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Abstract
Autonomous robotic systems are becoming increasingly common in our society, with
research efforts towards automated goods transportation, service robots and autonomous
cars. These complex systems have to solve many different problems in order to function
robustly. Two especially important areas of interest are perception and high level control.
Intelligent systems have to perceive their surroundings in order to facilitate autonomy.
With an understanding of the environment, they then can make their own decisions based
on high level control policies defined by the developers.

Robotic systems differ drastically in their sensory capabilities, their computational
power, and their designated tasks. When developing algorithms, however, we need to
have a common modeling framework that enables us to generalize and re-use existing
solutions. A modular approach, which is coherent across different platforms, also allows
faster prototyping of new systems. In this dissertation we develop a modeling framework
based on data flow that achieves this goal.

We first extend the existing Synchronous Data Flow (SDF) model and combine it
with reactive programming ideas and finite-state machines. Together, these existing
frameworks enable us to model many aspects of complex robotic systems. We apply this
model to a robot in a warehouse scenario to demonstrate the viability of the approach.

Using three disjoint formalisms to model a robotic system has many downsides. In a
first unification step we merge SDF and reactive programming into Hybrid Flow Graphs
(HFGs), where we explicitly model synchronous and asynchronous data flow. We then
apply the HFG model to the perception system of an autonomous transportation robot.

In a last step, we eliminate the need for separate finite-state machines by introducing
the concept of activity into the data flow. We therefore unify the different aspects into a
single and coherent framework which we call Activity Flow Graphs (AFGs). The flow of
activity enables us to model high level state directly in the data flow graph. The result is a
single computation graph that can express both perception and high level control aspects
of any robotic system. We then demonstrate this with multiple high level robotic system
models.

Finally, we make use of the uniform AFG model to provide a single graphical user
interface that allows a developer to rapidly prototype complete robotic systems. Since
all aspects of a robot can be implemented using the same theoretical framework, there
is no need to switch between different paradigms. The user interface is designed to give
immediate feedback, which speeds up prototyping, testing and evaluation, as well as
debugging when working with real robots.
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Kurzfassung
Autonome Roboter werden zunehmend zu einem wichtigen Bestandteil unserer Gesell-
schaft, in Bereichen wie dem automatisierten Gütertransport, in der Servicerobotik und
bei autonomen Automobilen. Diese komplexen Systeme müssen viele Problem lösen,
um robust zu funktionieren. Zwei sehr wichtige Anwendungsfelder sind die Umgebungs-
wahrnehmung und die Ablaufplanung. Intelligente Systeme müssen ihre Umgebung
wahrnehmen, um autonom agieren zu können. Mit einem Verständnis der Umwelt können
sie Entscheidungen treffen, welche auf abstrakten Richtlinien der Entwickler basieren.

Verschiedene Roboter weichen stark in ihren sensorischen Fähigkeiten, in ihrer Rechen-
leistung und in ihren zu lösenden Aufgaben voneinander ab. Bei der Entwicklung von
Algorithmen wird jedoch ein einheitliches Modellierungssystem benötigt, welches die
Wiederverwendung von existierenden Lösungen erlaubt. Ein modulares System, welches
über mehrere Plattformen hinweg genutzt werden kann, ermöglicht eine schnellere Ent-
wicklung von neuen Systemen. In dieser Dissertation wird ein auf Datenfluss basierendes
Modell entwickelt, welches diese Anforderungen erfüllt.

Zuerst wird das existierende Synchronous Data Flow (SDF) Modell erweitert und mit
Elementen von reaktiver Programmierung und endlichen Zustandsautomaten kombiniert.
Zusammen können so viele Aspekte von Robotern modelliert werden. Das Modell wird
auf einen Roboter in einem Warenhausszenario angewandt, um den Ansatz zu validieren.

Drei verschiedene Formalismen zur Modellierung von Robotern zu verwenden hat viele
Nachteile. In einem ersten Vereinigungsschritt werden SDF und reaktive Programmierung
zu hybriden Flussgraphen (HFG) kombiniert, bei denen synchroner und asynchroner
Datenfluss explizit modelliert werden. Dann wird das HFG-Modell auf die Wahrneh-
mungsmodule eines autonomen Transportsystems angewandt.

Anschließend wird der Bedarf eines Zustandsautomaten beseitigt, indem das Konzept
der Aktivität in den Datenfluss eingeführt wird. Dadurch werden alle Aspekte in einem
einzigen, schlüssigen System vereinigt, welches Aktivitätsflussgraph (AFG) genannt wird.
Der Aktivitätsfluss ermöglicht es, den höheren Systemzustand direkt im Datenflussgraphen
zu modellieren. Als Ergebnis erhalten wir einen einzigen Berechnungsgraphen, der sowohl
zur Beschreibung der Umgebungswahrnehmung als auch zur Kontrolle der höheren
Abläufe benutzt werden kann. Dies wird anhand mehrerer Robotersysteme demonstriert.

Eine graphische Benutzerschnittstelle wird bereitgestellt, welche von dem einheitlichen
Modell Gebrauch macht, um ein schnelles Prototyping von Robotern zu ermöglichen. Da
alle Aspekte mit demselben System modelliert werden, muss nicht zwischen verschiede-
nen Paradigmen gewechselt werden. Die Nutzerschnittstelle erleichtert Entwicklung, Test
und Validierung von Algorithmen sowie das Auffinden von Fehlern bei echten Robotern.

vii





Acknowledgments
First and foremost I want to thank Prof. Andreas Zell for his supervision of this dissertation
and the preceding bachelor and master theses. Thank you for all the support and for
funding my research over the years. I am especially grateful for the trust I have enjoyed
for the research that exceeded the PATSY project. Additionally I want to thank Prof.
Andreas Schilling for agreeing to be the second assessor of this thesis, as well as Prof.
Oliver Bringmann and Prof. Klaus-Jörn Lange for agreeing to be examiners.

I thank my former office-roommate Daniel Dube and project partners Karsten Bohlmann
and Gerald Rauscher for their good cooperation and constant helpfulness. Many thanks to
Sebastian Scherer and Julian Jordan, with whom it was always a pleasure to supervise
lecture tutorials together. Thank you to Alexander Dörr for the good times at lunch and in
coffee breaks, as well as for reviewing this manuscript.

A special gratitude to Vita Serbakova and Klaus Beyreuther for their constant support.
Also a special mention to the students that have worked with us at various robot

competitions and have helped to test and improve the CS::APEX framework and the
underlying AFG model. Especially Alina Kloss, Jan Leininger, Eugen Ruff and Felix
Widmaier, who have helped the Attempto Tübingen team to win the second place at
the SICK Robot Day 2014. Additional thanks to Matthias Reisenauer and the other
participants of the SpaceBotCamp 2015.

