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A B S T R A C T

There are right and wrong answers, but there are also ways of
answering questions which are helpful and some which are not,
even when they convey the same information. In this thesis we
present a data-driven approach to automatically recognizing
the good answers.

A good answer lays out its information so that it is easy to
read and understand. And answer structure matters—imagine
assembling a piece of IKEA furniture if the order of instruc-
tions is scrambled. In general, text is structured by discourse
relations, and discourse markers (DMs, e.g. however, moreover,
then) are the most apparent and reliable signs of this structure.
In the thesis we use DMs to model aspects of answer structure.

Unfortunately, standard discourse processing software make
two unrealistic assumptions about DMs, making it hard to ap-
ply to community-generated data. They are a) that gold-standard
annotations are available for feature generation; and b) that
DMs form a closed class for which we have labeled examples of
all members. We challenge those assumptions, showing that a)
in the absence of gold annotations, state-of-the-art performance
can be obtained with much simpler features; and b) sharing fea-
tures between DMs based on similarity via word embeddings
gives an error reduction of at least 20% on unknown DMs, com-
pared to no sharing or sharing by part-of-speech.

Structure-building expressions are often more complex than
the simple DMs discussed above and could even be discon-
tinuous (e.g not only X but also Y). However, discovering such
patterns automatically is a very hard search problem. As an
alternative, we generate representations based on regular ex-
pressions using data elicited from workers on Mechanical Turk.
Using these complex expressions for answer ranking gives an
error reduction of 24% compared to a bag-of-words model.

We introduce the task of ranking answers across domains,
learning from questions and answers collected from commu-
nity Q&A sites (cQA). In one experiment we show that impor-
tance sampling, where training data is sampled according to
similarity between questions, leads to significant improvements
over an uninformed sampling strategy.
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R E S U M É

Svar kan være rigtige og forkerte, men de kan også være formu-
lerede på en måde, som gør dem enten nyttige eller ubrugelige,
selv hvis de indeholder samme oplysninger. I denne afhandling
præsenterer vi en datadreven metode til automatisk genkendelse
af de gode svar.

Et godt svar tilrettelægger sit indhold på en måde, der er let
at læse og forstå. Svarstruktur er afgørende—tænk på en IKEA-
samlevejledning, hvor instruktionerne er blevet byttet rundt.
Overordnet set er tekst struktureret af diskursrelationer, og dis-
kursmarkører (DM’er, fx dog, desuden, så) er de mest iøjefaldende
og pålidelige udtryk for denne struktur. I denne afhandling
bruger vi DM’er som en model for nogle aspekter af svarstruktur.

Uheldigvis gør standardsoftware til at behandle diskurs to
urealistiske antagelser om DM’er, hvilket gør det svært at anvende
softwaren på almindelig svartekst. Disse antagelser er a) at der
findes guldstandardannoteringer til brug for feature-generering;
og b) at DM’er udgør en lukket klasse, hvor vi har adgang til
opmærkede eksempler af alle medlemmer. Vi anfægter disse
antagelser og viser a) at i fravær af guld-annoteringer kan state-
of-the-art-niveau opnås med langt simplere features; og b) at
feature-deling mellem DM’er baseret på ordindlejringslighed
giver en fejlreducering på mindst 20% for usete DM’er i forhold
til ingen deling eller deling baseret på ordklasse.

Udtryk, der bygger struktur i en tekst, er ofte mere komplekse
end de simple DM’er diskuteret ovenfor og kan endda være
diskontinuerte (fx ikke kun X men også Y). At finde sådanne
mønstre automatisk er et meget vanskeligt søgeproblem. Som
et alternativ genererer vi repræsentationer baseret på regulære
udtryk ved hjælp af data indsamlet fra Mechanical Turk-arbejdere.
Det giver en fejlreduktion på 24% at bruge disse repræsentationer
sammenlignet med en bag-of-words-model.

I afhandlingen introducerer vi en ny opgave, nemlig at rangordne
svar på tværs af indholdsdomæner. Vores system lærer af spørgsmål
og svar indsamlet på brugerdrevne Q&A-sider. Et vigtigt resultat
er, at importance sampling, hvor træningsdata udvælges på baggrund
af ligheden mellem spørgsmål, fører til signifikante forbedringer
over en uinformeret strategi for udvælgelse af træningsdata.
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1
I N T R O D U C T I O N

1.1 from factoids to fitting answers

Philosophers make a distinction between knowing why or that
something is the case, and knowing how to do it—between
knowing-why and knowing-how. For some philosophers, this
distinction is at the heart of things. Knowing-why is funda-
mentally different from knowing-how; it is a separate mode
of knowledge. Evidence from cognitive science seems to sup-
port this—procedural knowledge and propositional knowledge are
encoded differently in the brain.

Asking questions is one way to expand our knowledge of the
world. To be concrete, say you are walking in your garden and
suddenly encounter a swarm of bees hanging from a branch of
a tree. Unless you have seen this kind of thing before, you are
probably wondering what to do. Consider then the two pieces of
information in Ex. (1.1) and Ex. (1.2).

(1.1) Why do bees swarm? Honey bees swarm because they
are looking for a new site to form a new colony. It
is a natural and positive means of population in-
crease1.

(1.2) How do I handle a swarm of bees? If you have a swarm
of honey bees which have suddenly arrived, please
do not panic and rush out to kill them. There are
plenty of beekeepers available who are more than
willing to come out and collect your swarm2.

The examples are answers to two distinct, although related,
questions. There is nothing wrong with the information in Ex.
(1.1); it begins to explain the phenomenon but fails to mention
what to do about it. In the situation at hand, it answers the
wrong question: the why instead of the how. In contrast, Ex.
(1.2) seems a better choice, since it addresses the situation at
hand and directly instructs us what to do (and what not to do).

1 http://www.wildlifeextra.com/go/uk/bee-swarm.html
2 http://www.wasp-removal.com/bee-removal.php
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In the above examples the appropriateness of the answers
can be traced back to the presence or absence of certain lin-
guistic traits. The answer to the why question explains causal
relationships and uses the discourse marker “because” to con-
nect the cause and the effect. The how answer uses conditionals
(if X, then Y) to ensure that the actionable advice it gives fits
the situation. Additionally, it speaks to the reader directly us-
ing second-person pronouns and emphasizes its advice with
“please”.

More generally, how, why, and other types of questions set up
different expectations about the linguistic structure of a good
and fitting answer. In the thesis we explore how these expec-
tations can be modeled empirically and used to identify good
answers.

1.2 the recipe for a good answer

The idea, then, is that good answers differ from answers of
lower quality in terms of how they structure their content, and
that this structure is conditional on the type of question. Set-
ting aside the issue of answer correctness3, we ask: Can such a
recipe for good answers be learned? We address this by asking
several more questions, discussed below:

1. Where do we find corpora of good and bad answers?

2. What are the biases of those corpora?

3. What is a good representation of an answer?

good and bad answers

At first sight community-based Q&A sites (cQA) offer the ideal
platform for investigating the issue of good and bad answers,
for several reasons. A question posed to one of these sites usu-
ally attracts answers by several people and the answers are
ranked by community voting, so that for each question a pri-
oritized list of answers can be extracted. By comparing higher
and lower ranked answers to the same question we can check
for systematic differences and describe what they are. Further-
more, the data is abundant; as of September 2013, the Stack

3 A brief discussion is found in Chapter 7
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Exchange network of cQA sites, which we make use of in Chap-
ter 7, hosts 7.1 million questions and 12.8 million answers dis-
tributed on 106 sites with distinct profiles and subjects4. Yahoo!
Answers, a general-purpose cQA site founded in 2005, remains
the largest resource and exceeds the combined figure by sev-
eral orders of magnitude. In 2010, the site thus passed the one
billion mark for answers5.

The article “Cross-domain answer ranking using importance
sampling” (Chapter 7) attempts to reproduce the answer rank-
ings of 30 Q&A sites on a variety of subjects, all belonging to
the Stack Exchange network. While answer ranking is not a
new task [161], we reframe it by introducing one important
restriction, which is that features should derive from the tex-
tual content of question and answers and not rely on the so-
cial structure of the cQA site. This effectively widens the scope
of application for the model considerably beyond cQA, even
though it is learned from cQA data. It could, for instance, be
used to find answers embedded in running text on web pages
or to guide content selection in query-focused summarization
(a possibility we return to in Section 5).

bias in community-generated data

Unfortunately, the ratings awarded to answers in community
voting are not the transparent proxies for answer quality that
we might like them to be. People submit votes and choose
favourite answers for a number of reasons, some of which are
unrelated to answer quality, such as feeling gratitude (see Sec-
tion 4). More importantly, the social practices around question
answering, including the reward systems of cQA sites, strongly
influence how votes are cast [6]. One finding of Chapter 6 is
that the timing of an answer (does it arrive first, second, etc.),
a factor seemingly unrelated to quality, nevertheless correlates
with its rating and length.

answer representation

Once we have a corpus of ranked answers, we need to find a
representation, which

4 http://stackexchange.com/
5 http://yanswersblog.com/index.php/archives/2010/05/03/

1-billion-answers-served/
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1. captures (aspects of) the structure of the answer, and

2. can be reliably produced on large amounts of data.

The first requirement states that the representation should cap-
ture facts about how the answer organizes its information, i.e.
how the pieces of the answer relate to each other. The second
requirement, which is dictated by our choice of corpus, makes
it necessary to go for a relatively shallow approach. Together
these requirements point towards the use of discourse markers
(DMs). DMs explicitly signal the presence of discourse rela-
tions, which help structure text and make it coherent. A dis-
course relation holds between two units of text, assigning a
“meaning” or sense to that relation. For instance, the relation
between the bracketed expressions in Ex. (1.3) is one of Con-
trast.

(1.3) [Sam goes to work], but [Jim stays at home].

While DMs are not the only way of establishing discourse rela-
tions — in fact, many discourse relations are established through
simple adjacency of sentences — they can be detected more re-
liably than other types of discourse relations and are thus the
logical point of departure.

Our use of disambiguated and sense-assigned DMs as a rep-
resentation of answer structure was initially met with prob-
lems, as the publicly available software for performing disam-
biguation and sense classification6 did not perform as well as
expected on our data. This prompted further investigations into
the task and resulted in the two papers ‘Disambiguating dis-
course connectives without oracles” (Chapter 10) and “Learn-
ing to disambiguate unknown discourse markers” (Chapter 9).

In a complimentary line of work we look at deriving rep-
resentations based on regular expressions. For a motivation,
consider Table 1, which showcases some examples of useful
phrases for writers of argumentative essays [37]. Intuitively,
phrases like these seem useful in capturing the structure of an
answer. However, they would be difficult to discover automati-
cally, because although they are shallow patterns, some are dis-
joint and some are only semi-fixed expressions that allow for
some variation in syntax or word choice. In the article “Using
crowdsourcing to get representations based on regular expres-
sions” (Chapter 8), we study an alternative strategy of asking
people to supply the patterns.

6 We used the Logistic Regression classifier of [136]
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Expanding neither . . . nor; not only . . . but also; it is
found that . . .

Examples which is to say; in other words; for exam-
ple; as in the following examples; such as;
in particular

Quotes according to X; to quote from X; X
(tell|show|argue) that; X state; X discuss;
X express the concern

Uncertainty possibly; perhaps; very likely; it might; un-
sure

Returning to

emphasize

even if X is true; although X may have a
good point; all the same; in spite of X

Table 1: Examples of argumentative phrases from Cottrell [37].

1.3 learning in the wild

An orthogonal view on the papers of this thesis is that to-
gether they make a statement about the proper evaluation of
NLP tasks. They insist it should be realistic with respect to the
expected performance in the wild. Evaluation may not reflect
real-life performance for a number of reasons, including

1. loss due to domain differences between training and test
data;

2. use of privileged information (e.g. gold annotations) not
available at test time (in the wild);

3. use of an improper metric for the task; and

4. only doing intrinsic evaluation, especially for tasks like
parsing and tagging, which are often components of larger
NLP systems.

In “Disambiguating discourse connectives without oracles”
(Chapter 10), we argue that published results for DM disam-
biguation partly give the wrong impression, because they use
averaging over instances (allowing a few high-frequency items
to dominate) instead of averaging over all types of DMs. When
the latter method is adopted, results are much less impressive,
suggesting that more work is needed still.

In “Learning to disambiguate unknown discourse markers”
(Chapter 9), we challenge the assumption that labeled training

5



material is available for all DMs (and provide evidence to the
contrary). The paper then goes on to suggest an evaluation set-
ting where classifiers are trained specifically for each DM, on
training data which excludes any instances of that marker.

Ideally, evaluation of a task should not be done in isola-
tion but involve measuring the performance “down-stream”,
in applications that rely on the output of the task. For instance,
summarization often requires part-of-speech tagged input, and
sentence compression commonly operates on the syntactical
structure produced by a parser. The relation between intrin-
sic and down-stream performance is by no means trivial. As
we demonstrate in “Down-stream effects of tree-to-dependency
conversions” (Chapter 11), what appears to be a relatively inno-
cent choice of constituency-to-dependency-parsing conversion
scheme has dramatic effects on down-stream performance.

More often than not, the data used for training and evalu-
ating a model looks very different from the data it is going to
be applied to. In data-driven approaches standard procedure
is to first partition data into disjoint training and test sets and
then induce a model from the training set. The performance of
the model on the test set measures the generalization capabil-
ity of the model, but only given certain assumptions, the most
important of which is that training and test data are both sam-
pled independently and identically distributed (i.i.d.) from the
underlying “true” distribution. In reality, the standard anno-
tated corpora in NLP, such as Penn Treebank and PDTB, are
highly biased samples (of the distribution of English text). This
is unfortunate in at least two respects. Not only does it make
performance figures on the test set less meaningful as a mea-
sure of generalization ability, it also makes us vulnerable to
out-of-vocabulary (OOV) effects, which happen when features
that were present in the training data go missing at test time
and vice-versa.

We propose a method for dealing with OOV errors in “Ro-
bust learning in random subspaces: equipping NLP for OOV
effects” (Chapter 12)

1.4 structure of the thesis

The first part of the thesis looks at the components of a good
answer. In a motivating experiment, Chapter 2 lends support
to the idea that particular types of questions produce particu-
lar structures in the answers. Chapter 3 takes a step back, ask-

6



ing what a question really is. It turns out that not all questions
look like questions in syntax, which leads us to categorize al-
ternative forms of questioning in community-generated data.
Chapter 4 addresses another fundamental issue, the definition
and evaluation of answer quality. Chapter 5 opens with the ob-
servation that summarization and complex question-answering
have similar aims and could benefit from sharing approaches.
We then propose specific ways of altering summarization sys-
tems to further our goal of getting better answers. Chapter 6,
the final chapter of the first part, brings together many of the
themes discussed so far. In the chapter we rank answers from a
cQA site using discourse-related features.

The second part consists of published7 articles, written from
2011 to 2013. Chapter 7 revisits the ranking problem of Chap-
ter 6, casting it as a problem of domain adaption, using data
from 30 cQA sites. Although results improve over a baseline,
much of the variance in the data is not accounted for by the
model. Hypothesizing that our text features are not sufficiently
expressive, we consider, in Chapter 8, how to elicit discontin-
uous, regular expression-like features from experts and by use
of crowd-sourcing.

Another cause of the unexplained variance may be that the
discourse processing is not working as advertised on community-
generated data. Chapter 9 and Chapter 10 deal with recogniz-
ing discourse markers and classifying the sense of discourse
relations. Both chapters point out ways in which standard eval-
uation is not realistic and therefore fails to promote building
robust models. We suggest new evaluation methods, which, im-
portantly, lead to new approaches.

Throughout Chapter 9 and Chapter 10, we emphasize the
need for realistic evaluation. This is also the motivation behind
Chapter 11, where we investigate the dramatic effect the choice
of tree-to-dependency conversion scheme has on down-stream
application performance. Chapter 12 proposes a solution to a
common problem in NLP, out-of-vocabulary errors due to a
domain mismatch between training and test data.

The final chapters, Chapter 13 and Chapter 14, are about lex-
ical choice. Both describe systems competing in shared tasks.
(The system in Chapter 13 won). In Chapter 14 we describe
a system ranking lexical substitutions according to perceived
simplicity. Ensuring reader-appropriate vocabulary is integral
to text quality (see Chapter 4) and thus lies on the path towards

7 With the exception of Chapter 9, which is in peer-review.
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better answers. The problem of Chapter 13 is to recognize non-
compositional expressions (e.g. that a “hot dog” is not a hot
dog). In the context of lexical choice, compositionality detection
enables us to identify which words can be meaningfully substi-
tuted.

We conclude in Chapter 15.

1.5 contributions of the thesis

Below, we highlight the main contributions of the thesis, which
are made in the areas of discourse processing, answer ranking,
and answer representation.

Discourse processing

We challenge two assumptions about labeled data commonly
made in discourse processing:

1. it is feasible to have labeled examples of all discourse
markers (Chapter 9); and

2. hand-annotated data (e.g. gold parse trees) is available for
constructing features (Chapter 10).

Adopting new evaluation procedures that get rid of these as-
sumptions, we show that

1. sharing features between discourse markers based on syn-
tactical evidence from word embeddings yields an error
reduction of at least 20%, compared to no clustering or
clustering by part-of-speech (Chapter 9); and

2. models based on simpler and more robust features per-
form at the same level as state of the art (Chapter 10).

Answer ranking

We introduce the task of ranking answers across domains us-
ing cQA data and demonstrate that a variation of importance
sampling, where training data is sampled according to similar-
ity between questions, leads to significant improvements over
randomly sampled training data (Chapter 7).

Analyzing community-generated quality assessments, we show
that major biases exist with respect to

8



1. answer time; and
2. answer length.

We propose a sampling method to deal with answer-time bias
but report a negative result concerning answer-length bias (Chap-
ter 6).

Answer representation

We describe a method of generating discontinuous, regular expression-
like representations for text classification tasks, such as answer
ranking. We use crowdsourcing as a way of avoiding the astro-
nomical search space of regular expressions. Using these repre-
sentations for answer ranking, we obtain an error reduction of
24% in comparison with a bag-of-words model (Chapter 8).
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Part I

T O WA R D S B E T T E R A N S W E R S





2
A M O T I VAT I N G E X P E R I M E N T

What do we need in order to get better answers? In this chapter
we motivate the idea that answer structure depends on ques-
tion type by doing a small experiment on cQA data.

2.1 modeling question type given answers

When designing a QA system it is important to make sure that
the answer given is appropriate for the question asked. The QA
system thus needs to have a model of the answer type given the
question. In case of a probabilistic system it means modeling
the conditional distribution P(A|Q).

In this experiment we look at the problem from the other
side. Given an answer can we predict what kind of question
triggered it? — i.e. can we model P(Q|A)? Intuitively, if a high
accuracy model for P(Q|A) can be learned, it suggests a strong
link between question and answer, which in turn emphasizes
the need to have an accurate model of P(A|Q) in the QA system.

2.2 experimental setup

We wish to predict the type of question from the text of the
answers on the question page. The data for the experiment is
a corpus of 94,609 question pages collected at 30 QA sites in
the Stack Exchange network1. Question pages were sampled at
random, allowing a maximum of 5,000 pages from any one site.
The elements of a question page is shown in Figure 1. The page
is headed by a question and consists of one or more answers.
The question is subdivided into a title, displayed in a larger
font, and a body for elaborating the question. As a result of this
design, the question text may contain several distinct question
sentences. For present purposes we define a question sentence
as any sentence in the question body or title whose last token
is a question mark.

First, we simplify things by considering only two types of
questions: a) manner questions that request instructions about

1 The corpus is described in more detail in Chapter 6.
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How do I clean 
a cast iron pan?

The question body 
contains further details and 
possibly more questions. 

Have you tried with 
soap?

Just wipe it clean 
and leave it.

AnswersQuestion

Figure 1: Structure of a question page

how to accomplish something; and b) explanation questions that
ask why something is the case. Following Surdeanu et al. [162],
how questions should match the regular expression below:

how (to|do|did|does|can|would|could|should)

A why question only needs to match the simpler regular ex-
pression why. Examples of both question types are listed as Ex.
(2.4) - (2.7).

(2.4) In short, why does G-d allow evil to exist? [why]

(2.5) Theoretical: why there’s no gradient of doneness in
bread? [why]

(2.6) how do you avoid the circularity in this argument?
[how]

(2.7) how to curb the smell of fish? [how]

Questions are classified as either why or how if at least one
of the question sentences match the regular expression. If both
regular expressions match, or neither match, the whole ques-
tion page is discarded.

We model the conditional probability of the question type
given the answer using logistic regression. Whenever

P(Q = why|A) ⩾ P(Q = how|A)

we predict that the question is why, and else how.
The experiment compares three feature representation of the

answers. The first representation is a bigram bag-of-words model
using raw counts and normalizing each feature vector to unit
length. The second and third representations record only how

14



Answer representation Accuracy

Bag of words 76%
DMs (disambiguated) 65%
DMs (list) 64%
Majority baseline 50%

Table 2: Performance of how vs. why classification

often a set of discourse markers appear in the answers. Both
are restricted to a fixed list of 100 DMs (those annotated in the
PDTB [139]), but differ in the following way: one counts only
DMs disambiguated using standard software [136], while the
other simply matches DMs by string value.

2.3 results

Table 2 shows the accuracy obtained under the three represen-
tations of the answers. The DM representations score 65% for
disambiguated markers and 64% for list matching and are thus
very close to each other but considerably above the random
baseline of 50%. In this task disambiguation with standard tools
offers little or no advantage. The bag-of-words model, which
has a much richer representation of the answers2, gives the best
accuracy, at 76%.

These results suggest that the feature representations capture
meaningful aspects of answer structure.

2.4 discussion

We now consider what expressions (DMs and bigrams) were
effective in discriminating between the two types of questions.
Table 3 lists the top 10 features for each representation, ordered
by the absolute size of the coefficient in the fitted logistic regres-
sion model. In all representations, “because” either tops the list
or comes in a close second. As expected, this causal marker is
strongly associated with explanation-type questions.

In the bag-of-words model the top features show interesting
patterns. First, the words “why” and “how” seem to echo the
questions they answer; and while some of these do come in the

2 The list-based DM model is a subset of the bag-of-words model, except for
the 12 DMs that consist of three tokens or more.
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Bag of words Bow DMs (disamb.) DMs (list)

why 3.84 thus 2.55 because 5.10

because 3.74 because 2.21 thus 3.35

you can -3.70 therefore 2.17 therefore 3.06

was 3.55 whereas 2.03 then -2.14

how -3.23 hence 1.62 as 1.95

reason 3.17 in other words 1.59 when 1.64

when 2.64 later 1.57 indeed 1.50

code1 -2.41 alternatively -1.53 until 1.49

you could -2.33 in fact 1.52 earlier 1.48

way -2.29 finally -1.26 unless -1.47

Table 3: Top features in how vs. why classification. In this binary clas-
sification task why was coded as 1 and how as 0. Positive co-
efficients thus contribute towards a classification as why and
negative coefficients towards how.

form of rhetorical questions (“Why is this?”), the main reason is
quite simply that answers to manner questions talk more about
manner and answers to explanation-type questions are more
concerned with reasons. Second, the phrases “you can” and
“you could” are strong predictors of how. These phrases em-
phasize the person-to-person mode of communicating in QA
by addressing the asker directly (the second person pronoun
“you”, which is not shown in the table, also associates strongly
with how) and by suggesting actions. We return to the use of
pronouns in cQA in Section 6.2.3 and 7.3. Finally, “was” is
highly predictive of why, a fact which might seem puzzling
since we have no reason to suspect that this function word is
differently distributed in the two groups of answers. The ex-
planation is that “was” acts as a proxy for the length of the
answers, which, on average, is 283 tokens for how and 349 to-
kens for why. Note that this happens despite unit length (L1)
normalization of the feature vectors. See Appendix C for more
details.

The coefficients obtained using the DM representations are
similar, with a few notable exceptions. 1) Although “because”
is a strong feature in both representations, it has a much higher
weight in list. As can be seen in Table 4, 87% of occurrences
of “because” are classified as DMs and consequently 13% are
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DM %

N Disamb. PDTB

alternatively 168 86% 100%
as 71,722 2% 13%
because 4,407 87% 63%
earlier 183 0% 2%
hence 277 45% 33%
in fact 395 73% 87%
in other words 159 88% 89%
indeed 305 45% 81%
later 672 26% 34%
then 7,244 69% 64%
therefore 642 84% 92%
thus 655 81% 92%
unless 671 91% 94%
until 906 65% 41%
when 7,527 83% 65%
whereas 166 69% 100%

Table 4: Percentage classified as DM. N is the number of DM expres-
sions found by string matching. The disamb. column shows
how many of these were classified as DMs by the Pitler and
Nenkova [136] software, expressed as a percentage of N. For
comparison, the last column gives the percentage of DM ex-
pressions annotated as DMs in the PDTB.

not counted in Disamb. Even if we assume that the classifier
is correct in leaving these out, the use of “because” in a non-
discourse sense (e.g. “because of”) still indicates that the an-
swer is about causes and reasons. 2) While “as” is a top five
feature for List, it receives little weight in Disamb. The token
appears very frequently in the answers, and in language over-
all, but only rarely with a discourse function (see Table 4). It
is likely that “as” serves the same function of tracking answer
length as “was” does in the bag-of-words model3.

3 See Appendix C.
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2.5 conclusion

In this classification experiment, using disambiguated DMs comes
with no apparent advantage in terms of higher accuracy in pre-
dicting the question type. The payback, however, is that dis-
ambiguation avoids some confounding factors in the feature
model, for instance having a feature that simply counts occur-
rences of the very common token “as”. We did not discuss what
impact the quality of the classifier has on the results; but see
Chapter 7 for an evaluation of the classifier in a similar setting.
Finally, the superior performance of the bag-of-words model
shows that there are systematic differences between the answer
groups beyond what is captured by the surface discourse struc-
ture of the DM models.
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3
T Y P E S O F Q U E S T I O N S

3.1 what a question is

In Section 2 we took any sentence with a question mark as
the last token to be a question. While this test is simplistic,
automatically identifying questions in free text is in general
not easy, because utterances that function as questions—or “do
questioning”—are often not marked syntactically [57]. Conversely,
sentences which, judged by their syntax, appear to be questions
may not actually do any questioning. Ex. (3.8) and (3.9) illus-
trate both types.

(3.8) Another cup of tea?

(3.9) What’s the use?

Questions may be defined by their syntax, semantics, or on prag-
matic grounds. We will look at each one in turn.

syntax The prototypical question in English uses a special
clause form for questions, the interrogative. It is characterized
either by the use of an initial wh word and subject-object in-
version; or, in case of yes-no questions, by placing a function
word (e.g. “do”) in front of the subject [64]. However, there is
no one-to-one correspondence between the syntactical category
of interrogative and what is generally recognized as questions,
and the non-marked questions are not merely quirky corner-
cases. One study of how the non-interrogative form is used in
conversations puts the usage figure for the canonical interroga-
tive form at 59%, while the remaining 41% perform questioning
with alternative syntactical constructions [181].

semantics In semantics, a question is any expression that
defines a set of logically possible answers [74, p. 866]. Exam-
ples (3.10) through (3.12) list sample responses to the question
“Have you seen it?”:

(3.10) a. No

b. I have
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(3.11) a. I’m not sure

b. I can’t remember

c. Does it matter?

