26 research outputs found

    Modeling Robotic Systems with Activity Flow Graphs

    Get PDF
    Autonomous robotic systems are becoming increasingly common in our society, with research efforts towards automated goods transportation, service robots and autonomous cars. These complex systems have to solve many different problems in order to function robustly. Two especially important areas of interest are perception and high level control. Intelligent systems have to perceive their surroundings in order to facilitate autonomy. With an understanding of the environment, they then can make their own decisions based on high level control policies defined by the developers. Robotic systems differ drastically in their sensory capabilities, their computational power, and their designated tasks. When developing algorithms, however, we need to have a common modeling framework that enables us to generalize and re-use existing solutions. A modular approach, which is coherent across different platforms, also allows faster prototyping of new systems. In this dissertation we develop a modeling framework based on data flow that achieves this goal. We first extend the existing Synchronous Data Flow (SDF) model and combine it with reactive programming ideas and finite-state machines. Together, these existing frameworks enable us to model many aspects of complex robotic systems. We apply this model to a robot in a warehouse scenario to demonstrate the viability of the approach. Using three disjoint formalisms to model a robotic system has many downsides. In a first unification step we merge SDF and reactive programming into Hybrid Flow Graphs (HFGs), where we explicitly model synchronous and asynchronous data flow. We then apply the HFG model to the perception system of an autonomous transportation robot. In a last step, we eliminate the need for separate finite-state machines by introducing the concept of activity into the data flow. We therefore unify the different aspects into a single and coherent framework which we call Activity Flow Graphs (AFGs). The flow of activity enables us to model high level state directly in the data flow graph. The result is a single computation graph that can express both perception and high level control aspects of any robotic system. We then demonstrate this with multiple high level robotic system models. Finally, we make use of the uniform AFG model to provide a single graphical user interface that allows a developer to rapidly prototype complete robotic systems. Since all aspects of a robot can be implemented using the same theoretical framework, there is no need to switch between different paradigms. The user interface is designed to give immediate feedback, which speeds up prototyping, testing and evaluation, as well as debugging when working with real robots.Autonome Roboter werden zunehmend zu einem wichtigen Bestandteil unserer Gesellschaft, in Bereichen wie dem automatisierten Gütertransport, in der Servicerobotik und bei autonomen Automobilen. Diese komplexen Systeme müssen viele Problem lösen, um robust zu funktionieren. Zwei sehr wichtige Anwendungsfelder sind die Umgebungswahrnehmung und die Ablaufplanung. Intelligente Systeme müssen ihre Umgebung wahrnehmen, um autonom agieren zu können. Mit einem Verständnis der Umwelt können sie Entscheidungen treffen, welche auf abstrakten Richtlinien der Entwickler basieren. Verschiedene Roboter weichen stark in ihren sensorischen Fähigkeiten, in ihrer Rechenleistung und in ihren zu lösenden Aufgaben voneinander ab. Bei der Entwicklung von Algorithmen wird jedoch ein einheitliches Modellierungssystem benötigt, welches die Wiederverwendung von existierenden Lösungen erlaubt. Ein modulares System, welches über mehrere Plattformen hinweg genutzt werden kann, ermöglicht eine schnellere Entwicklung von neuen Systemen. In dieser Dissertation wird ein auf Datenfluss basierendes Modell entwickelt, welches diese Anforderungen erfüllt. Zuerst wird das existierende Synchronous Data Flow (SDF) Modell erweitert und mit Elementen von reaktiver Programmierung und endlichen Zustandsautomaten kombiniert. Zusammen können so viele Aspekte von Robotern modelliert werden. Das Modell wird auf einen Roboter in einem Warenhausszenario angewandt, um den Ansatz zu validieren. Drei verschiedene Formalismen zur Modellierung von Robotern zu verwenden hat viele Nachteile. In einem ersten Vereinigungsschritt werden SDF und reaktive Programmierung zu hybriden Flussgraphen (HFG) kombiniert, bei denen synchroner und asynchroner Datenfluss explizit modelliert werden. Dann wird das HFG-Modell auf die Wahrnehmungsmodule eines autonomen Transportsystems angewandt. Anschließend wird der Bedarf eines Zustandsautomaten beseitigt, indem das Konzept der Aktivität in den Datenfluss eingeführt wird. Dadurch werden alle Aspekte in einem einzigen, schlüssigen System vereinigt, welches Aktivitätsflussgraph (AFG) genannt wird. Der Aktivitätsfluss ermöglicht es, den höheren Systemzustand direkt im Datenflussgraphen zu modellieren. Als Ergebnis erhalten wir einen einzigen Berechnungsgraphen, der sowohl zur Beschreibung der Umgebungswahrnehmung als auch zur Kontrolle der höheren Abläufe benutzt werden kann. Dies wird anhand mehrerer Robotersysteme demonstriert. Eine graphische Benutzerschnittstelle wird bereitgestellt, welche von dem einheitlichen Modell Gebrauch macht, um ein schnelles Prototyping von Robotern zu ermöglichen. Da alle Aspekte mit demselben System modelliert werden, muss nicht zwischen verschiedenen Paradigmen gewechselt werden. Die Nutzerschnittstelle erleichtert Entwicklung, Test und Validierung von Algorithmen sowie das Auffinden von Fehlern bei echten Robotern

