parameter related to the measurement resolution, the accuracy
and local load changes occurring between the readings of a pair of SMs; and
(ii) cap = (rap + 1)/2, i.e. a mapping of the correlation of formula
This mapping of the correlation preserves the monotonic relation between
the correlation and AV. The mapping also allows uncorrelated and inversely
correlated SMs to accuse each other if |[AV — AV/| grows large enough. Systems
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experts maintaining the smart grid used in our evaluation identified a suitable
value for 6 from a set of working SMs. Since SMs can have up to three lines,
AV, AV as well as ¢ are 3x3 matrices. Therefore, the number of accusations
between two SMs, M; and M;, is an integer in the range [0,9]. Notice that
accusations are symmetric, i.e. if M; accuses M, then M; accuses M; too.

How to prevent accusations by SMs from different transformers from
affecting broken SMs detection? When M; and M; are not connected to
the same transformer, their voltage reading difference can fluctuate more than
if they share the same transformer (independently of whether any of the two
is broken). When two big-enough groups of SMs are connected to the same
CU but different transformers, this can result in many-to-many accusations
(because of the legit different voltage readings across groups). To mitigate this,
we normalize accusations weighting them by:

1
B >_s, acc(j, 1)

where w; is the weight for M;, S; is the set of SMs accusing M;, and acc(j, ©)
is the number of accusations between M; and M;. The value of w; is small
for SMs that receive a large number of accusations, indicating that it is less
trustworthy. The weighted accusation received by M; from M is then defined
as:

w;

wacc(i, j) = wj - acc(i, 7).

Each wacc() is a real number in the range [0,1]. M; weighted accusation from
M; is 1 when M; is the only SM accusing M;. Note that while the accusations
are symmetric between M; and M, this does not necessarily hold for the
weighted accusations. The total amount of weighted accusations can now be
calculated for all SMs by:

Ji = Z wacc(i, j)
s
where S is the set of SMs whose readings are compared with M;.

If an SM breaks, how many other SMs at its CU will accuse it?
Value J; depends not only on how much M;’s readings deviate from the other
SMs, but also on the number of SMs that the reading is compared with, as
well as how correlated these SMs are with M; (i.e., how likely they will trigger
an accusation). When M; breaks and starts reporting inaccurate values, the
probability of receiving an accusation from M; will be related to the correlation
between M; and M, with an increasing probability for increasing correlations.
We estimate E;, the expected number of SMs accusing M;, by the likelihood
of receiving at least one accusation from another SM, which we approximate
through the correlation matrix entries c; ;. More concretely, E; is defined as:

E;, = Z max(c;, ;)
S

Notice that each SMs in S contributes to the sum with value 1 if its correlation
with M; is 1. A weight 6’ is introduced to specify which portion of E; is
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Figure 4.3: The graph for LoCoVolt. The letter in the operator name refers to the
type of operator: J for Join, A for Aggregate, S for Stateless and U for Union.
The operators are arranged in dashed logical blocks. The function and details
of the logical blocks are described under the equally named headings in
Section [£:4} Details for the individual operators can be found in Table

sufficient for an accused SM to be reported as broken. The value of the weight
influences the number of simultaneous broken SMs that can be detected since
a larger number of broken SMs will cause wacc to decrease. The weight is set
by a system expert to match the expected maximum number of simultaneous
broken SMs. An alert is eventually triggered for M; if J; > 0'E;.

The resulting graph of streams and operators implementing the method is
presented in detail in Figure as well as in the following sections. The names
of the sections correspond to the boxes in the figure and the stream operators
in the figure are referenced in the text with (OperatorID). A running example
in the text is used to illustrate the query. The example consists of three SMs,
A, B and C on CU X, where C is accused by A and B. For simplicity, all SMs
have a single line.

4.4.1 Input

As described in Section the highest correlation between voltage time
series will be between SMs that are close in the distribution network. Therefore
LoCoVolt compares SM readings that are within a certain time-window and
connect to the same CU. This can be implemented by joining the stream of
measurements onto itself in a window. The size of the window (w;), and
advance (w,), is a trade off between the number of pairs that can be compared
and the correlation between the readings. Here it is set to 10 minutes with the
help of a system expert and the window is evaluated for every incoming tuple.