(3.12) a. I’ve already told you that I have

b. It’s on your desk

c. I saw it yesterday [74]

Only the responses in Ex. (3.10) are in fact answers. The se-
mantic view introduces a distinction between answer and re-
sponse, and any reaction that falls outside the set of logically
possible answers is called a response. The expressions in Ex.
(3.11) fail the test, because they do not provide the required in-
formation. And while the examples in (3.12) contain informa-
tion pertaining to the question from which the answer may be
inferred, and even add useful details compared to the straight
answer, under the semantic view they are not considered an-
swers.

pragmatics Bolinger [21], in an influential work on the di-
rect question in English, takes the view that questions are es-
sentially psychological entities that defy linguistic definition.
To be sure, there are prototypical members of the class of ques-
tions, but necessary properties are impossible to identify. By
this view, a question is any expression which typically elicits a
response.

The syntactic view of questions is important in NLP, because
at present it is more amenable to computational modeling than
the pragmatic view and does not suffer from the knowledge
acquisition bottleneck of semantics. So while it is probably true
that no neat syntactical definition of a question can be found,
the consequence is not that we should disregard clues from
syntax altogether.

Finally, we bring to mind that better answers, as they are
outlined in this chapter, are not answers in the strict sense pro-
posed by the semantic definition; they are responses. It is quite
unlikely that a user (or indeed anyone) would know how to
phrase questions such that his or her information need would
be satisfied by their answers. For better answers the objective
must be to deliver contextually helpful responses.
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Title type

Action 31%
Other 21%
Object 18%
Manner 12%
Symptom 10%
Interrogative 8%

Table 5: The percentage of each kind of question title in a random
sample (N = 100) of titles that do not end in question marks.
Details about the categorization is in Section 3.2.

3.2 titles and questions in cqa

While the discussion above is of a more theoretical nature, we
now turn to the behavior of questions in corpus data. We per-
form a qualitative analysis of non-interrogative questions on
cQA sites. Community QA sites commonly require askers to
supply a title for their question. We examine a sample of 94,609

such titles from 30 sites in the Stack Exchange network. The
data is the same as in Section 2, except here we are only in-
terested the contents of the title field. Stack Exchange directly
instructs users to write a question. On StackOverflow, for in-
stance, a help text placed inside the title field asks: “What’s
your programming question? Be specific.” The other sites use
a similar phrasing, swapping “programming” for the subject of
the site.

Interestingly, only 56% of the titles end in a question mark.
The figure varies between 30% and 93% for individual sites.
To find out whether the titles without question marks repre-
sent genuine non-interrogatives, we extracted 100 such titles at
random and looked at them manually1. In only 8 cases did we
find an interrogative form where the question mark is left out;
the rest were various non-interrogative forms. Note that titles
with question marks may also be non-interrogatives, making
the percentage even higher.

Table 5 gives an overview of the types of non-interrogatives
found in the sample. We describe the categorization scheme
below, giving examples of each type. The categories were de-
termined by analysis of the data. The data was annotated by the

1 The sample is included as Appendix A
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author of the thesis and the results were discussed with a col-
league. If a title did not clearly fall within one of the categories,
we labeled it as Other.

action The action the asker wishes to perform:

(3.13) Execute command on shared account login

(3.14) Grab certain contents of a file

object The object that the question concerns:

(3.15) Perspective in early pseudo-3d games

(3.16) Electron transitions in an infinite square well

(3.17) arduino 3x3 LED matrix

manner The manner in which an action should be performed:

(3.18) how to determine drive times like those available in
google maps

(3.19) How to have overlapping under-braces and over-
braces

symptom An error or undesirable state-of-affairs:

(3.20) hard crack candy coming out too sticky

(3.21) incoming mail just sits in the drop folder

Important subtypes of the Other category are hypothetical object
and comparison:

(3.22) Toaster Oven pan Without The Toaster Oven

(3.23) “Anxious to” versus “eager to”

A hypothetical object, such as in Ex. (3.22), is some entity
or situation which the asker is interested in bringing about. A
title with a hypothetical object can often be paraphrased as a
question with “Is it possible to have X?” or “How can I accom-
plish X”. In some respects it is the opposite of Symptom which
is concerned with an actual but undesirable situation, whereas
the hypothetical object is about a future situation being actively
pursued. Comparisons, like the one in Ex. (3.23), contrast two
options and ask for the most suitable.
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4
A N S W E R Q U A L I T Y

We discuss what goes into answer quality and how to obtain
assessments of quality. Community-generated data is biased in
various ways, and we examine the consequences of this next.
Finally, we broaden the perspective and consider answer qual-
ity in terms of general text quality.

4.1 quality assessments

Studies on answer quality in cQA generally rely on quality as-
sessments that are either

1. generated by the community as an integral part of cQA, or

2. annotated by experts post hoc.

The community assessments come from activities performed
on the cQA sites and include up-voting and down-voting, lik-
ing, chosing as a favourite, and selecting as “best answer” (only
available to the asker). Both sources of quality assessments have
advantages and drawbacks. Community assessments are abun-
dant and cheap, whereas an expert study costs money and
takes effort to organize. On the other hand, experts can be
asked to judge fine-grained quality criteria directly, whereas
quality judgements from the community are indirect and must
be inferred from user actions. Nonetheless, community-generated
data is vital for building data-driven automatic systems, and
expert judgements can provide important insight into what this
data means.

Studies using experts usually decompose answer quality into
a number of dimensions, which are then evaluated on a yes-no
[54] or Likert [104] scale. While the dimensions vary in num-
ber and granularity between studies, the list in Table 6 is typi-
cal [151, 54]. Note that readability and coherence are not men-
tioned as evaluation criteria, presumably because the answer
quality criteria were not developed with natural language pro-
cessing tasks in mind.
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Dimension Description

Complete The answer addresses all parts of the questions
Accurate The answer is correct
Verifiable The answer references external sources
Timely The answer arrives quickly
Useful The answer gives the asker what he or she needs

Table 6: Dimensions of answer quality

4.2 conversational and informational questions

Questions are posed for different reasons and this matters be-
cause the perceived quality of an answer depends on what the
goal of the question is [87, 86]. We will see an example of this
in Section 4.3. Now consider Ex. (4.24) and (4.25) below:

(4.24) What is the most effective treatment for bed bugs?

(4.25) What is the best superpower to have?

Both questions are likely to attract several answers, and par-
ticipants might end up being in sharp disagreement about the
right answer. However, in case of Ex. (4.25), objective facts are
unlikely to settle the discussion. In fact, the goal of the question
appears to be to have the discussion. Where Ex. (4.24) expresses
a real information need, Ex. (4.25) is just making conversation.
Similarly, Harper et al. [69] characterize questions posted on
cQA sites as either conversational or informational and show that
these categories can be annotated with high agreement. They
also successfully train a classifier, noting the strongest features
are related to pronoun use: the use of “I” points towards a cate-
gorization as informational while “you” is a strong predictor for
conversational. A similar study uses machine learning to iden-
tify questions that lead to subjective answers [3].

4.3 caveats in community data

Many researchers [152, 161] use the best answer, as chosen by
the asker, as a quality measure, but there are several shortcom-
ings to this approach. The best answer status reflects a single
subjective opinion from a person who may not be enough of an
expert to truly judge whether the answer is good [150].
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Kim and Oh [86] show that, on Yahoo! Answers, the best an-
swer is often chosen to display gratitude towards a helpful, or
quick, answerer rather than to promote the best answer. Fur-
ther, choosing a best answer is a voluntary action, which is
sometimes not performed, and once the best answer has been
selected, it may not be updated in the light of new answers,
although it is technically possible to do so.

Kim et al. [87] look into reasons people give for choosing
the “best answer” on Yahoo! Answers. Analyzing a sample of
465 comments left by the asker to explain their choice, the au-
thors find that 33% value socio-emotional aspects, for instance
that the answerer put in an effort preparing the answer, or that
they agree with the answer. The subjectivity involved in “best
answer” selection has led some researchers to caution against
the use of “best answers” in studies [54]. However, if we break
down the numbers by question type, the picture changes some-
what. In opinion-type questions, which are subjective and sim-
ilar to the conversational questions above, 58% of are selected
for socio-emotional reasons, while the same figure for the more
objective information questions is only 13% [87].

Most studies analyze answer quality at the level of the an-
swer. However, Anderson et al. [6] argue that individual an-
swers to a question do not compete but are instead complemen-
tary to each other, focusing on various aspects of the answer.
Therefore, quality should be seen as a property of the question
page and all answers in combination. They predict the long-
term impact of the question page, measured as the number of
page views it has attracted after one year

4.4 text quality at large

Text quality is hard to pin down as a concept, even though
most have no trouble recognizing poor or high quality speci-
mens when they see them. Text quality is something above and
beyond readability and linguistic quality. Linguistic quality con-
cerns grammaticality, referential clarity, focus and coherence,
while readability indexes typically are computed on the basis
of word complexity and sentence length [119, 88]. A text with
low linguistic quality is a bad reading experience and could
even be unintelligible. In contrast, a text with low readability
is simply difficult. To have high readability, we need high lin-
guistic quality. Likewise, high (or appropriate) readability is
necessary for high text quality.
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In a recent paper, Louis and Nenkova [105] offer a new direc-
tion for the study of text quality. Their task is to discover what
sets excellent writing apart from merely good writing. The cor-
pus is a collection of popular science articles published in the
New York Times, in which articles by distinguished writers1

are marked as Very good and the rest as Good. Where existing
work on text quality related tasks (e.g. essay grading) aim at
identifying text diverging from the standard in a negative way,
for instance by containing spelling or grammar errors, this task
is about identifying text that is different in a positive way.

One new feature group introduced by Louis and Nenkova
[105] tracks the use of words belonging to coherent visual top-
ics. Science journalists need to convey understanding of com-
plex topics without resorting to technical terms or dry lan-
guage, which would lose reader interest, and a key tool for do-
ing this is the use of visual language. Precisely the same ability
is needed in providing a good answer to a complicated ques-
tion. Indeed, 7.4% of “best answers” nominations cites cogni-
tive reasons, such as a clear explanation that makes immediate
sense or which offers a novel perspective on the question [86].

1 A distinguished writer is a person whose work was featured in a yearly
anthology of excellent science journalism within a ten year period.
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5
Q U E RY- F O C U S E D S U M M A R I Z AT I O N

In this section we consider ideas from summarization that might
help us further our goal of getting better answers.

5.1 qa and summarization

When we go beyond factoids and start accepting complex ques-
tions, text summarization and question answering begin to look
very much alike. It has even been suggested that query-focused
multi-document summarization and non-factoid QA will eventu-
ally converge to one field and in the meantime would benefit
from sharing experiences and approaches [98]. For example,
QA has developed methods for determining relevancy with re-
spect to a user’s request, which is needed for query-focused
summarization. From the other side summarization contributes
the long time experience in evaluating free-text summaries where
no single gold standard exists, a situation also faced by QA sys-
tems tackling complex questions.

5.2 from generic to query-focused summarization

Query-focused summarization is done with respect to user in-
put and thus differs from generic summarization in that now
two factors go into deciding whether to include a piece of con-
tent or not:

1. the importance for the summary
2. the relevancy to the user’s query.

In the simplest case relevancy could be estimated by cosine
similarity between content and query [131].

Query-focused summarization has been a recurrent task at
the evaluation conference DUC (and later TAC) since its de-
but in DUC 2003 [103]. The query here is not a simple, single-
sentence question – the most common scenario in QA – but a
“user narrative” of varying complexity. Below is an example
from DUC 2007.

Israel / Mossad "The Cyprus Affair" Two alleged Is-
raeli Mossad agents were arrested in Cyprus. Deter-
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mine why they were arrested, who they were, how
the situation was resolved and what repercussions
there were. (D0710C)

5.3 coherence in extractive summaries

An extractive summarizer works by picking salient content units
(e.g. sentences) from source documents and placing them in a
new context in the summary. The fact that the context changes
is worth noting. If the source texts were constructed simply
by amassing unconnected facts, compiling a summary would
be much easier, since we would not have to worry about text
coherence. However, a text written by a human is, as a rule,
purposely constructed to deliver a coherent message, which
the strategy of choosing sentences by importance is unlikely
to preserve.

As a result automatic summaries are not very readable. At
DUC 2007, the system summaries were evaluated on five mea-
sures pertaining to readability. Besides grammaticality and non-
redundancy, which are not considered here, they were focus: the
ability to stay on topic; referential clarity, meaning pronouns and
noun phrases should resolve easily; and structure and coherence,
which is the requirement of progression in the text and local
coherence between sentences. About 47% rated “barely accept-
able” or lower in focus, 48% in referential clarity, and 73% in
structure and coherence1. And things have yet to improve. At
TAC 2010, automatically generated summaries scored 2.8 out
of 5.0 on readability, while the average for manual summaries
was 4.92.

The lack of coherence is partly due to the fact that sentence
scoring models in summarization often have no notion of sen-
tence order – what they deliver, in essence, is a bag of sentences.
Finding an ordering of the sentences for presentation therefore
needs to be done post hoc3. Strategies for information ordering
in multi-document summarization include ordering by event
time [10] and finding the ordering that optimizes local coher-
ence relationships between sentences, either via entity grids [9]

1 http://www-nlpir.nist.gov/projects/duc/data/2007_data.html
2 http://www.nist.gov/tac/publications/2010/presentations/TAC2010_

Summ_Overview.pdf
3 The linear order of sentences in a summary is important for coherence. For

instance, it might be confusing to describe chronological events out of order.
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or models tracking whether entity mentions are old or new in
the discourse [53].

Another source of disfluency in summaries are anaphoric ex-
pressions: a sentence selected for inclusion often contains ex-
pressions referring back to text not included in the summary.
To fix this, several types of such expressions must be handled:

• dangling pronouns
• definite references
• discourse markers

How much attention systems give to these phenomena varies
a lot. For instance, in the case of discourse markers, one state-
of-the-art system (which we will say more about in Appendix
B) simply deletes sentence-initial DMs whenever they are en-
countered4. This somewhat masks the problem, since it avoids
explicitly introducing misleading relations between sentences,
but in the larger picture it contributes little towards a solution.

To produce more coherent summaries, it might be necessary
to reconsider the way we assemble them. Say we have deter-
mined, by some means, that a sentence is relevant and needs to
go in the summary. At this point, perhaps we should stop and
ask: What else do we need to include for that sentence to make sense?
This of course complicates matters. For example, a pronoun
might not resolve and thus the sentence where it was intro-
duced must be marked as a dependent. But since dependencies
are transitive (for sentences a, b, and c: if a depends on b, and b

depends on c, then a depends on c), the final tree of dependen-
cies might be extensive. Also, the relevancy score for the whole
tree will be different from the score of the sentence, which in
turn will affect our ability to include key sentences. Therefore, it
becomes necessary to consider compromises: Should pronouns
sometimes be replaced by their reference? Can a DM be left out
and if not, is it possible to include a summarized version of its
arguments? Can the parts of the sentence containing expensive
references be “compressed” away without also losing the bits
that made it worth including?

5.4 discourse-based approaches

A discourse-based summarizer works from a representation of
the informational and argumentative structure of a document,

4 The behavior can be observed by examining the publicly available source
code of Berg-Kirkpatrick et al. [13].
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such as those obtained from a discourse parser, and uses the re-
lations of the structure to discover the most salient content. In
Rhetorical Structure Theory (RST) [108], for example, discourse
relations are in many cases asymmetrical: central spans of text
are called nuclei, while more peripheral spans are referred to
as satellites. An example of this is the Evidence relation, which
holds between a nucleus and a satellite, such that the satellite
provides evidence for the nucleus. More precisely, the satel-
lite presents facts that the reader is ready to accept or already
knows to be true, with the intent of increasing the reader’s be-
lief in the nucleus. Ex. (5.26) shows an example of the relation;
spans are marked by brackets and the superscripted letter indi-
cates the argument type.

(5.26) [The truth is that the pressure to smoke in junior high
is greater than it will be any other time of one’s life]N:
[we know that 3,000 teens start smoking each day]S
[110]

Roughly speaking, an RST-based summarizer works by se-
lecting nuclei and leaving out satellites5. In theory, using dis-
course structure result in more readable summaries because the
nucleus is supposed to be more independent in comparison
with the satellite, which often cannot be understood without
reference to the nucleus. Furthermore, the nucleus is thought
to be more important than the satellite for the purposes of the
writer. [166].

Summarization by discourse structure is thus different from
the approach discussed in Section 5.3, where sentences are scored
independently of how they are embedded in the deep structure
of the document6. According to a recent evaluation by Louis
et al. [106], however, it is not inherently better. They investigate
correlations between discourse structure and content selection
power in summarization. The method is to extract summaries
using either the discourse structure (as described in this sec-
tion) or the semantic sense of discourse relations, and compare

5 In reality more machinery is involved, since the basic units joined by dis-
course relations combine to larger units also participating in discourse re-
lations. The tree obtained from recursively combining units is a complete
cover of the document. Marcu [110] introduce the concept of a promotion set
to describe the salient spans of any internal node in the tree.

6 Surface structure, on the other hand, often affects scoring. For example,
it is not uncommon to boost the score of sentences appearing in the first
paragraph of a document.
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them with human summaries. Discourse information is anno-
tated by hand, coming from the RST corpus [27], Graph Bank
[182], and PDTB [139], which means performance represents an
upper bound. Despite this, results are not encouraging. They
find semantic sense is not indicative of important content, al-
though it may help to filter out certain kinds of unwanted con-
tent. Discourse structure, on the other hand, is highly predictive
of importance, but does not beat a baseline using simple lexical
information. So even assuming gold discourse parses, there is
no improvement over a “cheap”, lexical baseline. Their conclu-
sion is worth quoting in part:

Therefore, we suspect that for building summariza-
tion systems, most benefits from discourse can be
obtained with regard to text quality compared to the
task of content selection. [106]
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6
G O O D A N S W E R , L O N G A N S W E R

We consider the problem of learning to rank answers at Stack-
Overflow from user feedback. We propose a sampling proce-
dure to correct a systemic bias in voting that favors early sub-
mitted answers, admitting only pairs of answers where the
most highly ranked was submitted latest. We use features re-
ported to be discriminative on similar data, along with features
that describe discourse properties. The model is validated on
the task of essay grading, but in the end we report a nega-
tive result: Using text length alone leads to better rankings for
StackOverflow. An experiment where we asked human subjects
to rate answers, controlling for length, suggests that it will be
hard to do better on this data.

6.1 introduction

The success of StackOverflow and similar community question
answering sites depends heavily on user feedback that pro-
motes high quality answers making them easy to find, and
relegates answers of poor quality to the bottom of the page.
User feedback is an interesting resource, which has been used
by researchers to find experts [163, 187], to identify the answer
selected by the asker as the best [15, 23], and to rank answers
with respect to perceived quality.

Learning to predict user responses to a given item is interest-
ing for a lot of reasons. A model that predicts user responses
implicitly gives us a model to rank answer candidates outside
of community-based question answering sites. Such a model
can be applied to rerank the output of question-answering sys-
tems, but also to other problems of rating texts, say automati-
cally scoring essays or political arguments.

In order to learn a model that is generally applicable, we con-
strain ourselves to using features that are intrinsic to the ques-
tion and the answer. We do not take user information or the net-
work structure of StackOverflow into account. StackOverflow
was launched in 2008 and has attracted more than 10,000,000

answers.
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The user feedback at StackOverflow takes the form of voting.
There is one major caveat, however: the voting process is not
fair. Below we demonstrate an early answer bias and discuss a
sampling strategy to avoid it. We also point out a strong depen-
dence between how early an answer arrives and how long it is.
Section 6.3 presents our machine learning experiments validat-
ing our model on essay scoring data, and our negative result
on the StackOverflow data. Section 6.4 presents our experiment
with human annotators, suggesting that the problem of answer
ranking in StackOverflow is unlearnable beyond what can be
said from answer length alone. In the absence of world knowl-
edge, that is.

6.1.1 Early answer bias

There are two reasons why the StackOverflow voting process is
unfair. First, the voting activity begins before all of the answers
are in. Second, visitors to the question page will be presented
with the currently most highly ranked answer at the top. Fewer
voters are therefore likely to be exposed to the low-ranking an-
swers, even after the answer set is complete. In addition, a re-
cent study in psychology shows that in environments where
quick decisions are needed, people display an overwhelming
preference for the first available choice [28].

Figure 3 illustrates the early answer bias. All answers that
arrive after the initial answer (time rank > 1) have a below-
expected chance of being ranked highest. Although the offset
between the theoretical and observed lines remains almost con-
stant across all time ranks, it actually becomes progressively
more difficult for answers to rise to the top, because the rela-
tive difference between the two values increases. For instance,
the observed chance for an answer with time rank = 9 is 3.2%,
a drop of 59.7% compared with the theoretical value of 8.0%,
whereas the drop for time rank = 3 is only 33.6%.

6.1.2 Length and time rank

Several studies have documented a link between answer length
and reported quality [1, 18]. Harper et al. [68] show that on Ya-
hoo! Answers, length and number of hyperlinks (which proba-
bly also correlates with length) alone explain a substantial part
of the variance in their data. Also working on data from Ya-
hoo! Answers, Blooma et al. [18] find length to be among the
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Figure 2: Left: Average answer length as a function of time rank. Right:
Average answer length as a function of score rank.

top predictors for answer quality. That longer answers are also
perceived of as better at StackOverflow, is clear from Figure 2,
where the right panel shows the average length steadily de-
creasing for lower scored answers. Note that around score rank
= 5 there is a slight bump; we will see the reason for this in
a moment. The left panel shows another trend: The more an-
swers already in a thread, the longer the next answer will be.
Given this information one might reasonably expect that an-
swers that arrive late (and therefore have long average length)
would be frequent among the top scoring answers, but as men-
tioned above the opposite is actually true.

The graph in Figure 3, which shows the average length of
top-ranked answers by time rank, suggests a different story.
It reveals an almost linear relationship between answer length
and arrival time. If the answer arrives early, it can be short and
still be voted as the top answer, but if it arrives late it takes a
much longer answer to secure the top position.

Anderson et al. [6] propose the pyramid as a mental image
of the answering process on StackOverflow. Starting from the
top, a high reputation user from a small group of very frequent
visitors to the site delivers the first answer, usually within a few
minutes after the question is posted. After that, medium repu-
tation users join in and, as time goes by, the user group broad-
ens. However, the fact that early answers attract more votes and
therefore lead to higher reputation scores questions this model.
Is it really the case that the expert users answer first, or do the
users that deliver fast answers simply become high reputation
users for just that reason?
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Figure 3: Left: Length of top-ranked answers. For comparison the
dashed line shows the average length irrespective of score
rank. Right: The solid line shows the percentage of answers
that reach top score rank, plotted against time rank. The
theoretical percentage is calculated as 1/ni where ni is the
average answer count for threads with at least i answers.

6.2 experiments

6.2.1 StackOverflow

We use the pairwise approach to ranking, in which ranking is
transformed into binary classification [71]. In pairwise ranking,
two items a and b are compared, and the feature vector for
the comparison is the difference between the feature vectors of
the items. Let Φ(·) denote the feature function. Then Φa≺b =

Φ(a) −Φ(b). The interpretation of the model is that we learn
the relation “ranks ahead of”.

We take two steps to ensure that the contrast between the
answers is real, and not the result of any early answer bias:

• a must be published after b, ensuring that a voter at least
had the opportunity to read b before voting on a

• a must have at least twice the number of votes of b

We refer to this as Conservative sampling. Although apply-
ing these criteria discards a large portion of the training data,
it still leaves a set of N = 95, 769 contrastive pairs.

To control for answer length we perform an additional ex-
periment, where each pair of answers are adjusted to be of the
same length. We leave out the middle part of the longer answer,
which is preferable to truncating, because it avoids systemati-
cally removing text elements that usually belong near the end
of an answer, such as a conclusion or wishing the answerer
good luck.
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The learner is L2 regularized logistic regression, with the
strength of the regularization determined by cross-validation.

6.2.2 Essay scoring

To validate our feature model we present results on a dataset
of 12,978 graded student essays, which was released on Kaggle,
as part of a machine learning contest1.

The essays are divided into eight sets of 1,500-1,800 each,
with the exception of the last set, which, at 723, is somewhat
smaller. Two types of essays are represented by four sets each:
the persuasive essay, in which the student must present his
opinion on a given topic with the aim of convincing the reader,
and the source dependent response where the student reacts to
a given passage of text. All essays are in English and written by
7th to 10th grade students.

As the score range varies by essay set, scores are normalized
to fit in the 1-10 interval to make results easier to interpret.
We report mean absolute error on the normalized scale and ex-
plained variance, r2. To predict the scores we fit a linear regres-
sion model with L2 regularization, determining the strength of
the regularization by five-fold cross-validation. Each essay set
is randomly split into a training (75%) and a test part (25%). We
perform feature selection via χ2 and include the 50,000 highest
scoring features.

In this dataset length also has a large impact on the out-
come. The correlation between essay length in bytes and grade
is r = .71, averaged over essay sets, which have different aver-
age lengths.

6.2.3 Feature model

Our feature model comprises a range of shallow text features
reported to be discriminative on similar data, along with fea-
tures of discourse properties. The citations refer to studies us-
ing the same features for similar tasks. In addition, we also
evaluated an augmented model with disambiguated discourse
connectives and measures for sentence complexity, but results
did not differ significantly from those obtained with the sim-
pler model presented here.

1 http://kaggle.com/c/asap-aes
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Features r2 Mean absolute error

Length .519 1.158

+Patterns+Categories .585 1.036

Full .620 .987

Table 7: Results for essays. r2 is explained variance (higher is better).
Mean absolute error is measured on a 1-10 scale (lower is
better).

length Number of tokens and bytes [77], number of content
words present in answer, but not in the question, as well as non-
stopword overlap between question and answer [187]

formatting Rate of HTML formatting tokens [77], and rate
of links [68]

style Average sentence length, average token length, rates
of punctuation tokens, and Flesch Kincaid reading level.

patterns Partly lexicalized patterns with discourse words
[61]

categories Pronoun use [169], words indicating various de-
grees of trust [159], and positive and negative emotion words
[4]

6.3 results

6.3.1 Essay scoring

Table 7 compares three feature models. Using only the Length

feature group we get r2 = .519, which means that length alone
accounts for more than half of the variance. Still, including Pat-
terns and Categories results in a significant improvement,
and adding more feature groups leads to further improvements.

6.3.2 StackOverflow

Our feature model led to significant improvements for essay
scoring, but on the StackOverflow data this is not the case. In-
stead we see a slight although not significant fall in F1 score
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Features Orig. length Same length

F1 Acc. F1 Acc.

Length .77 .76 .38 .51

+patterns+categories .76 .76 .56 .56

Full .76 .77 .58 .58

Table 8: Ranking of StackOverflow answers. Accuracy and F1 scores
are for the binary discrimination task (does a rank ahead of
b?).

when using our full model. In the length-controlled setting per-
formance is almost down to random.

6.4 human evaluation

Our experiment in Section 6.3.2 suggests that length alone pre-
dicts perceived answer quality better than any of the features
considered in our full model. To assess how difficult the task
of predicting perceived answer quality is, we asked human
annotators—faculty staff members and grad students—to make
judgements for a subset of our training set of N = 100 answer
pairs. Our annotators were asked not to check the correctness
of the answer, but instead indicate which answer they found to
be most convincing. For this reason the question was not in-
cluded in the text we presented to the annotators. Finally, we
also presented annotators with snippets of answers to control
for length differences.

