36 research outputs found

    Visual grasp point localization, classification and state recognition in robotic manipulation of cloth: an overview

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Cloth manipulation by robots is gaining popularity among researchers because of its relevance, mainly (but not only) in domestic and assistive robotics. The required science and technologies begin to be ripe for the challenges posed by the manipulation of soft materials, and many contributions have appeared in the last years. This survey provides a systematic review of existing techniques for the basic perceptual tasks of grasp point localization, state estimation and classification of cloth items, from the perspective of their manipulation by robots. This choice is grounded on the fact that any manipulative action requires to instruct the robot where to grasp, and most garment handling activities depend on the correct recognition of the type to which the particular cloth item belongs and its state. The high inter- and intraclass variability of garments, the continuous nature of the possible deformations of cloth and the evident difficulties in predicting their localization and extension on the garment piece are challenges that have encouraged the researchers to provide a plethora of methods to confront such problems, with some promising results. The present review constitutes for the first time an effort in furnishing a structured framework of these works, with the aim of helping future contributors to gain both insight and perspective on the subjectPeer ReviewedPostprint (author's final draft

    Bimanual Interaction with Clothes. Topology, Geometry, and Policy Representations in Robots

    Get PDF
    Twardon L. Bimanual Interaction with Clothes. Topology, Geometry, and Policy Representations in Robots. Bielefeld: Universität Bielefeld; 2019.If anthropomorphic robots are to assist people with activities of daily living, they must be able to handle all kinds of everyday objects, including highly deformable ones such as garments. The present thesis begins with a detailed problem analysis of robotic interaction with and perception of clothes. We show that handling items of clothing is very challenging due to their complex dynamics and the vast number of degrees of freedom. As a result of our analysis, we obtain a topological, geometric, and functional description of garments that supports the development of reduced object and task representations. One of the key findings is that the boundary components, which typically correspond with the openings, characterize garments well, both in terms of their topology and their inherent purpose, namely dressing. We present a polygon-based and an interactive method for identifying boundary components using RGB-D vision with application to grasping. Moreover, we propose Active Boundary Component Models (ABCMs), a constraint-based framework for tracking garment openings with point clouds. It is often difficult to maintain an accurate representation of the objects involved in contact-rich interaction tasks such as dressing assistance. Therefore, our policy optimization approach to putting a knit cap on a styrofoam head avoids modeling the details of the garment and its deformations. The experimental results suggest that a heuristic performance measure that takes into account the amount of contact established between the two objects is suitable for the task

    Robotic perception and manipulation of garments

    Get PDF
    This thesis introduces an effective robotic garment flattening pipeline and robotic perception paradigms for predicting garments’ geometric (shape) and physics properties. Robotic garment manipulation is a popular and challenging task in robotic research. Due to the high dimensionality of garments, object states of garments are infinite. Also, garments deform irregularly during manipulations, which makes predicting their deformations difficult. However, robotic garment manipulation is an essential topic in robotic research. Robotic laundry and household sorting play a vital role in an ageing society, and automated manufacturing requires robots to be able to grasp different mechanical components, some of which are deformable objects. Also, robot-aided garment dressing is essential for the community with disabilities. Therefore, designing and implementing effective robotic garment manipulation pipelines are necessary but challenging. This thesis mainly focuses on designing an effective robotic garment flattening pipeline. Therefore, this thesis is divided into two main parts: robotic perception and robotic manipulation. Below is a summary of the research in this PhD thesis: • Robotic perception provides prior knowledge on garment attributes (geometrical (shape) and physics properties) that facilitates robotic garment flattening. Continuous perception paradigms are introduced for predicting shapes and visually perceived garments weights. • A reality-simulation knowledge transferring paradigm for predicting the physics properties of real garments and fabrics has been proposed in this thesis. • The second part of this thesis is robotic manipulation. This thesis suggests learning the known configurations of garments with prior knowledge of garments’ geometric (shape) properties and selecting pre-designed manipulation strategies to flatten garments. The robotic manipulation part takes advantage of the geometric (shape) properties learned from the robotic perception part to recognise the known configurations of garments, demonstrating the importance of robotic perception in robotic manipulation. The experiment results of this thesis revealed that: 1). A robot gains confidence in prediction (shapes and visually perceived weights of unseen garments) from continuously perceiving video frames of unseen garments being grasped, where high accuracies on predictions (93% for shapes and 98.5 % for visually perceived weights) are obtained; 2). Predicting the physics properties of real garments and fabrics can be realised by learning physics similarities between simulated fabrics. The approach in this thesis outperforms SOTA (34 % improvement on real fabrics and 68.1 % improvement for real garments); 3). Compared with state-of-the-art robotic garment flattening, this thesis enables the flattening of garments of various shapes (five shapes) and fast and effective manipulations. Therefore, this thesis advanced SOTA of robotic perception and manipulation (flattening) of garments