Since an SM can report values for 1, 2 or 3 lines, the readings are stored in
an array of size 3. If there are fewer than three values the corresponding place
in the array will be set to a predefined null value.

The example starts with the following three readings:
<tsa, X, A,230 >, < tsp, X, B,231 >, < tsg, X,C,219 >,

where ts4 < tsp < ts¢. When all timestamps are within the window for the
Join operator, the following tuples will be produced:

<tsp, X, A, B,230,231 >, < tsc, X, A, C, 230,219 >,
<tsc,X,B,C, 231,219 > .



4.4. LOCOVOLT

73

l 1D [ Description

l

Tuple schema [

Ji

Match any pair of tuples from two different
SMs that share the same CU over a sliding
window of 10 minutes, outputting the SMs’
IDs and their voltage readings per line (3X1
matrices Ly and Ls).

(ts,CU,m1,ma, L1[3], L2[3])

S1

Produce a 3X3 matrix (AV') with the differ-
ence between each pair of lines between two
SMs joined by J;.

<tS,CU,M1,M2,AV[3X3]>

Ay

Produce a 3X3 matrix (¢) with the scaled
correlation (Pearson coefficient) as well as a
3X3 matrix (AV) with the average difference
observed for each pair of lines between two
SMs joined by J; over a sliding window of
28 days with an advance of 14 days.

<t$, CU, Ml, MQ, C[3X3],
AV[3X3])

Ja

Match tuples referring to the same pair of
SMs and produce a 3X3 matrix (D) carrying
the value co |[AV — AV, where o denotes
the entrywise product.

<tS7CU,M1,M27D[3X3]>

So

Applies a threshold to the elements in D,
setting the element to 1 if the value exceeds
the threshold and 0 otherwise.

(ts,CU,m1,m2, D[3X3])

Ss

Produce the sum of the elements in D that
equal 1 (accusations, acc) and output this
in two tuples, one for each SM in the input
tuple.

(ts,CU, M, acc)

Az

Produce the sum of acc for all SMs on all
CUs in a 1 hour tumbling window.

(ts,CU, M, acc)

J3

Match tuples where M from Az equals M;
from S3. Produces a tuple for M; containing
weighted accusations wacc.

(ts,CU, M2, wacc)

Ja

Similar to J3 but matches tuples where M
equals M. Produces a tuple for M;.

< ts,CU, M1, wacc >

Uy

Union of the outputs from Js and Jy.

(ts,CU, M, wacc)

Ay

Produce the sum of wace, (J) for all SMs in
a 1 hour tumbling window.

(ts,CU, M, J)

Matches tuples referring to the same pair of
SMs in a sliding window of 14 days, removes
AV from the tuple..

(ts,CU, My, Ma, c[3X 3])

S4

Splits the input tuple into two, one for each
SM and keeps containing the maximum ele-
ment in c.

(ts,CU, M, mazx(c))

As

Produces the expected number of accusations
(E), in a 1 hour tumbling window.

(ts,CU, M, E)

Je

Join A4 and As for each SM.

(ts,CU, M, J, E)

Ss

Report suspicious SMs for which the number
of J exceeds 0'E.

(ts,CU, M)

Table 4.1: Detailed description of the Join, Aggregate, Stateless and Union operators
used in LoCoVolt’s query.
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4.4.2 Statistics

The statistics required for LoCoVolt are the correlation (¢) and the average
difference (AV) between all line pairs of all SMs. This can be implemented
with an aggregation operator that incrementally calculates the average for the
difference as well as the correlation in a window. The window size should be
large so that AV and c are stable values. The window size for LoCoVolt is set
to 28 days with a window advance of 14 days.

Since the readings are arrays with length three, the average difference, as
well as the correlation between all possible line pairs are stored in two 3x3
matrices. (Al)

For the example we assume that the correlation between SMs A and B is
0.91 while the average difference is 1.2. Values for the other pairs can be found
below.

<ts,X,A,B,091,12 >, < ts, X, A, C,0.87,2.3 >,
< ts,X,B,C,0.89,2.8 > .