The agreement scores for this task are shown in Table 9.
There is surprisingly little consensus given that the answer
pairs are selected—using Conservative sampling—so that the
difference in quality between the answers is large (measured
by the number of votes). The average pairwise agreement is
.61, with chance agreement .50.

Note that in general the agreement between pairs of annota-
tors is larger than the agreement between the community votes
and annotators. One likely explanation for this is that the an-
swers shown to the annotators were controlled for length.
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A1 A2 A3 A4 A5 Gold

A1 - .66 .64 .64 .61 .58

A2 - - .70 .60 .61 .54

A3 - - - .62 .61 .51

A4 - - - - .63 .60

A5 - - - - - .57

Table 9: Observed agreement for pairs of annotators Ai and the
“gold” voting scores from StackOverflow. Agreement by
chance is 0.50.

6.5 conclusion

We built a model for ranking answers by quality on StackOver-
flow. We pointed out an early-answer bias that gives unfair ad-
vantage to the first answers in a thread and presented a sam-
pling procedure that corrects it. However, our model of both
proven features and new discourse-related features was unable
to beat a simple length baseline, although it did significantly
improve the results on a related essay grading task. This lead us
to suggest that perhaps the task is simply not learnable with-
out world knowledge. Finally, a human evaluation showed a
remarkably low agreement on the same task, confirming the
picture.
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7
C R O S S - D O M A I N A N S W E R R A N K I N G U S I N G
I M P O RTA N C E S A M P L I N G

abstract

We consider the problem of learning how to rank answers across
domains in community question answering using stylistic fea-
tures. Our main contribution is an importance sampling tech-
nique for selecting training data per answer thread. Our ap-
proach is evaluated across 30 community sites and shown to be
significantly better than random sampling. We show that the
most useful features in our model relate to answer length and
overlap with question.

7.1 introduction

Community Q&A (cQA) sites are rich sources of knowledge,
offering information often not available elsewhere. While ques-
tions often attract the attention of experts, anyone can chip in,
and as a result answer quality varies a lot [54]. cQA sites deal
with this problem by engaging the users. If people like an an-
swer or find it useful, they vote it up, and if it is wrong, un-
helpful or spammy, it gets a down vote and is sometimes re-
moved altogether. To a large degree the success of cQA can
be attributed to this powerful content filtering mechanism. The
voting induces a ranking of the answers, and that is the ranking
we wish to reproduce in this paper.

We are interested in learning a ranking model based on tex-
tual or stylistic features only, extracted from the question and
the answer candidate, because willfully ignoring information
about user behavior and other social knowledge available in
cQA sites makes our model applicable in a wider range of cir-
cumstances. Outside the world of cQA, automatic answer rank-
ing might, for instance, be used to prioritize lists of answers
found in FAQs or embedded in running text. In other words,
we are interested in learning a reranking model that is generally
applicable to question answering systems.

Part of what makes one answer preferable to another is how
effective it is in communicating its advice. There may be plenty
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of answers that in some technical sense are correct and yet are
not especially helpful. For instance, if the kind of advice we
are looking for involves a procedure, an answer structured as
“First ... Then ... Finally” would probably be of greater use to
us than an answer with no discernible temporal structure. Our
features capture aspects of the discourse surface structure of
the answer. If the model is supposed to be generally applica-
ble to question answering it also needs to exhibit robust perfor-
mance across domains. Learning that mentions of specific Python
modules correlate with answer quality in StackOverflow does
not help us answer questions in the cooking domain. We need
to limit ourselves to features that transfer across domains. We
further hypothesize a link between question type and answer
structure (e.g. good answers to how-to questions look differ-
ent from good answers to questions that ask for definitions),
and test this experimentally by choosing training data for our
ranker according to question similarity.

Our contribution is thus two-fold. We evaluate various stylis-
tic feature groups on a novel problem, namely cross-domain
community answer ranking, and introduce an importance sam-
pling strategy that leads to significantly better results.

setup Given a question and a list of answers the task is to
predict a ranking of the answers matching the ranking induced
by community voting. We approach this as a pairwise ranking
problem, transforming the problem into a series of classifica-
tion decisions of the form: does answer a rank ahead of b? We
wish to train a model that maintains good performance across
domains, and our evaluation reflects this goal. We use a leave-
one-out procedure where one by one each domain is used to
evaluate the performance of a ranking model trained on the
rest of the domains. Testing is thus always out-of-domain, and
the setup promotes learning a generic model because the train-
ing set is composed of a variety of domains.

The rest of the paper is organized as follows. In the next sec-
tion we introduce the cQA corpus. Section 7.3 describes several
classes of motivated, domain-independent features. Our exper-
iments with ranking and domain adaptation by similarity are
described in Section 7.5, and the results are discussed in Section
7.6. Before the conclusion we review related work in Section 7.8.
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7.2 the stackqa corpus

We collected a corpus, the StackQA corpus, consisting of ques-
tions paired with two or more answers from 30 individual cQA
sites on different topics1. All sites are a part of the Stack Ex-
change network, sharing both the technical platform and a few
very simple guidelines for how to ask a question. In the FAQ
section of all sites, under the heading of "What kind of ques-
tions should I not ask here?", an identical message appears:
"You should only ask practical, answerable questions based on ac-
tual problems that you face. Chatty, open-ended questions dimin-
ish the usefulness of our site and push other questions off the
front page." It is, in other words, not a discussion club, and if a
dubious question or answer enters the system, the community
has various moderation tools at disposal. As a consequence,
spam is almost non-existent on the sites.

7.3 feature sets

Below we describe our six groups of features. Previous stud-
ies have shown that most of these features are correlated with
answer quality, see [77, 187, 68, 159, 4].

discourse We use the discourse marker disambiguation clas-
sifier of Pitler and Nenkova [136] to identify discourse uses. We
have features which count the number of times each discourse
marker appears.

length This group has four features that measure the length
of the answer in tokens and sentences as well as the difference
between the length of the question and the length of the an-
swer. An additional two features track the vocabulary overlap
between question and answer in number of lexical items, one
including stop-words and one excluding these.

lexical diversity An often used measure of lexical diver-
sity is the type-token ratio, calculated as the vocabulary size di-
vided by the number of tokens. We use a variation, the lemma-
token ratio, which works on the non-inflected forms of the
words.

1 We use the August 2012 dump from http://www.clearbits.net/torrents/

2076-aug-2012
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level and style For most readers understanding answers
with long compound sentences and difficult words is a de-
manding task. We track difficulty of reading using the Flesch-
Kincaid reading level measure and the closely related aver-
age sentence length and average token length. Three additional
stylistic features capture the rate of inter-sentence punctuation,
exclamation marks, and question marks. Finally, a feature gives
the number of HTML formatting tokens.

pronouns Scientific text almost never uses the pronoun “I”,
but other genres have different conventions. In cQA, where one
person gives advice to another, “I” and “you” might feel quite
natural. We capture personal pronoun use in six features, one
for every combination of person and number (e.g. first person,
singular).

word categories These features build on groups of func-
tionally related words. Examples of categories are transition
words (213), which is a non-disambiguated superset of the dis-
course markers, phrases that introduce examples (49), compar-
isons (66), and contrast (6). Numbers in parenthesis indicates
how many words there are in each category. For each category
we count the number of token occurrences and the number of
types.2

7.4 importance sampling

The cQA sites contain abundant training data, but the sites are
diverse and heteregoneous. We hypothesize that training our
models on similar threads from different domains will improve
our models considerably. We measure similarity with respect to
direct questions, disregarding any explanatory text. One com-
plication is that the question text may have more than one sen-
tence with a question mark after it—in fact, each thread con-
tains 2.2 sentences ending with question marks, on average. To
assess the similarity between two question threads Q and Q′,
we take the maximum similarity between any of their question
sentences:

sim(Q,Q′) = max
q∈Q,q′∈Q′

sim(q,q′)

2 The word lists are distributed as a part of the LightSIDE essay assessment
software package found at http://lightsidelabs.com/
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The similarity function used is a standard information retrieval
TF*IDF-weighted bag-of-words model. Table 10 shows an ex-
ample of the similar questions found by this method.

Since importance sampling requires a separately trained clas-
sifier for each question thread, we evaluate on a small set of 500

question threads per domain.

7.5 experiments

For each site we sample up to 5000 question threads that con-
tain between 2 and 8 answers. When more than one answer
have the same number of votes, making it impossible to rank
the answers unambigously, one of the tied answers is kept at
random. The number of threads used for training is varied from
50 to 5000 to obtain learning curves. We compare importance
sampling against random sampling. Because this procedure is
random, we repeat it three times and report an average perfor-
mance figure.

The baseline for evaluating our feature model is a TF*IDF
weighted bag-of-words model with each answer normalized to
unit length.

We rank the answers by applying the pairwise transforma-
tion [71] and learn a classifier for the binary relation ≺ (“ranks
ahead of”). Training data consists of comparisons between pairs
of answers in the same thread.

We report F1 score for the binary discrimination task and
Kendall’s τ for the ranking. In Kendall’s τ 1.0 means perfect
fidelity to the reference ordering, -1.0 is a perfect ordering in
reverse, and .0 corresponds to a random ordering.

7.6 results

Table 12 shows that importance sampling leads to significantly
better results.

The ablation results in Table 11 show that the largest nega-
tive impact comes from removing the length-related features.
Leaving them out, the performance drops to .136 (from .210) in
the ranking fidelity measure.
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Question

How do you clean a cast iron skillet? (Cooking)
How do you clear a custom destination? (Gaming)
How do you restore a particular table in MySQL? (DB)
How Do You Determine Your Hourly Rate? (Programmers)
Do you know how to do that? (Unix)
How do I do this? (Gaming)
How do you select the Fourth kill streak? (Gaming)
How do you deal with unusually long labels? (Ux)
How do I delete a tumblr blog? (Web apps)
How do you use your iPod shuffle or nano? (Apple)
So, how do you explain spinning tops to a nine year old?
(Physics)

Table 10: The 10 questions most similar to the question in bold, not
counting questions from the same domain.

F1 τ

Full model .593 .210

- lexical diversity .592 .209

- discourse .605 .235

- length .555 .136

- level and style .592 .211

- pronouns .593 .210

- word categories .600 .226

Table 11: Feature ablation study on the importance weighted sys-
tem (System+Sim). The results are for a training set of 500

threads.
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Thread count Kendall’s τ F1

Baseline System System+Sim Baseline System System+Sim

50 .070 .075 .099 .355 .522 .536

100 .107 .084 .129 .381 .528 .551

250 .121 .095 .166 .518 .533 .571

500 .135 .124 .199 .529 .549 .588

1000 .146 .158 .229 .557 .566 .603

5000 .161 .215 .253 .578 .595 .615

Table 12: Ranking performance. Baseline is a bag-of-words model,
and System uses the full feature set described in the pa-
per. System+Sim uses the same feature model as System but
with importance sampling. Results are an average over do-
mains, and all differences between System+Sim and System
are significant at p < .01 using the Wilconox ranksum test.

7.7 discussion

The fact that no feature group independently contributes to the
classification performance, apart from the length related fea-
tures, is interesting, but note that even with the length related
features removed, the system is still significantly better than the
bag-of-words baseline.

The relatively low performance raises two questions, discussed
below. How much trust should we put into the user rankings,
which are the gold standard in the experiments? And what is
the maximum performance we can expect?

There is no guarantee that people who submit votes are ex-
perts. For this reason, Fichman [54] dismiss the “best answer”
feature of cQA, adding that askers often select the best answer
guided by social or emotional reasoning, rather than by facts. In
a case study on StackOverflow (part of the StackExchange net-
work), Anderson et al. [6] find that voting activity on a question
is influenced by a number of factors presumably not connected
to answer quality, such as the time before the first answer ar-
rives, and the total number of answers.

With respect to the maximum attainable performance, an im-
portant consideration is that an answer is judged on other fac-
tors than how well it is written. When seeking a solution to a
practical problem, the best answer is the one that solves it, no
matter how persuasive the other answers are. This holds par-
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ticularly true for cQA sites that advice people only to ask ques-
tions related to actual, solvable problems. The textual model is
strong mainly if we have multiple alternative answers, which
are indistinguishable with respect to facts, but differ in how
their explanations are structured.

7.8 related work

Moschitti and Quarteroni [127] consider the problem of rerank-
ing answers in question-answering systems. They use kernel-
ized SVMs, noting that the kernel function between (question,
answer) pairs can be decomposed into a kernel between ques-
tions and a kernel between answers:

K(⟨q,a⟩, ⟨q′,a′⟩) = K(q,q′)⊕K(a,a′)

They share the intuition behind our approach, that pairs with
more similar questions should have heigher weight, but we
sample data points instead of weighting them and use differ-
ent similarity functions. Choi et al. [32] establish a typology of
questions in social media, identifying four different varieties:
information-seeking, advice-seeking, opinion-seeking, and non-
information seeking. For our purposes their categories are prob-
ably too broad to be useful, and they require manual annota-
tion.

Agichtein et al. [2] identify high quality answers in the Ya-
hoo! Answers data set. In addition to a wide range of social
features, they have three groups of textual features: punctua-
tion and typos, syntactical and semantic complexity, and gram-
maticality.

Shah and Pomerantz [152] evaluate answer quality on Yahoo!
Answers data. They solicit quality judgements from Amazon
Mechanical Turk workers who are asked to rate answers by 13

criteria, such as readability, relevancy, politeness and brevity.
The highest classification accuracy is achieved using a combi-
nation of social and text length features.

Lai and Kao [93] address the problem of matching questions
with experts who are likely to be able to provide an answer.
Their algorithm is tested on on data from StackOverflow.

He and Alani [70] investigate best answer prediction using
StackExchange’s Serverfault and cooking communities as well
as a third site outside the network.
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7.9 conclusion

In this paper we report on experiments in cross-domain an-
swer ranking. For this task we introduced a new corpus, a
feature representation and an importance sampling strategy.
While the questions and answers come from a cQA setting,
models learned from this corpus should be more widely ap-
plicable.
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8
U S I N G C R O W D S O U R C I N G T O G E T
R E P R E S E N TAT I O N S B A S E D O N R E G U L A R
E X P R E S S I O N S

abstract

Often the bottleneck in document classification is finding good
representations that zoom in on the most important aspects of
the documents. Most research uses n-gram representations, but
relevant features often occur discontinuously, e.g., not. . . good in
sentiment analysis. Discontinuous features can be expressed as
regular expressions, but even if we limit the regular expressions
that we derive from a set of documents to some fixed length,
the number becomes astronomical. Some feature combination
methods can be seen as digging into the space of regular ex-
pressions. In this paper we present experiments getting experts
to provide regular expressions, as well as crowdsourced an-
notation tasks from which regular expressions can be derived.
Somewhat surprisingly, it turns out that these crowdsourced
feature combinations outperform automatic feature combina-
tion methods, as well as expert features, by a very large margin
and reduce error by 24-41% over n-gram representations.

8.1 introduction

Finding good representations of classification problems is often
glossed over in the literature. Several authors have emphasized
the need to pay more attention to finding such representations
[178, 46], but in document classification most research still uses
n-gram representations.

This paper considers two document classification problems
where such representations seem inadequate. The problems are
answer scoring [25], on data from stackoverflow.com, and multi-
attribute sentiment analysis [114]. We argue that in order to
adequately represent such problems we need discontinuous fea-
tures, i.e., regular expressions.

The problem with using regular expressions as features is of
course that even with a finite vocabulary we can generate in-
finitely many regular expressions that match our documents.
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BoW Exp AMT

n P(1) m µx m µx m µx

StackOverflow 97,519 0.5013 30,716 0.00131 1,156 0.1380 172,691 0.00331

Taste 152,390 0.5003 38,227 0.00095 666 0.10631 114,588 0.00285

Appearance 152,331 0.5009 37,901 0.00097 650 0.14629 102,734 0.00289

Table 13: Characteristics of the feature sets collected

We suggest to use expert knowledge or crowdsourcing in the
loop. In particular we present experiments where standard rep-
resentations are augmented with features from a few hours of
manual work, by machine learning experts or by crowdsourc-
ing.

Somewhat surprisingly, we find that features derived from
crowdsourced annotation tasks lead to the best results across
the three datasets. While crowdsourcing of annotation tasks
has become increasing popular in NLP, this is, to the best of
our knowledge, the first attempt to crowdsource the problem
of finding good representations.

8.2 experiments

8.2.1 Data

The three datasets used in our experiments come from two
sources, namely stackoverflow.com and ratebeer.com. The two
datasets from the beer review website (Taste and Appearance)
are described in McAuley et al. McAuley et al. [114] and avail-
able for download.1 Each input example is an unstructured re-
view text, and the associated label is the score assigned to taste
or appearance by the reviewer.

We extracted the StackOverflow dataset from a publicly
available data dump,2, and we briefly describe our sampling
process here. We select pairs of answers, where one is ranked
higher than the other by stackoverflow.com users. Obviously
the answers submitted first have a better chance of being ranked
highly, so we also require that the highest ranked answer was
submitted last. From this set of answer pairs, we randomly
sample 97,519 pairs.

1 http://snap.stanford.edu/data/web-RateBeer.html
2 http://www.clearbits.net/torrents/2076-aug-2012
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Our experiments are classification experiments using the same
learning algorithm in all experiments, namely L1-regularized
logistic regression. The only differences between our systems
are in the feature sets. The four feature sets are described be-
low: BoW, HI, Exp and AMT.

For motivating using regular expressions, consider the fol-
lowing sentence from a review of John Harvard’s Grand Cru:

(8.27) Could have been more flavorful.

The only word carrying direct sentiment in this sentence is
flavorful, which is positive, but the sentence is a negative eval-
uation of the Grand Cru’s taste. The trigram been more flavorful
seems negative at first, but in the context of negation or in a
comparative, it can become positive again. However, note that
this trigram may occur discontinuously, e.g., in been less watery
and more flavorful. In order to match such occurrences, we need
simple regular expressions, e.g.,:

been.*more.*flavorful

This is exactly the kind of regular expressions we asked ex-
perts to submit, and that we derived from the crowdsourced
annotation tasks. Note that the sentence says nothing about the
beer’s appearance, so this feature is only relevant in Taste, not
in Appearance.

8.2.2 BoW and BoW+HI

Our most simple baseline approach is a bag-of-words model
of unigram features (BoW). We lower-case our data, but leave
in stop words. We also introduce a semantically enriched uni-
gram model (BoW)+HI, where in addition to representing what
words occur in a text, we also represent what Harvard Inquirer3

word classes occur in it. The Harvard Inquirer classes are used
to generate features from the crowdsourced annotation tasks,
so the semantically enriched unigram model is an important
baseline in our experiments below.

3 http://www.wjh.harvard.edu/~inquirer/homecat.htm
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8.2.3 BoW+Exp

In order to collect regular expressions from experts, we set up
a web interface for querying held-out portions of the datasets
with regular expressions that reports how occurrences of the
submitted regular expressions correlate with class. We used
the Python re syntax for regular expressions after augment-
ing word forms with POS and semantic classes from the Har-
vard Inquirer. Few of the experts made use of the POS tags,
but many regular expressions included references to Harvard
Inquirer classes.

Regular expressions submitted by participants were visible
to other participants during the experiment, and participants
were allowed to work together. Participants had 15 minutes to
familiarize themselves with the syntax used in the experiments.
Each query was executed in 2-30 seconds.

Seven researchers and graduate students spent a total of five
effective hours querying the datasets with regular expressions.
In particular, they spent three hours on the Stack Exchange
dataset, and one hour on each of the two RateBeer datasets.
One had to leave an hour early. So, in total, we spent 20 per-
son hours on Stack Exchange, and seven person hours on each
of the RateBeer datasets. In the five hours, we collected 1,156

regular expressions for the StackOverflow dataset, and about
650 regular expressions for each of the two RateBeer datasets.
Exp refers to these sets of regular expressions. In our exper-
iments below we concatenate these with the BoW features to
form BoW+Exp.

8.2.4 BoW+AMT

For each dataset, we also had 500 held-out examples annotated
by three turkers each, using Amazon Mechanical Turk,4 obtain-
ing a total of 1,500 HITs for each dataset. The annotators were
presented with each text, a review or an answer, twice: once as
running text, once word-by-word with bullets to tick off words.
The annotators were instructed to tick off words or phrases
that they found predictive of the text’s class (sentiment or an-
swer quality). They were not informed about the class of the
text. We chose this annotation task, because it is relatively easy

4 http://www.mturk.com
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BoW HI Exp AMT

StackOverflow .655 .654 .683 .739
Taste .798 .797 .798 .867
Appearance .758 .760 .761 .859

Table 14: Results using all features

for annotators to mark spans of text with a particular attribute.
This set-up has been used in other applications, including NER
[55] and error detection [41]. The annotators were constrained
to tick off at least three words, including one closed class item
(closed class items were colored differently from other words).
Finally, we only used annotators with a track record of provid-
ing high-quality annotations in previous tasks. It was clear from
the average time spent by annotators that annotating Stack-
Overflow was harder than annotating the Ratebeer datasets.
The average time spent on a HIT from the Ratebeer datasets
was 44 seconds, while for StackOverflow it was 3 minutes 8

seconds. The mean number of words ticked off was between
5.64 and 6.96 for the three datasets, with more words ticked off
in StackOverflow. The maximum number of words ticked off
by an annotator was 41.

We spent a total $292.5 on the annotations, including a trial
round. This was supposed to match, roughly, the cost of the
experts consulted for BoW+Exp.

The features generated from the annotations were constructed
as follows: We use a sliding window of size 3 to extract trigrams
over the possibly discontinuous words ticked off by the annota-
tors. These trigrams were converted into regular expressions by
placing Kleene stars between the words. This gives us a manu-
ally selected subset of skip trigrams. For each skip trigram, we
add copies with one or more words replaced by one of their
Harvard Inquirer classes.

8.2.5 Feature combinations

This subsection introduces some harder baselines for our ex-
periments, considered in Experiment #2. The simplest possible
way of combining unigram features is by considering n-gram
models. An n-gram extracts features from a sliding window
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Figure 4: Results selecting N features using χ2 (top to bottom): Stack-
Overflow, Taste, and Appearance. The x-axis is logarith-
mic scale.
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Figure 5: Results using different feature combination techniques (top
to bottom): StackOverflow, Taste, and Appearance. The
x-axis is logarithmic scale.
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(of size n) over the text. We call this model BoW(N = n). Our
BoW(N = 1) model takes word forms as features, and there
are obviously more advanced ways of automatically combining
such features.

Kernel representations We experimented with applying an ap-
proximate feature map for the additive χ2-kernel. We used two
sample steps, resulting in 4N+1 features. See Vedaldi and Zim-
merman Vedaldi and Zisserman [176] for details.

Deep features We also ran denoising autoencoders [134], previ-
ously applied to a wide range of NLP tasks [144, 155, 30], with
2N nodes in the middle layer to obtain a deep representation of
our datasets from χ2-BoW input. The network was trained for
15 epochs. We set the drop-out rate to 0.0 and 0.3.

8.2.6 Summary of feature sets

The feature sets – BoW, Exp and AMT – are very different. Their
characteristics are presented in Table 13. P(1) is the class dis-
tribution, e.g., the prior probability of positive class. n is the
number of data points, m the number of features. Finally, µx is
the average density of data points. One observation is of course
that the expert feature set Exp is much smaller than BoW and
AMT, but note also that the expert features fire about 150 times
more often on average than the BoW features. HI is only a small
set of additional features.

8.3 results

8.3.1 Experiment 1: BoW vs. Exp and AMT

We present results using all features, as well as results obtained
after selecting k features as ranked by a simple χ2 test. The
results using all collected features are presented in Table 14.
The error reduction on StackOverflow when adding crowd-
sourced features to our baseline model (BoW+AMT), is 24.3%.
On Taste, it is 34.2%. On Appearance, it is 41.0%.

Obviously, the BoW+AMT feature set is bigger than those of
the other models. We therefore report on results using only the
top-k features as ranked by a simple χ2 test. The result curves
are presented in the three plots in Figure 4. With 500 features
or more, BoW+AMT outperforms the other models by a large
margin.
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8.3.2 Experiment 2: AMT vs. more baselines

The BoW baseline uses a standard representation that, while
widely used, is usually thought of as a weak baseline. BoW+HIT
did not provide a stronger baseline. In our second experiment,
we show that bigram features, kernel-based decomposition and
deep features do not provide much stronger baselines either.
The result curves are presented in the three plots in Figure 5,
and we still see that the BoW+AMT is significantly better than
all other models with 500 features or more. Since autoencoders
are consistently worse than denoising autoencoders (drop-out
rate 0.3), we only plot the performance of denoising autoen-
coders.

8.4 related work

Musat et al. Musat et al. [129] design a collaborative two-player
game for annotation of sentiment and construction of a senti-
ment lexicon. One player guesses the sentiment of a text and
picks a word from it that is representative of its sentiment. The
other player guesses at the sentiment of the text observing only
this word. If the two guesses agree, both players get a point. The
idea of gamifying the problem of finding good representations
goes beyond crowdsourcing, and while we did discuss several
gamification strategies, this is left for future work for now. The
lexicon is used in a standard representation of sentiment anal-
ysis. Boyd-Graber et al. Boyd-Graber et al. [22] crowdsource
the feature weighting problem, but again within the context
of standard representations. The work most related to ours is
probably Tamuz et al. Tamuz et al. [168], who learn a ’crowd
kernel’ by asking annotators to rate examples by similarity. This
kernel provides an embedding of the input examples promot-
ing combinations of features deemed important by annotators
when rating examples by similarity.

8.5 conclusion

We have presented a new method for deriving feature repre-
sentations from crowdsourced annotation tasks and shown that
with little annotation effort, this can lead to error reductions of
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24%-41% on answer scoring and multi-aspect sentiment analy-
sis problems. On the datasets considered here, we saw no sig-
nificant improvements using features contributed by experts, or
using kernel representations and learned deep representations.
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9
L E A R N I N G T O D I S A M B I G U AT E U N K N O W N
D I S C O U R S E M A R K E R S

abstract

Discourse relations hold between spans of text and are often
signaled by expressions such as although, moreover, but, and in
comparison, referred to as discourse markers (DM). Many re-
searchers (e.g. Knott and Dale [91] and Halliday and Hasan
[67]) have assumed that discourse markers (DMs) formed a
closed class with relatively few members, spanning at most a
handful of syntactical categories, but recently evidence from
several sources (discussed in the paper) have established that
the class is considerably larger and more diverse, and may
even be open-ended. This seriously challenges the assumptions
of state-of-the-art DM disambiguation and sense-tagging tools
[136] and full discourse parsers [100, 60], which depend on hav-
ing labeled data for all DMs. With inspiration from unsuper-
vised domain adaptation we propose to view the DM of interest
as unknown at test time and perform leave-one-out evaluation
where, in each round, labeled data for one DM is selected for
test and the rest is used for training. We present results for the
two tasks of DM disambiguation and classification.

9.1 introduction

Discourse relations are what makes a text come together. They
provide semantic structure above the clause and sentence level,
which informs many NLP tasks, including summarization [110],
information extraction [124], and sentiment analysis [128]. More-
over, as we move closer to the eventual goal of machine reading
[138], awareness of discourse in applications becomes increas-
ingly important.