    Harvested and Grown: the rise of a new bio-materiality

    Full text link
    Keynote abstract: We are in the midst of a transition from the industrial revolution to a biological revolution and this will have a great impact on what and how we design in the future. Not only we can acknowledge the advantage of biological systems in terms of zero waste, minimum use of energy and materials, but with synthetic biology, we can now ‘biofabricate’ like Nature does. Leather grown in a lab, yeast reprogrammed to produce silk, bacteria that grow a shoe, are but a few examples of current biotechnological breakthroughs. This keynote will map out the current landscape of biodesign and examine the rise of this new bio-materiality and its implication on design research. From botanical experiments to synthetic biology propositions, this paper will present a series of design case studies that question the notion of ‘knowledge making’ in the context of working with living systems. What becomes of the design process when working with living materials? If we can turn a yeast into a living factory, what language will designers need to learn? Could the intersection of design and biology lead to novel sustainable fabrication processes? What are the ethical implications of biofabrication

    Perception and manipulation for robot-assisted dressing

    Get PDF
    Assistive robots have the potential to provide tremendous support for disabled and elderly people in their daily dressing activities. This thesis presents a series of perception and manipulation algorithms for robot-assisted dressing, including: garment perception and grasping prior to robot-assisted dressing, real-time user posture tracking during robot-assisted dressing for (simulated) impaired users with limited upper-body movement capability, and finally a pipeline for robot-assisted dressing for (simulated) paralyzed users who have lost the ability to move their limbs. First, the thesis explores learning suitable grasping points on a garment prior to robot-assisted dressing. Robots should be endowed with the ability to autonomously recognize the garment state, grasp and hand the garment to the user and subsequently complete the dressing process. This is addressed by introducing a supervised deep neural network to locate grasping points. To reduce the amount of real data required, which is costly to collect, the power of simulation is leveraged to produce large amounts of labeled data. Unexpected user movements should be taken into account during dressing when planning robot dressing trajectories. Tracking such user movements with vision sensors is challenging due to severe visual occlusions created by the robot and clothes. A probabilistic real-time tracking method is proposed using Bayesian networks in latent spaces, which fuses multi-modal sensor information. The latent spaces are created before dressing by modeling the user movements, taking the user's movement limitations and preferences into account. The tracking method is then combined with hierarchical multi-task control to minimize the force between the user and the robot. The proposed method enables the Baxter robot to provide personalized dressing assistance for users with (simulated) upper-body impairments. Finally, a pipeline for dressing (simulated) paralyzed patients using a mobile dual-armed robot is presented. The robot grasps a hospital gown naturally hung on a rail, and moves around the bed to finish the upper-body dressing of a hospital training manikin. To further improve simulations for garment grasping, this thesis proposes to update more realistic physical properties values for the simulated garment. This is achieved by measuring physical similarity in the latent space using contrastive loss, which maps physically similar examples to nearby points.Open Acces

    Musical Haptics

    Get PDF
    Haptic Musical Instruments; Haptic Psychophysics; Interface Design and Evaluation; User Experience; Musical Performanc

    Musical Haptics

    Get PDF
    Haptic Musical Instruments; Haptic Psychophysics; Interface Design and Evaluation; User Experience; Musical Performanc

    Translations - experiments in landscape design education

    Get PDF
    corecore