I am extraordinarily grateful to my longtime office-roommate Goran Huskić, for always
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Chapter 1

Introduction

1.1 Modeling Robotic Systems
Robotic systems are becoming increasingly visible in many domains of applications.
There are many types of robots that feature different levels of mobility, autonomy and
universality. The earliest economically successful robots were stationary manipulators in
factory lines, which had only a limited perception of their environment. They are essential
in our production facilities and are becoming increasingly flexible.

On the other side there are mobile robots that are not bound to a single workspace.
By being able to move, they can be used in many more areas than manipulators, but this
also renders their implementation more challenging. It is straightforward to provide a
safe working environment for a stationary robot, since the area around it can be fully
controlled. An autonomous mobile robot, however, has to perceive its environment in
real-time in order to be able to react to unforeseen circumstances. Even in controlled
environments, such as factories or warehouses, the robots have to perceive dangerous
situations in order to be safe to work with.

A minimal level of perception can be found in primitive Automated Guided Vehicles
(AGVs), that are following predefined paths in controlled environments to transport
payloads with minimal human oversight. Typical AGVs detect artificial markers in the
environment, in order to determine their own position and to follow their preplanned
path. Collision avoidance is then performed on a hardware level by laser scanner safety
zones and pressure sensitive bumpers. This low level of on-board computation made these
vehicles also one of the early forms of commercially successful robotic systems.

The computational effort massively increases, when robots are employed in dynamic
environments, such as hospitals and public buildings. More sophisticated perceptive
capabilities are then needed to prevent the robots from harming humans, themselves and
their environment. Furthermore, a robot has to possess a higher level of autonomy, so
that it can make its own decisions. This means that in addition to a large amount of
perceptive capabilities, a high level model of a robot’s behaviors is needed to control it in
such environments.

The development of perception capabilities and high level control systems is strongly
task dependent. Basic software modules, such as self-localization and mapping of the
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Chapter 1 Introduction

environment, can be easily reused for many different types of robots. More specialized
functionalities, however, often have to be newly implemented for each specific problem.
Individual modules need a way to interact with each other in order to perform the required
tasks together. More specifically, the information generated by perceptive modules has to
be accessible to the high level control systems, which in turn have to be able to influence
and control every other part of the system.

As robots become more prevalent, the responsibility to program these task specific
parts may fall on non-experts. This prompts the need for new tools that simplify the
implementation of complex robotic systems with manageable cost and effort. Visual
programming techniques have proven promising in other engineering fields, allowing users
to quickly combine existing functionality to achieve new tasks. A visual representation of
complex systems also allows developers to understand an unknown system more quickly,
which is especially helpful in the search for errors and defects.

1.2 Outline and Contributions
The focus of this dissertation is on modeling various aspects of robotic systems us-
ing graphical representations we call Activity Flow Graphs (AFGs), where both per-
ception and high level modeling are represented in a coherent graphical framework.

SDF Events FSM

SDF+

Activity

HFG

AFG

Figure 1.1: Hierarchy of the presented mod-
els.

The framework is designed with the goal
to present any robotic system to users and
developers in a visual form, in order to
speed up the development process, to facil-
itate the use of existing functionality and to
encourage cooperation by increased mod-
ularity. The visual presentation through
a graphical user interface allows experts
and novices to prototype new algorithms
more quickly, using a large collection of
implemented modules.

Section 1.3 contains an overview of
the different experimental platforms used
within this dissertation. On these different
robotic systems we consider two main ap-
plications of flow graphs: Perception and
high level robot control. In the main part of this thesis, we will incrementally develop
the AFG model and show illustrative examples. The incremental nature of the presented
models is demonstrated in Figure 1.1, which we will use throughout this thesis to highlight
the focus of the individual chapters. First, we recapitulate common approaches to model
robotic applications in Chapter 2, where we summarize Synchronous Data Flow (SDF)
and Finite-State Machines (FSMs).
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1.2 Outline and Contributions

In Chapter 3 we present a fundamental data flow model based on SDF, Events and
FSMs, which is based on the article published in

• Buck, S., Hanten, R., Pech, C. R., and Zell, A. (2016b). Synchronous dataflow and
visual programming for prototyping robotic algorithms. In Intelligent Autonomous
Systems (IAS), The 14th International Conference on, pages 911–923, Shanghai,
CN.

In the following this model is called SDF+ to emphasize the three distinct parts, as
visualized in the hierarchy shown in Figure 1.1.

We describe a supplementary example application in Chapter 4 in the form of a fetch-
and-delivery robotic system developed for the SICK robot day 2014. This chapter is based
on the publications in

• Buck, S., Hanten, R., Huskić, G., Rauscher, G., Kloss, A., Leininger, J., Ruff, E.,
Widmaier, F., and Zell, A. (2015). Conclusions from an object-delivery robotic com-
petition: Sick robot day 2014. In Advanced Robotics (ICAR), The 17th International
Conference on, pages 137–143, Istanbul, TR,

• Huskić, G., Buck, S., and Zell, A. (2016). A simple and efficient path following
algorithm for wheeled mobile robots. In Intelligent Autonomous Systems (IAS), The
14th International Conference on, Shanghai, CN,

Subsequently, we formulate a combined flow graph model in Chapter 5 that unifies SDF
and event-based messaging into a single graphical model which we call Hybrid Flow
Graphs (HFG).

Chapter 6 then presents the application of HFGs to the freely navigating transportation
robot PATSY, where we implemented different perception algorithms, which where
published in

• Buck, S., Hanten, R., Bohlmann, K., and Zell, A. (2016a). Generic 3d obstacle
detection for agvs using time-of-flight cameras. In Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on, pages 4119 – 4124, Daejeon,
Korea,

• Buck, S., Hanten, R., Bohlmann, K., and Zell, A. (2017). Multi-sensor payload
detection and acquisition for truck-trailer agvs. In Robotics and Automation (ICRA),
2017 IEEE International Conference on, Singapore,

• Hanten, R., Buck, S., Otte, S., and Zell, A. (2016). Vector-amcl: Vector based
adaptive monte carlo localization for indoor maps. In Intelligent Autonomous
Systems (IAS), The 14th International Conference on, Shanghai, CN,

or have been submitted for publication in
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Chapter 1 Introduction

• Hanten, R., Kuhlmann, P., Buck, S., Otte, S., and Zell, A. (2018). Robust real-time
3d person detection for indoor and outdoor applications. (submitted).