Although some discourse relations are not explicitly signaled
(beyond adjacency), DMs remain the primary source of infor-
mation about discourse structure. Being able to accurately iden-
tify these building blocks of discourse is thus necessary for con-
structing more complex discourse representations. However,
state-of-the-art performance in DM disambiguation can only
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be obtained given unrealistic assumptions about the availabil-
ity of labeled training data. For instance, the number of lexi-
cally frozen, “core” markers is substantially larger than what is
annotated in the PDTB (See Section 9.3.1).

The lack of specific training data for individual DMs matters,
because DMs form a heterogeneous class. Fortunately, there are
syntactical and semantic properties common to groups of DMs,
and these similarities can be exploited to construct appropriate
training data for any DM, even without having access to labeled
examples of it.

setup We use a leave-one-out cross-validation procedure, which
ensures that the same DM is never used for train and test in a
fold. Effectively, the DM is treated as unknown at test time.
Given labeled examples of N types of DMs, we create N dif-
ferent splits in which one DM is test data while the remain-
ing N − 1 DMs are used for training. This evaluation proce-
dure more accurately reflects conditions in the wild, because it
avoids assuming DM specific training data.

The rest of the paper is organized as follows. In the next
section we introduce DM disambiguation as a transfer learn-
ing problem. Section 9.3 discusses evidence that DMs are not a
closed class. Then we go on to present our approaches for DM
disambiguation (Section 9.4) and sense classification (Section
9.5). Section 9.6 reports results and is followed by a discussion
in Section 9.7. We review related work in Section 9.8 and con-
clude in Section 9.9.

9.2 transfer learning

A standard assumption of machine learning is that training and
test data are sampled from the same underlying distribution.
As we show below, this assumption must be revisited in the
case of DM disambiguation. From a linguistic perspective it has
been observed that no two DMs are exactly alike with respect to
syntax and semantic function [175]. This puts us in the territory
of transfer learning [132]. It is useful to think of each DM as a
domain characterized by a probability distribution P, where, in
general, P(X) ̸= P′(X) for pairs of DMs. In domain adaptation
terms we are dealing with a multi-domain learning problem
[83] meaning that the source of the transfer consists of multiple
domains. A primary concern relating to this is avoiding to learn
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from misleading source data, a situation referred to as negative
transfer [7].

The dominating approach to discourse classification, taken
by Pitler and Nenkova [136], Lin et al. [100], Ghosh [60], and
others is very similar to the domain-adaption-by-feature-augmentation
strategy suggested by Daumé III [43], although they differ in
terminology. Pitler and Nenkova [136], for instance, create in-
teraction variables between each marker and the majority of the
features. This corresponds to having a generic domain shared
between all markers (features without interaction) and a spe-
cific domain with copies of the features for each marker (in-
teraction features). Lin et al. [100] additionally condition lexi-
cal and part-of-speech features on the marker’s part of speech,
in effect introducing several new and shared domains that lie
somewhere between the generic and the specific domains in
terms of generality.

The strategies outlined above only work if we are able to map
unseen instances in the test data to domains from the training
data. Assuming the marker is unseen at test time, the domain-
per-marker strategy fails. We return in Section 9.6 to the ques-
tion of whether part-of-speech groups the DMs in ways mean-
ingful for the task.

What would happen if we did not do any domain adap-
tion and only had a single generic domain? Consider Figure 6,
which shows correlations between the label (is the expression
a DM?) and the most frequent values of the feature “part-of-
speech of previous token”. For some candidate DMs a preced-
ing comma increases the likelihood of them being DMs, while
for others it is the other way around. This is also the case for
NN, only the association here is stronger and more polarized.
So while “part-of-speech of the previous token” is quite predic-
tive in the context of a particular DM, its value is diminished
in the generic domain, and this is true of many other features.

The literature in domain adaptation identifies three kinds of
shifts that can happen between the source and the target do-
mains. Below Ps and Pt denote the probability distributions of
the source and the target domain.

Covariance shift is the situation where the distribution of the
input data shifts: Ps(X) ̸= Pt(X). For instance, one DM might
appear in a sentence-initial position 90% and occupy the center
position in the remaining 10%, while another might be evenly
split among those two positions.
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Figure 6: Histogram of correlations between part-of-speech of the to-
ken before and the label. Shown are all significant correla-
tions (at p < 0.1) for the most frequent part-of-speech tags.
ˆ denotes the start of the sentence.

Prior probability shift happens when the distribution of the
class changes: Ps(Y) ̸= Pt(Y). DMs vary greatly with respect to
discourse ambiguity. For instance, unless is rarely seen in a non-
discourse function (less than 10% of occurrences), while for and
the regular uses as a conjunction far outnumbers the times it
functions as a DM.

Concept shift is a change in the functional relationship be-
tween data and class: Ps(Y|X) ̸= Pt(Y|X). In other words the
same feature value may lead to different outcomes in the source
and target domains. The DMs “in addition” and “except” of-
fer an example of this. If “in addition” is followed by the word
“to”, it strongly suggests that the expression is not a DM, whereas
if the next word after “except” is “to”, this almost surely points
to the opposite conclusion.

(9.28) Janice Duclos, in addition to possessing one of the
evening’s more impressive vocal instruments, brings
an unsuspected comedic touch to her role of Olga,
everybody’s favorite mom (WSJ 1163)
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(9.29) The companies wouldn’t disclose the length of the
contract except to say it was a multiyear agreement
(WSJ 0372)

In keeping with Daumé III et al. [44], we refer to the domain
adaptation setting in which we have only unlabeled data in
the target domain as unsupervised domain adaptation. We deal
with this by clustering the DMs, thereby creating larger, more
generic domains. Thus at test time the unknown DM can be
mapped to a cluster for which we also have training data.

9.3 discourse markers

The typical discourse marker is short, exhibits no morphologi-
cal variation, and is usually spoken in a different tone from the
rest of the sentence. From a syntactical point of view, discourse
markers are not part of the sentence structure or only loosely
connected to it [175], and they can often be removed from a
sentence without making it ungrammatical:

(9.30) Everybody liked him, since he was always in a good
mood.

(9.31) I had it, so I gave him a piece of my mind.

(9.32) While it rains today, it will be sunny tomorrow.

This is typically not the case for the same expressions when
they are not used as DMs:

(9.33) Since Christmas, we have had snow every day.

(9.34) The book was so good that I read it a second time. [56]

(9.35) Texting while driving is inadvisable.

(DMs are displayed in bold-face, and non-DM expressions
are underlined).

9.3.1 DMs – an open class?

The view that DMs form a closed class motivated the design of
the PDTB, where annotators were given a fixed list of 100 lex-
ical items and asked to disambiguate and assign senses to oc-
currences of these in the corpus. Automatic tools for predicting
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PDTB-style discourse relations have adopted this view, includ-
ing the sense-tagger and disambiguation tool from Pitler and
Nenkova [136] and two full discourse parsers [100, 60]. How-
ever, results from two recent annotation efforts are beginning
to change this picture.

First, evidence of a larger set of markers comes from The
Biomedical Discourse Relation Bank [141], a discourse-annotated
subset of the GENIA corpus [85]. Ramesh and Yu [143] find that
56% of the markers in the biomedical corpus have no counter-
part in the PDTB, highlighting considerable domain differences
in connective use. Some examples of the markers found exclu-
sively in the biomedical corpus are "followed by," "due to," and
"in order to".

Second, Prasad et al. [140] discuss the discovery of a num-
ber of examples from the PDTB where the discourse relation is
lexicalized in an alternative way, i.e. by an expression not on
the fixed list of discourse markers. (These are now annotated
as AltLex: alternative lexicalizations). Ex. (9.36) and (9.37) gives
examples of alternative lexicalizations.

(9.36) Cathay is taking several steps to bolster business.
One step is to beef up its fleet. (WSJ 1432)

(9.37) The impact won’t be that great, said Graeme Lidger-
wood of First Boston Corp. That is in part because
of the effect of having to average the number of
shares outstanding. (WSJ 1111)

Although the group is comparatively small (624 instances),
it is extremely diverse with respect to syntax. We now con-
sider the characterization of alternative lexicalizations offered
by Prasad et al. [140]. An AltLex is either,

a) syntactically admitted and lexically frozen;
b) syntactically free and lexically frozen; or
c) both syntactically free and lexically free.

The first group is perhaps least interesting. Syntactically admit-
ted means the DM belongs to one of the accepted syntactical
categories for DMs in the PDTB, and thus DMs in this groups
are in a sense just “forgotten” DMs and could be added to the
fixed list with no conceptual difficulty. The DMs of the sec-
ond group go beyond the accepted syntactical categories but
appear only in a single form and show no morphological vari-
ation. While DMs of the second group enlarge the set of DMs,
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they are still in a sense fixed expressions and do not yet make it
open-ended. In contrast, the last group of both syntactically and
lexically free DMs are best described as partly lexicalized pat-
terns with slots allowing for infinite combinations. For instance,
the AltLex string: “A consequence of their departure could be
. . . ” correspond to the pattern: “<DTX> consequence (<PPX>)
<VX>”. Interestingly, the last group is by far the largest, mak-
ing up 76.6% of the AltLex occurrences.

Additionally, new DMs emerge as a part of language change,
for instance in groups of young people in Canada [167]. Vari-
ants of English are another source of differently behaved DMs,
e.g. what in Singapore English, which marks a contrastive re-
lationship [97]. Social media and microblogging services such
as Twitter and Tumblr introduce new ways of communicating,
and the space constraints of the media coupled with a low de-
gree of formality permit constructs not otherwise seen in pub-
lished writing.

(9.38) <L’année dernière à Marienbad>: Interesting (& beau-
tiful ) narration essay on memory but boy, the music
is execrable -> I almost left

(9.39) The kidlet’s 1st bellydance recital vid -> URL

Ex. (9.38) shows the iconographical DM “->” in action. “->”
might be paraphrased as “consequently” because the dreadful
music is what drives the author of the tweet to almost leave the
performance. However, the graphical variation of the arrow in
Ex. (9.39) does not appear to be used in a discourse function
but rather as a focusing gesture pointing to the location of the
bellydance video.

(9.40) RT @USER1: LMBO! This man filed an EMERGENCY
Motion for Continuance on account of the Rangers
game tonight! « Wow lmao

Gimpel et al. [63] discuss a tweet containing a similar symbol,
“«”, listed as Ex. (9.40). It does not, however, qualify as a DM.
The initial part of the message up to “«” is a rebroadcast of a
tweet from another user (RT abbreviates retweet and @USER1

is the identity of the originator), and “«” has the function of
separating the added comment “Wow lmao” from the original
message. As such it is pure syntax and does no work besides
pointing out that the second segment comments on the first
segment. In particular, it does not provide any meaning to the
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relation, nor does it limit the range of possible interpretations
of the second segment, both of which are thought to be defining
characteristics of DMs [56].

Finally, a number of non-traditional discourse relations are
established in blog entry listed as Ex. (9.41).

(9.41) In the last couple of days I’ve been blogging away to
my heart’s content . . . well, as much as my partner
will let me, cos we’ve only got one computer and
you wouldn’t believe the number of times we both
try to use it at the same time — not to mention the
power cuts — oh yes, they happen a lot where we
live and they’re a real pain, but as I say blogging
away about — all sorts of things. [40]

Besides the complicated pattern of reference, the exclamation
“oh yes” (in bold) is particularly interesting. Even though excla-
mations usually do not mark discourse relations, here it seems
to be paraphrasable by “in particular”, signaling an instantia-
tion relation between the arguments.

Thus, as with many phenomena in language, DMs have a
long-tailed distribution with a few DMs occurring very often
and a long, possibly infinite, list of DMs seeing more sporadic
use.

9.4 disambiguation experiment

Many expressions are ambiguous between a discourse function
and a purely syntactical function at the type level. DM disam-
biguation is about determining the function unambiguously at
the token level. We follow Pitler and Nenkova [136] in treat-
ing the problem as binary classification. As positive examples
we use all occurrences of explicit DMs in the PDTB. Negative
examples are generated by searching the PDTB for other occur-
rences of the same expressions. In total the dataset comprises
64,291 examples of which 18,406 are DMs.

We assign each DM to a cluster using word embeddings,
which are derived on the basis of distributional information
in large corpora [31]. We then apply the domain-adaption-by-
feature-augmentation strategy of Daumé III [43], making cluster-
specific copies of the features. Thus the feature vector of any ex-
ample will have two copies of the features: one generic and one
specific to the DM cluster. Algorithm 1 shows the procedure in
more detail.
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9.4.1 Clustering

We construct hierarchical clusters using Ward’s mimimum-variance
criterion [? ]. The clustering can be flattened to form any num-
ber of clusters, up to the number of items in the clustering.
Word embeddings represent a word as a dense vector of low
dimensionality, typically between 25 and 100 dimensions, and
they are constrained such that words that are distributionally
similar in the corpus are also close in the vector space. We
use the Eigenword1 embeddings in the 30 dimension variant
trained on trigrams from the Google ngram corpus. However,
publicly available embeddings are limited in that only repre-
sentations for single tokens can be obtained. In our dataset
single-token DMs account for 66 out of 100 DMs, and for this
experiment we chose to leave the rest out2. The optimal number
of clusters is decided via cross-validation for each DM.

9.4.2 Feature model

We use several groups of syntactical features for the disam-
biguation task, motivated by earlier work. The constituent parse
tree features and part-of-speech features were described in Pitler
and Nenkova [136], and Lin et al. [100]. The dependency and
position features are new to this work.

part-of-speech The part-of-speech of the candidate, pre-
ceding token, and next token.

constituency These features are mainly categories of nodes
in a constituent tree. They are the node completely covering the
candidate expression (self category), the parent of the self cat-
egory, and the left sibling and right sibling of the self category.
Additionally, two indicator features for whether the right sib-
ling of the self category contains a trace, and whether it con-
tains a VP node.

dependency Two features giving the part-of-speech and re-
lation type of the head of the candidate’s head. Both features
heuristically assume the head is the rightmost token.

1 http://www.cis.upenn.edu/~ungar/eigenwords/
2 This is a practical consideration more than a theoretical concern: word em-

beddings could in principle be induced for multi-word-units like the left-out
DMs.
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Algorithm 1 Disambiguation algorithm
D← data set
for t ∈ DM types do

test← {d ∈ D |d is example of t}
train← D− test

n← find optimal cluster size using train

Xtest ← BuildDomains(test,n)
Xtrain ← BuildDomains(train,n)
train classifier on Xtrain and labels
test classifier using Xtest

end for

procedure BuildDomains(instances, n)
Let f be the feature function
X← empty list
for d ∈ instances do

L← list with n+ 1 elements
for i← 1,n do

Li ← 0 ▷ s.t. |0| = |f(·)|
end for
c← map d to a cluster in an n clustering
L0 ← f(d) ▷ generic domain
Lc ← f(d) ▷ specific domain
flatten L and append to X

end for
return X

end procedure
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position Three binary features indicating if there is a verb
left of the candidate, right of the candidate (in linear order), or
above the candidate.

9.5 sense classification experiment

In sense classification we are given two spans of text linked by a
discourse relation and are asked to determine the semantic re-
lationship holding between the spans: the sense of the relation.
Recall that discourse relations are either signalled explicitly by
a DM or implicitly through adjacency of the arguments. In con-
trast to the experiments of Section 9.4, we do not use the iden-
tity of the DM, effectively treating the problem as as implicit
sense classification.

In the absence of a marker, the pragmatic relationship must
be inferred using lexical and semantic information from the
arguments. The precise sense of the relation is probably not re-
coverable in this way, because disregarding the DM loses subtle
(and possibly non-redundant) information [91], although other
linguistic cues may make up for some of the loss [165]. For
this reason we only attempt to distinguish between the senses
in the top level of the PDTB sense hierarchy, comprising the
four classes Temporal, Contingency, Comparison, and Ex-
pansion. The same set of classes was used for sense classifi-
cation of implicit relations in Pitler et al. [137] and for explicit
relations in Pitler and Nenkova [136].

9.5.1 Feature model

Our features are based on word embeddings and different ways
of composing them. First, we describe our baseline, which is a
word-pair model. Marcu and Echihabi [111] were the first to
use a word-pair model which includes all pairings of lexical
items from the two arguments. To give an example, Ex. (9.42)
show a contrastive relation (subtype juxtaposition in the PDTB),
marked by the DM “but”.

(9.42) Operating revenue rose 69% to A$8.48 billion from
A$5.01 billion. But the net interest bill jumped 85%
to A$686.7 million from A$371.1 million

Intuitively, the pair (rose, jump) suggest a parallelism between
the arguments.
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The main issue with word-pair models is that they do not
generalize well. With the labeled training sets at our disposal,
which are limited with respect to size and domain, the majority
of the discriminative word pairs will never have been encoun-
tered before. Lexical resources such as Wordnet and The Har-
vard Inquirer provide a limited abstraction capability but only
at the word level.

To overcome lexical sparseness we use word embeddings,
more specifically the 80-dimensional RNN3 representation. Word
embeddings provide representations for single words, but the
problem calls for representations of spans of several words, and
how they interact. We use the two strategies described below.

additive We construct a vector for each of the spans using
simple additive semantics; the span vector is the mean of the
word vectors. Then there are several options for composing the
span vectors. We consider the difference between the vectors,
and their concatenation.

similarity We adapt a method for calculating the similar-
ity between two sentences given word-to-word similarities de-
scribed in [78]. They define the similarity between two sen-
tences a and b as

sim(a, b) =
aWb⊤

|a||b|

Say V is the joint vocabulary of the two sentences. Then a and
b are both |V | length binary vectors indicating the presence/ab-
sence of terms in the vocabulary, and W is a similarity matrix
in which Wij gives the similarity between vocabulary items i

and j. The denominator normalizes for sentence length.
In the adapted version, we stop short of actually calculating

the similarity, replacing the final dot product with a component-
wise multiplication, ⊙.

aW ⊙ b⊤

|a||b|

The result is a |V | vector of similarity scores for each word in
the second sentence with respect to all words in the first sen-
tence. Note that the aW term is a |V | vector with similarities
between each vocabulary item and the first sentence. The final

3 http://www.fit.vutbr.cz/~imikolov/rnnlm/
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System F1

Only generic domain .787

Part-of-speech domains .783

Eigenwords domains .830

Table 15: Disambiguation results

System F1

Word-product baseline .400

RNN concatenation .437

RNN similarity .469

RNN concatenation + similarity .489

Table 16: Sense classification results

component-wise multiplication with b “picks out” the vocabu-
lary items present in the second sentence. The entries in W are
populated with cosine similarities4 between word embeddings.

9.6 results

Table 15 shows the disambiguation performance in three set-
tings: a) without mapping to specific domains; b) mapping us-
ing the part-of-speech of the DM; and c) mapping using clus-
ters based on Eigenwords. The Eigenwords domain mapping
gives the best result, with an error reduction of 20% over the
generic domain mapping and 22% error reduction with respect
to part-of-speech domains. The part-of-speech mapping offers
no advantage over using a single domain.

The sense classification results are listed in Table 16. Using
the RNN word embeddings improves upon the baseline in all
cases. The partly lexicalized similarity method (.469) gives a
better result than concatenation (.437). Combining the RNN
methods gives an F1 of .489, which is better than any of them
individually.

4 1.0 - cosine distance
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9.7 discussion

The improvements we see from inducing domains are likely
the results of two effects: a grouping effect that comes from
putting DM types with similar behavior in a single domain,
and a shielding effect where the impact of misleading examples
is mitigated when dissimilar DMs are clustered in different do-
mains. For instance, in case of concept drift between the test
DM and DMs in the training data, this will matter less if the
conflicting test DMs are mapped to domains different from the
test DM domain.

The cluster size most typically selected by the cross valida-
tion procedure is 40. Although many clusters at this stage only
contain a single DM, some clusters with several elements re-
main. These are listed in Table 17. The clustering looks mean-
ingful, grouping, for instance, {then, therefore, thus}. Another
cluster consists of {and, for, or}, which are all high-frequency
tokens represented by many examples in the dataset. Having
them in a separate domain could contribute to the mentioned
shielding effect for DMs that are dissimilar.

We use two kinds of embeddings in the experiments. Initially,
we tried both Eigenwords and RNN in both experiments, and
although the embeddings in all cases improved upon the base-
line, Eigenwords is clearly better in disambiguation and, simi-
larly, RNN is clearly better in sense classification. This is in line
with the observation that Eigenwords work best as syntactical
clusters (Dhillon et al. [45]; Lyle Ungar, p.c.), since disambigua-
tion is mainly about syntax.

9.8 related work

Several studies are concerned with the semantic relationships
between markers. Knott [90] introduce a methodology for dis-
covering which pairs of DMs are mutually substitutable and in
what contexts, but through a labour-intensive process in which
acceptability judgements are elicited from human subjects. Fol-
lowing up on this research, Hutchinson [75] consider the feasi-
bility of deriving these substitutability relationships automati-
cally by way of distributional information. They find that dis-
tributional similarity as well as a function based on variance
work well for predicting the relation between markers . How-
ever, substitutability is a semantic criterion (for instance, when
we replace “because” with “seeing as”, does the sentence still
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Cluster

although, whereas
except, unless
but, however, nor, regardless
and, for, or
besides, though
rather, so
indeed, yet
later, once
after, as, because, before, since, until, when
if, instead
then, therefore, thus
consequently, hence
furthermore, moreover
also, still
nevertheless, nonetheless
accordingly, thereafter
simultaneously, specifically

Table 17: Flat clusters. The table shows all non-singleton clusters for
N = 40.
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mean the same thing?), whereas the type of similarity of inter-
est in the disambiguation task is grammatical.

Sporleder and Lascarides [158] consider the implicit sense
classification task of Marcu and Echihabi [111], proposing a
variety of features. The features fall in six groups: positional,
length, lexical (including overlap), part-of-speech, temporal (verb
finiteness, modality aspect, voice and negation), and cohesion
features. In a more recent work, the authors consider the vari-
ous features that have been proposed for this task and decide
on seven groups [179]. These are polarity (sentiment), Inquirer
tags (21 semantic categories), modality, repetition of same word
in both spans, word pairs between, and intra-span word pairs.

9.9 conclusion

In this paper we challenged a common assumption made by re-
searchers creating discourse-related software, namely that su-
pervised training data is available for all types of DMs. We pro-
posed a new leave-one-out cross-validation procedure which
makes the opposite assumption of no training data for any par-
ticular DM.

We argued that it is useful to think of DM disambiguation in
terms of transfer learning and showed by example that covari-
ance shift, prior probability shift, and concept shift are all likely
to occur between DMs.

To support the claim that supervised data is unlikely to suf-
fice, we reviewed several sources of additional DMs, including
other text domains like scientific writing, open-ended alterna-
tive lexicalizations, and new DMs originating in social media.

In the disambiguation experiment we looked at one partic-
ular way of grouping DMs based on distributional data from
word embeddings. Results improved over the baseline, and we
suggested that this was due to two effects: a grouping and a
shielding effect.

The sense classification experiment used word embeddings
to build representations of a discourse relation’s arguments.
Classification results improved compared to a lexical word-pair
baseline sense.

78



10
D I S A M B I G U AT I N G D I S C O U R S E
C O N N E C T I V E S W I T H O U T O R A C L E S

abstract

Deciding whether a word serves a discourse function in context
is a prerequisite for discourse processing, and the performance
of this subtask bounds performance on subsequent tasks. Pitler
and Nenkova [136] report 96.29% accuracy (F1 94.19%) rely-
ing on features extracted from gold-standard parse trees. This
figure is an average over several connectives, some of which
are extremely hard to classify. More importantly, performance
drops considerably in the absence of an oracle providing gold-
standard features. We show that a very simple model using
only lexical and predicted part-of-speech features actually per-
forms slightly better than Pitler and Nenkova [136] and not
significantly different from a state-of-the-art model, which com-
bines lexical, part-of-speech, and parse features.

10.1 introduction

Discourse relations structure text by linking segments together
in functional relationships. For instance, someone might say
"Saber-toothed tigers are harmless because they’re extinct", mak-
ing the second part of the sentence serve as an explanation for
the first part. In the example the discourse connective because
functions as a lexical anchor for the discourse relation. When-
ever an anchor is present we say that the discourse connective
is explicit.

Complicating the matter, phrases used as discourse connec-
tives sometimes appear in a non-discourse function. For in-
stance, "and" may be either a simple conjunction, as in "sugar
and salt", or a discourse relation suggesting a temporal relation-
ship between events, for instance "he struck the match and went
away". The Penn Discourse Treebank (PDTB) [139] distinguish
100 types of explicit connectives—a subset of these are listed in
Table 19. The type of relationship is selected from a hierachial
structure where the four top-level categories are Comparison,
Contingency, Temporal, and Expansion.
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Figure 7: A picture of the problem. 10% of connectives account for
roughly 75% of occurrences

Discourse relations are important for many applications and,
since the PDTB was released, much effort has gone into de-
veloping tools for recreating the annotations of the resource
automatically. Recently two ambitious end-to-end parsers have
appeared which transform plain text to full PDTB-style anno-
tations [100, 60]. Both systems share a pipelined architecture in
which the output of one component becomes the input to the
next. A crucial first step in their processing is correctly identi-
fying explicit discourse connectives; when unsuccessful subse-
quent steps fail.

An accuracy in the high ninetees seems to suggest that the
problem is almost solved. For the task of discourse connective
disambiguation this unfortunately does not hold true, because,
as we argue here, the task benefits from being seen and eval-
uated as a number of smaller tasks, one for each connective
type. Figure 7 shows why: the distribution of connectives fol-
lows a power law such that the majority of occurrences comes
from relatively few but highly frequent connective types. If we
do not take into account the uneven sizes of the categories, our
performance figure ends up saying very little about how well
we are doing on most of the connectives, because it is being
dominated by the performance on a few high-frequency items.

In this paper we look in more detail on the evaluation of the
discourse connective disambiguation task, in particular how
two commonly used feature models perform on individual dis-
course connectives. The models are Pitler and Nenkova [136]
(P&N), and its extension by Lin et al. [100] (Lin). Motivated by
our findings we advocate the use of macro-averaging as a neces-
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sary supplement to micro-averaging. Additionally, we perform
our experiments in a more realistic setting where acccess to or-
acle gold-standard annotations is not assumed. The observed
performance drop from oracle to predicted parses leads us to
propose a new model, which approximates the syntactical in-
formation of the parse trees with part-of-speech tags. Although
these features are less powerful in theory, the model has com-
parable macro-average performance in realistic evaluation.

The rest of the paper is structured as follows. In the next
section we give reasons why low-frequency connectives should
not be overlooked. Section 10.3 describes our experiments, and
Section 10.4 reports on the results. The discussion is in Section
10.5, followed by a review of related work in Section 10.6. Sec-
tion 10.7 concludes the paper.

10.2 the importance of the long tail

Are there any compelling reasons to pay attention to the lower-
frequency connectives when high-frequency connectives over-
whelmingly dominate? As noted in the caption to Figure 7, the
top 10 account for above 75% of the occurrences and top 20 for
above 90%. So why should we care?

It turns out that the low-frequency connectives are quite evenly
distributed among texts. In the Wall Street Journal part of the
Penn Treebank, 70% of articles that contain explicit markers
contain at least one marker not in the top 10. Not counting very
short texts (having only two or fewer explicit connectives of any
type), the number rises to 87%. While low performance on less
frequent connectives does not hurt a token-level macro-average
much, it still means that you are likely to introduce errors in
something like 70% of all WSJ articles. These errors percolate
leading to erroneous text-level discourse processing.