4.4.3 Accusations

The calculation of the accusations is accomplished by an operator that calculates
AV for all line pairs (S1). This stream is then joined with the statistics stream
with a window size and advance that equals the window advance for the statistics
operator. The join function can now calculate the value of |AV — AV|-c. (J2)

<tsp,X,A, B,0.182 >, < tsc, X, A, C,7.569 >,
<tsc, X,B,C,8.188 > .

The threshold 6 can now be applied by a stateless operator. (S2) 6 is set to
3, which for the example results in the following tuples:

<tspg,X,A,B,0> <tsc,X,A,C, 1> <tsc,X,B,C,1>.

The number of accusations between any pair of SMs is symmetric and can
be processed in a single tuple containing the IDs for both SMs as well as the
number of accusations. This is a number between 0 and 9, depending on the
number of lines for the SMs and the result from the previous equation. In
order to get the sum of the accusations per SM, two tuples with the number of
accusations are created, one for each SM (S3).

<tspg,X,A,0> <tsg,X,B,0 >,
<tsc,X,A 1> <tse,X,C,1>,
<tsc,X,B,1 > <tsg,X,C,1>.

These tuples are aggregated in a tumbling window and counted (A2). The
window size is chosen to match the frequency of the readings which in our case
are hourly.

<tsg, X, A, 1> <tsg,X,B, 1> <tsg,X,C,2>.
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4.4.4 Weighted accusations

The weighted accusations are obtained by combining the accusations between
the SMs with the sum of the accusations per SM. Two join operators are
required to accomplish this since the accusations between the SMs is stored
in a single tuple for every pair of SMs, while the total number of accusations
received has one tuple per SM. (J3,J4) The window size and advance of the
join operators match the frequency of the readings. The union of these streams
results in a single stream with all wacc values. (U1)

The tuples at this point in the query contain wacc as shown in the example:

<tsp,X,A,0/1 > <tsp,X,B,0/1 >,
<tsc,X,A,1/2> <tsc,X,C,1/1 >,
<tsc,X,B,1/2> <tsc,X,C,1/1 > .

The tuples now need to be aggregated in a window and counted in order to
obtain J (A4). The window size and advance match the values chosen for the
join operators in this block.

<tsc,X,A,1/2> <ts¢,X,B,1/2 >, <tsc,X,C,2 > .

4.4.5 Expectations

The expected amount of accusations (E) for a broken SM is estimated in the
query by joining the tuples containing the readings that are being compared
with the statistics. (J5). The window size and advance equal the window
advance for the statistics aggregator. A stateless operator selects the maximum
correlation value for every pair of SMs and outputs a tuple containing this
value for each SM in the pair (S4). These tuples can then be aggregated in
order to obtain the sum per SM, ie. the value of E (A5).

The expected number of accusations for the SMs in our example is given
by:

<tsc,X,A,1.718 > < tsc,X,B,1.80 >, < tsc, X,C,1.76 > .

4.4.6 Output

The final step in the query is then to combine the expected number of accusa-
tions with the total number of weighted accusations (J6) and output an alert
if the number of weighted accusations exceeds the expected number weighted
by 6. (S5) The window size and advance for the join operator match the
frequency of the readings.

0’ is set to 0.5 (majority voting) which renders the following final output in
the example:

<tsg,X,C >

4.5 Evaluation

In this section, we present LoCoVolt’s evaluation. We first introduce the
evaluation criteria followed by the evaluation setup. Subsequently, we discuss
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how we simulated broken SMs based on real cases observed at the energy
company. Finally, we evaluate LoCoVolt effectiveness in detecting such broken
SMs and LoCoVolt’s performance.

Evaluation criteria

In order to evaluate LoCoVolt’s detection capabilities, the metrics we take
into account are (1) the detected percentage of manipulated readings; (2) the
number of true positive (TP) and false positive (FP) alarms; (3) the detection
time for the different voltage manipulation rates. TP alarms are alarms that
are generated for the manipulated SM after the manipulation has started,
while FP alarms are alarms for SMs that have not been manipulated. We also
evaluate(4) the precision, recall and accuracy which are common measures in
classification problems |7]. These metrics are defined with TP and FP as well
as true negative (TN) and false negative (FN) alarms. FN is the number of
manipulated readings that did not trigger an alarm, while TN are the readings
that neither were manipulated nor triggered an alarm. Precision is now defined
as the quotient of TP by TP+FP, recall as the quotient of TP by TP+FN and
accuracy is defined as the quotient of TP+TN by TP+TN+FP-+FN.