    Control and supervision of an AGV with energy consumption optimization

    Get PDF
    Os veículos guiados autónomos (AGVs) ganharam enorme importância e interesse no campo da indústria. Estes são soluções populares para o transporte de bens materiais para diferentes partes das fábricas. No entanto, em muitas fábricas, os armazéns estão localizados à parte da linha de produção ou em edifícios separados, exigindo que o transporte de bens materiais seja feito exteriormente. Os ambientes exteriores representam um desafio particular para os AGVs. Por um lado, estes ambientes causam mais desgaste nos componentes dos veículos e o clima na Europa pode atingir extremos opostos, dependendo da estação do ano e das regiões. Por outro lado, estes ambientes aumentam as preocupações de segurança, uma vez que outros veículos ou peões podem circular no mesmo espaço e ao mesmo tempo. Neste projecto, um rebocador eléctrico XXL será transformado num AGV, que opera em ambiente exterior. Este veículo é responsável pelo transporte de mercadorias do final da linha de produção para o armazém exterior numa fábrica de automóveis. O principal objectivo é assegurar o seu funcionamento contínuo durante um turno de 16 horas, garantindo o mínimo de interrupções para v«carregamento da bateria. Desta forma, nesta dissertação foram abordados dois capítulos distintos: para a análise e estudo do consumo energético foi simulado a powertrain de um veículo eléctrico. Neste, foi considerado um motor de indução cujo método de controlo aplicado foi o Field Oriented Control (FOC). Para além do comportamento eléctrico, também foi simulado o modelo físico da carga, bem como o cálculo da energia eléctrica consumida. Para a navegação, foi estudada uma solução baseada na integração do GPS com o INS. Dadas as restrições temporais, apenas a solução GPS foi testada e a técnica Loosely Coupled foi abordada como uma possível solução de integração.Autonomous guided vehicles (AGVs) have gained enormous importance and interest in the industry field. These are popular solutions for transport of good and material to different parts of the factories. However, in many factories, warehouses are located apart from the factory floor or in separate buildings, requiring the transport of material goods to be done outdoors. Outdoor environments represent a particular challenge for AGVs. On one hand, these environments causes more wear and tear on vehicle components and the weather in Europe can reach opposite extremes depending on the season and regions. On the other hand, these environments increase safety concerns since other vehicles or pedestrians can circulate in the same space at the same time. In this project, an electric tugger XXL will be transformed into an AGV, which operates in outdoor environment. This vehicle is responsible for transporting goods from the end of the production line to the outside warehouse in a car manufacturing plant. The main objective is to ensure its continuous operation during a 16-hour shift, and guarantee the minimum battery charging actions. In this way, in this dissertation two distinct chapters were approached: for the analysis and study of the energy consumption it was simulated the powertrain of an electric vehicle. In this one it was considered an induction motor whose control method applied was the Field Oriented Control (FOC). Besides the electrical behaviour, also the physical model of the load was simulated as well as the calculation of the consumed electrical energy. For navigation, a solution based on the integration of GPS with INS was studied. Given the temporal constraints, only the GPS solution was tested and the loosely coupled technique was approached as a possible integration solution

    Kinematics, motion analysis and path planning for four kinds of wheeled mobile robots