In Webber and Joshi [180] the prime example of a discourse
application is automatic text simplification. Here, ignoring the
long tail of discourse connectives would be out of the question,
because it is precisely those less familiar expressions — which
people encounter rarely and have weaker intuitions about —
that would benefit the most from a rewrite. Two other exam-
ples, also cited in Webber and Joshi [180], are automatic as-
sessment of student essays [24], and summarization [170]. In
student essays we encourage clear argumentative structure and
rich vocabulary; failing to recognize that in an automatic sys-
tem would not qualify as fair evaluation. And summarization is
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often performed over news wire, which, as shown in the PDTB,
has a high per-article incidence of connectives not in top 10.
Additionally, some low-frequency connectives like "ultimately"
and "in particular" are strong cues for text selection.

Another reason to suspect that low-frequency connectives are
important comes from an observation about the distribution
of connectives in biomedical text. Ramesh and Yu [143] report
an overlap of only 44% between the connectives found in the
The Biomedical Discourse Relation Bank [141], a 24 article sub-
set of the GENIA corpus [85], and the PDTB. The intersection
contains high-frequency connectives, such as "and", "however,"
"also," and "so". Connectives specific to the biomedical domain
include "followed by," "due to," and "in order to", and the au-
thors speculate that the unique connectives encode important
domain specific knowledge.

10.3 experiments

Our experiments are designed to shed light on three aspects of
discourse connective disambiguation: 1) error distribution wrt.
connective type; uneven performance builds a strong case for
averaging over connective types instead of averaging over data
points; 2) performance loss in the absence of an oracle; and
3) performance of simple model based on cheaper and more
reliable annotations.

We experiment with three different feature sets, all of which
model syntactical aspects of the discourse connective.

The P&N and Lin feature sets are chosen to represent state-
of-the-art. The high accuracy of P&N at 96.29% is frequently
cited as an encouraging result, see Huang and Chen [73], Al-
saif and Markert [5], Tonelli and Cabrio [171], Zhou et al. [186].
Besides discourse parsing P&N has been used for tasks as di-
verse as measuring text coherence [101] and improving ma-
chine translation [121]. The POS+LEX feature set is proposed
as an alternative model. The baseline always predicts the ma-
jority class.

p&n This feature set derives from parse trees and replicates
the features of Pitler and Nenkova [136]. Starting from the po-
tential discourse connective, the features include the highest
category in the tree subsuming only the connective called the
self-category, the parent of that category, the left sibling of the
self-category, and the right sibling of the self-category. A fea-
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ture fires when the right sibling contains a VP, and another if
there is a trace node below the right sibling. Note that the trace
feature will never fire outside of the gold parse setting since
state-of-the-art parsers do not predict trace nodes.

Importantly, there is a feature for the identity of the con-
nective and interaction features between the connective and
the syntactical features in effect allowing the model to fit pa-
rameters specific to each connective. Furthermore, combina-
tions of the syntactical features are allowed, but they cannot
be connective-specific.

lin The feature set augments P&N with part-of-speech and
string features for the tokens adjacent to the connective, as well
as the part-of-speech of the connective itself. The part-of-speech
features for the adjacent tokens interact with the part-of-speech
of the connective, and the string features interact with the in-
dicator feature for the connective. It also adds a syntax feature:
the path to the root of the parse tree.

pos+lex The simple feature set builds on part-of-speech tags
and tokens. Part-of-speech tags are captured using a window of
two tokens around the marker, and the lexical features are the
same as Lin. Like P&N there is a feature for the identity of the
connective as well as interaction features between the identity
feature and other features.

In keeping with Pitler and Nenkova [136] our learner is a
maximum entropy classifier trained on sections 2-22 of the WSJ
using ten-fold cross-validation.

10.3.1 Parsing Wall Street Journal

To obtain a version of the WSJ corpus containing fully predicted
parses we use the Stanford Parser1 training a separate model
for each section. To parse a specific section we train on every-
thing but that section (e.g. for parsing section 5 the training set
is section 0-4 and 6-24). Average F1 on all sections is 85.87%. Al-
though the very best state-of-the-art parsers2 report F1 of above
90%, our parsing score greatly exceeds typical performance on
real-life data, which is almost always out-of-domain with re-

1 http://nlp.stanford.edu/software/lex-parser.shtml, 2012-11-12 release
with the ’goodPCFG’ standard settings

2 http://aclweb.org/aclwiki/index.php/?title=Parsing_(State_of_the_

art)
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Model Micro Macro

Oracle Pred. Oracle Pred.

Baseline 72.7 72.7 53.9 53.9
P&N 93.0 90.7 85.3 80.7
Lin 95.2 92.9 86.7 83.6
POS+LEX 89.7 89.7 82.5 83.5

Table 18: Comparing F1 score on oracle and predicted features us-
ing macro and micro averaging. A Wilcoxon signed rank
test shows that the macro-averaged difference between
POS+LEX and Lin10 using predicted features is not sign-
ficant at p < 0.01.

spect to 1980s WSJ. Thus this setting still compares favourably
to performance in the wild.

10.4 results

A summary of the results is found in Table 18. For a subset of
frequent and less frequent connectives, Table 19 lists individual
F1 scores. In all of the feature sets we see a marked drop moving
from micro-average (average over instances) to macro-average
(average over connective types)—P&N, for instance, goes from
93.0% to 85.3%. This shows that the scores of less frequent con-
nectives are somewhat lower than frequent ones. When features
are derived from predicted parses performance also fall, from
93.0% to 90.7% with micro-average, and even more dramati-
cally with macro-average, where it goes from 85.3% to 80.8%.
Given that we are interested in real life performance this last
figure is the most interesting.

10.5 discussion

In NLP applications we cannot assume the existence of oracles
providing us with gold-standard features. Often switching to
predicted features introduces greater uncertainty. If the parser
often confuses two non-terminals that are important for con-
nective disambiguation we loose predictive power. Thus, on
the P&N model, the average conditional entropy per feature
given the class (how surprising the feature is when we know
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Oracle Pred. Disc.

Lin P+L Lin P+L

but 98.6 96.1 97.6 96.1 78.9
and 94.9 77.0 89.0 77.0 14.7
also 97.0 97.3 97.5 97.2 93.5
if 93.4 93.1 92.3 93.0 82.6
when 89.9 88.5 89.3 88.4 65.5
because 99.5 99.4 99.4 99.5 63.4
while 97.6 97.7 97.5 97.4 91.9
as 89.8 63.1 78.1 63.0 13.0
after 93.7 74.0 87.9 72.9 42.4
however 98.7 98.4 98.5 98.4 95.7
· · ·
ultimately 43.2 30.3 36.4 29.4 37.5
rather 84.8 83.9 80.0 83.9 8.2
in other words 97.1 94.4 91.4 94.4 89.5
as if 84.8 84.8 71.0 88.2 66.7
earlier 76.9 66.7 74.1 69.6 2.1
meantime 80.0 76.5 82.4 80.0 71.4
in particular 89.7 85.7 85.7 80.0 48.4
in contrast 100.0 100.0 100.0 100.0 50.0
thereby 95.7 95.7 100.0 95.7 100.0
· · ·

Table 19: F1 score per connective. The table is sorted by the number
of actual discourse connectives in the PDTB. After the break
the table continues from position 50. The last column gives
the percentage of discourse connectives.
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the answer) increases by 8.8% when the oracle is unavailable. In
contrast there is almost no difference between the conditional
entropy of the POS model with oracle features and without, in-
dicating that the errors made by the tagger are not confusing in
the disambiguation task.

Predicted parse features are associated with uncertainty even
when used in combination with words and part of speech.
Comparing the number of times the Lin model changes an in-
correct prediction of POS+LEX to a correct one and the number
of times it introduces a new error by changing a correct pre-
diction to an incorrect one, we observe that corrections almost
always come with a substantial number of new errors. In fact,
58 connectives have at least as many new errors as corrections.

Predicted parse features also contribute to feature sparsity,
because of the greater variability of automatic parses. On the
other hand, they are more expressive than part of speech, and
in the example below, where only Lin correctly identifies ’and’
as a discourse connective, part of speech simply does not con-
tain enough information.

“A whole day goes by and no one even knows they’re alive.

10.6 related work

Atterer and Schütze [8] present similar experiments for prepo-
sitional phrase attachment showing that approaches assuming
gold-standard features suffer a great deal when they are evalu-
ated on predicted features. Spitkovsky et al. [157] also caution
against the use of gold-standard features, arguing that for un-
supervised dependency parsing using induced parts of speech
is superior to relying on gold-standard part-of-speech tags.

This work also relates to Manning [109] who point out that
even though part-of-speech tagging accuracy is above 97% the
remaining errors are not randomly distributed but in fact occur
in just the cases we care most about.

10.7 conclusion

Discourse connective disambiguation is an important subtask
of discourse parsing. We show that when realistic evaluation
is adopted — averaging over connective types and not relying
on oracle features — performance drops markedly. This sug-
gests that more work on the task is needed. Moreover, we show
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that in realistic evaluation a simple feature model using part-
of-speech tags and words performs just as well as a much more
complex state-of-the-art model.
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11
D O W N - S T R E A M E F F E C T S O F
T R E E - T O - D E P E N D E N C Y C O N V E R S I O N S

abstract

Dependency analysis relies on morphosyntactic evidence, as
well as semantic evidence. In some cases, however, morphosyn-
tactic evidence seems to be in conflict with semantic evidence.
For this reason dependency grammar theories, annotation guide-
lines and tree-to-dependency conversion schemes often differ
in how they analyze various syntactic constructions. Most ex-
periments for which constituent-based treebanks such as the
Penn Treebank are converted into dependency treebanks rely
blindly on one of four-five widely used tree-to-dependency con-
version schemes. This paper evaluates the down-stream effect
of choice of conversion scheme, showing that it has dramatic
impact on end results.

11.1 introduction

Annotation guidelines used in modern dependency treebanks
and tree-to-dependency conversion schemes for converting constituent-
based treebanks into dependency treebanks are typically based
on a specific dependency grammar theory, such as the Prague
School’s Functional Generative Description, Meaning-Text The-
ory, or Hudson’s Word Grammar. In practice most parsers con-
strain dependency structures to be tree-like structures such that
each word has a single syntactic head, limiting diversity be-
tween annotation a bit; but while many dependency treebanks
taking this format agree on how to analyze many syntactic con-
structions, there are still many constructions these treebanks
analyze differently. See Figure 8 for a standard overview of
clear and more difficult cases.

The difficult cases in Figure 8 are difficult for the following
reason. In the easy cases morphosyntactic and semantic evi-
dence cohere. Verbs govern subjects morpho-syntactically and
seem semantically more important. In the difficult cases, how-
ever, morpho-syntactic evidence is in conflict with the seman-
tic evidence. While auxiliary verbs have the same distribution
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Clear cases Difficult cases

Head Dependent ? ?

Verb Subject Auxiliary Main verb
Verb Object Complementizer Verb
Noun Attribute Coordinator Conjuncts
Verb Adverbial Preposition Nominal

Punctuation

Figure 8: Clear and difficult cases in dependency annotation.

as finite verbs in head position and share morpho-syntactic
properties with them, and govern the infinite main verbs, main
verbs seem semantically superior, expressing the main predi-
cate. There may be distributional evidence that complementiz-
ers head verbs syntactically, but the verbs seem more important
from a semantic point of view.

Tree-to-dependency conversion schemes used to convert constituent-
based treebanks into dependency-based ones also take different
stands on the difficult cases. In this paper we consider four dif-
ferent conversion schemes: the Yamada-Matsumoto conversion
scheme yamada,1 the CoNLL 2007 format conll07,2 the con-
version scheme ewt used in the English Web Treebank [135],3

and the lth conversion scheme [80].4 We list the differences in
Figure 9. An example of differences in analysis is presented in
Figure 10.

In order to access the impact of these conversion schemes on
down-stream performance, we need extrinsic rather than in-
trinsic evaluation. In general it is important to remember that

1 The Yamada-Matsumoto scheme can be replicated by running penn2malt.jar
available at http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html. We
used Malt dependency labels (see website). The Yamada-Matsumoto scheme
is an elaboration of the Collins scheme [35], which is not included in our
experiments.

2 The CoNLL 2007 conversion scheme can be obtained by running
pennconverter.jar available at http://nlp.cs.lth.se/software/treebank_

converter/ with the ’conll07’ flag set.
3 The EWT conversion scheme can be replicated using the Stan-

ford converter available at http://http://nlp.stanford.edu/software/

stanford-dependencies.shtml
4 The LTH conversion scheme can be obtained by running penncon-

verter.jar available at http://http://nlp.cs.lth.se/software/treebank_

converter/ with the ’oldLTH’ flag set.
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Form 1 Form 2 yamada conll07 ewt lth

Auxiliary Main verb 1 1 2 2

Complementizer Verb 1 2 2 2

Coordinator Conjuncts 2 1 2 2

Preposition Nominal 1 1 1 2

Figure 9: Head decisions in conversions. Note: yamada also differ
from conll07 wrt. proper names.

FORM1 FORM2 yamada conll07 ewt lth
Auxiliary Main verb 1 1 2 2
Complementizer Verb 1 2 2 2
Coordinator Conjuncts 2 1 2 2
Preposition Nominal 1 1 1 2

Figure 2: Head decisions in conversions. Note: yamada also differ from CoNLL 2007 in proper names.

Figure 3: CoNLL 2007 (blue) and LTH (red) dependency conversions.

performance, showing that lth leads to superior per-
formance.
Miyao et al. (2008) measure the impact of syntac-

tic parsers in an information extraction system iden-
tifying protein-protein interactions in biomedical re-
search articles. They evaluate dependency parsers,
constituent-based parsers and deep parsers.
Miwa et al. (2010) evaluate down-stream per-

formance of linguistic representations and parsing
models in biomedical event extraction, but do not
evaluate linguistic representations directly, evaluat-
ing representations and models jointly.
Bender et al. (2011) compare several parsers

across linguistic representations on a carefully de-
signed evaluation set of hard, but relatively frequent
syntactic constructions. They compare dependency
parsers, constituent-based parsers and deep parsers.
The authors argue in favor of evaluating parsers on
diverse and richly annotated data. Others have dis-
cussed various ways of evaluating across annotation
guidelines or translating structures to a common for-
mat (Schwartz et al., 2011; Tsarfaty et al., 2012).
Hall et al. (2011) discuss optimizing parsers for

specific down-stream applications, but consider only
a single annotation scheme.
Yuret et al. (2012) present an overview of the

SemEval-2010 Evaluation Exercises on Semantic

Evaluation track on recognition textual entailment
using dependency parsing. They also compare sev-
eral parsers using the heuristics of the winning sys-
tem for inference. While the shared task is an
example of down-stream evaluation of dependency
parsers, the evaluation examples only cover a subset
of the textual entailments relevant for practical ap-
plications, and the heuristics used in the experiments
assume a fixed set of dependency labels (ewt labels).
Finally, Schwartz et al. (2012) compare the

above conversion schemes and several combinations
thereof in terms of learnability. This is very different
from what is done here. While learnability may be
a theoretically motivated parameter, our results indi-
cate that learnability and downstream performance
do not correlate well.

2 Applications

Dependency parsing has proven useful for a wide
range of NLP applications, including statistical ma-
chine translation (Galley and Manning, 2009; Xu et
al., 2009; Elming and Haulrich, 2011) and sentiment
analysis (Joshi and Penstein-Rose, 2009; Johansson
and Moschitti, 2010). This section describes the ap-
plications and experimental set-ups included in this
study.
In the five applications considered below we

619

Figure 10: CoNLL 2007 (blue) and LTH (red) dependency conver-
sions.

while researchers developing learning algorithms for part-of-
speech (POS) tagging and dependency parsing seem obsessed
with accuracies, POS sequences or dependency structures have
no interest on their own. The accuracies reported in the liter-
ature are only interesting insofar they correlate with the use-
fulness of the structures predicted by our systems. Fortunately,
POS sequences and dependency structures are useful in many
applications. When we consider tree-to-dependency conversion
schemes, down-stream evaluation becomes particularly impor-
tant since some schemes are more fine-grained than others,
leading to lower performance as measured by intrinsic eval-
uation metrics.

Approach in this work

In our experiments below we apply a state-of-the-art parser to
five different natural language processing (NLP) tasks where
syntactic features are known to be effective: negation resolu-
tion, semantic role labeling (SRL), statistical machine transla-
tion (SMT), sentence compression and perspective classifica-
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tion. In all five tasks we use the four tree-to-dependency con-
version schemes mentioned above and evaluate them in terms
of down-stream performance. We also compare our systems to
baseline systems not relying on syntactic features, when pos-
sible, and to results in the literature, when comparable results
exist. Note that negation resolution and SRL are not end ap-
plications. It is not easy to generalize across five very different
tasks, but the tasks will serve to show that the choice of con-
version scheme has significant impact on down-stream perfor-
mance.

We used the most recent release of the Mate parser first de-
scribed in Bohnet [20],5 trained on Sections 2–21 of the Wall
Street Journal section of the English Treebank [112]. The graph-
based parser is similar to, except much faster, and performs
slightly better than the MSTParser [118], which is known to
perform well on long-distance dependencies often important
for down-stream applications [117, 58, 12]. This choice may of
course have an effect on what conversion schemes seem supe-
rior [80]. Sentence splitting was done using splitta,6, and the
sentences were then tokenized using PTB-style tokenization7

and tagged using the in-built Mate POS tagger.

Previous work

There has been considerable work on down-stream evaluation
of syntactic parsers in the literature, but most previous work
has focused on evaluating parsing models rather than linguistic
theories. No one has, to the best of our knowledge, compared
the impact of choice of tree-to-dependency conversion scheme
across several NLP tasks.

Johansson and Nugues [80] compare the impact of yamada

and lth on semantic role labeling performance, showing that
lth leads to superior performance.

Miyao et al. [123] measure the impact of syntactic parsers
in an information extraction system identifying protein-protein
interactions in biomedical research articles. They evaluate de-
pendency parsers, constituent-based parsers and deep parsers.

Miwa et al. [122] evaluate down-stream performance of lin-
guistic representations and parsing models in biomedical event

5 http://code.google.com/p/mate-tools/
6 http://code.google.com/p/splitta/
7 http://www.cis.upenn.edu/~treebank/tokenizer.sed
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extraction, but do not evaluate linguistic representations di-
rectly, evaluating representations and models jointly.

Bender et al. [12] compare several parsers across linguistic
representations on a carefully designed evaluation set of hard,
but relatively frequent syntactic constructions. They compare
dependency parsers, constituent-based parsers and deep parsers.
The authors argue in favor of evaluating parsers on diverse
and richly annotated data. Others have discussed various ways
of evaluating across annotation guidelines or translating struc-
tures to a common format [148, 172].

Hall et al. [66] discuss optimizing parsers for specific down-
stream applications, but consider only a single annotation scheme.

Yuret et al. [184] present an overview of the SemEval-2010

Evaluation Exercises on Semantic Evaluation track on recogni-
tion textual entailment using dependency parsing. They also
compare several parsers using the heuristics of the winning
system for inference. While the shared task is an example of
down-stream evaluation of dependency parsers, the evaluation
examples only cover a subset of the textual entailments relevant
for practical applications, and the heuristics used in the exper-
iments assume a fixed set of dependency labels (ewt labels).

Finally, Schwartz et al. [149] compare the above conversion
schemes and several combinations thereof in terms of learn-
ability. This is very different from what is done here. While
learnability may be a theoretically motivated parameter, our
results indicate that learnability and downstream performance
do not correlate well.

11.2 applications

Dependency parsing has proven useful for a wide range of NLP
applications, including statistical machine translation [58, 183,
52] and sentiment analysis [82, 79]. This section describes the
applications and experimental set-ups included in this study.

In the five applications considered below we use syntactic
features in slightly different ways. While our statistical ma-
chine translation and sentence compression systems use depen-
dency relations as additional information about words and on a
par with POS, our negation resolution system uses dependency
paths, conditioning decisions on both dependency arcs and la-
bels. In perspective classification, we use dependency triples
(e.g. SUBJ(John, snore)) as features, while the semantic role la-
beling system conditions on a lot of information, including the
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word form of the head, the dependent and the argument candi-
dates, the concatenation of the dependency labels of the pred-
icate, and the labeled dependency relations between predicate
and its head, its arguments, dependents or siblings.

11.2.1 Negation resolution

Negation resolution (NR) is the task of finding negation cues,
e.g. the word not, and determining their scope, i.e. the tokens
they affect. NR has recently seen considerable interest in the
NLP community [126, 177] and was the topic of the 2012 *SEM
shared task [125].

The data set used in this work, the Conan Doyle corpus
(CD),8 was released in conjunction with the *SEM shared task.
The annotations in CD extend on cues and scopes by introduc-
ing annotations for in-scope events that are negated in factual
contexts. The following is an example from the corpus show-
ing the annotations for cues (bold), scopes (underlined) and
negated events (italicized):

(11.43) Since we have been so unfortunate as to miss him [. . . ]

CD-style scopes can be discontinuous and overlapping. Events
are a portion of the scope that is semantically negated, with its
truth value reversed by the negation cue.

The NR system used in this work [95], one of the best per-
forming systems in the *SEM shared task, is a CRF model for
scope resolution that relies heavily on features extracted from
dependency graphs. The feature model contains token distance,
direction, n-grams of word forms, lemmas, POS and combi-
nations thereof, as well as the syntactic features presented in
Figure 11. The results in our experiments are obtained from
configurations that differ only in terms of tree-to-dependency
conversions, and are trained on the training set and tested on
the development set of CD. Since the negation cue classification
component of the system does not rely on dependency features
at all, the models are tested using gold cues.

Table 20 shows F1 scores for scopes, events and full negations,
where a true positive correctly assigns both scope tokens and
events to the rightful cue. The scores are produced using the
evaluation script provided by the *SEM organizers.

8 http://www.clips.ua.ac.be/sem2012-st-neg/data.html
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Syntactic

constituent
dependency relation
parent head POS
grand parent head POS
word form+dependency relation
POS+dependency relation

Cue-dependent

directed dependency distance
bidirectional dependency distance
dependency path
lexicalized dependency path

Figure 11: Features used to train the conditional random field models

11.2.2 Semantic role labeling

Semantic role labeling (SRL) is the attempt to determine se-
mantic predicates in running text and label their arguments
with semantic roles. In our experiments we have reproduced
the second best-performing system in the CoNLL 2008 shared
task in syntactic and semantic parsing [81].9

The English training data for the CoNLL 2008 shared task
were obtained from PropBank and NomBank. For licensing
reasons, we used OntoNotes 4.0, which includes PropBank,
but not NomBank. This means that our system is only trained
to classify verbal predicates. We used the Clearparser conver-
sion tool10 to convert the OntoNotes 4.0 and subsequently sup-
plied syntactic dependency trees using our different conversion
schemes. We rely on gold standard argument identification and
focus solely on the performance metric semantic labeled F1.

11.2.3 Statistical machine translation

The effect of the different conversion schemes was also evalu-
ated on SMT. We used the reordering by parsing framework de-
scribed by Elming and Haulrich [52]. This approach integrates
a syntactically informed reordering model into a phrase-based
SMT system. The model learns to predict the word order of the

9 http://nlp.cs.lth.se/software/semantic_parsing:_propbank_nombank_

frames
10 http://code.google.com/p/clearparser/
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translation based on source sentence information such as syn-
tactic dependency relations. Syntax-informed SMT is known to
be useful for translating between languages with different word
orders [58, 183], e.g. English and German.

The baseline SMT system is created as described in the guide-
lines from the original shared task.11 Only modifications are
that we use truecasing instead of lowercasing and recasing,
and allow training sentences of up to 80 words. We used data
from the English-German restricted task: ∼3M parallel words
of news, ∼46M parallel words of Europarl, and ∼309M words
of monolingual Europarl and news. We use newstest2008 for
tuning, newstest2009 for development, and newstest2010 for
testing. Distortion limit was set to 10, which is also where the
baseline system performed best. The phrase table and the lexi-
cal reordering model is trained on the union of all parallel data
with a max phrase length of 7, and the 5-gram language model
is trained on the entire monolingual data set.

We test four different experimental systems that only differ
with the baseline in the addition of a syntactically informed
reordering model. The baseline system was one of the tied
best performing system in the WMT 2011 shared task on this
dataset. The four experimental systems have reordering models
that are trained on the first 25,000 sentences of the parallel news
data that have been parsed with each of the tree-to-dependency
conversion schemes. The reordering models condition reorder-
ing on the word forms, POS, and syntactic dependency rela-
tions of the words to be reordered, as described in Elming
and Haulrich [52]. The paper shows that while reordering by
parsing leads to significant improvements in standard metrics
such as BLEU [133] and METEOR [96], improvements are more
spelled out with human judgements. All SMT results reported
below are averages based on 5 MERT runs following Clark et al.
[33].

11.2.4 Sentence compression

Sentence compression is a restricted form of sentence simpli-
fication with numerous usages, including text simplification,
summarization and recognizing textual entailment. The most
commonly used dataset in the literature is the Ziff-Davis cor-
pus.12 A widely used baseline for sentence compression experi-

11 http://www.statmt.org/wmt11/translation-task.html
12 LDC Catalog No.: LDC93T3A.
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Baseline yamada conll07 ewt lth

Number of dep. rel. – 12 21 47 41

Parsing
PTB-23 (LAS) – 88.99 88.52 81.36

∗
87.52

PTB-23 (UAS) – 90.21 90.12 84.22
∗ 90.29

Negation scope
Scope F1 – 81.27 80.43 78.70 79.57

Event F1 – 76.19 72.90 73.15 76.24
Full negation F1 – 67.94 63.24 61.60 64.31

Sentence compression
Full F1 68.47 72.07 64.29 71.56 71.56

Machine translation
Dev-Meteor 35.80 36.06 36.06 36.16 36.08

Test-Meteor 37.25 37.48 37.50 37.58 37.51

Dev-BLEU 13.66 14.14 14.09 14.04 14.06

Test-BLEU 14.67 15.04 15.04 14.96 15.11

Semantic role labeling
22-gold – 81.35 83.22 84.72 84.01

23-gold – 79.09 80.85 80.39 82.01
22-pred – 74.41 76.22 78.29 66.32

23-pred – 73.42 74.34 75.80 64.06

Perspective classification
bitterlemons.org 96.08 97.06 95.58 96.08 96.57

Table 20: Results. ∗: Low parsing results on PTB-23 using ewt are ex-
plained by changes between the PTB-III and the Ontonotes
4.0 release of the English Treebank.
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ments is Knight and Marcu [89], who introduce two models: the
noisy-channel model and a decision tree-based model. Both are
tree-based methods that find the most likely compressed syn-
tactic tree and outputs the yield of this tree. McDonald [116]
instead use syntactic features to directly find the most likely
compressed sentence.

Here we learn a discriminative HMM model [34] of sentence
compression using MIRA [38], comparable to previously ex-
plored models of noun phrase chunking. Our model is thus
neither tree-based nor sentence-based. Instead we think of sen-
tence compression as a sequence labeling problem. We compare
a model informed by word forms and predicted POS with mod-
els also informed by predicted dependency labels. The baseline
feature model conditions emission probabilities on word forms
and POS using a ±2 window and combinations thereoff. The
augmented syntactic feature model simply adds dependency
labels within the same window.