In Chapter 7 we extend the HFG model into Activity Flow Graphs by introducing the
concept of Activity, which allows the implementation of both perception and high level
control algorithms in a common framework. AFGs are then applied to several example
scenarios in Chapter 8, where we demonstrate how to model high level robot control and
perception in a common framework. These chapters are additionally based on

• Buck, S. and Zell, A. (2018). CS::APEX: A framework for algorithm prototyping
and experimentation with robotic systems. Journal of Intelligent & Robotic Systems,

• Huskić, G., Buck, S., and Zell, A. (2017b). Path following control of skid-steered
wheeled mobile robots at higher speeds on different terrain types. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), Singapore,

• Huskić, G., Buck, S., Ibargüen González, L. A., and Zell, A. (2017a). Outdoor
person following at higher speeds using a skid-steered mobile robot. In Intelli-
gent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on,
Vancouver, Canada.

The graph-based nature of the AFG model and its constituent parts allows for a simple
and intuitive graphical user interface for generation, modification and inspection. This
also motivates the merging of SDF, Events and FSMs into a single framework, which can
be adapted into a coherent user interface with which every aspect of the robotic system
can be designed, implemented and tested.

In Chapter 9 we present our open-source implementation of a visual programming
approach to the AFG model. The framework is called the Algorithm Prototyper and Ex-
perimenter for Cognitive Systems (CS::APEX) and is designed to allow rapid prototyping
of robotic algorithms. This chapter is also based on the publications in

• Buck, S., Hanten, R., Pech, C. R., and Zell, A. (2016b). Synchronous dataflow and
visual programming for prototyping robotic algorithms. In Intelligent Autonomous
Systems (IAS), The 14th International Conference on, pages 911–923, Shanghai,
CN,

• Buck, S. and Zell, A. (2018). CS::APEX: A framework for algorithm prototyping
and experimentation with robotic systems. Journal of Intelligent & Robotic Systems.

Due to the hierarchical nature of the presented models, CS::APEX can also be used to
implement SDF+ or HFG models. An additional, external implementation of finite-state
machines then has to be used for high level state modeling. This has been the foundation
for the experiments that have been performed in this thesis: Every graph that is shown in
the following chapters has been prototyped, optimized and evaluated using the graphical
user interface.

Chapter 10 concludes this thesis by summarizing and discussing the results.
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1.3 Experimental Platforms and Projects

1.3 Experimental Platforms and Projects
Several robotic platforms are used to experimentally demonstrate the generic applicability
of our proposed methods. The platforms provide different types of kinematics and varying
levels of processing power. Every robot is used in the context of a separate project, which
all require different perception solutions and high level control policies. The different
platforms also roughly correspond to the three hierarchical models in this thesis: The
SDF+ model was mainly developed with our omnidirectional Robocup robots. The HFG
model is the result of lessons learned during the development of SDF+ and was extensively
used to implement many components in the PATSY project. Finally, the AFG model was
developed to implement a fully autonomous Summit XL robot.

1.3.1 Omnidirectional Robocup Robots
Figure 1.2 displays one of the two identical robotic systems we have constructed for the
participation in a robotics competition called SICK Robot Day 2014. The robots are based
on hardware that was used at RoboCup a few years back and is described in more detail
by Kanjanawanishkul and Zell (2009). These robots have an omnidirectional base with
three omnidirectional swedish wheels. The original use case demanded relatively large
robots to be able to interact with soccer balls.

(a) Frontal view showing the LMS 100 laser
scanner and two cameras.

(b) Side view.

Figure 1.2: View of one of our two robots with a hopper on top. Visible sensors: Allied
Vision Marlin camera (center), PointGrey Firefly camera (top, inside the hopper), SICK
LMS100 LIDAR (bottom).
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Chapter 1 Introduction

For this competition we lowered the center of gravity as much as possible to allow
faster movement speeds without increased risk of toppling over in case of emergency
braking. We installed an Intel Core2Duo P8700 dual-core processor with 2.53GHz clock
speed and 2GB of RAM just above the motors in an open space previously unused. The
platform was equipped with a basket in the shape of a pyramid with a triangular basis
standing on its tip, which we used to gather wooden cubes. Inside this hopper we mounted
a PointGrey Firefly camera, which was used for detecting the cubes and reading their bar
codes.

Furthermore, we added the required green signaling lamp to indicate to human operators
that the robot intends to receive or deliver a cube. We employed two laser scanners for
obstacle avoidance and localization, a front-facing SICK LMS100 and a rear-facing SICK
TiM551, which together allowed for 360◦ vision with only little blind spots to the sides
of the robots. Additionally, we used a front facing Allied Vision Marlin camera for sign
and target detection. Front and rear are just defined for discussion, since the platforms
are omnidirectional and therefore do not have a constrained movement direction. We
implemented multiple perception pipelines using the SDF+ model presented in Chapter 3
and modeled the high level control using a finite state machine.

1.3.2 PATSY Robot
The algorithms and frameworks presented in this work were largely developed in the
context of the BMBF funded PATSY project, which is an abbreviation for Person recog-
nizing Autonomous Transport SYstem. The project was realized in cooperation with the
E&K Automation company in Reutlingen, Germany and had the goal to create an AGV
that is able to navigate in dynamic environments. Specifically, the operation scenario
was described as a robust transportation system that can be deployed in public areas of
hospitals to transport heavy payload containers.

Figure 1.3: The truck-trailer AGV used in the PATSY project.

Figure 1.3 shows the AGV, which is used to transport containers by driving under
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1.3 Experimental Platforms and Projects

them and lifting them up. The robot is equipped with a powerful Intel Core i7-3517UE
CPU processor and 8 GB of RAM, which allows the concurrent application of many
different perception and planning modules. A relatively large and complex system had to
be developed on the software side, with different subsystems, including self-localization
in dynamic environments, the detection of people and dangerous obstacles, the accurate
detection and localization of large transport containers and robust navigation among
dynamic objects. Many of these components where modeled and implemented using the
data flow based formulations presented in Chapters 5 and 7.

The AGV has a very small ground clearance, which means that obstacles range from a
few centimeters to several meters in size. The AGV is equipped with two Sick S300 safety
laser range finders, which can only detect obstacles in a plane roughly 8 cm above the floor.
Since the AGV is meant to operate in populated areas, objects below the laser scanner
plane and overhanging obstacles have to be recognized reliably as well. Furthermore,
people are hard to detect using 2D laser scanners alone, especially at larger distances.