In the case where there are multiple broken SMs simultaneously, we investi-
gate (5) the percentage of detected broken SMs.

Finally (6) the performance in terms of processing throughput and latency
is evaluated, in order to assess the possibility to run LoCoVolt on the hardware
available in the AMI.

The detection time is especially important in order to minimize the duration
and impact of the problems described in Section [4.3] The number of FP alarms
should be as low as possible to minimize the manpower needed to investigate
the alarms, while a high number of TP alarms generated by a large percentage
detected readings helps to ascertain that a TP alarm truly is TP.

The results are compared with a baseline consisting of the current situation
at the utility where SMs are investigated manually by system experts when
the SM readings are outside of a predefined interval.

Evaluation setup

We evaluated LoCoVolt with data collected from 939 SMs during a period of
9 months. Each SM reports the voltage observed for each of its lines every
hour, for a total of 4 million readings (about 1.5 million readings are missing).
SMs connect to 26 Concentrator Units (CUs). The average number of SMs per
CU is 36 while the CU with the largest set of SMs connects 152 and the CU
with the smallest set connects 7 SMs. The SMs are connected to the grid by
30 different transformers. 26 CUs contain SMs that are connected to a single
transformer. Two CUs contain SMs connected to two transformers while a
single CU has SMs that are connected to three different transformers. Three
kinds of SMs exist in the dataset, types 1 and 2 are three line SMs while type
3 is a single line SM. 366 SMs are of type 1 with a voltage resolution of 1 volt,
361 of type 2 with a resolution of 0.1 volts and finally 212 SMs of type 3 with a
0.1 volts resolution. The data is sanitized by removing values that would have
been ignored based on existing validation rules.
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We implemented LoCoVolt on top of Apache Flink [30] version 1.4.0. In
order to test LoCoVolt’s performance when potentially deployed at CUs, we
run the performance evaluation experiments using a single-board device called
Odroid-XU4 [36] (or simply Odroid in the remainder), equipped with a Samsung
Exynos5422 Cortex-A15 2Ghz and Cortex-A7 Octa core CPUs and with 2 GB
of memory. All other experiments were run on a standard off-the-shelf laptop
computer.

Simulation of a broken smart meter

To the best of our knowledge, the SMs selected to conduct the evaluation are
not broken during the period of time covered by the data. In order to check
LoCoVolt’s effectiveness in detecting broken SMs, we simulate the latter by
manipulating their data, in ways that comply with the experts’ description of
experienced failures that are studied in a post-mortem fashion, i.e. after an SM
is known to be broken through e.g. the damage caused by it. More concretely,
we simulate two ways for which broken SMs have been observed in the AMI.
In case I (all-line), we pick a random SM and, starting from a certain reading,
we decrease its reported voltage every day with a constant rate. The rates we
simulate are 0.005, 0.01, 0.015, 0.02 and 0.025. In case II (single-line), once
a random SM is picked, we only alter one of its lines decreasing it every day
with a constant rate. Also in this case, we simulate different decrease rates:
0.005, 0.01, 0.015, 0.02.

For both cases, we run 1000 experiments for each voltage manipulation rate,
picking a random SM and a random starting date each time. The experiments
start 28 days before the starting date of the manipulation, to ensure that
the window for the statistics operator is filled, and ends after 14 days of
manipulation.

Simulation of multiple bad SMs per CU

We also evaluate LoCoVolt when more than one SMs break simultaneously for
two different cases. In case IIT (multi-SM) we simulate multiple SMs breaking
independently from each other by selecting the correct number of SMs randomly.
In case IV (multi-correlated-SM) we instead simulate the case where multiple
SMs connected to the same transformer break, for instance due to lightning.
For this case one SM is selected randomly while the other broken SMs are
selected randomly from the set of SMs connected to the same transformer as -
and physically close to - the first SM. We try different numbers of broken SMs:
2,4, 6, 8 and 10 for both case III and IV.. 100 experiments are run for every
number of broken SMs on a subset of the data described earlier. For these
experiments we use the data from a single CU with 64 SMs that connect to
two transformers (45 SMs to first transformer and 19 to the second one). For
every experiment we decrease the readings for all lines on all selected SMs with
a rate of 0.001 for every following day.