11.2.5 Perspective classification

Finally, we include a document classification dataset from Lin
and Hauptmann [99].13 The dataset consists of blog posts posted
at bitterlemons.org by Israelis and Palestinians. The bitterlemons.org
website is set up to “contribute to mutual understanding through
the open exchange of ideas.” In the dataset, each blog post
is labeled as either Israeli or Palestinian. Our baseline model
is just a standard bag-of-words model, and the system adds
dependency triplets to the bag-of-words model in a way sim-
ilar to Joshi and Penstein-Rose [82]. We do not remove stop
words, since perspective classification is similar to authorship
attribution, where stop words are known to be informative.
We evaluate performance doing cross-validation over the of-
ficial training data, setting the parameters of our learning algo-
rithm for each fold doing cross-validation over the actual train-
ing data. We used soft-margin support vector machine learning
[36], tuning the kernel (linear or polynomial with degree 3) and
C = {0.1, 1, 5, 10}.

13 https://sites.google.com/site/weihaolinatcmu/data
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Reference: Zum Glück kam ich beim Strassenbahnfahren an die richtige Stelle .

Source: Luckily , on the way to the tram , I found the right place .

yamada: Glücklicherweise hat auf dem Weg zur S-Bahn , stellte ich fest , dass der richtige Ort .

conll07: Glücklicherweise hat auf dem Weg zur S-Bahn , stellte ich fest , dass der richtige Ort .

ewt: Zum Glück fand ich auf dem Weg zur S-Bahn , am richtigen Platz .

lth: Zum Glück fand ich auf dem Weg zur S-Bahn , am richtigen Platz .

Baseline: Zum Glück hat auf dem Weg zur S-Bahn , ich fand den richtigen Platz .

Figure 12: Examples of SMT output.

Original: * 68000 sweden ab of uppsala , sweden , introduced the teleserve , an integrated answering

machine and voice-message handler that links a macintosh to touch-tone phones .

Baseline: 68000 sweden ab introduced the teleserve an integrated answering

machine and voice-message handler .

yamada 68000 sweden ab introduced the teleserve integrated answering

machine and voice-message handler .

conll07 68000 sweden ab sweden introduced the teleserve integrated answering

machine and voice-message handler .

ewt 68000 sweden ab introduced the teleserve integrated answering

machine and voice-message handler .

lth 68000 sweden ab introduced the teleserve an integrated answering

machine and voice-message handler .

Human: 68000 sweden ab introduced the teleserve integrated answering

machine and voice-message handler .

Figure 13: Examples of sentence compression output.
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11.3 results and discussion

Our results are presented in Table 20. The parsing results are
obtained relying on predicted POS rather than, as often done
in the dependency parsing literature, relying on gold-standard
POS. Note that they comply with the result in Schwartz et al.
[149] that Yamada-Matsumoto-style annotation is more easily
learnable.

negation resolution The negation resolution results are
significantly better using syntactic features in yamada annota-
tion. It is not surprising that a syntactically oriented conversion
scheme performs well in this task. Since Lapponi et al. [95] used
Maltparser [130] with the freely available pre-trained parsing
model for English,14 we decided to also run that parser with
the gold-standard cues, in addition to Mate. The pre-trained
model was trained on Sections 2–21 of the Wall Street Jour-
nal section of the English Treebank [112], augmented with 4000

sentences from the QuestionBank,15 which was converted using
the Stanford converter and thus similar to the ewt annotations
used here. The results were better than using ewt with Mate
trained on Sections 2–21 alone, but worse than the results ob-
tained here with yamada conversion scheme. F1 score on full
negation was 66.92%.

machine translation The case-sensitive BLEU evalua-
tion of the SMT systems indicates that choice of conversion
scheme has no significant impact on overall performance. The
difference to the baseline system is significant (p < 0.01), show-
ing that the reordering model leads to improvement using any
of the schemes. However, the conversion schemes lead to very
different translations. This can be seen, for example, by the fact
that the relative tree edit distance between translations of dif-
ferent syntactically informed SMT systems is 12% higher than
within each system (across different MERT optimizations).

The reordering approach puts a lot of weight on the syn-
tactic dependency relations. As a consequence, the number of
relation types used in the conversion schemes proves impor-
tant. Consider the example in Figure 12. German requires the
verb in second position, which is obeyed in the much better
translations produced by the ewt and lth systems. Interest-

14 http://www.maltparser.org/mco/english_parser/engmalt.html
15 http://www.computing.dcu.ie/~jjudge/qtreebank/
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ingly, the four schemes produce virtually identical structures
for the source sentence, but they differ in their labeling. Where
conll07 and yamada use the same relation for the first two
constituents (ADV and vMOD, respectively), ewt and lth dis-
tinguish between them (ADVMOD/PREP and ADV/LOC). This
distinction may be what enables the better translation, since the
model may learn to move the verb after the sentence adverbial.
In the other schemes, sentence adverbials are not distinguished
from locational adverbials. Generally, ewt and lth have more
than twice as many relation types as the other schemes.

semantic role labeling The schemes ewt and lth lead
to better SRL performance than conll07 and yamada when
relying on gold-standard syntactic dependency trees. This sup-
ports the claims put forward in Johansson and Nugues [80].
These annotations also happen to use a larger set of depen-
dency labels, however, and syntactic structures may be harder
to reconstruct, as reflected by labeled attachment scores (LAS)
in syntactic parsing. The biggest drop in SRL performance go-
ing from gold-standard to predicted syntactic trees is clearly for
the lth scheme, at an average 17.8% absolute loss (yamada 5.8%;
conll07 6.8%; ewt 5.5%; lth 17.8%).

The ewt scheme resembles lth in most respects, but in preposition-
noun dependencies it marks the preposition as the head rather
than the noun. This is an important difference for SRL, be-
cause semantic arguments are often nouns embedded in prepo-
sitional phrases, like agents in passive constructions. It may
also be that the difference in performance is simply explained
by the syntactic analysis of prepositional phrases being easier
to reconstruct.

sentence compression The sentence compression results
are generally much better than the models proposed in Knight
and Marcu [89]. Their noisy channel model obtains an F1 com-
pression score of 14.58%, whereas the decision tree-based model
obtains an F1 compression score of 31.71%. While F1 scores
should be complemented by human judgements, as there are
typically many good sentence compressions of any source sen-
tence, we believe that error reductions of more than 50% indi-
cate that the models used here (though previously unexplored
in the literature) are fully competitive with state-of-the-art mod-
els.
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Figure 7: Distributions of dependency labels in the
Yamada-Matsumoto scheme

(though previously unexplored in the literature) are
fully competitive with state-of-the-art models.
We also see that the models using syntactic fea-

tures perform better than our baseline model, except
for the model using conll07 dependency annotation.
This may be surprising to some, since distributional
information is often considered important in sen-
tence compression (Knight and Marcu, 2002). Some
output examples are presented in Figure 6. Un-
surprisingly, it is seen that the baseline model pro-
duces grammatically incorrect output, and that most
of our syntactic models correct the error leading to
ungrammaticality. The model using ewt annotation
is an exception. We also see that conll07 introduces
another error. We believe that this is due to the way
the conll07 tree-to-dependency conversion scheme
handles coordination. While the word Sweden is not
coordinated, it occurs in a context, surrounded by
commas, that is very similar to coordinated items.
In perspective classification we see that syntactic

features based on yamada and lth annotations lead
to improvements, with yamada leading to slightly
better results than lth. The fact that a syntactically
oriented conversion scheme leads to the best results
may reflect that perspective classification, like au-
thorship attribution, is less about content than stylis-
tics.
While lth seems to lead to the overall best re-

sults, we stress the fact that the five tasks considered
here are incommensurable. What is more interest-
ing is that, task to task, results are so different. The
semantically oriented conversion schemes, ewt and
lth, lead to the best results in SRL, but with a signif-
icant drop for lth when relying on predicted parses,
while the yamada scheme is competitive in the other

four tasks. This may be because distributional infor-
mation is more important in these tasks than in SRL.
The distribution of dependency labels seems rel-

atively stable across applications, but differences in
data may of course also affect the usefulness of dif-
ferent annotations. Note that conll07 leads to very
good results for negation resolution, but bad results
for SRL. See Figure 7 for the distribution of labels
in the conll07 conversion scheme on the SRL and
negation scope resolution data. Many differences
relate to differences in sentence length. The nega-
tion resolution data is literary text with shorter sen-
tences, which therefore uses more punctuation and
has more root dependencies than newspaper articles.
On the other hand we do see very few predicate de-
pendencies in the SRL data. This may affect down-
stream results when classifying verbal predicates in
SRL. We also note that the number of dependency
labels have less impact on results in general than we
would have expected. The number of dependency
labels and the lack of support for some of them may
explain the drop with predicted syntactic parses in
our SRL results, but generally we obtain our best re-
sults with yamada and lth annotations, which have
12 and 41 dependency labels, respectively.

4 Conclusions

We evaluated four different tree-to-dependency con-
version schemes, putting more or less emphasis on
syntactic or semantic evidence, in five down-stream
applications, including SMT and negation resolu-
tion. Our results show why it is important to be
precise about exactly what tree-to-dependency con-
version scheme is used. Tools like pennconverter.jar
gives us a wide range of options when converting
constituent-based treebanks, and even small differ-
ences may have significant impact on down-stream
performance. The small differences are also impor-
tant for more linguistic comparisons that also tend to
gloss over exactly what conversion scheme is used,
e.g. Ivanova et al. (2012).
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Figure 14: Distributions of dependency labels in the Yamada-
Matsumoto scheme

We also see that the models using syntactic features per-
form better than our baseline model, except for the model us-
ing conll07 dependency annotation. This may be surprising to
some, since distributional information is often considered im-
portant in sentence compression [89]. Some output examples
are presented in Figure 13. Unsurprisingly, it is seen that the
baseline model produces grammatically incorrect output, and
that most of our syntactic models correct the error leading to
ungrammaticality. The model using ewt annotation is an excep-
tion. We also see that conll07 introduces another error. We be-
lieve that this is due to the way the conll07 tree-to-dependency
conversion scheme handles coordination. While the word Swe-
den is not coordinated, it occurs in a context, surrounded by
commas, that is very similar to coordinated items.

perspective classification In perspective classification
we see that syntactic features based on yamada and lth anno-
tations lead to improvements, with yamada leading to slightly
better results than lth. The fact that a syntactically oriented
conversion scheme leads to the best results may reflect that per-
spective classification, like authorship attribution, is less about
content than stylistics.

While lth seems to lead to the overall best results, we stress
the fact that the five tasks considered here are incommensu-
rable. What is more interesting is that, task to task, results
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are so different. The semantically oriented conversion schemes,
ewt and lth, lead to the best results in SRL, but with a sig-
nificant drop for lth when relying on predicted parses, while
the yamada scheme is competitive in the other four tasks. This
may be because distributional information is more important
in these tasks than in SRL.

The distribution of dependency labels seems relatively sta-
ble across applications, but differences in data may of course
also affect the usefulness of different annotations. Note that
conll07 leads to very good results for negation resolution, but
bad results for SRL. See Figure 14 for the distribution of labels
in the conll07 conversion scheme on the SRL and negation
scope resolution data. Many differences relate to differences in
sentence length. The negation resolution data is literary text
with shorter sentences, which therefore uses more punctuation
and has more root dependencies than newspaper articles. On
the other hand we do see very few predicate dependencies in
the SRL data. This may affect down-stream results when classi-
fying verbal predicates in SRL. We also note that the number of
dependency labels have less impact on results in general than
we would have expected. The number of dependency labels
and the lack of support for some of them may explain the drop
with predicted syntactic parses in our SRL results, but generally
we obtain our best results with yamada and lth annotations,
which have 12 and 41 dependency labels, respectively.

11.4 conclusions

We evaluated four different tree-to-dependency conversion schemes,
putting more or less emphasis on syntactic or semantic evi-
dence, in five down-stream applications, including SMT and
negation resolution. Our results show why it is important to
be precise about exactly what tree-to-dependency conversion
scheme is used. Tools like pennconverter.jar gives us a wide
range of options when converting constituent-based treebanks,
and even small differences may have significant impact on down-
stream performance. The small differences are also important
for more linguistic comparisons that also tend to gloss over ex-
actly what conversion scheme is used, e.g. Ivanova et al. [76].
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12
R O B U S T L E A R N I N G I N R A N D O M S U B S PA C E S :
E Q U I P P I N G N L P F O R O O V E F F E C T S

abstract

Inspired by work on robust optimization we introduce a sub-
space method for learning linear classifiers for natural language
processing that are robust to out-of-vocabulary effects. The method
is applicable in live-stream settings where new instances may
be sampled from different and possibly also previously un-
seen domains. In text classification and part-of-speech (POS)
tagging, robust perceptrons and robust stochastic gradient de-
scent (SGD) with hinge loss achieve average error reductions of
up to 18% when evaluated on out-of-domain data.

12.1 introduction

In natural language processing (NLP), data is rarely drawn in-
dependently and identically at random. In particular we often
apply models learned from available labeled data to data that
differs from the original labeled data in several respects. Super-
vised learning without the assumption that data is drawn iden-
tically is sometimes referred to as transfer learning, i.e. learning
to make predictions about data sampled from a target distribu-
tion using labeled data from a related, but different source distri-
bution or under a strong sample bias.

Domain adaptation refers to a prominent class of transfer learn-
ing problems in NLP. Two domain adaptation scenarios are typ-
ically considered: (a) semi-supervised domain adaption, where a
small sample of data from the target domain is available, as
well as large pool of unlabeled target data, and (b) unsupervised
domain adaptation where only unlabeled data is available from
the target domain. In this paper we do not even assume the lat-
ter, but consider the more difficult scenario where the target
domain is unknown.

The assumption that a large pool of unlabeled data is avail-
able from a relatively homogeneous target domain holds only if
the target domain is known in advance. In a lot of applications
of NLP, this is not the case. When we design publicly available

105



software such as the Stanford Parser, or when we set up online
services such as Google Translate, we do not know much about
the input in advance. A user will apply the Stanford Parser to
any kind of text from any textual domain and expect it to do
well.1 Recent work has extended domain adaptation with do-
main identification [48, 115], but this still requires that we know
the possible domains in advance and are able to relate each
instance to one of them, and in many cases we do not. If the
possible target domains are not known in advance, the trans-
fer learning problem reduces to the problem of learning robust
models that are as insensitive as possible to domain shifts. This
is the problem considered in this paper.

One of the main reasons for performance drops when evalu-
ating supervised NLP models on out-of-domain data is out-of-
vocabulary (OOV) effects [17, 42]. Several techniques for reduc-
ing OOV effects have been introduced in the literature, includ-
ing spelling expansion, morphological expansion, dictionary
term expansion, proper name transliteration, correlation analy-
sis, and word clustering [17, 65, 173, 42], but most of these tech-
niques still leave us with a lot of "empty dimensions", i.e. fea-
tures that are always 0 in the test data. While these features are
not uninstantiated in the sense of missing values, we will nev-
ertheless refer to OOV effects as removing dimensions from our
datasets, since a subset of dimensions become uninformative as
we leave our source domain.

This is a potential source of error, since the best decision
boundary in n dimensions is not necessarily the best boundary
in m < n dimensions. If we remove dimensions, our optimal
decision boundaries may suddenly be far from optimal. Con-
sider, for example, the plot in Figure 15. 2d-SVC is the optimal
decision boundary for this two-dimensional dataset (the non-
horizontal, solid line). If we remove one dimension, however,
say because this variable is never instantiated in our test data,
the learned weight vector will give us the decision boundary
test(2d-SVC) (the dashed line). Compare this to the optimal
decision boundary for the reduced, one-dimensional dataset,
1d-SVC (the horizontal, solid line).

OOV effects "remove" dimensions from our data. In robust
learning, we do not know which dimensions are to be removed
in our target data in advance, however. In this paper we there-
fore, inspired by previous work on robust optimization [11],

1 Chris Manning previously raised this point in an invited talk at a NAACL
workshop.
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Figure 1: Optimal decision boundary is not optimal when one dimension is removed

mensions are to be removed in our target data in advance, however. In this paper we therefore,
inspired by previous work on robust optimization (Ben-Tal and Nemirovski, 1998), suggest to
minimize our expected loss under all (or K random) possible removals. We will implement this
strategy for perceptron learning and SGD with hinge loss and apply it to text classification, as
well as POS tagging. Results are very promising, with error reductions up to 70% and average
error reductions up to 18%.

2 Robust learning under random subspaces

In robust optimization (Ben-Tal and Nemirovski, 1998) we aim to find a solution w that min-
imizes a (parameterized) cost function f (w,⇠), where the true parameter ⇠ may differ from
the observed ⇠̂. The task is to solve

min
w

max
⇠̂2�

f (w, ⇠̂) (1)

with � all possible realizations of ⇠. An alternative to minimizing loss in the worst case is
minimizing loss in the average case, or the sum of losses:

min
w

X

⇠̂2�
f (w, ⇠̂) (2)

The learning algorithms considered in this paper aim to learn models w from finite samples
(of size N) that minimize the expected loss on a distribution ⇢ (with, say, M dimensions):

min
w
Ehy,xi⇠⇢L(y, sign(w · x)) (3)

OOV effects can be seen as introducing an extra parameter into this equation. Let ⇠ be a binary
vector of length M selecting what dimensions are removed. In NLP we typically assume that
⇠ = h1, . . . , 1i and minimize the expected loss in the usual way, but if we have a set � of
possible instantiations of ⇠ such that ⇠ can be any binary vector, minimizing expected loss is
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Figure 15: Optimal decision boundary is not optimal when one di-
mension is removed

suggest to minimize our expected loss under all (or K random)
possible removals. We will implement this strategy for percep-
tron learning and SGD with hinge loss and apply it to text clas-
sification, as well as POS tagging. Results are very promising,
with error reductions up to 70% and average error reductions
up to 18%.

12.2 robust learning under random subspaces

In robust optimization [11] we aim to find a solution w that
minimizes a (parameterized) cost function f(w, ξ), where the
true parameter ξ may differ from the observed ξ̂. The task is to
solve

min
w

max
ξ̂∈∆

f(w, ξ̂) (1)

with ∆ all possible realizations of ξ. An alternative to minimiz-
ing loss in the worst case is minimizing loss in the average case,
or the sum of losses:

min
w

∑
ξ̂∈∆

f(w, ξ̂) (2)
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The learning algorithms considered in this paper aim to learn
models w from finite samples (of size N) that minimize the
expected loss on a distribution ρ (with, say, M dimensions):

min
w

E⟨y,x⟩∼ρL(y, sign(w · x)) (3)

OOV effects can be seen as introducing an extra parameter
into this equation. Let ξ be a binary vector of length M selecting
what dimensions are removed. In NLP we typically assume that
ξ = ⟨1, . . . , 1⟩ and minimize the expected loss in the usual way,
but if we have a set ∆ of possible instantiations of ξ such that ξ
can be any binary vector, minimizing expected loss is likely to
be suboptimal, as discussed in the introduction. In this paper
we will instead minimize average expected loss under random
subspaces:

min
w

∑
ξ̂∈∆

E⟨y,x⟩∼ρL(y, sign(w · x ◦ ξ̂)) (4)

We refer to this idea as robust learning in random subspaces
(RLRS). Since the number of possible instantiations of ξ is 2M

we randomly sample K instantiations removing 10% of the di-
mensions, with K ⩽ 250.2

Algorithm 2 Robust learning in random subspaces
1: X = {⟨yi, xi⟩}Ni=1

2: for k ∈ K do
3: w0 = 0, v = 0, i = 0

4: ξ← random.bits(M)

5: for n ∈ N do
6: if sign(w · x ◦ ξ) ̸= yn then
7: wi+1 ← update(wi)

8: i← i+ 1

9: end if
10: end for
11: v← v + wi

12: end for
13: return w = v/(N×K)

2 Our choice to constrain ourselves to instantiations of ξ removing 10% of the
dimensions was somewhat arbitrary, and we briefly discuss the effect of this
hyper-parameter after presenting our main results.
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RLRS can be applied to any linear model, and we present
the general form in Figure 2. Given a dataset X = {⟨yi, xi⟩}Ni=1

we randomly draw ξ from the set of binary vectors of length
M. We now pass over {⟨yi, xi ◦ ξ⟩}Ni=1 K times, updating our lin-
ear model according to the learning algorithm. The weights of
the K models are averaged to minimize the average expected
loss in random subspaces. In our experiments we will use per-
ceptron [146] and SGD with hinge loss [185] as our learning
algorithms. A perceptron c consists of a weight vector w with
a weight for each feature, a bias term b and a learning rate α.
For a data point xj, c(xj) = 1 iff w · x+b > 0, else 0. The thresh-
old for classifying something as positive is thus −b. The bias
term is left out by adding an extra variable to our data with
fixed value -1. The perceptron learning algorithm now works
by maintaining w in several passes over the data (see Figure 2).
Say the algorithm at time i is presented with a labeled data
point ⟨xj,yj⟩. The current weight vector wi is used to calculate
xj ·wi. If the prediction is wrong, an update occurs:

wi+1 ← wi +α(yj − sign(wi · xj))xj (5)

The numbers of passes K the learning algorithm does (if
it does not arrive at a perfect separator any earlier) is typi-
cally fixed by a hyper-parameter. The number of passes is fixed
to 5 in our experiments below. The RLRS variant of the per-
ceptron (P-RLRS) is obtained by replacing line 8 in Figure 2

with Equation 5. The application of P-RLRS to an artificial two-
dimensional dataset in Figure 16 (the solid line) illustrates how
P-RLRS can lead to very different decision boundaries than the
regular perceptron (the black dashed line) by averaging de-
cision boundaries learned in random subspaces (red dashed
lines).

A perceptron finds the vector w that minimizes the expected
loss on training data where the loss function is given by:

L(y, sign(w · x)) = max{0,−y(w · x)} (6)

which is 0 when y is predicted correctly, and otherwise the
confidence in the mis-prediction. This reflects the fact that per-
ceptron learning is conservative and does not update on cor-
rectly classified data points. Equation 6 is the hinge loss with
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Figure 3: Robust learning in random subspaces (Perceptron on artificial data)

line 8 in Figure 2 with Equation 5. The application of P-RLRS to an artificial two-dimensional
dataset in Figure 3 (the solid line) illustrates how P-RLRS can lead to very different decision
boundaries than the regular perceptron (the black dashed line) by averaging decision bound-
aries learned in random subspaces (red dashed lines).

A perceptron finds the vector w that minimizes the expected loss on training data where the
loss function is given by:

L(y, sign(w · x)) =max{0,� y(w · x)} (6)

which is 0 when y is predicted correctly, and otherwise the confidence in the mis-prediction.
This reflects the fact that perceptron learning is conservative and does not update on correctly
classified data points. Equation 6 is the hinge loss with � = 0. SGD uses hinge loss with � = 1
(like SVMs) (Zhang, 2004). Our objective function thus becomes:

min
w

X

✏̂2�
Ehy,xi⇠⇢max{0,�� y(w · x � ⇠̂)) (7)

with �= 0 for the perceptron and � = 1 for SGD. We call the RLRS variant of SGD SGD-RLRS.

3 Evaluation

In our experiments we use perceptron and SGD with hinge loss, regularized using the L2-norm.
Since we want to demonstrate the general applicability of RLRS, we use the default parameters
in a publicly available implementation of both algorithms.3 Both algorithms do five passes over
the data. SGD uses ’optimal’ learning rate, and perceptron uses a learning rate of 1.

Text classification. The goal of text classification is the automatic assignment of documents into
predefined semantic classes. The input is a set of labeled documents hy1,x1i, . . . , hyN ,xN i, and
the task is to learn a function f : X 7! Y that is able to correctly classify previously unseen
documents. It has previously been noted that robustness is important for the success of text

3http://scikit-learn.org/stable/
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Figure 16: Robust learning in random subspaces (Perceptron on arti-
ficial data)

γ = 0. SGD uses hinge loss with γ = 1 (like SVMs) [185]. Our
objective function thus becomes:

min
w

∑
ϵ̂∈∆

E⟨y,x⟩∼ρ max{0,γ− y(w · x ◦ ξ̂)) (7)

with γ = 0 for the perceptron and γ = 1 for SGD. We call the
RLRS variant of SGD SGD-RLRS.

12.3 evaluation

In our experiments we use perceptron and SGD with hinge loss,
regularized using the L2-norm. Since we want to demonstrate
the general applicability of RLRS, we use the default parame-
ters in a publicly available implementation of both algorithms.3

Both algorithms do five passes over the data. SGD uses ’opti-
mal’ learning rate, and perceptron uses a learning rate of 1.

text classification The goal of text classification is the
automatic assignment of documents into predefined semantic
classes. The input is a set of labeled documents ⟨y1, x1⟩, . . . , ⟨yN, xN⟩,
and the task is to learn a function f : X 7→ Y that is able to

3 http://scikit-learn.org/stable/
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Figure 4: Hierarchical structure of 20 Newsgroups. (a) IBM, MAC, (b) GRAPHICS, MS-WINDOWS,
X-WINDOWS, (c) BASEBALL, HOCKEY, (d) AUTOS, MOTORCYCLES, (e) CRYPTOGRAPHY, ELECTRONICS,
MEDICINE, SPACE, (f) GUNS, MIDEAST, MISCELLANEOUS, (g) ATHEISM, CHRISTIANITY, MISCELLA-
NEOUS, (h) FORSALE

classification in down-stream applications (Lipka and Stein, 2011). In this paper we use the
20 Newsgroups dataset.4 The topics in 20 Newsgroups are hierarchically structured, which
enables us to do domain adaptation experiments (Chen et al., 2009; Sun et al., 2011) (except
that we will not assume unlabeled data is available in the target domain). See the hierarchy
in Figure 4. We extract 20 high-level binary classification problems by considering all pairs of
top-level categories, e.g. COMPUTERS-RECREATIVE (comp-rec). For each of these 20 problems,
we have different possible datasets, e.g. IBM-BASEBALL, MAC-MOTORCYCLES, etc. A problem
instance takes training and test data from two different datasets belong to the same high-level
problem, e.g. MAC-MOTORCYCLES and IBM-BASEBALL. In total we have 280 available problem
instances in the 20 Newsgroups dataset. For each problem instance, we create a sparse matrix
of occurrence counts of lowercased tokens and normalize the counts using TF-IDF in the usual
way. Otherwise we did not do any preprocessing or feature selection. The code necessary to
replicate our text classification experiments is available from the main author’s website.5

POS tagging. To supplement our experiments on the 20 Newsgroups corpus, we also evaluate
our approach to robust learning in the context of discriminative HMM training for POS tagging
using averaged perceptron (Collins, 2002). The goal of POS tagging is to assign sequences of
labels to words reflecting their syntactic categories. We use a publicly available and easy-to-
modify reimplementation of the model proposed by Collins (2002).6 We evaluate our tagger
on the English Web Treebank (EWT; LDC2012T13). We use the original PTB tag set, and our
results are therefore not comparable to those reported in the SANCL 2012 Shared Task of
Parsing the Web. Our model is trained on the WSJ portion of the Ontonotes 4.0 (Sect. 2-21).
Our initial experiments used the Email development data, but we simply applied document
classification parameters with no tuning. We evaluate our model on test data in the remaining
sections of EWT: Answers, Newsgroups, Reviews and Weblogs.