That is why three dimensional perception was the major motivation of the PATSY
project. To measure 3D information, the PATSY prototype was equipped with a Fotonic
E70-P time-of-flight (TOF) camera, after an extensive evaluation of different types of
sensors by Rauscher et al. (2014). TOF sensors can be compared with standard cameras,
yet instead of detecting color information in each pixel, these cameras directly measure
the distance to the nearest object and the intensity of the reflected light in each pixel. Due
to the necessarily low height of the AGV, the sensor has to operate close to the ground,
which causes different types of data artifacts, which we will discuss in Chapter 6.

1.3.3 Robotnik Summit XL Robots
Many additional experiments were performed using the all-terrain robot Robotnik Summit
XL, shown in Figure 1.4. Perception pipelines developed in the PATSY project, such as
person detection and 3D obstacle detection, were adapted and used on the Summit XL.
Whereas the PATSY robot is exclusively used indoors and requires a flat floor to operate
on, the Summit XL is mainly used outdoors in rough terrain. Therefore the requirements
for the applicable sensors are completely different.

The basic setup of the Summit XL consists of an Intel Core i7-4790S processor with
4 cores and 16 GB of RAM, which is more powerful than the processor of the PATSY
robot. The robot is equipped with a Velodyne VLP-16 laser scanner, which allows 360°
perception and mapping. A Razor 9DOF Inertial Measurement Unit, together with the
on-board odometry, is used to estimate the robot’s pose.

The first scenario we explored was a simulated space mission called SpaceBot Camp
2015, for which we used four ASUS Xtion Pro Live RGB-D cameras to achieve au-
tonomous, high resolution mapping of a simulated planetary surface. We modeled most
perception capabilities using the Hybrid Flow Graph model presented in Chapter 5. These
include the detection of predefined objects using RGB and RGB-D cameras and the
detection of obstacles in the environment for safe autonomous navigation. A separate
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Chapter 1 Introduction

(a) The SpaceBot Camp configuration
used four RGB-D cameras and a Velo-
dyne VLP-16.

(b) The outdoor configuration uses a
stereo camera and the VLP-16.

Figure 1.4: The all terrain robot Summit-XL by Robotnik.

finite-state machine was implemented to solve high-level planning tasks and mission
control.

Some of the high level control in the SpaceBot Camp design led to the development
of Activity Flow Graphs presented in Chapter 7. We then developed a service robot
application, in which the robot was following a person with up to 2.5 ms−1. In this case
we equipped the robot with a stereo camera to replace the RGB-D sensors, which do not
work outdoors due to direct sunlight. Using the AFG model, we were able to implement
the complete system, including navigational tasks, in a single framework. No additional
state machine for high level control was needed.

8



Chapter 2

Graph-based Computation Models In
Robotics
There are two ways to model complex computations in a graphical way: data flow and
control flow. Both models are dual and complement each other. In data flow, the primary
concern is to model the way data packages are moving through various computational
steps in an algorithm. A data flow graph does not specify any ordering of different
computations, rather the availability of data packets determines, which computation
is performed. Control flow, on the other hand, is used to explicitly model an ordered
execution, in which control is passing between components of a flow graph.

A typical computer program can be directly modeled as a control flow graph. Each
instruction to the CPU can be thought of as a node in the graph. After an instruction is
executed, the program counter transfers the control to the following instruction. Jump-
based structures, such as if statements and loops, can be interpreted as selection nodes,
where the control can flow to different child nodes, depending on currently held data.

Many sequential algorithms can also easily be expressed as a data flow graph. Figure 2.1
depicts a simple example in which the addition of two values is modeled. First it is shown
as a control flow graph in Figure 2.1a and then as a data flow graph in Figure 2.1b. Instead
of focusing on a sequence of instructions, the data flow model defines each instruction
as an actor that consumes data and produces other data as a consequence. Functions
written in any programming language can be thought of as such an actor, consuming all its
parameters and producing corresponding return values. In this way, data flow models are a
more functional approach, where the order of computations is determined by a scheduling
algorithm, instead of the explicit ordering of instructions in control flow.

We commonly understand a system as a robot if it performs perception tasks and if it

read a

read b

add(a, b)
a+ b

(a) Control flow graph that shows three con-
secutive operations to perform addition.

vsource,1

vsource,2

+

a

b
a+ b

(b) Data flow graph that shows two data
sources and a node that performs addition.

Figure 2.1: Example flow graphs to model a simple sum of two numbers.
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Chapter 2 Graph-based Computation Models In Robotics

can influence its surroundings in some form. Similarly, one of the earliest definitions of
robotics goes back to Brady (1985), who wrote that "Robotics is the intelligent connection
of perception to action." In this chapter we review common ways by which the two
graphical models are applied in the field of robotics. In particular, we focus on data flow
applied to perception problems and control flow in the form of action in high level robot
control.

2.1 Petri Nets
Petri nets form a graph-based modeling language which is commonly used to describe
distributed systems. A Petri net N = (P,T,E) is a bipartite graph with vertices P∪T and
edges E. The vertices are also called places (P) and transitions (T ), and are two disjoint
sets. Every edge e ∈ E either connects a place to a transition, or a transition to a place.

Places are visualized by circles and represent passive structures, which can store an
arbitrary amount of tokens, as shown in Figure 2.2a. On the other hand, transitions are
active components used to represent actions or events that occur in a system. A transition,
visualized as a labeled square, is enabled when all incoming arcs are connected to a place
with at least one token. Once a transition is enabled, it can occur at any time, also in
parallel to other transitions. We say that a transition is fired when it occurs, to emphasize
their active role. When a transition occurs, a token from each of the incoming places is
subtracted and a new token is added to the outgoing places, as visualized in Figure 2.2b.

p1

p2

p3

t1

p4

(a) The place p1 has a token. Transition t1
is not enabled, because p2 and p3 have no
tokens.

p1

p2

p3

t1

p4

p1

p2

p3

t1

p4t1

(b) Transition t1 is enabled. After t1 is fired,
p4 has one more token, the other places lose
a token. t1 is no longer enabled.

Figure 2.2: The transition t is enabled, when all incoming arcs are connected to a place
with at least one token.

Petri nets are intuitive and expressive, however they are a low-level abstraction and can
become very complex for larger systems. We will use Petri nets in the following chapters
to model the individual components of more abstract data flow models.
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2.2 Flow-based Programming for Perception

2.2 Flow-based Programming for Perception
A complete robotic system has to implement different subsystems with varying require-
ments: A low-level controller has to be executed at frequencies over 1kHz, whereas
high-level decision making only needs to be performed very infrequently. One impor-
tant subsystem between the two extremes is perception, which is preferably running at
frequencies equal to the data acquisition rate, e.g. 30−60Hz for color cameras.