LoCoVolt detection capabilities

The detection capabilities of LoCoVolt are evaluated with the criteria described
earlier in this section.
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Figure 4.4: The detected percentage of manipulated readings for different voltage
manipulation rates when all lines are manipulated. The largest outliers are typically
between 20 and 30%.
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Figure 4.5: The mean and standard deviation of the number of TP and FP alarms
respectively for different voltage manipulation rates when all lines are manipulated.
The number of FP alarms is 2 orders of magnitude smaller than the number of TP
alarms.
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Figure 4.6: The detection time for different voltage manipulation rates when all lines
are manipulated. The largest outliers can be found between 250 and 320 hours for all
manipulation rates.
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Figure 4.7: The precision, recall and average for different voltage manipulation rates
when all lines are manipulated.

100 T _i_ - 5 —+
X —_ I :
g 200 | ﬁ |
c |
S 80 - | .
o I I
-; 70 | | 1 L - a
z T |
o £
= 60f | e
[a)] |

50 —— I I I I

0.005 0.01 0.015 0.02 0.025
Voltage manipulation rate

Figure 4.8: The detected percentage of manipulated readings for different voltage
manipulation rates when a single line is manipulated. The largest outliers are typically
between 20 and 30%.
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Figure 4.9: The mean and standard deviation for the number of TP and FP alarms
respectively for different voltage manipulation rates when a single line is manipulated.
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Figure 4.10: The detection time for different voltage manipulation rates when a
single line is manipulated. The largest outliers can be found between 250 and 320
hours for all manipulation rates.
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Figure 4.11: The precision, recall and average for different voltage manipulation
rates when a single line is manipulated.
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Figure 4.12: The mean and standard deviation for the number of TP alarms per
manipulated SM and FP alarms per SM reporting such alarms respectively for different
numbers of manipulated SMs.

80 |-
70

90 -
|
|
60 | T !
| |

|

50 |
40}

e —_—
30 :
20 E- = T
I

Detection time (hours)

10

Il Il Il

|
2 4 6 8 10
Number of broken SMs

Figure 4.13: The detection time for the detected manipulated SMs for different
numbers of manipulated SMs.
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Figure 4.14: LoCoVolt’s detection rate for different numbers of simultaneous manip-
ulated SMs.
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Figure 4.15: The detected percentage of manipulated readings for different numbers

of simultaneous manipulated SMs.
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Figure 4.16: The precision, recall and average for different numbers of simultaneous

manipulated SMs.
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Figure 4.17: The mean and standard deviation for the number of TP alarms per
manipulated SM and FP alarms per SM reporting such alarms respectively for different
numbers of manipulated correlated SMs.
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Figure 4.18: The detection time for the detected manipulated SMs for different
numbers of manipulated correlated SMs.
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Figure 4.19: LoCoVolt’s detection rate for different numbers of simultaneous manip-
ulated correlated SMs.
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Figure 4.20: The detected percentage of manipulated readings for different numbers
of simultaneous manipulated correlated SMs.
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Figure 4.21: The precision, recall and average for different numbers of simultaneous
manipulated correlated SMs.

Figures [£.4] [£.5] and [£.6] present the results for the broken SMs in the all-line
case. As presented in figure the median percentage of detected manipulated
readings grows from approximately 75% (voltage manipulation rate 0.005) to
90% (manipulation rate 0.025). This trend is reflected in Figure showing
the mean total number of TP and FP alarms that are detected as well as the
standard deviation. This can also be observed in Figure [£.7] which shows that
the accuracy in this case is very close to one independent of the manipulation
rate. Both the recall and the precision increase for larger manipulation rates,
consistent with the larger percentage of detected manipulated readings for
larger voltage manipulation rates. The mean number of SMs reporting FP
alarms is approximately 2.4 with a standard deviation of 5. The average
number of FP alarms per SM reporting such alarms is around 3, but the
actual number has quite some variation with a standard deviation of 15. The
number of TP alarms is about 250 (voltage manipulation rate 0.005) and
increases to 290 (manipulation rate 0.025). This shows that the number of
TP alarms detected greatly outnumber the number of FP alarms for every
manipulation rate. The detection time of the manipulation depends on the
time it takes for the manipulation to become greater than the threshold 6. For
a voltage manipulation rate of 0.005 and a normal voltage of 230, this will take
approximately 62 hours. Figure shows that the mean detection time at this
manipulation rate is some hours faster, and similarly for the larger rates.