3.1 Results and discussion

Figure 1 presents our main results on text classification. The left column is the number of
extracted subspaces (K in Figure 2). Note that rows are not comparable, since the 20/280
problem instances were randomly selected for each experiment. Neither are the perceptron
and SGD results. We observe that P-RLRS consistently outperforms the regular perceptron

4http://people.csail.mit.edu/jrennie/20Newsgroups/
5http://cst.dk/anders
6https://github.com/gracaninja/lxmls-toolkit
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Figure 17: Hierarchical structure of 20 Newsgroups. (a) IBM, Mac,
(b) Graphics, MS-Windows, X-Windows, (c) Baseball,
Hockey, (d) Autos, Motorcycles, (e) Cryptography,
Electronics, Medicine, Space, (f) Guns, Mideast, Mis-
cellaneous, (g) Atheism, Christianity, Miscellaneous,
(h) Forsale

correctly classify previously unseen documents. It has previ-
ously been noted that robustness is important for the success
of text classification in down-stream applications [102]. In this
paper we use the 20 Newsgroups dataset.4 The topics in 20

Newsgroups are hierarchically structured, which enables us to
do domain adaptation experiments [29, 160] (except that we
will not assume unlabeled data is available in the target do-
main). See the hierarchy in Figure 17. We extract 20 high-level
binary classification problems by considering all pairs of top-
level categories, e.g. Computers-Recreative (comp-rec). For
each of these 20 problems, we have different possible datasets,
e.g. IBM-Baseball, Mac-Motorcycles, etc. A problem instance
takes training and test data from two different datasets belong to
the same high-level problem, e.g. Mac-Motorcycles and IBM-
Baseball. In total we have 280 available problem instances in
the 20 Newsgroups dataset. For each problem instance, we cre-
ate a sparse matrix of occurrence counts of lowercased tokens
and normalize the counts using TF-IDF in the usual way. Other-
wise we did not do any preprocessing or feature selection. The
code necessary to replicate our text classification experiments
is available from the main author’s website.5

pos tagging To supplement our experiments on the 20 News-
groups corpus, we also evaluate our approach to robust learn-
ing in the context of discriminative HMM training for POS tag-
ging using averaged perceptron [34]. The goal of POS tagging
is to assign sequences of labels to words reflecting their syntac-

4 http://people.csail.mit.edu/jrennie/20Newsgroups/
5 http://cst.dk/anders
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K Plain with RLRS Error reduction p-value

Perceptron
25 67.2 70.1 0.09 < 0.01
50 63.8 66.2 0.07 < 0.01
75 73.2 75.3 0.08 < 0.01
100 72.0 73.3 0.05 ∼ 0.06
150 72.3 76.2 0.14 < 0.01
250 70.4 72.6 0.07 ∼ 0.02

SGD
25 75.2 75.7 0.02 ∼ 0.17
50 68.6 70.9 0.07 ∼ 0.02
75 76.3 78.9 0.11 < 0.01
100 73.6 77.1 0.15 < 0.01
150 74.6 79.2 0.18 < 0.01
250 75.0 78.7 0.15 < 0.01

Table 21: Results on 20 Newsgroups

tic categories. We use a publicly available and easy-to-modify
reimplementation of the model proposed by Collins (2002).6

We evaluate our tagger on the English Web Treebank (EWT;
LDC2012T13). We use the original PTB tag set, and our results
are therefore not comparable to those reported in the SANCL
2012 Shared Task of Parsing the Web. Our model is trained on
the WSJ portion of the Ontonotes 4.0 (Sect. 2-21). Our initial
experiments used the Email development data, but we simply
applied document classification parameters with no tuning. We
evaluate our model on test data in the remaining sections of
EWT: Answers, Newsgroups, Reviews and Weblogs.

12.3.1 Results and discussion

Figure 21 presents our main results on text classification. The
left column is the number of extracted subspaces (K in Fig-
ure 2). Note that rows are not comparable, since the 20/280

problem instances were randomly selected for each experiment.
Neither are the perceptron and SGD results. We observe that P-

6 https://github.com/gracaninja/lxmls-toolkit
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K P P-RLRS err.red p-value SGD SGD-RLRS err.red p-value
25 67.2 70.1 0.09 < 0.01 75.2 75.7 0.02 ⇠ 0.17
50 63.8 66.2 0.07 < 0.01 68.6 70.9 0.07 ⇠ 0.02
75 73.2 75.3 0.08 < 0.01 76.3 78.9 0.11 < 0.01
100 72.0 73.3 0.05 ⇠ 0.06 73.6 77.1 0.15 < 0.01
150 72.3 76.2 0.14 < 0.01 74.6 79.2 0.18 < 0.01
250 70.4 72.6 0.07 ⇠ 0.02 75.0 78.7 0.15 < 0.01

Table 1: Results on 20 Newsgroups

Figure 5: Plots of P-RLRS error reductions with K = 25 (upper left), K = 50 (upper right),
K = 75 (lower left), K = 100 (lower mid), K = 150 (lower mid) and K = 250 (lower right).

(P), with error reductions of 7–14%. SGD-RSRL consistently outperforms SGD, with error
reductions of 2–18%. Note that statistical significance is across datasets, not across data points.
Since we are interested in the probability of success on new datasets, we believe this is the
right way to evaluate our model, putting our results to a much stronger test. All results, except
two, are still statistically significant, however. As one would expect our models become more
robust the more instantiations of ⇠ we sample. The error reductions for each problem instance
in the P/P-RLRS experiments are plotted in Figure 5. The plots show that error reductions are
up to 70% on some problem instances, and that RLRS seldom hurts (in 3-8 out of 20 cases).

We include a comparison with state-of-the-art learning algorithms for completeness. In Fig-
ure 6 (left), we compare SGD-RLRS to passive-aggressive learning (PA) (Crammer et al., 2006)
and confidence-weighted learning (CW) (Dredze et al., 2008), using a publicly available im-
plementation,7 on randomly chosen 20 Newsgroups problem instances. CW is known to be
relatively robust to sample bias, reducing weights under-training for correlating features. All
algorithms did five passes over the data. Our results indicate that RLRS is more robust than
other algorithms, but on some datasets algorithms CW performs much better that RLRS.

The results on the EWT are similar to those for 20 Newsgroups, and we observe consistent
improvements with both robust averaged perceptron. The results are presented in Table 2. All

7http://code.google.com/p/oll/ (using default parameters)
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Figure 18: Plots of P-RLRS error reductions with K = 25 (upper left),
K = 50 (upper right), K = 75 (lower left), K = 100 (lower
mid), K = 150 (lower mid) and K = 250 (lower right).

RLRS consistently outperforms the regular perceptron (P), with
error reductions of 7–14%. SGD-RSRL consistently outperforms
SGD, with error reductions of 2–18%. Note that statistical sig-
nificance is across datasets, not across data points. Since we are
interested in the probability of success on new datasets, we be-
lieve this is the right way to evaluate our model, putting our
results to a much stronger test. All results, except two, are still
statistically significant, however. As one would expect our mod-
els become more robust the more instantiations of ξ we sam-
ple. The error reductions for each problem instance in the P/P-
RLRS experiments are plotted in Figure 18. The plots show that
error reductions are up to 70% on some problem instances, and
that RLRS seldom hurts (in 3-8 out of 20 cases).

We include a comparison with state-of-the-art learning al-
gorithms for completeness. In Figure 19, we compare SGD-
RLRS to passive-aggressive learning (PA) [39] and confidence-
weighted learning (CW) [47], using a publicly available imple-
mentation,7 on randomly chosen 20 Newsgroups problem in-
stances. CW is known to be relatively robust to sample bias,
reducing weights under-training for correlating features. All
algorithms did five passes over the data. Our results indicate
that RLRS is more robust than other algorithms, but on some
datasets algorithms CW performs much better that RLRS.

7 http://code.google.com/p/oll/ (using default parameters)
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AP AP-RLRS

K = 25 K = 50 K = 100

EWT-Answers 85.22 85.63 85.69 85.68

EWT-Newsgroups 86.82 87.26 87.36 87.26

EWT-Reviews 84.92 85.32 85.31 85.35
EWT-Weblogs 87.00 87.54 87.52 87.61

Table 22: Results on the EWT

The results on the EWT are similar to those for 20 News-
groups, and we observe consistent improvements with both ro-
bust averaged perceptron. The results are presented in Table 22.
All improvements are statistically significant across data points.

As mentioned, fixing the removal rate to 10% when randomly
sampling ξ ∈ ∆ was a relatively arbitrary choice. RLRS actually
benefits slightly from increasing the removal rate. See Figure 20

for results on the selection of problem instances we used in
our classifier comparison. In order to explain this we investi-
gated and found a statistically significant correlation between
the empirical removal rate and the difference in performance
of a model with removal rate 0.8 over a model with removal
rate 0.9. This, in our view, suggests that the intuition behind
RLRS is correct. Learning under random subspaces is a way of
equipping NLP for OOV effects.

12.4 related work

The RLRS algorithm in Figure 2 is essentially an ensemble learn-
ing algorithm, similar in spirit to the random subspace method
[72], except averaging over multiple models rather than taking
majority votes. Ensemble learning is known to lead to more
robust models and therefore to performance gains in domain
adaptation [59, 49], so in a way our results are maybe not that
surprising. There is also a connection between RLRS and fea-
ture bagging [164], a method proposed to reduce weights under-
training as an effect of indicative features swamping less indica-
tive features. Weights under-training makes models vulnerable
to OOV effects, and feature bagging, in which several models
are trained on subsets of features and combined using a mix-
ture of experts, is very similar to RLRS. Sutton et al. 2006 use
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AP AP-RLRSK=25 AP-RLRSK=50 AP-RLRSK=100
EWT-Answers 85.22 85.63 85.69 85.68
EWT-Newsgroups 86.82 87.26 87.36 87.26
EWT-Reviews 84.92 85.32 85.31 85.35
EWT-Weblogs 87.00 87.54 87.52 87.61

Table 2: Results on the EWT

Figure 6: Left: Classifier comparison. Right: Using increased removal rates when sampling ⇠.

improvements are statistically significant across data points.

As mentioned, fixing the removal rate to 10% when randomly sampling ⇠ 2� was a relatively
arbitrary choice. RLRS actually benefits slightly from increasing the removal rate. See Figure 6
(right) for results on the selection of problem instances we used in our classifier comparison. In
order to explain this we investigated and found a statistically significant correlation between
the empirical removal rate and the difference in performance of a model with removal rate 0.8
over a model with removal rate 0.9. This, in our view, suggests that the intuition behind RLRS
is correct. Learning under random subspaces is a way of equipping NLP for OOV effects.

Related work. The RLRS algorithm in Figure 2 is essentially an ensemble learning algorithm,
similar in spirit to the random subspace method (Ho, 1998), except averaging over multi-
ple models rather than taking majority votes. Ensemble learning is known to lead to more
robust models and therefore to performance gains in domain adaptation (Gao et al., 2008;
Duan et al., 2009), so in a way our results are maybe not that surprising. There is also a
connection between RLRS and feature bagging (Sutton et al., 2006), a method proposed to
reduce weights under-training as an effect of indicative features swamping less indicative fea-
tures. Weights under-training makes models vulnerable to OOV effects, and feature bagging,
in which several models are trained on subsets of features and combined using a mixture of
experts, is very similar to RLRS. Sutton et al. 2006 use manually defined rather than random
subspaces. See Smith et al. 2005 for an interesting predecessor.

4 Conclusion

We have presented a novel subspace method for robust learning with applications to document
classification and POS tagging, aimed specifically at out-of-vocabulary effects arising in the
context of domain adaptation. We have reported average error reductions of up to 18%.
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Figure 19: Classifier comparison
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Figure 6: Left: Classifier comparison. Right: Using increased removal rates when sampling ⇠.

improvements are statistically significant across data points.

As mentioned, fixing the removal rate to 10% when randomly sampling ⇠ 2� was a relatively
arbitrary choice. RLRS actually benefits slightly from increasing the removal rate. See Figure 6
(right) for results on the selection of problem instances we used in our classifier comparison. In
order to explain this we investigated and found a statistically significant correlation between
the empirical removal rate and the difference in performance of a model with removal rate 0.8
over a model with removal rate 0.9. This, in our view, suggests that the intuition behind RLRS
is correct. Learning under random subspaces is a way of equipping NLP for OOV effects.

Related work. The RLRS algorithm in Figure 2 is essentially an ensemble learning algorithm,
similar in spirit to the random subspace method (Ho, 1998), except averaging over multi-
ple models rather than taking majority votes. Ensemble learning is known to lead to more
robust models and therefore to performance gains in domain adaptation (Gao et al., 2008;
Duan et al., 2009), so in a way our results are maybe not that surprising. There is also a
connection between RLRS and feature bagging (Sutton et al., 2006), a method proposed to
reduce weights under-training as an effect of indicative features swamping less indicative fea-
tures. Weights under-training makes models vulnerable to OOV effects, and feature bagging,
in which several models are trained on subsets of features and combined using a mixture of
experts, is very similar to RLRS. Sutton et al. 2006 use manually defined rather than random
subspaces. See Smith et al. 2005 for an interesting predecessor.

4 Conclusion

We have presented a novel subspace method for robust learning with applications to document
classification and POS tagging, aimed specifically at out-of-vocabulary effects arising in the
context of domain adaptation. We have reported average error reductions of up to 18%.
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Figure 20: Using increased removal rates when sampling ξ
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manually defined rather than random subspaces. See Smith et
al. 2005 for an interesting predecessor.

12.5 conclusion

We have presented a novel subspace method for robust learn-
ing with applications to document classification and POS tag-
ging, aimed specifically at out-of-vocabulary effects arising in
the context of domain adaptation. We have reported average
error reductions of up to 18%.
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13
F R U S T R AT I N G LY H A R D C O M P O S I T I O N A L I T Y
P R E D I C T I O N

abstract

We considered a wide range of features for the DiSCo 2011

shared task about compositionality prediction for word pairs,
including COALS-based endocentricity scores, compositional-
ity scores based on distributional clusters, statistics about wordnet-
induced paraphrases, hyphenation, and the likelihood of long
translation equivalents in other languages. Many of the features
we considered correlated significantly with human composi-
tionality scores, but in support vector regression experiments
we obtained the best results using only COALS-based endocen-
tricity scores. Our system was nevertheless the best performing
system in the shared task, and average error reductions over a
simple baseline in cross-validation were 13.7% for English and
50.1% for German.

13.1 introduction

The challenge in the DiSCo 2011 shared task is to estimate and
predict the semantic compositionality of word pairs. Specifi-
cally, the data set consists of adjective-noun, subject-verb and
object-verb pairs in English and German. The organizers also
provided the Wacky corpora for English and German with low-
ercased lemmas.1 In addition, we also experimented with word-
nets and using Europarl corpora for the two languages [92], but
none of the features based on these resources were used in the
final submission.

Semantic compositionality is an ambiguous term in the lin-
guistics litterature. It may refer to the position that the mean-
ing of sentences is built from the meaning of its parts through
very general principles of application, as for example in type-
logical grammars. It may also just refer to a typically not very
well defined measure of semantic transparency of expressions
or syntactic constructions, best illustrated by examples:

1 http://wacky.sslmit.unibo.it/
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(13.44) pull the plug

(13.45) educate people

The verb-object word pair in Ex. (13.44) is in the training data
rated as much less compositional than Ex. (13.45). The intuition
is that the meaning of the whole is less related to the meaning
of the parts. The compositionality relation is not defined more
precisely, however, and this may in part explain why composi-
tionality prediction seems frustratingly hard.

13.2 features

Many of our features were evaluated with different amounts of
slop. The slop parameter permits non-exact matches without re-
sorting to language-specific shallow patterns. The words in the
compounds are allowed to move around in the sentence one
position at a time. The value of the parameter is the maximum
number of steps. Set to zero, it is equivalent to an exact match.
Below are a couple of example configurations. Note that in or-
der for w1 and w2 to swap positions, we must have slop > 1

since slop=1 would place them on top of each other.

x x w1 w2 x x (slop=0)
x x w1 x w2 x (slop=1)
x x w1 x x w2 (slop=2)
x x w2 w1 x x (slop=2)

13.2.1 Left-Endoc, Right-Endoc and Distr-Diff

These features measure the endocentricity of a word pair w1

w2. The distribution of w1 is likely to be similar to the distribu-
tion of "w1 w2" if w1 is the syntactic head of "w1 w2". The same
is to be expected for w2, when w2 is the head.

Syntactic endocentricity is related to compositionality, but
the implication is one-way only. A highly compositional com-
pound is endocentric, but an endocentric compound need not
be highly compositional. For example, the distribution of "olive
oil", which is endocentric and highly compositional, is very
similar to the distribution of "oil", the head word. On the other
hand, "golden age" which is ranked as highly non-compositional
in the training data, is certainly endocentric. The distribution
of "golden age" is not very different from that of "age".

118



We used COALS [145] to calculate word distributions. The
COALS algorithm builds a word-to-word semantic space from
a corpus. We used the implementation by Jurgens and Stevens Ju-
rgens and Stevens [84], generating the semantic space from the
Wacky corpora for English and German with duplicate sen-
tences removed and low-frequency words substituted by dummy
symbols. The word pairs have been fed to COALS as com-
pounds that have to be treated as single tokens, and the se-
mantic space has been generated and reduced using singular
value decompositon. The vectors for w1, w2 and "w1 w2" are
calculated, and we compute the cosine distance between the
semantic space vectors for the word pair and its parts, and be-
tween the parts themselves, namely for "w1 w2" and w1, for "w1

w2" and w2, and for w1 and w2, say for "olive oil" and "olive",
for "olive oil" and "oil", and for "olive" and "oil". Left-Endoc is
the cosine distance between the left word and the compound.
Right-Endoc is the cosine distance between the right word and
the compound. Finally, Distr-Diff is the cosine distance be-
tween the two words, w1 and w2.

13.2.2 Br-Comp

To accommodate for the weaknesses of syntactic endocentric-
ity features, we also tried introducing compositionality scores
based on hierarchical distributional clusters that would model
semantic compositionality more directly. The scores are referred
to below as Br-Comp (compositionality scores based on Brown
clusters), and the intuition behind these scores is that a word
pair "w1 w2", e.g. "hot dog", is non-compositional if w1 and w2

have high collocational strength, but if w1 is replaced with a
different word w ′1 with similar distribution, e.g. "warm", then
"w ′1 w2" is less collocational. Similarly, if w2 is replaced with a
different word w ′2 with similar distribution, e.g. "terrier", then
"w1 w

′
2" is also much less collocational than "w1 w2".

We first induce a hierarchical clustering of the words in the
Wacky corpora cl : W → 2W with W the set of words in our cor-
pora, using publicly available software.2 Let the collocational
strength of the two words w1 and w2 be G2(w1,w2). We then

2 http://www.cs.berkeley.edu/~pliang/software/
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compute the average collocational strength of distributional clus-
ters, Br-CS (collocational strength of Brown clusters):

Br-CS(w1,w2) =
ΣN
x∈cl(w1),x ′∈cl(w2)

G2(x, x ′)

N

with N = |cl(w1)|× |cl(w2)|. We now let

Br-Comp(w1,w2) =
Br-CS(w1,w2)

G2(w1,w2)

.
The Brown clusters were built with C = 1000 and a cut-

off frequency of 1000. With these settings the number of word
types per cluster is quite high, which of course has a detrimen-
tal effect on the semantic coherence of the cluster. To counter
this we choose to restrict cl(w) and cl(w ′) to include only the
50 most frequently occurring terms.

13.2.3 Paraphr

These features have to do with alternative phrasings using syn-
onyms from Princeton WordNet 3 and GermaNet4. One word in
the compound is held constant while the other is replaced with
its synonyms. The intuition is again that non-compositional
compounds are much more frequent than any compound that
results from replacing one of the constituent words with one of
its synonyms. For "hot dog" we thus generate "hot terrier" and
"warm dog", but not "warm terrier". Specifically, Paraphr⩾100

means that at least one of the alternative compounds has a doc-
ument count of more than 100 in the corpus. Paraphrav is the
average count for all paraphrases, Paraphrsum is the sum of
these counts, and Paraphrrel is the average count for all para-
phrases over the count of the word pair in question.

13.2.4 Hyph

The Hyph features were inspired by Bergsma et al. Bergsma
et al. [14]. It was only used for English. Specifically, we used
the relative frequency of hyphenated forms as features. For
adjective-noun pairs we counted the number of hyphenated
occurrences, e.g. "front-page", and divided that number by the

3 http://wordnet.princeton.edu/
4 GermaNet Copyright © 1996, 2008 by University of Tübingen.

120

http://wordnet.princeton.edu/


number of non-hyphenated occurrences, e.g. "front page". For
subject-verb and object-verb pairs, we add -ing to the verb,
e.g. "information-collecting", and divided the number of such
forms with non-hyphenated equivalents, e.g. "information col-
lecting".

13.2.5 Trans-Len

The intuition behind our bilingual features is that non-compositional
words typically translate into a single word or must be para-
phrased using multiple words (circumlocution or periphrasis).
Trans-Len is the probability that the phrase’s translation, pos-
sibly with intervening articles and markers, is longer than lmin
and shorter than lmax, i.e.:

Trans-Len(w1,w2, lmin, lmax) =

Στ∈trans(w1 w2),l1⩽|τ|⩽l2
P(σ|w1 w2)

Στ∈trans(w1 w2)P(σ|w1 w2)

We use English and German Europarl [92] to train our trans-
lation models. In particular, we use the phrase tables of the
Moses PB-SMT system5 trained on a lemmatized version of
the WMT11 parallel corpora for English and German. Below
Trans-Len-n will be the probability of the translation of a word
pair being n or more words. We also experimented with aver-
age translation length as a feature, but this did not correlate
well with semantic compositionality.

13.3 correlations

We have introduced five different kinds of features, four of
which are supposed to model semantic compositionality di-
rectly. For feature selection, we therefore compute the correla-
tion of features with compositionality scores and select features
that correlate significantly with compositionality. The features
are then used for regression experiments.

13.4 regression experiments

For our regression experiments, we use support vector regres-
sion with a high (7) degree kernel. Otherwise we use default

5 http://statmt.org
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Feature ρ

English German

rel-type = ADJ_NN 0.0750 *0.1711

rel-type = V_SUBJ 0.0151 **0.2883

rel-type = V_OBJ 0.0880 0.0825

Left-Endoc **0.3257 *0.1637

Right-Endoc **0.3896 0.1379

Distr-Diff *0.1885 0.1128

Hyph (5) 0.1367 -
Hyph (5) reversed *0.1829 -
G2

0.1155 0.0535

Br-CS *0.1592 0.0242

Br-Comp 0.0292 0.0024

Count (5) 0.0795 *0.1523

Paraphr⩾|w1 w−2| 0.1123 0.1242

Paraphrrel (5) 0.0906 0.0013

Paraphrav (1) 0.1080 0.0743

Paraphrav (5) 0.1313 0.0707

Paraphrsum (1) 0.0496 0.0225

Paraphr⩾100 (1) **0.2434 0.0050

Paraphr⩾100 (5) **0.2277 0.0198

Trans-Len-1 0.0797 0.0509

Trans-Len-2 0.1109 0.0158

Trans-Len-3 0.0935 0.0489

Trans-Len-5 0.0240 0.0632

Figure 21: Correlations. Coefficients marked with * are significant
(p < 0.05), and coefficients marked with ** are highly sig-
nificant (p < 0.01). We omit features with different slop
values if they perform significantly worse than similar fea-
tures.
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parameters of publicly available software.6 In our experiments,
however, we were not able to produce substantially better re-
sults than what can be obtained using only the features Left-
Endoc and Right-Endoc. In fact, for German using only Left-
Endoc gave slightly better results than using both. These fea-
tures are also those that correlate best with human composi-
tionality scores according to Figure 21. Consequently, we only
use these features in our official runs. Our evaluations below
are cross-validation results on training and development data
using leave-one-out. We compare using only Left-Endoc and
Right-Endoc (for English) with using all significant features
that seem relatively independent. For English, we used Left-
Endoc, Right-Endoc, Distr-Diff, Hyph (5) reversed, Br-CS,
Paraphr⩾100 (1). For German, we used rel-type = ADJ_NN,
rel-type=V_SUBJ and Right-Endoc. We only optimized on nu-
meric scores. The submitted coarse-grained scores were ob-
tained using average +/- average deviation.7

English German

dev test dev test

Baseline 18.40 47.12

all sign. indep. 19.22 23.02
L-End+R-End 15.89 16.19 23.51 24.03

err.red (L+R) 0.140 0.50

13.5 discussion

Our experiments have shown that the DiSCo 2011 shared task
about compositionality prediction was a tough challenge. This
may be because of the fine-grained compositionality metric or
because of inconsistencies in annotation, but note also that the
syntactically oriented features seem to perform a lot better than
those trying to single out semantic compositionality from syn-
tactic endocentricity and collocational strength. For example,
Left-Endoc, Right-Endoc and Br-CS correlate with compo-
sitionality scores, whereas Br-Comp does not, although it is

6 http://www.csie.ntu.edu.tw/~cjlin/libsvm/
7 These thresholds were poorly chosen, by the way. Had we chosen less bal-

anced cut-offs, say 0 and 72, our improved accuracy on coarse-grained scores
(59.4) would have been comparable to and slightly better than the best sub-
mitted coarse-grained scores (58.5).
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Semantic Syntactic Collocation Score

floppy disk ✓ 61

free kick ✓ 77

happy birthday ✓ ✓ 47

large scale ✓ ✓ 55

old school ✓ ✓ ✓ 37

open source ✓ ✓ 49

real life ✓ 69

small group 91

Figure 22: Subjective judgments about semantic and syntactic
markedness and collocational strength.

supposed to model compositionality more directly. Could it
perhaps be that annotations reflect syntactic endocentricity or
distributional similarity to a high degree, rather than what is
typically thought of as semantic compositionality?

Consider a couple of examples of adjective-noun pairs in En-
glish in Figure 22 for illustration. These examples are taken
from the training data, but we have added our subjective judg-
ments about semantic and syntactic markedness and colloca-
tional strength (peaking at G2 scores). It seems that semantic
markedness is less important for scores than syntactic marked-
ness and collocational strength. In particular, the combination
of syntactic markedness and collocational strength makes anno-
tators rank word pairs such as happy birthday and open source as
non-compositional, although they seem to be fully composi-
tional from a semantic perspective. This may explain why our
COALS-features are so predictive of human compositionality
scores, and why G2 correlates better with these scores than Br-
Comp.

13.6 conclusions

In our experiments for the DiSCo 2011 shared task we have
considered a wide range of features and showed that some of
them correlate significantly and sometimes highly significantly
with human compositionality scores. In our regression experi-
ments, however, our best results were obtained with only one
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or two COALS-based endocentricity features. We report error
reductions of 13.7% for English and 50.1% for German.
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14
I S F R E Q U E N C Y A L L T H E R E I S T O
S I M P L I C I T Y ?

abstract

Our system breaks down the problem of ranking a list of lex-
ical substitutions according to how simple they are in a given
context into a series of pairwise comparisons between candi-
dates. For this we learn a binary classifier. As only very little
training data is provided, we describe a procedure for gener-
ating artificial unlabeled data from Wordnet and a corpus and
approach the classification task as a semi-supervised machine
learning problem. We use a co-training procedure that lets each
classifier increase the other classifier’s training set with selected
instances from an unlabeled data set. Our features include n-
gram probabilities of candidate and context in a web corpus,
distributional differences of candidate in a corpus of “easy”
sentences and a corpus of normal sentences, syntactic com-
plexity of documents that are similar to the given context, can-
didate length, and letter-wise recognizability of candidate as
measured by a trigram character language model.

