3,330 research outputs found

    A baseline appraisal of water-dependant ecosystem services, the roles they play within desakota livelihood systems and their potential sensitivity to climate change

    Get PDF
    This report forms part of a larger research programme on 'Reinterpreting the Urban-Rural Continuum', which conceptualises and investigates current knowledge and research gaps concerning 'the role that ecosystems services play in the livelihoods of the poor in regions undergoing rapid change'. The report aims to conduct a baseline appraisal of water-dependant ecosystem services, the roles they play within desakota livelihood systems and their potential sensitivity to climate change. The appraisal is conducted at three spatial scales: global, regional (four consortia areas), and meso scale (case studies within the four regions). At all three scales of analysis water resources form the interweaving theme because water provides a vital provisioning service for people, supports all other ecosystem processes and because water resources are forecast to be severely affected under climate change scenarios. This report, combined with an Endnote library of over 1100 scientific papers, provides an annotated bibliography of water-dependant ecosystem services, the roles they play within desakota livelihood systems and their potential sensitivity to climate change. After an introductory, section, Section 2 of the report defines water-related ecosystem services and how these are affected by human activities. Current knowledge and research gaps are then explored in relation to global scale climate and related hydrological changes (e.g. floods, droughts, flow regimes) (section 3). The report then discusses the impacts of climate changes on the ESPA regions, emphasising potential responses of biomes to the combined effects of climate change and human activities (particularly land use and management), and how these effects coupled with water store and flow regime manipulation by humans may affect the functioning of catchments and their ecosystem services (section 4). Finally, at the meso-scale, case studies are presented from within the ESPA regions to illustrate the close coupling of human activities and catchment performance in the context of environmental change (section 5). At the end of each section, research needs are identified and justified. These research needs are then amalgamated in section 6