Figures and present the result for the single-line case.
The figures show similar trends with the percentage of detected manipulated
readings, as well as the number of alarms increasing with the voltage manip-
ulation rate as can be seen in Figures and The absolute amount of
alarms is however about 7% lower, with matching results for the percentage of
detected readings. This is reflected by the detection time in Figure which
is increased by a similar amount. The amount of SMs reporting FP alarms is
similar as in the all-line case, but a difference is that the amount of alarms per
SM is increased to 7 on average and the standard deviation is increased to 40
as can be seen in Figure [4.9] The number of TP alarms still greatly outnumber
the FP alarms. The recall and precision values follow this trend as can be
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observed in Figure The accuracy however remains very close to one.

Alarms are triggered both by manipulated SMs as well as SMs that have not
been manipulated. However the number of alarms triggered by manipulated
SMs is at least one order of magnitude larger than the number triggered by
non manipulated SMs, as shown in Figures and This is also the case
when multiple SMs are manipulated simultaneously, as shown in Figure
As currently done by system experts, all reported SMs need to be inspected.
System experts usually start inspecting the SMs with the higher amount of
alarms and stops when a false positive is encountered. If we define the detection
rate as the percentage of broken meters that are indeed inspected, we can see
in Figure that the range of broken meters that are correctly detected goes
from 100% (for 2 simultaneously broken meters) to approximately 65% for
10 simultaneously broken meters.. LoCoVolt’s detection capability declines
with increasing numbers of broken SMs with a rate for two bad SMs above
99% but then starts to decrease to reach 70% for ten bad SMs. Figure
shows that the number of TP alarms per SM decreases rapidly from a mean
of 250 for two broken SMs to just 13 when the number of broken SMs is
increased to 10. The average number of FP alarms however is independent
of the number of bad SMs and smaller than two in all cases. The number of
detected manipulated readings shows a similar trend as observed in Figure [4.15
The mean detection times for the broken SMs increases from 20 to 40 hours as
can be seen in Figure These trends are reflected in Figure showing
the precision, recall and accuracy. Both the precision and accuracy are close
to one independent of the number of manipulated SMs, while the recall drops
from 0.75 for two manipulated SMs to 0.05 when the number of manipulated
SMs is increased 10. Even though the recall is only 0.05, the average number
of alarms for a manipulated SM is still an order of magnitude larger than for a
non-manipulated SM.

The results for the multi-correlated-SMs show similar trends. Figure £.17]
shows that the number alarms reported per TP or FP SM hardly changes,
however the number of manipulated SMs that is detected declines faster as seen
in Figure This is also reflected in the number of manipulated readings
that are identified which can be seen in Figure as well as in Figure
which shows that the recall decreases faster in this case. The detection time
increases faster when the broken SMs are highly correlated, as shown in Figure
with the mean detection time when for 10 broken SMs growing slightly
over 60 hours.

LoCoVolt performance

In order to study LoCoVolt performance, we also evaluate its throughput
and latency when running on the Odroid. The throughput, measured in
tuples/second, represents the rate with which an CU can process input tuples.
The latency, measured in ms, represents the average time elapsed between
the production of an output tuple and the receiving of the latest input tuple
contributing to it. Note however that since LoCoVolt produces a reduced
number of output tuples (only for alerts about broken SMs), the latency is
measured at the input of operator S5 in figure [4.3

Figure and show the mean and standard deviation of the measured
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Figure 4.23: The mean and standard deviation of the
latency on the Odroid for different input rates.

throughput and latency over three runs for every tested input rate. As shown,
the Odroid can maintain a stable input rate of 600 tuples per second which
is enough to sustain a reading interval of 1 second with a big margin. This
throughput is more than sufficient for future applications, considering that the
current reading interval is 1 hour. The latency is approximately 2 seconds at
an input rate of 600 tuples/second, which is very small compared to LoCoVolt’s
detection time which is in the range of hours.