14.1 introduction

This paper describes a system for the SemEval 2012 English
Lexical Simplification shared task. The task description uses a
loose definition of simplicity, defining “simple words” as “words
that can be understood by a wide variety of people, including
for example people with low literacy levels or some cognitive
disability, children, and non-native speakers of English” [156].

14.2 features

We model simplicity with a range of features divided into six
groups. Five of these groups make use of the distributional
hypothesis and rely on external corpora. We measure a can-
didate’s distribution in terms of its lexical associations (RI),
participation in syntactic structures (Syn), or corpus presence
in order to assess its simplicity (Ngram, SW, Char). A single
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Feature r

Ngramsf 0.33

Ngramsf+1 0.27

Ngramsf−1 0.27

Lensf -0.26

Lenmax -0.26

RIproto(l) -0.18

Syncn -0.17

Synw -0.17

Syncp -0.17

Feature r

RIproto(f) -0.15

Charmax -0.14

RIorig(l) -0.11

Lentokens -0.10

Charmin 0.10

SWfreq 0.08

SWLLR 0.07

Charavg -0.04

Table 23: Pearson’s r correlations. The table shows the three highest
correlated features per group, all of which are significant at
the p < 0.01 level

group, Len, measures intrinsic aspects of the substitution can-
didate, such as its length.

The substitution candidate is either an adjective, an adverb, a
noun, or a verb, and all candidates within a list share the same
part of speech. Because word class might influence simplicity,
we allow our model to fit parameters specific to the candidate’s
part of speech by making a copy of the features for each part of
speech which is active only when the candidate is in the given
part of speech.

simple wikipedia (sw) These two features contain relative
frequency counts of the substitution form in Simple English
Wikipedia (SWfreq), and the log likelihood ratio of finding the
word in the simple corpus to finding it in regular Wikipedia
(SWLLR)1.

word length (len) This set of three features describes the
length of the substitution form in characters (Lensf), the length
of the longest token (Lenmax), and the length of the substi-
tution form in tokens (Lentokens). Word length is an integral
part of common measures of text complexity, e.g in the English
Flesch–Kincaid [88] in the form of syllable count, and in the
Scandinavian LIX [16].

1 Wikipedia dump obtained March 27, 2012. Date on the Simple Wikipedia
dump is March 22, 2012.
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character trigram model (char) These three features
approximate the reading difficulty of a word in terms of the
probabilities of its forming character trigrams, with special char-
acters to mark word beginning and end. A word with an un-
usual combination of characters takes longer to read and is per-
ceived as less simple [51].

We calculate the minimum, average, and maximum trigram
probability (Charmin, Charavg, and Charmax).2

web corpus n-gram (ngram) These 12 features were ob-
tained from a pre-built web-scale language model3. Features of
the form Ngramsf±i, where 0 < i < 4, express the probability
of seeing the substitution form together with the following (or
previous) unigram, bigram, or trigram. Ngramsf is the prob-
ability of substitution form itself, a feature which also is the
backbone of our frequency baseline.

random indexing (ri) These four features are obtained
from measures taken from a word-to-word distributional se-
mantic model. Random Indexing (RI) was chosen for efficiency
reasons [147]. We include features describing the semantic dis-
tances between the candidate and the original form (RIorig), and
between the candidate and a prototype vector (RIproto). For the
distance between candidate and original, we hypothesize that
annotators would prefer a synonym closer to the original form.
A prototype distributional vector of a set of words is built by
summing the individual word vectors, thus obtaining a rep-
resentation that approximates the behavior of that class over-
all [174]. Longer distances indicate that the currently examined
substitution is far from the shared meaning of all the synonyms,
making it a less likely candidate. The features are included for
both lemma and surface forms of the words.

syntactic complexity (syn) These 23 features measure
the syntactic complexity of documents where the substitution
candidate occurs. We used measures from [107] in which they
describe 14 automatic measures of syntactic complexity calcu-
lated from frequency counts of 9 types of syntactic structures.
This group of syntax-metric scores builds on two ideas.

First, syntactic complexity and word difficulty go together. A
sentence with a complicated syntax is more likely to be made

2 Trigram probabilities derived from Google T1 unigram counts.
3 The “jun09/body” trigram model from Microsoft Web N-gram Services.
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up of difficult words, and conversely, the probability that a
word in a sentence is simple goes up when we know that the
syntax of the sentence is uncomplicated. To model this we search
for instances of the substitution candidates in the UKWAC cor-
pus4 and measure the syntactic complexity of the documents
where they occur.

Second, the perceived simplicity of a word may change de-
pending on the context. Consider the adjective “frigid”, which
may be judged to be simpler than “gelid” if referring to tem-
perature, but perhaps less simple than “ice-cold” when charac-
terizing someone’s personality. These differences in word sense
are taken into account by measuring the similarity between cor-
pus documents and substitution contexts and use these values
to provide a weighted average of the syntactic complexity mea-
sures.

14.3 unlabeled data

The unlabeled data set was generated by a three-step proce-
dure involving synonyms extracted from Wordnet5 and sen-
tences from the UKWAC corpus.

1. Collection: Find synsets for unambigious lemmas in Word-
net. The synsets must have more than three synonyms.
Search for the lemmas in the corpus. Generate unlabeled
instances by replacing the lemma with each of its syn-
onyms.

2. Sampling: In the unlabeled corpus, reduce the number of
ranking problems per lemma to a maximum of 10. Sample
from this pool while maintaining a distribution of part of
speech similar to that of the trial and test set.

3. Filtering: Remove instances for which there are missing
values in our features.

The unlabeled part of our final data set contains n = 1783

problems.

14.4 ranking

We are given a number of ranking problems (n = 300 in the
trial set and n = 1710 for the test data). Each of these consists

4 http://wacky.sslmit.unibo.it/
5 http://wordnet.princeton.edu/
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of a text extract with a position marked for substitution, and a
set of candidate substitutions.

14.4.1 Linear order

Let X(i) be the substitution set for the i-th problem. We can
then formalize the ranking problem by assuming that we have
access to a set of (weighted) preference judgments, w(a ≺ b)

for all a,b ∈ X(i) such that w(a ≺ b) is the value of rank-
ing item a ahead of b. The values are the confidence-weighted
pair-wise decisions from our binary classifier. Our goal is then
to establish a total order on X(i) that maximizes the value of
the non-violated judgments. This is an instance of the Linear
Ordering Problem [113], which is known to be NP-hard. How-
ever, with problems of our size (maximum ten items in each
ranking), we escape these complexity issues by a very narrow
margin—10! ≈ 3.6 million means that the number of possible
orderings is small enough to make it feasible to find the optimal
one by exhaustive enumeration of all possibilities.

14.4.2 Binary classication

In order to turn our ranking problem into binary classification,
we generate a new data set by enumerating all point-wise com-
parisons within a problem and for each apply a transforma-
tion function Φ(a, b) = a − b. Thus each data point in the new
set is the difference between the feature values of two candi-
dates. This enables us to learn a binary classifier for the relation
“ranks ahead of”.

We use the trial set for labeled training data L and, in a trans-
ductive manner, treat the test set as unlabeled data Utest. Fur-
ther, we supplement the pool of unlabeled data with artificially
generated instances Ugen, such that U = Utest ∪Ugen.

Using a co-training setup [19], we divide our features in two
independent sets and train a large margin classifier6 on each
split. The classifiers then provide labels for data in the unla-
beled set, adding the k most confidently labeled instances to the
training data for the other classifier, an iterative process which
continues until there is no unlabeled data left. At the end of
the training we have two classifiers. The classification result is

6 Liblinear with L1 penalty and L2 loss. Parameter settings were default.
http://www.csie.ntu.edu.tw/∼cjlin/liblinear/

131



a mixture-of-experts: the most confident prediction of the two
classifiers. Furthermore, as an upper-bound of the co-training
procedure, we define an oracle that returns the correct answer
whenever it is given by at least one classifier.

14.4.3 Ties

In many cases we have items a and b that tie—in which case
both a ≺ b and b ≺ a are violated. We deal with these instances
by omitting them from the training set and setting w(a ≺ b) =

0. For the final ranking, our system makes no attempt to pro-
duce ties.

14.5 experiments

In our experiments we vary feature-split, size of unlabeled data,
and number of iterations. The first feature split, Syn–SW, pooled
all syntactic complexity features and Wikipedia-based features
in one view, with the remaining feature groups in another view.
Our second feature split, Syn–Char–Len, combined the syn-
tactic complexity features with the character trigram language
model features and the basic word length features. Both splits
produced a pair of classifiers with similar performance—each
had an F-score of around .73 and an oracle score of .87 on the
trial set on the binary decision problem, and both splits per-
formed equally on the ranking task.

With a large unlabeled data set available, the classifiers can
avoid picking and labeling data points with a low certainty, at
least initially. The assumption is that this will give us a higher
quality training set. However, as can be seen in Figure 23, none
of our systems are benefitting from the additional data. In fact,
the systems learn more when the pool of unlabeled data is re-
stricted to the test set.

Our submitted systems, Ord1 and Ord2 scored 0.405 and
0.393 on the test set, and 0.494 and 0.500 on the trial set. Fol-
lowing submission we adjusted a parameter7 and re-ran each
split with both U and Utest.

We analyzed the performance by part of speech and com-
pared them to the frequency baseline as shown in Table 24. For
the frequency baseline, performance is better on adverbs and

7 In particular, we selected a larger value for the C parameter in the liblinear
classifier.
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System All N V R A

MicrosoftFreq .449 .367 .456 .487 .493

Syn–SW
First round .377 .283 .269 .271 .421

Last round .425 .355 .497 .408 .425

Syn–Char–Len

First round .377 .284 .469 .270 .421

Last round .435 .362 .481 .465 .439

Table 24: Performance on part of speech. Unlabeled set was Utest.

adjectives alone, and somewhat worse on nouns. Both our sys-
tems benefit from co-training on all word classes. Syn–Char–
Len, our best performing system, notably has a score reduction
(compared to the baseline) of only 5% on adverbs, eliminates
the score reduction on nouns, and effectively beats the baseline
score on verbs with a 6% increase.

14.6 discussion

The frequency baseline has proven very strong, and, as wit-
nessed by the correlations in Table 23, frequency is by far the
most powerful signal for “simplicity”. But is that all there is to
simplicity? Perhaps it is. For a person with normal reading abil-
ity, a simple word may be just a word with which the person
is well-acquainted—one that he has seen before enough times
to have a good idea about what it means and in which con-
texts it is typically used. And so an n-gram model might be a
fair approximation. However, lexical simplicity in English may
still be something very different to readers with low literacy.
For instance, the highly complex letter-to-sound mapping rules
are likely to prevent such readers from arriving at the correct
pronunciation of unseen words and thus frequent words with
exceptional spelling patterns may not seem simple at all.

A source of misclassifications discovered in our error analy-
sis is the fact that substituting candidates into the given con-
texts in a straight-forward manner can introduce syntactic er-
rors. Fixing these can require significant revisions of the sen-
tence, and yet the substitutions resulting in an ungrammatical
sentence are sometimes still preferred to grammatical alterna-
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Figure 23: Test set kappa score vs. number of data points labeled dur-
ing co-training

tives.8 Here, scoring the substitution and the immediate context
in a language model is of little use. Moreover, while these odd
grammatical errors may be preferable to many non-native En-
glish speakers with adequate reading skills, such errors can be
more obstructing to reading impaired users and beginning lan-
guage learners.
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8 For example sentence 1528: "However, it appears they intend to pull out all
stops to get what they want." Gold: {try everything} {do everything it takes}
{pull} {stop at nothing} {go to any length} {yank}.
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15
C O N C L U S I O N

In this thesis, we have been concerned with answers that dif-
fer not in whether they provide correct facts but rather in how
these facts are presented. The problem, in other words, has been
to automatically identify the answer that provides the best ex-
planation.

We addressed this problem from two different angles:

1. as an answer-ranking problem, learning from community-
generated Q&A data; and

2. as a problem of finding adequate representations of an-
swer structure.

To rank answers we learned from user-generated content and
ratings collected at community Q&A sites. However, strong bi-
ases in the data made it complicated to use. We therefore pro-
posed a method to avoid biasing in favor of early answers but
reported a negative result with respect to a bias where longer
answers are preferred. In cross-domain answer ranking, we re-
ported error reductions of 20% when training data was sam-
pled according to question similarity.

Our concern with answer structure led to work on disam-
biguating and classifying the sense of discourse markers. In
contrast to previous work on the task, we let go of assump-
tions about availability of a) gold-standard annotations, and
b) labeled examples for all types of discourse markers. Ex-
ploring these more realistic evaluation settings resulted in a)
more robust models performing at state-of-the-art level, and b)
a feature-sharing approach for discourse markers based on syn-
tactical similarity, reducing errors with 20% compared with no
sharing.

In a complimentary line of work, we derived more complex
answer representations from crowdsourced input. These repre-
sentations proved effective in reducing errors in answer ranking
with 24% compared to a bag-of-words model.

While our focus in the experimental work of the thesis has
been on recognizing good answers, a challenge of future work
is how to compose good answers. As discussed in Chapter 5,
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query-focused summarization and question answering partly
overlap in goals, making it a definite possibility to use a sum-
marizer to generate good answers. This could be accomplished,
for instance, by combing a text quality objective with the con-
tent selection objective of the summarizer (See Appendix B).
We expect models of answer goodness learned on cQA data,
like those discussed in the thesis, to be useful for this purpose.
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Part III

A P P E N D I X





A
S A M P L E O F C Q A T I T L E S

A sample of 100 titles from cQA sites in the Stack Exchange
network. See 3.2.

Question Type

Commonly Used Hidden Lists or Objects Object

Control command arguments Action

Best way to serve static resoursce -LRB- CSS , Images -RRB- with
XDV in Plone

Manner

Print $ Messages in node . Action

Best way to run PHP with Nginx Manner

MSDN example scenario Other

How you would name a . Manner

Could not load type ‘ site . Symptom

Implementing join function in a user level thread library Action

Copy DVD to iTunes for watching on Apple TV Action

Blocking RDP connections from secondary IP addresses Action

Yahoo Mail now pops up an “ Add Requests ” tab when I log in
.

Symptom

how to determine drive times like those available in google maps Manner

Resize integral evaluation limits Action

Appropriate defense for 404s in my logs - persistent web scans
from one region

Object

asp.net mvc template missing Symptom

what knowledge would I need to make a good simulation games Interrogative

Graphical Android game : Bad performance in some situations Symptom

Latex in Blogger Other

Office design and layout for agile development Other

Toaster Oven pan Without The Toaster Oven Other

Invensense IMU3000 with PIC Object

Electron transitions in an infinite square well Object

How to prepare shallot greens Manner

computing Impedance related with Voltage Vx Action

Precautions making carpaccio Other

tool or technique to get a diff of two different linux installations Other

incoming mail just sits in the drop folder Symptom

Connect a List -LRB- Calendar , Task -RRB- with Outlook Results
in an Outlook Error 0x8000FFFF

Action
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Online notebook , accessible with a userpassword , even from
my phone

Other

Execute command on shared account login Action

How to display one of Drupal ’s default forms Manner

Set a default text format per content type in Drupal 7 Action

Out of the two sql queries below , suggest which one is better
one .

Other

MS KB311765 and DsoFramer are missing from MS site Symptom

Elevating Windows installer in Vista Action

Adding uploaded images to editor from metabox instead of de-
fault popup uploader

Action

Compare content of databases in Oracle Action

Path separator for Windows and Unix Object

Retrieving images from a NextGEN gallery Action

Tangents to a circle from a point outside of it -LRB- tikz -RRB- Object

Perspective in early pseudo-3d games Object

Arduino with cell phone Object

source code check in validation best practices Other

Should I use the built-in membership provider for an ASP . Interrogative

Sharepoint application with offline support Object

MVC Implementation of OAuthConsumer in DotNetOpenAuth
specially for Google Address Book

Object

Measuring low ripple on a power supply with an oscilloscope Action

What are the implications of using . Interrogative

Possible to add another setting to ‘ Front page displays ’ setting
for Custom Post Type

Other

external website storage Object

Set Time Zone for all Windows Servers on a Domain -LRB- 2008

R2 -RRB-
Action

How to center a quick release rear wheel regularly Manner

goo . Other

Parsing optional macro arguments Action

Do OS X Lion ’s Versions and Resume features store the cached
data for encrypted .

Interrogative

How to add a WYSIWYG text editor to the Category Edit Screen Manner

SharePoint 2010 Code : Get list items of list in other site collec-
tion

Action

Looking for microcontroller for computer project Other

Use testdisk and gpart information to mount ext4 partition Action

Using parallel on Ubuntu Action

NetBackup Multiplexing for Oracle RMAN Backups Object

MacOS & finder hang to beach ball after a couple of hard resets
, wo n’t go away

Symptom

How to prevent someone access the database without permit Manner
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ATMEGA168 -LRB- PV 1020 AU ? -RRB- Object

Avoiding blank line in every node -LRB- tikzpicture -RRB- Action

Keeping a published module interesting when some players
have already played

Action

Protecting DNS entries from duplicate hostnames entering net-
work

Action

Efficiency of wp_options vs a new table Other

Difference between ‘ play you ’ and ‘ play with you ’ Other

How to avoid “ No Data ” from Tiled Map Service in Silverlight Manner

DHCP server identifier and DHCP relay Object

ESXi NAS configuration Object

Installing a class Action

Connect two Arduinos via simple Serial connection Action

Mono book recommendations Other

Energy conservation and quantum measurement Object

Change Doctype for one Site Action

Recommend Video Series for Android Development Other

Book has spacegates that a person can walk across Other

sorting the linked list Action

Is my Contact ’s birthday in next 10 days Interrogative

“ Anxious to ” versus “ eager to ” Other

what ’s the best way writing php mysql open and close connec-
tion

Interrogative

Redgate SQL Compare vs Visual Studio 2010 PremiumUltimate
database project

Other

Advice on new hardware firewall for a small company server-
environment

Other

How to do a numeric UNIX ’s sort on fields with a character
attached in front of the number

Manner

hard crack candy coming out too sticky Symptom

arduino 3x3 LED matrix Object

Cant find dofollow or no follow in my blog . Symptom

Resource files creates unnecessary ULS log entries Symptom

How to have overlapping under-braces and over-braces Manner

Call Encryption Object

Horizontal growth vs vertical growth Other

Upgrading Xserve hard drives Action

Transform SPOT5 images to natural color images Action

Grab certain contents of a file Action

Where should I start and how to progress when learning Java
EE

Interrogative

Creating points on multiple lines Action

How to run regular programs as daemonsservices Interrogative

141





B
A C A S E S T U D Y O F A S U M M A R I Z E R

We now take a detailed look at the state-of-the-art summariza-
tion system described in Berg-Kirkpatrick et al. [13], which ex-
tends [62]. The paper reports the best published ROUGE score
on TAC 2008 test data, which is evidence of very good content
selection, as ROUGE correlates well with human judgements
with respect to content. However, ROUGE is a poor judge of
grammaticality and coherence [103], and the system does not
explicitly optimize either. On average, the linguistic quality of
the summaries is rated as 6.6 out of 10 by workers on Amazon
Mechanical Turk, leaving room for improvement. We therefore
sketch a way to augment the system using dual decomposition
so that it optimizes content and linguistic quality at the same
time.

avoiding redundancy

A summary should include the most important information
of the source documents, and it should not include it more
than once. The naive approach of selecting the most important
sentences in order will generally yield a redundant summary,
particularly in multi-document summarization where the top-
rated sentence is likely to be very similar to sentence two etc.,
because the same events are mentioned multiple times across
the document collection.

Recently a number of promising algorithms have been sug-
gested that jointly address the problem of selecting content
and making sure it is non-redundant [120, 50, 142, 26]. Berg-
Kirkpatrick et al. [13] deal with the problem in an indirect way
by forcing the summarizer to pack as much information as pos-
sible into the limited space alloted for the summary. This gives
rise to the optimization problem in Eq. (8).

arg max
z

∑
c∈C(z)

vc (8)

C(z) is the set of information pieces or concepts associated with
a selection of sentences z, and vc is the value of including a
particular concept c. The objective puts an implicit penalty on
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redundancy, because including redundant concepts takes up
space while not increasing the value of the objective – each con-
cept counts only once. A concept is a “meaning unit” realized
by a sentence and could be anything from words to semantic
relations. In the paper, concepts are simply bigrams. The value
vc associated with each concept is estimated from training data.

solving the optimization problem

The optimization problem in Eq. (8) can be cast as the following
integer linear program (ILP):

maximize
∑
c

vczc

such that
∑
s

lsys ⩽ Lmax (9)

∀ s, c ysQsc ⩽ zc (10)

∀ c
∑
s

ysQsc ⩾ zc (11)

zc and ys are binary decision variables for concepts and sen-
tences. If a decision variable is on, the corresponding concept
or sentence is selected for the summary. Qsc indicates whether
concept c is present in sentence s. Eq. (9) is a constraint on the
length of the summary which says it cannot exceed Lmax, with
ls being the length of sentence s. The ILP has two additional
constraints stating that

• selecting a sentence implies selecting its concepts [Eq. (10)]
• selecting a concepts implies that at least one sentence con-

taining it must be selected [Eq. (11)].

linguistic quality and content selection

We now take one step back and define the problem of find-
ing the best summary in more abstract terms. Let y represent
a summary and h(y) some objective function measuring the
goodness of the given summary. Then finding the best sum-
mary y∗ is a matter of solving the optimization problem below:

y∗ = arg max
y∈Y

h(y) (12)

Since ordering is important for assessing the linguistic quality
of a summary, we define y as a sequence of sentences. In con-

144



trast, the optimization problem of Eq. 8 represented the sum-
mary as a bag of sentences.

Optimizing linguistic quality and content selection are objec-
tives at odds with each other. The summary maximizing infor-
mation content (sum of included concepts) is, in general, not
the one which is easiest to read. To account for this we see h as
really composed of two sub-objectives: f for text quality, and g

for content selection, with the parameter γ trading off between
them.

h(y) = f(y) + γ g(y) (13)

For g we can use the integer linear program discussed above.
The text quality objective f could be implemented by the al-
gorithm in Lapata [94], where they learn to order sentences
with features extracted from sentence-to-sentence transitions in
a corpus. In the next section we give a dual decomposition al-
gorithm for optimizing Eq. 12

dual decomposition

As before, we consider the problem of optimizing jointly a text
quality objective and a content selection objective in summa-
rization. In the optimization problem below, h is the joint ob-
jective (repeated from Eq. 12):

y∗ = arg max
y∈Y

h(y) (14)

y is a representation of a summary that captures the order of
sentences. In technical terms, if the input documents contain N

distinct sentences, then y is an N+ 1 by N+ 1 matrix encoding
the pairwise ordering of sentences. For an individual cell,

yi,j =

1 if sentence j is immediately after i

0 otherwise

Note that the number of rows and columns in the solution ma-
trix is N+ 1 because we need a dummy sentence 0 in order to
represent the start of the sequence. So if the first sentence in the
summary is, say, number 3, we set y0,3 = 1. See Figure 24 for
two full examples.

Recall the joint objective h is composed of two sub-objectives
f and l, and a parameter γ which trades off between them:

h = f(y) + γ g(l(y)) (15)
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0 0 0 1

0 0 1 0

0 0 0 0

0 1 0 0



0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


Figure 24: Example of solutions y. Both matrices are zero-based. The

left matrix encodes the sequence < 3, 1, 2 >, and the right
encodes < 1, 2, 3 >.

l(y) is a function that translates the sequence-aware solution
matrix to a bag-of-sentences indicator vector.

The optimization problem from before, replacing h(y) by Eq.
(13),

y∗ = arg max
y∈Y

f(y) + γ g(l(y)), (16)

can be rewritten as

(y∗, z∗) = arg max
y∈Y, z∈Z

f(y) + γ g(z), (17)

such that l(y)i = zi for all i ∈ {1 . . .N}. These constraints force
agreement between the solutions y and z. Thus the optimal so-
lution y∗ of Eq. (16) is the same as the y∗ of Eq. (17). To enforce
the agreement we introduce a vector of Lagrange multipliers u,
where ui ∈ R for all i ∈ {1 . . .N}.

The Lagrangian is:

L(u,y, z) =

(
f(y) +

∑
i

uil(y)i

)
+γ

(
g(z) −

∑
i

uizi

)
(18)

The dual objective then is:

L(u) = max
y∈Y,z∈Z

L(u,y, z) (19)

= max
y∈Y

(
f(y) +

∑
i

uil(y)i

)

+max
z∈Z

γ

(
g(z) −

∑
i

uizi

)
(20)

Equation (20) shows the decomposition of the original prob-
lem into two subproblems. The max of the two terms can be
calculated independently and summed.
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Now, in order to solve the subproblems, we must incorporate
the Lagrange multipliers into each of them. In the case of the
content selection objective g(z), it is straight-forward. We sim-
ply change the objective function of the ILP to directly optimize
Eq. (21).

arg max
z∈Z

g(z) −

N∑
i=1

uizi (21)

= arg max
z∈Z

∑
c∈C(z)

vc −

N∑
i=1

uizi (22)

Our task is now to minimize the dual objective L(u). We use a
subgradient algorithm, which iteratively updates the Lagrange
multipliers according to the agreement between the two solu-
tions.

At the k+1-th iteration the update will be

u
(k+1)
i = u

(k)
i − δk(l(y

(k))i − z
(k)
i ) (23)

δk is the update rate for round k. In the cases where the two
solutions agree the value will be unchanged. If on the other
hand a sentence is selected in the y solution but not in the z

solution, the update to the Langrange multiplier at the corre-
sponding index will be −δk. Intuitively, the effect is to decrease
the value of selecting that sentence in the next iteration for the
f(y) objective, penalizing the choice. For the g(z) objective the
situation is the opposite: the value of including the sentence in
the solution is increased by δk.
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C
F E AT U R E S T R A C K I N G L E N G T H

In the motivating experiment of Section 2, we observed that
features corresponding to very frequent tokens (e.g. “was” and
“as”) were highly predictive of why answers. We suggested that
the features might in fact be modeling a difference in average
length between how and why answers.

We now explain why this happens, even when feature vectors
are normalized to unit length. Without normalization, longer
documents have a higher count of common vocabulary items.

The normalization factor is the Euclidean length of the vector,
given by√

v21 + v22 + . . .+ v2n,

where v1 to vn are the observed counts of vocabulary items.
When the vocabulary items are Zipf-like distributed, the nor-
malization factor will not grow at the same rate as the largest
counts. This means longer documents will have higher normal-
ized values for common words. See also discussion in Singhal
et al. [153].

an example

When documents get longer, the vocabulary increases, and many
of the new words appear only once in the document. However,
grammatical elements, such as inflections of the word “be”, in-
crease in frequency, because they are needed in almost every
sentence. We now show how the normalized feature value of
the most common vocabulary item varies as a function of doc-
ument length. Assuming the feature is not implicitly tracking
the length of the document, the curve should be flat. However,
Figure 25 shows a strong dependece between document size
and feature value.

The documents are generated using two sets of assumptions:

• Fixed A single grammatical element makes up 10% of
the tokens. The rest of the vocabulary items occur only
once. Thus a document with 20 tokens tokens will have
two occurrences of the grammatical element and 18 other
unique vocabulary elements.
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Figure 25: The plot shows normalized feature value as a function of
document length in tokens. A flat line would indicate that
the feature is not implicitly tracking document length.

• Zipf The vocabulary follows the Zipf distribution. We
assume a vocabulary size of 10,000 and set α = 1.0.
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