    Soil erosion in the Alps : causes and risk assessment

    Get PDF
    The issue of soil erosion in the Alps has long been neglected due to the low economic value of the agricultural land. However, soil stability is a key parameter which affects ecosystem services like slope stability, water budgets (drinking water reservoirs as well as flood prevention), vegetation productivity, ecosystem biodiversity and nutrient production. In alpine regions, spatial estimates on soil erosion are difficult to derive because the highly heterogeneous biogeophysical structure impedes measurement of soil erosion and the applicability of soil erosion models. However, remote sensing and geographic information system (GIS) methods allow for spatial estimation of soil erosion by direct detection of erosion features and supply of input data for soil erosion models. Thus, the main objective of this work is to address the problem of soil erosion risk assessment in the Alps on catchment scale with remote sensing and GIS tools. Regarding soil erosion processes the focus is on soil erosion by water (here sheet erosion) and gravity (here landslides). For these two processes we address i) the monitoring and mapping of the erosion features and related causal factors ii) soil erosion risk assessment with special emphasis on iii) the validation of existing models for alpine areas. All investigations were accomplished in the Urseren Valley (Central Swiss Alps) where the valley slopes are dramatically affected by sheet erosion and landslides. For landslides, a natural susceptibility of the catchment has been indicated by bivariate and multivariate statistical analysis. Geology, slope and stream density are the most significant static landslide causal factors. Static factors are here defined as factors that do not change their attributes during the considered time span of the study (45 years), e.g. geology, stream network. The occurrence of landslides might be significantly increased by the combined effects of global climate and land use change. Thus, our hypothesis is that more recent changes in land use and climate affected the spatial and temporal occurrence of landslides. The increase of the landslide area of 92% within 45 years in the study site confirmed our hypothesis. In order to identify the cause for the trend in landslide occurrence time-series of landslide causal factors were analysed. The analysis revealed increasing trends in the frequency and intensity of extreme rainfall events and stocking of pasture animals. These developments presumably enhanced landslide hazard. Moreover, changes in land-cover and land use were shown to have affected landslide occurrence. For instance, abandoned areas and areas with recently emerging shrub vegetation show very low landslide densities. Detailed spatial analysis of the land use with GIS and interviews with farmers confirmed the strong influence of the land use management practises on slope stability. The definite identification and quantification of the impact of these non-stationary landslide causal factors (dynamic factors) on the landslide trend was not possible due to the simultaneous change of several factors. The consideration of dynamic factors in statistical landslide susceptibility assessments is still unsolved. The latter may lead to erroneous model predictions, especially in times of dramatic environmental change. Thus, we evaluated the effect of dynamic landslide causal factors on the validity of landslide susceptibility maps for spatial and temporal predictions. For this purpose, a logistic regression model based on data of the year 2000 was set up. The resulting landslide susceptibility map was valid for spatial predictions. However, the model failed to predict the landslides that occurred in a subsequent event. In order to handle this weakness of statistic landslide modelling a multitemporal approach was developed. It is based on establishing logistic regression models for two points in time (here 1959 and 2000). Both models could correctly classify >70% of the independent spatial validation dataset. By subtracting the 1959 susceptibility map from the 2000 susceptibility map a deviation susceptibility map was obtained. Our interpretation was that these susceptibility deviations indicate the effect of dynamic causal factors on the landslide probability. The deviation map explained 85% of new independent landslides occurring after 2000. Thus, we believe it to be a suitable tool to add a time element to a susceptibility map pointing to areas with changing susceptibility due to recently changing environmental conditions or human interactions. In contrast to landslides that are a direct threat to buildings and infrastructure, sheet erosion attracts less attention because it is often an unseen process. Nonetheless, sheet erosion may account for a major proportion of soil loss. Soil loss by sheet erosion is related to high spatial variability, however, in contrast to arable fields for alpine grasslands erosion damages are long lasting and visible over longer time periods. A crucial erosion triggering parameter that can be derived from satellite imagery is fractional vegetation cover (FVC). Measurements of the radiogenic isotope Cs-137, which is a common tracer for soil erosion, confirm the importance of FVC for soil erosion yield in alpine areas. Linear spectral unmixing (LSU), mixture tuned matched filtering (MTMF) and the spectral index NDVI are applied for estimating fractional abundance of vegetation and bare soil. To account for the small scale heterogeneity of the alpine landscape very high resolved multispectral QuickBird imagery is used. The performance of LSU and MTMF for estimating percent vegetation cover is good (r²=0.85, r²=0.71 respectively). A poorer performance is achieved for bare soil (r²=0.28, r²=0.39 respectively) because compared to vegetation, bare soil has a less characteristic spectral signature in the wavelength domain detected by the QuickBird sensor. Apart from monitoring erosion controlling factors, quantification of soil erosion by applying soil erosion risk models is done. The performance of the two established models Universal Soil Loss Equation (USLE) and Pan-European Soil Erosion Risk Assessment (PESERA) for their suitability to model erosion for mountain environments is tested. Cs-137 is used to verify the resulting erosion rates from USLE and PESERA. PESERA yields no correlation to measured Cs-137 long term erosion rates and shows lower sensitivity to FVC. Thus, USLE is used to model the entire study site. The LSU-derived FVC map is used to adapt the C factor of the USLE. Compared to the low erosion rates computed with the former available low resolution dataset (1:25000) the satellite supported USLE map shows “hotspots” of soil erosion of up to 16 t ha-1 a-1. In general, Cs-137 in combination with the USLE is a very suitable method to assess soil erosion for larger areas, as both give estimates on long-term soil erosion. Especially for inaccessible alpine areas, GIS and remote sensing proved to be powerful tools that can be used for repetitive measurements of erosion features and causal factors. In times of global change it is of crucial importance to account for temporal developments. However, the evaluation of the applied soil erosion risk models revealed that the implementation of temporal aspects, such as varying climate, land use and vegetation cover is still insufficient. Thus, the proposed validation strategies (spatial, temporal and via Cs-137) are essential. Further case studies in alpine regions are needed to test the methods elaborated for the Urseren Valley. However, the presented approaches are promising with respect to improve the monitoring and identification of soil erosion risk areas in alpine regions

    Analysis of land-cover change in the Kogmans River (H3) secondary catchment : impact of land degradation and river management on flood severity

    Get PDF
    Includes bibliographical references (leaves 111-124).This study aims to understand what role the landscape, and the management thereof, played in the March 2003 floods in the Kogmans River catchment. The Kogmans River (H3) secondary catchment is situated in the Klein (Uttle) Karoo region of the Western Cape, approximately 170km east of the city of Cape Town

    Effects of Land Use on the Ecohydrology of River Basin in Accordance with Climate Change