Perception is the task of interpreting and understanding the data collected by a robot’s
sensor. In most of such tasks, there is a clear flow of data: The robot’s sensors are data
sources that generate continuous streams of data. These streams are then processed, fil-
tered and transformed by different processes, which can extract more abstract information
useful at a higher level. Finally, the extracted information flow ends at sinks, which can
be low-level hardware drivers that perform actions in the real world.

Due to the naturally emerging data flow, it is common to model perception using data
flow graphs, which is also called Dataflow Programming (DP) or Flow-based Program-
ming (FBP). These data flow graphs are also often called pipelines, because data packets
are sent along a chain of processes analogous to a liquid in a pipeline. There are many
different ways to implement a data flow on a robot, both within a single pipeline, and
across different abstraction layers.

These approaches are equally expressive, however they focus on different aspects. One
aspect is the nature of the streams or buffers between the processing nodes. Some aspects
assume infinite-sized connection buffers, whereas others use bounded buffers. Another
characteristic is the evaluation model: Pull models are a demand-driven way to control
the data flow, where a node produces data only once a child node requests it. In contrast,
push models are data-driven where nodes produce data whenever they can be executed.

Finally, a data flow model can be either synchronous or asynchronous. This distinction
is also called any- vs. all-activation: In a synchronous system, a node can process
incoming data only once all of its inputs have received messages, whereas nodes in an
asynchronous system are activated once at least one of the inputs has a message. This
way, synchronous systems can be modeled using a Petri net with one transition, where all
inputs are connected places that have to hold tokens (cf. Figure 2.3a) and an asynchronous
system has different transitions for each input (cf. Figure 2.3b).

t1 t1
t1

(a) A Petri net model of a node exhibiting
synchronous data flow.

t1

t2

t3

t1

t2

t3

t3

(b) A Petri net model of a node exhibiting
asynchronous data flow.

Figure 2.3: A transition in a Petri net can only occur, when all places have tokens.
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Chapter 2 Graph-based Computation Models In Robotics

2.2.1 Publish/Subscribe
A common way to realize push-based data flow graphs is the topic-based publish-subscribe
paradigm. Probably the most well-known framework using this paradigm is ROS (Quigley
et al., 2009). The system consists of processing nodes and individual topics, which are
named data streams that transport data packets of a specific type. Each process declares a
public interface that states the topic the node consumes data from, as well as the topics
the node sends messages to.

This form of message-passing has a variety of advantages: Two communicating nodes
do not know of each other’s existence, they are only coupled to the topic with which they
are communicating. In addition, different nodes can be executed on different systems,
in which case the common topics are used to transport data between machines. Lastly,
the different nodes can implement subsystems at different levels of abstraction and run
at different frequencies. An odometry node, for example, can produce data at a rate
of 500Hz and publish it on a topic odom. A higher level node, with a notably lower
execution rate, can subscribe to the topic and process a batch of received messages in a
single iteration.

One important downside of this approach is that the individual processing nodes do not
receive feedback from their successors. A data source may run at a high frequency, yet if
all consuming nodes are running at significantly lower rates, many of the produced data
packets have to be dropped. Streams are generally running indefinitely, which means that
processing power can be wasted, since not all information can be propagated completely.
Figure 2.4a shows such an example, where a slow process cannot consume all data
produced by its parent node, but rather only one sixth of incoming packets.

Furthermore, each topic is subscribed to individually, which normally means that a
callback function is registered, which is called once data is available. Many processes
subscribe to multiple topics, however, and managing these subscriptions has to be done
for each node in the graph. For example in Figure 2.4b, the addition node is subscribed
to two streams, b and c, which in turn are produced by transforming a source stream a
with two functions f and g. The implementation of the node has to explicitly manage the

Camera

Process

Slow Process

60

60

10

(a) A slow process can only process ca. 1
6 of

the incoming packets.

vsource

f

g

+

a

a

b← f(a)

c← g(a)

r ← b+ c

(b) The two branches of data flow are not
guaranteed to be synchronized.

Figure 2.4: Problematic situations for data flow models.
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2.2 Flow-based Programming for Perception

synchronization between the two topics. This process is completely asynchronous and
there is no way to guarantee, that all data of the two streams is processed. Additionally,
the result r can only be specified as r = f (au)+g(av), where u and v are not guaranteed
to be identical, which means that in general r 6= f (at)+g(at) for each data packet at .

2.2.2 Request/Response
A request-response style approach implements pull-based data flow, similar to the publish-
subscribe model. The inverted evaluation model lends itself more to a control flow
approach, where consuming nodes request new data from their parent nodes once they
are executed. This can be implemented using remote procedure calls. This approach is
therefore rarely used in a pure data flow framework and is rather an additional tool. ROS
is using both a publish-subscribe model for data flow and the request-response model for
control flow.

2.2.3 Synchronous Data Flow
All flow-based programming methods can be described and designed using a data flow
graph. However, the publish-subscribe and the request-response approaches only implic-
itly model a graph structure, whereas other methods explicitly formulate a data flow graph.

SDF Events FSM

SDF+

Activity

HFG

AFG

One of the best developed, explicit data flow models
is Synchronous Data Flow (SDF), which was first
described by Lee et al. (1987). SDF is synchronous,
which means that a processing node can only be ex-
ecuted, once all its inputs have received a message.
This synchronizes parallel nodes, since the pipeline
is blocked, until all nodes are finished processing.

Additionally, SDF is also commonly constrained
to be homogeneous, which means that a node al-
ways consumes and produces exactly one message
on each input and output in each execution. This
constraint makes every node in the graph predictable, so that a static scheduling scheme
can be calculated. Non-homogeneous nodes have to be handled with care, so that no
locking can occur.

A well-known example of a successful implementation of SDF is the LUSTRE language
(Halbwachs et al., 1991). LUSTRE is an early SDF-based programming language that has
been designed to implement reactive systems. Its formalism, which is similar to temporal
logic, and its synchronous nature make it well suited for time-critical programming.
Furthermore, the formal approach makes it possible to implement real systems and reason
about their properties within a common framework.
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Chapter 2 Graph-based Computation Models In Robotics

2.2.4 Reactive Programming
While flow-based programming is focused on the processes in a flow graph, reactive
programming is more focused on the data streams themselves. Whereas we usually
assume a regular flow of data in flow-based programming, reactive programming is
focused on the propagation of change.

SDF Events FSM

SDF+

Activity

HFG

AFG

The change of every aspect of a system is avail-
able as an event. An event is an object in the system
that can be subscribed to by registering callback
functions that are executed once the event occurs.
This is why reactive programming can also be called
event-based data flow.