Evaluation summary

Broken SMs are currently usually detected when their readings exceed the
allowed voltage range which in the case of this data set is 230V 4+ 10%. A
broken SM with a voltage manipulation rate of 0.005 would be detected after
20 days at the earliest. We show that the detection time using LoCoVolt
is significantly smaller with a mean of 48 hours. The number of FP alarms
generated by LoCoVolt is very small and greatly outnumbered by the number
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of TP alarms, enabling utilities to act on alarms swiftly since the possibility
that the work required for an investigation is wasted due to a false alarm
is very small. LoCoVolt can also detect situations in which there multiple
broken SMs simultaneously, regardless of the correlation between these SMs.
The detection rate decreases with increasing numbers of broken SMs, which
is expected since a larger number of broken SMs will decrease the value of
the weighted accusations. The detection rate is largest and the detection time
smallest for the case where all broken SMs are picked randomly, but LoCoVolt
outperforms the current detection method with a large margin even when the
broken SMs are highly correlated.

We also show that it is possible to run the analysis on the next generation
CUs. Carrying out processing in the deployed infrastructure would minimize
the amount of data that needs to be uploaded to the utilities’ central servers.

4.6 Related Work

There is rising interest in the benefits from processing data in digitalized
systems and especially so in the context of improving sustainable development
in cities, where electricity networks is a key component in the infrastructure (c.f.
e.g., [9,[10] and references therein). Especially in the latter it is highlighted
that as data flows continuously in the systems, it is useful to process in a
streaming fashion, before the data (or summaries of it [11]) is stored in big
data-bases where it becomes infeasible to extract useful information in timely
fashion. The latter is also one of the focal points of this paper.

The reliability of data and the robustness of the digitalized systems them-
selves are key issues. As examples, it is possible to mention that in [12] the
authors have shown how to deal with data validation through continuous data-
stream processing of the electricity consumption measurements so as to have
trustworthy data for billing and for further processing to e.g. use in planning
operations. In [13.|14] the authors study the problem of detecting potential
intrusions in AMI, since these are highly motivated.

Besides protecting the robustness and the reliability of the infrastructures,
it has been shown that general data processing and stream processing can
generate valuable information, for e.g. detecting fraud, non-technical losses,
power outages [6,|15}21], thus protecting both safety/societal and economic
aspects.

Our work combines stream processing of AMI voltage data with correlations
of time series in order to detect broken SMs.

Correlation of consumption value time series has been used in a streaming
fashion in order to clusters of similar customers [6].

Voltage data has seen increasing use in Smart Grids recently. E.g. voltage
time series correlations have been used in order to verify the documented grid
topology, either by correlating smart meter data with transformers [4,/18], or by
correlating only smart meter data [19]. To the best of our knowledge, voltage
data has never been used to identify broken smart meters nor have voltage
correlations been done in a streaming and distributed fashion. Other uses of
voltage data include power quality estimation in the grid [20].

Identification of bad individuals by peer to peer accusations has also been
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explored in wireless [21] and vehicular networks [22], where the notion of a
group has a physical interpretation. Here we need to induce this information
through the temporal dimension of the measurements of SMs, among the
dynamic set reporting to the CU that locally processes the data.

4.7 Conclusions and future work

The digitalization of electrical grids and in particular AMIs can provide the
means to not only take and report measurements, but also to process the data in
the deployed IT infrastructure and generate valuable information at the edge of
the network, without relying on big cloud infrastructures and data centers. We
strengthen this statement by addressing the problem of continuous distributed
monitoring of voltage measurement streams, for detecting broken smart meters.
Having this information is important for reliable billing, for prompt reaction for
safety reasons, and, consequently, for the business value of the utility. We show
that it is possible to have high accuracy and timely detection, even when the
processing is done through resource-constrained devices such as the ones that
are common in AMIs. The latter implies that this is achievable at a negligible
cost, for the utility.

Continuous stream-based monitoring can be beneficial for a series of other
purposes, including facilitating planning operations, use of renewables and
identifying other types of anomalies and unwanted situations.
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