    Get PDF
    Water deficit affects various regions of the world. Effective approach can be based on ecohydrological solutions and the design of blue–green infrastructure. In our scientific book, we focused on papers that consider water management and adaptation of urban and rural development areas to the progressive climate change. The Special Issue includes a drought-prone place (valleys in Mexico City), reflections on the state and water resources in Lithuania, and engineering and technical articles from China and Poland. In addition, one chapter is dedicated to grassland protection in mountainous areas

    Microwave Indices from Active and Passive Sensors for Remote Sensing Applications

    Get PDF
    Past research has comprehensively assessed the capabilities of satellite sensors operating at microwave frequencies, both active (SAR, scatterometers) and passive (radiometers), for the remote sensing of Earth’s surface. Besides brightness temperature and backscattering coefficient, microwave indices, defined as a combination of data collected at different frequencies and polarizations, revealed a good sensitivity to hydrological cycle parameters such as surface soil moisture, vegetation water content, and snow depth and its water equivalent. The differences between microwave backscattering and emission at more frequencies and polarizations have been well established in relation to these parameters, enabling operational retrieval algorithms based on microwave indices to be developed. This Special Issue aims at providing an overview of microwave signal capabilities in estimating the main land parameters of the hydrological cycle, e.g., soil moisture, vegetation water content, and snow water equivalent, on both local and global scales, with a particular focus on the applications of microwave indices

    The Water Table, Soil Moisture And Evapotranspiration Conditions Following The Removal Of Conifers From Two Encroached Meadows

    Get PDF
    Montane meadows provide essential habitat for a variety of unique species and important ecosystem services in the western United States. Although important, meadows have experienced increased rates of conifer encroachment due to climate change, fire suppression and grazing. To combat meadow degradation from conifer encroachment, land managers have employed various restoration strategies one of which is conifer removal. Multiple studies have investigated the relationship between meadow hydrology and vegetation; however, few have assessed the effect of conifer removal on meadow groundwater. The goal of this study is to determine if the removal of conifers from an encroached meadow has an effect on depth to the groundwater table (WTD) and soil moisture content (SMC), and to investigate the accuracy and potential usefulness of evapotranspiration (ET) calculation methodologies for montane meadows. This goal will be accomplished by the subsequent objectives: 1) perform an analysis of WTD and SMC in an encroached meadow preceding and following conifer removal and upland thinning; 2) calculate and compare daily ET estimates in a previously restored meadow using diurnal groundwater table fluctuation, diurnal groundwater fluctuation modelling, and SMC. Miranda Cabin Meadow (MC) is located within the Upper American River Watershed, southeast of French Meadows Reservoir, at an elevation of 6,200 feet. MC received conifer removal, upland thinning and road decommissioning in the fall of 2018 as part of the American River Conservancy’s American River Headwaters Restoration Project. This study found the average WTD in MC during the growing season decreased from 4.91 feet prior to restoration, to 3.39 feet after restoration. In addition, the number of days the WTD was within 0.98 feet and 3 feet increased from 12 days and 34 days, to 31 and 49 days. Analysis of SMC in MC was limited due to gaps in data, however this study found that after restoration the average weekly SMC decreased at a slower rate than prior to restoration, possibly indicating decreased hydrologic output from ET. Based upon WTD during the growing season and the limited SMC data it appears that removal of conifers and upland thinning at MM promotes SMC and WTD conditions conducive to meadow vegetation communities. Marian Meadow (MM), located in Plumas County, CA at an elevation of 4,900 feet, received conifer removal as part of a timber harvest plan carried out by Collins Pine Company in July 2015. The soil moisture sensors used in this study were installed in MM in September 2013 for previous graduate thesis research. Groundwater table data was collected using 10-foot wells installed in July of 2018. Daily ET was calculated during August 2018 using three methodologies, and during September 2018 using two methodologies. Daily ET estimates calculated using diurnal groundwater table fluctuation and the White method averaged 11.8 mm per day in August and 9.1 mm in September. Using diurnal groundwater table fluctuation modelling this study calculated an average daily ET of 4.2 mm in August and 3 mm in September. Daily ET estimates based on SMC were calculated for August 2018 using two methods which produced estimates of 0.9 mm and 1.2 mm per day. All three methods for calculating ET produced some daily estimates that compare well to previous research of Et in Sierra Nevada meadows, however the White method generally overestimated daily Et while SMC methods underestimated ET. Groundwater table fluctuation modelling produced the best estimates of daily ET for both August and September. ET results in this study support previous research on the applicability of the White method; and they also suggest that the applicability of groundwater fluctuation modelling to estimate meadow daily ET in Sierra Nevada montane meadows be investigated further