More specifically, reactive programming is a
form of asynchronous data flow. Events are the
sources of the data flow and processes are used
to transform, combine or induce new data streams.
The data flow has to be handled asynchronously, be-
cause it can be irregular and unpredictable. In addition, the data flow is not homogeneous,
since processing nodes can modify incoming streams or even create completely new ones.

2.3 High Level Robot Control Flow
In general, data flow is driven by data alone and does not explicitly represent different
states. This is an important advantage, because there cannot be any significant side effects
in a stateless program. Additionally, without an externally visible state, there are no
dependencies between different nodes in a data flow graph, which means that different
nodes can be processed at the same time without race-conditions.

To solve complex problems we often need to implement a high-level control law that
determines sequences of tasks the robot has to solve. This requires both a systematic way
to represent the current state of the system, as well as transition rules that can change to
different other states based on the robot’s actions. Therefore, pure data flow models do
not suffice to model large and complex robotic systems.

For simple applications, the high-level state can be represented implicitly across differ-
ent processes. For more sophisticated control policies, this can lead to unmanageable com-
plexity. Furthermore, this distributed representation impedes inspection and debugging.
There are two common ways to implement complex, high-level policies: (Finite-)state-
machine-based and behavior-based systems. State machines explicitly model different
possible states and transition between them, where exactly one state is active at a time.
Behavior-based systems, on the other hand, avoid explicit state formulation and most
often implement reactive action.
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2.3 High Level Robot Control Flow

2.3.1 Finite-State Machines
A finite-state machine (FSM) is commonly used to model the control flow of large
systems graphically. FSMs are not Turing-complete, since the number of possible
states is finite. They are, however, well suited for specifying robotic mission policies.

SDF Events FSM

SDF+

Activity

HFG

AFG

The Unified Modeling Language (UML) provides
different types of diagrams that are very frequently
used to model various algorithms and systems. The
UML defines different types of diagrams to repre-
sent control flow: Sequence diagrams, collaboration
diagrams, state charts diagrams and activity dia-
grams. Of those, state charts and activity diagrams
are especially useful for high level control flow ap-
plications.

UML state charts are a graphical way to repre-
sent finite state machines, as is demonstrated in
Figure 2.5 for a fetch-delivery robot, which is described in more detail in Chapter 4.
Whereas state charts only represent the state of the system, activity diagrams explicitly
model the control flow. Both diagrams are therefore useful for the visualization of com-
plex robotic mission policies. There exist multiple approaches to visually model state
machines using state charts and then compile them into a FSM that can be used on a robot.
This is done in many real-world applications, such as RAFCON by Brunner et al. (2016).

explore centre wait for go signal

fetch cube

deliver cube find delivery for N

no cube

timeout

received cube N station N is unknown

station N is known

station N found

cube still inside hopper

cube delivered

Figure 2.5: An example UML state machine chart of a fetch-delivery robot.

We demonstrate in Chapter 3 how FSMs can complement data flow to model a complete
robotic system. In Chapter 7 we then apply the activity diagrams idea directly to data flow
graphs. We show that modeling the flow of activity explicitly is equally useful for high
level control modeling. Additionally, using an activity-based formulation, we do not have
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Chapter 2 Graph-based Computation Models In Robotics

to model the state transitions and data flow graphs in separate frameworks but in a single,
coherent graphical model.

2.3.2 Behavior-Based Models
Another common way to model high level robot control policies are so called behavior-
based models. Here, the idea is to define different reactive behaviors, instead of modeling
the different states the robot can be in. In a behavior-based system, all components
are active at the same time, compared to FSMs, where exactly one state is active. To
influence the high level control, currently unnecessary behaviors are inhibited, such that
only the relevant behaviors influence the robot control. There exist many systems based
on behaviors, such as Integrated Behavior-Based Control by Proetzsch et al. (2007).

2.4 Conclusion
We have seen three graphical components that are commonly used to model parts of
robotic systems. Petri nets are useful on a mathematical level to precisely describe
complex systems in a rigorous way. On the other hand, they quickly result in verbose
models and are therefore rarely used directly for the final implementation of a system.
The opposite is true for flow-based programming and high level modeling mechanisms,
which are commonly used for abstract modeling and implementation, but are often not
easy to reason with.

In Chapter 3 we use the three distinct models together to derive a the SDF+ model,
which is capable of modeling a complete robotic system: We define a flow-based model
based on SDF and reactive programming using the framework of Petri nets. A finite-state
machine complements the data flow model and allows high level state to be represented.
We demonstrate the applicability of the SDF+ model in Chapter 4, where we model all
aspects of a fetch-and-delivery robot.

Using the Petri net description, the data flow and reactive programming components of
the SDF+ model are then generalized in Chapter 5 into the coherent HFG model. Finally,
the need for a separate finite-state machine is removed in Chapter 7, where the concept of
activity is introduced.
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Chapter 3

Synchronous Data Flow and
Event-based Message Passing
In this chapter we describe a basic framework for modeling a complete robotic system,
including perception, high level control and mission planning. The framework consists of
graphical models for flow-based programming and a separate finite-state machine (FSM).

SDF Events FSM

SDF+

Activity

HFG

AFG

Figure 3.1: Synchronous Data Flow
with Events and FSMs (SDF+)

This layer of our approach, which is highlighted
in Figure 3.1, is implemented using homogeneous
synchronous data flow, which was introduced in
Section 2.2.3, and event-based message passing,
which allows reactive programming (Section 2.2.4).
To highlight the fact that this model is an extension
of synchronous data flow, we will refer to this model
by the abbreviation SDF+.

The SDF+ model consists of two separate parts:
A data flow graph combining SDF and reactive pro-
gramming, supplemented by an FSM graph that is
used for mission planning. Data flow graphs and
FSMs models are represented by different mathe-
matical frameworks and cannot easily be unified.
Together they can represent any robotic system, as we demonstrate in Chapter 4.

This chapter is partly based on results that were first published in Buck et al. (2016b).
The theoretical contributions have been extended using the formalism of Petri nets.
Although the Petri net descriptions shown below might at first seem overly complicated,
we will see their usefulness in Chapter 5, where we show how to unify the different
graph-based models.