    Get PDF

    Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), volume 1

    Get PDF
    This document contains papers presented at the Space Operations, Applications and Research Symposium (SOAR) Symposium hosted by NASA/Johnson Space Center (JSC) on August 3-5, 1993, and held at JSC Gilruth Recreation Center. SOAR included NASA and USAF programmatic overview, plenary session, panel discussions, panel sessions, and exhibits. It invited technical papers in support of U.S. Army, U.S. Navy, Department of Energy, NASA, and USAF programs in the following areas: robotics and telepresence, automation and intelligent systems, human factors, life support, and space maintenance and servicing. SOAR was concerned with Government-sponsored research and development relevant to aerospace operations. More than 100 technical papers, 17 exhibits, a plenary session, several panel discussions, and several keynote speeches were included in SOAR '93

    Unmanned Vehicle Systems & Operations on Air, Sea, Land

    Get PDF
    Unmanned Vehicle Systems & Operations On Air, Sea, Land is our fourth textbook in a series covering the world of Unmanned Aircraft Systems (UAS) and Counter Unmanned Aircraft Systems (CUAS). (Nichols R. K., 2018) (Nichols R. K., et al., 2019) (Nichols R. , et al., 2020)The authors have expanded their purview beyond UAS / CUAS systems. Our title shows our concern for growth and unique cyber security unmanned vehicle technology and operations for unmanned vehicles in all theaters: Air, Sea and Land – especially maritime cybersecurity and China proliferation issues. Topics include: Information Advances, Remote ID, and Extreme Persistence ISR; Unmanned Aerial Vehicles & How They Can Augment Mesonet Weather Tower Data Collection; Tour de Drones for the Discerning Palate; Underwater Autonomous Navigation & other UUV Advances; Autonomous Maritime Asymmetric Systems; UUV Integrated Autonomous Missions & Drone Management; Principles of Naval Architecture Applied to UUV’s; Unmanned Logistics Operating Safely and Efficiently Across Multiple Domains; Chinese Advances in Stealth UAV Penetration Path Planning in Combat Environment; UAS, the Fourth Amendment and Privacy; UV & Disinformation / Misinformation Channels; Chinese UAS Proliferation along New Silk Road Sea / Land Routes; Automaton, AI, Law, Ethics, Crossing the Machine – Human Barrier and Maritime Cybersecurity.Unmanned Vehicle Systems are an integral part of the US national critical infrastructure The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. Unmanned Vehicle (UV) Systems & Operations On Air, Sea, Land discusses state-of-the-art technology / issues facing U.S. UV system researchers / designers / manufacturers / testers. We trust our newest look at Unmanned Vehicles in Air, Sea, and Land will enrich our students and readers understanding of the purview of this wonderful technology we call UV.https://newprairiepress.org/ebooks/1035/thumbnail.jp

    Industry 4.0 for SMEs

    Get PDF
    This open access book explores the concept of Industry 4.0, which presents a considerable challenge for the production and service sectors. While digitization initiatives are usually integrated into the central corporate strategy of larger companies, smaller firms often have problems putting Industry 4.0 paradigms into practice. Small and medium-sized enterprises (SMEs) possess neither the human nor financial resources to systematically investigate the potential and risks of introducing Industry 4.0. Addressing this obstacle, the international team of authors focuses on the development of smart manufacturing concepts, logistics solutions and managerial models specifically for SMEs. Aiming to provide methodological frameworks and pilot solutions for SMEs during their digital transformation, this innovative and timely book will be of great use to scholars researching technology management, digitization and small business, as well as practitioners within manufacturing companies

    Industry 4.0 for SMEs

    Get PDF
    This open access book explores the concept of Industry 4.0, which presents a considerable challenge for the production and service sectors. While digitization initiatives are usually integrated into the central corporate strategy of larger companies, smaller firms often have problems putting Industry 4.0 paradigms into practice. Small and medium-sized enterprises (SMEs) possess neither the human nor financial resources to systematically investigate the potential and risks of introducing Industry 4.0. Addressing this obstacle, the international team of authors focuses on the development of smart manufacturing concepts, logistics solutions and managerial models specifically for SMEs. Aiming to provide methodological frameworks and pilot solutions for SMEs during their digital transformation, this innovative and timely book will be of great use to scholars researching technology management, digitization and small business, as well as practitioners within manufacturing companies
    corecore