    Late Quaternary climate and environmental reconstruction based on lake and peat sediments from the central southern Cape region of South Africa

    Get PDF
    This thesis aims at reconstructing environmental and climatic, and particularly hydrological changes in South Africa during the Late Quaternary. Hydrogen isotopes from leaf wax-derived n-alkanes and oxygen isotopes from hemicellulose-derived sugars were analysed in a first step on modern reference material from South Africa in order to evaluate the potential of both biomarker isotopes as well as coupling them in a paleohygrometer for robust paleohydrological reconstruction. In a second step, two sediment archives, i.e., Lake Voёlvlei and the peatland Vankervelsvlei, located at Africa’s southern Cape coast were identified as ideally suited for paleoenvironmental and -climatic reconstruction. Both records have been analysed using a broad multi-proxy approach including well-established sedimentological and geochemical proxies as well as innovative biomarker isotopes and the paleohygrometer approach in high temporal resolution. For the first time in this region, this combination of proxies was used to draw a coherent picture of moisture availability and precipitation sources along South Africa’s southern Cape coast. During the Holocene, hydroclimate variability was driven by contributions from Easterly- and locally-derived precipitation leading to moist conditions and a year-round precipitation regime from ~7.5 to ~5.0 ka and from ~3.0 ka until present day. Drier conditions accompanied by a shift to a winter rainfall regime occurred from ~5.0 to ~3.0 ka. Comparisons with other regional records support these results, but the driving forces behind this climate variability are still subject of considerable debate. On Late Quaternary timescales, low sea level caused the coastline to migrate south of its present position leading to increased continentality and dry conditions during glacial periods. During interglacial periods, the coastline was approximately where it is situated in recent times due to high sea level leading to more humid conditions at Vankervelsvlei

    Using applied palaeoecology and participatory system dynamics modelling to investigate changes in ecosystem services in response to climate and social-ecological drivers within the middle berg river catchment, South Africa

    Get PDF
    Conservation and agricultural landscapes are social-ecological systems that co-produce ecosystem services, which change over time in response to environmental, biotic and social drivers. Failure to consider this variability, and the feedbacks that cause system instability, can have consequences for sustainable ecosystem services provision. A transdisciplinary approach is needed to understand the interacting processes that drive the dynamics of ecosystem service provision. This study applies a conceptual meta-framework: past-present-future lens of environmental change to interpret changes in land cover and ecosystem services, with the aim of informing sustainable land-use management within the Cape Floristic Region, a globally recognised biodiversity hotspot. The project methodology followed a four-part structure: (1) Changes in land cover, fire, herbivory, and hydrological indicators were reconstructed using palaeoecological proxies (fossil pollen, charcoal, coprophilous spores, geochemistry, and diatoms) from two sites and associated sedimentary cores. (2) Palaeoecological data were interpreted in terms of supporting/provisioning (plant biodiversity) and regulating (water quality and soil erosion regulation) services, and (3) the drivers of these changes (climate, fire and herbivory) were analysed. (4) A pilot study used participatory system dynamics modelling to articulate dynamic feedbacks and explore future scenarios. Palaeoecological and modelling results explored resilience and thresholds in ecosystem services, defined the historical range of variability and was used to generate management recommendations. Results showed that (1) high temporal resolution, multi-proxy data suggested variability in ecosystem services. (2) Ecosystem change was driven mainly by climate in the early palaeo-records with increasing anthropogenic influence from the mid-20th C, and (3) although some plant biodiversity and landscape heterogeneity was lost, the main vegetation elements remain, suggesting no environmental thresholds have yet been crossed. (4) Even so, model simulation results show that it may be difficult to return to past ecological states. Adaptive grazing-fire management is recommended to maintain and restore ecosystem function, thereby decreasing the likelihood of future regime shifts to a degraded alternative stable state. This innovative interdisciplinary approach provides a contextual understanding of processes that influence dynamic social-ecological systems and translates long-term data into a form that can be used by policymakers and land-use managers to inform sustainable management of ecosystem services
    corecore