The precise nature of Petri nets serves as an exact specification for the implementation of
SDF+ graphs. This is an important property of our approach, since the main motivation for
developing this framework is real-world applicability. We demonstrate this in Chapter 4,
where SDF+ is used both in development and in the final implementation of a fetch-and-
delivery robot. The model is designed to natively support a graphical user interface for
the construction and analysis of computation graphs, which is presented in Chapter 9.
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Chapter 3 Synchronous Data Flow and Event-based Message Passing

3.1 Data Flow Graph
At first we will look at the data flow. We define both a formal and a graphical way to
represent an SDF+ flow graph. Let G = (V,E) be a directed graph of processing nodes V
and edges E. Then G combines both aspects from SDF and event-based programming,
where each vk ∈V represents a processing node. All nodes exclusively communicate via
message passing, which is realized using the connections E. This way, each node is a
functional unit, solely described by its inputs and outputs.

3.1.1 Nodes
We represent each node vk as a set of ports that can receive or send messages. Nodes can
exclusively communicate using message passing via these ports, which defines a clear and
precise interface between them. A node represents a single process in the computation
graph. Each vk ∈V is also assigned a processing function fk that reads messages from
incoming connections, then performs arbitrary computations and generates messages on
the outgoing edges. In addition to the inputs, fk can also read user-controlled parameters,
which we will introduce below.

3.1.2 Data Flow Ports
For each node vk we define a set of inputs Ik and outputs Ok

Ik =
{

kI1, . . . ,
kIik

}
, (3.1)

Ok =
{

kO1, . . . ,
kOok

}
, (3.2)

as visualized in Figure 3.2a.

kI1

.

.

.

kIik

vk

kO1

.

.

.

kOok

(a) A process vk reads data from inputs
kI and writes data to outputs kO.

kI1

.

.

.

kIik

vk

kO1

.

.

.

kOok

lI1

.

.

.

lIil

vl

lO1

.

.

.

lOol

(kOok
,l I1)

(b) Outputs can send messages to many inputs. Inputs
can only be connected to one output.

Figure 3.2: Synchronous data flow is described by input and output ports of process nodes.

We add an edge (kO, lI) to E if an output kO of node vk is sending messages to an
input lI of node vl . Inputs and outputs are typed and can be connected if their types are
compatible. An output can be connected to arbitrarily many inputs, but inputs can only
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3.1 Data Flow Graph

be connected to one output. We allow for an input to be optional, which means that it is
ignored, if it is not connected to an output. It is treated as a normal input, otherwise.

We call process nodes without inputs sources and nodes without outputs sinks. When
the processing function fk is executed, it will read the message from each I ∈ Ik and write
a message to some of the O ∈Ok. After the execution of fk, the messages for O ∈Ok will
be forwarded to all the connected inputs.

3.1.3 Event-based Message Passing
Pure data flow is ideal for processing indefinite streams of information. A robot’s percep-
tion can be modeled using multiple subsystems that are based on data flow. There are,
however, stimuli the system has to respond to, which are more irregular and often not
predictable. These can be both triggered by external means or detected within the data
stream. We call these stimuli events and introduce means to handle them in a coherent
framework with the data flow itself.

To realize such asynchronous data flow communication between nodes in G, we define
sets Sk and Ek

Sk =
{

kS1, . . . ,
kSsk

}
, (3.3)

Ek =
{

kE1, . . . ,
kEek

}
, (3.4)

representing slots and events of node vk analogously to Ik and Ok (cf. Figure 3.3). Every
node vk = (Ok∪Ik∪Ek∪Sk) is therefore a composition of inputs, outputs, events and
slots. In the graphical notation, we show slots on top of a node and events on the bottom.

kS1 · · · kSsn

kE1 · · · kEen

vk

Figure 3.3: Events and Slots on a dual graph structure.

Events can be used to send signals to another node by connecting them to slots,
contributing an edge (iE, jS) to the edges E. Using SDF+, events can only be connected to
slots and outputs only to inputs, which gives as a definition for any connection e between
two nodes vi and v j as

e ∈
(
Oi×I j

)
∪
(
Ei×S j

)
. (3.5)

We will lift this constraint when we consider hybrid data flow in Chapter 5.
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Chapter 3 Synchronous Data Flow and Event-based Message Passing

In contrast to the synchronous data flow, events are more irregular and should be
handled asynchronously once they are triggered, so that not all events have to receive a
message at the same time. This means that slots can be connected to multiple events and
vice versa. By not using the data flow to send events between nodes, we avoid sending
special marker messages. Additionally, disjoint data flow sub-graphs can run at different
frequencies but can still communicate via events.

3.2 Parameters
For each computational node vk ∈V we define a set of parameters Pk, which are treated
both as inputs and as outputs of vk by adding additional inputs IP

k ⊂ Ik and outputs
OP

k ⊂ Ok (cf. Figure 3.4). Parameters are declared for each node type and control the
internal processing of each instance of that node type. A node vk can read its parameters
at any time and is allowed to change them.

kI1
.

.

.

kIik

kP1

.

.

.

kPpk

vk

kO1

.

.

.

kOok

kP1

.

.

.

kPpk

Figure 3.4: Inputs and outputs of node vk. Parameters kPi are both inputs and outputs,
where messages are automatically forwarded.

A parameter’s value can also be changed by other means: An incoming message at a
parameter input port causes the value of that parameter to be updated. At every execution
of fk, all the parameters’ values are sent as messages on the corresponding output ports.
Both mechanisms together allow values of different parameters to be synchronized without
their nodes knowing about each other.

Parameters behave the same as regular input or output ports and can be connected to
any other port, making the parameter accessible to the network. Values computed by a
node can be manipulated using further processing nodes and then assigned to another
node’s parameter, for example. At the same time, this explicit modeling enables a user
interface to present control panels to adjust the parameter values, giving the user a more
direct control over the data flow.
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3.3 Petri Net Execution Model

3.3 Petri Net Execution Model
In order to precisely describe the behavior of the SDF+ model, we now develop an execu-
tion model based on Petri nets. The idea is that the resulting nets can be directly used to
infer the behavior of any SDF+ graph, independently of implementation details. Addition-
ally, we use different types of tokens: A B token represents a message that is supposed to
be handled synchronously, whereas a E token should be handled asynchronously. In other
cases we use a generic • token to signify that the token does not represent a message.

3.3.1 Synchronous Data Flow
We borrow some of the terms from Petri nets to describe the synchronous data flow.
Consider the node vk shown in Figure 3.5a, which has three inputs and two outputs.

kI1
kI2
kI3

kO1

kO2

vk

(a) A node with three inputs and two outputs. In
contrast to outputs, inputs need to have exactly
one connection.

ti to

vk

(b) The input transition ti and the output tran-
sition to represent all inputs and outputs of vk.
Each connection is modeled as a place.

Figure 3.5: An example node and its Petri net depiction.

We say that vk becomes enabled once all of its inputs have received a message and all
of its outputs can send a new message. This can be (almost) directly described using an
input transition ti and an output transition to in the corresponding Petri net formulation
shown in Figure 3.5b. Although a node can have arbitrarily many inputs and outputs, the
execution model only needs these two transitions.

The Petri net model of vk shows the synchronous data flow graphically: Once all
predecessors of ti hold a token, ti can occur, which removes those tokens and creates a new
one in vk. This represents the execution of the processing function fk, which is associated
with vk and is visualized in Figure 3.6a and Figure 3.6b.

ti to

vk

B

B

B

(a) vk is enabled.

ti to

vk

(b) fk is executed.

ti to

vk B

⊥

(c) Messages are sent.

Figure 3.6: A node reads all input tokens, processes them and then produces output tokens.
This nicely demonstrates the flow of tokens and the synchronous data processing.
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Sources are enabled whenever their outputs can send messages and sinks are enabled
when all inputs have received a message. Enabled nodes can be executed whenever pro-
cessing resources are available. Here we can immediately see the meaning of synchronous
data flow: Tokens are synchronized on input transitions and then processed at once. After
the execution of fk, the node (possibly) generates outputs (Figure 3.6c). If there are no
messages to be sent, we propagate a special⊥ token instead, which represents no message
and can also be seen in Figure 3.6c. This way, every output generates exactly one message
per iteration, which is also called homogeneous synchronous data flow.

Edges in the graph represent connections between nodes on which messages are sent.
Each connection joins exactly one output to one input and can also be represented using
two transitions, which are shown in Figure 3.7.

to

i o

ek

ti

Figure 3.7: Each connection ek transmits a token from an output to to an input ti.

The transition i can occur once the corresponding output transition to has produced a
token. This can be interpreted as buffering a single token in the connection ek, which
is shown as a gray box. Once ek holds a token, the transition o can occur, relaying the
message to the connected node.

3.3.2 Notifications
The simple Petri net shown in Figure 3.6 only partly represents the desired behavior,
because it only ensures that all inputs have a token. The output places can accumulate
arbitrarily many tokens, which we do not allow in the SDF+ model. To model the flow
completely buffer-less, we introduce notifications.

free

ti

ni

to

no

(a) The function fk can only be executed when
the (red) enabling place holds a token.

i

ni

o

no

(b) A connection can also only forward a single
token until it is notified.

Figure 3.8: After sending tokens, nodes and connections have to be notified.

We extend the net by adding enabling places, which need to hold a token so that the
processing function fk can be executed. The place is shown as a red circle in Figure 3.8a.
Additional notification transitions no and ni are also added, which complement to and ti.
We denote places involved in data flow with blue circles and notification places in gray.
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3.3 Petri Net Execution Model

Once a node has processed incoming tokens and produced output tokens, the red place
does not hold a token anymore (cf. Figure 3.9a to Figure 3.9c). This means that fk cannot
be executed again until a notification token is received at no. Once all places connected
to the notification transition no have tokens, which is shown in Figure 3.9d, the node vk
can be re-enabled. This process sets a token at the enabling place and propagates the
notification up-stream (cf. Figure 3.9e and Figure 3.9f).

ti

ni

to

no

B

B

B

(a) The enabling place has a
token, fk can be called.

ti

ni

to

no

(b) The node is processing.

ti

ni

to

no

B

B

(c) Outputs are generated, vk
is disabled.

ti

ni

to

no

(d) The notification transition
no is enabled.

ti

ni

to

no

(e) The node is re-enabled.

ti

ni

to

no

(f) The notification is propa-
gated up-stream.

Figure 3.9: Once outputs are sent, a notification is required to allow another iteration.

In a similar fashion, we model the behavior of a connection. Figure 3.8b shows a Petri
net, demonstrating the same notification behavior for a connection: The highlighted place
at the center of the connection represents, whether the connection can forward a message.
Once the input transition i has occurred, the incoming message is buffered inside the
connection. The red place no longer has a token, so i occur again. After a connection has
sent a token, it has to be re-enabled. This is again done, once it receives a notification
token. Until now the main difference between the node model and the connection model
is that a connection models a 1:1 relation.

3.3.3 Events and Slots
Building on the Petri net model for synchronous data flow, we now construct Petri nets
for slots and events. Slots are designed to process incoming tokens directly, in contrast to
the synchronous data flow, where all incoming tokens are processed at once. Figure 3.10a
shows a Petri net which implements this behavior. We have a transition si for each slot
Si, which means that every token arriving at a slot can directly enable the transition. In
addition we have a single enabling place, called a lock, for all slots of the same node. This
enforces that no two slot callbacks are evaluated at the same time.
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Chapter 3 Synchronous Data Flow and Event-based Message Passing

In contrast, events are really independent of each other, yet they should not be triggered
more than once, before the produced tokens have been processed. Otherwise we would
again need to implement an unbounded buffer between events and slots. Figure 3.10b
shows the Petri net for a node with two events. They both have their own enabling place,
which ensures that each event is only sending new tokens when a notification has been
received.

lock

s1s1n s2n s2

E

(a) Slots share a common enabling-place and
cannot be handled at the same time. Here s2 is
enabled and can be triggered.

e1ne1 e2ne2

E

(b) Events have individual enabling-places,
they can be triggered concurrently. Here event
E2 was triggered and has produced the E token.

Figure 3.10: Petri net models for slots and events.

Here the difference between the SDF and events is visually apparent: SDF constructs
a pipeline where a token is sent across multiple nodes, followed by a notification token
that is sent in the opposite direction. Events, on the other hand, are directly handled by
connected slots. The SDF+ model therefore does not require any message buffers, instead
it uses the notifications to control the flow of data.

Comparing the Petri nets in Figure 3.9 and Figure 3.10 with the net for a connection
in Figure 3.8b, one can see that both inputs and outputs, as well as events and slots can
easily be connected using connections. This way, both SDF and event-based message
passing are modeled coherently.

3.3.4 Synchronization
A node vk encapsulates several possible procedures: One is fk, i.e. processing incoming
messages of the data flow ports. The other possibilities are the slots Sk, each of which
has to be processed asynchronously. To achieve correct behavior for stateful nodes, none
of these calculations are allowed in parallel. The mutual exclusion scheme deployed
in the SDF+ model is shown as a Petri net in Figure 3.11, which is a combination of
the individual Petri nets constructed above. Additional arcs, used to connect locks and
enabling places, are shown with double lines. Each vk is assigned a lock that synchronizes
data flow and event handling, symbolized as an additional place.

This combined Petri net allows a bi-directional flow of tokens. Places shown in blue
carry message tokens: As introduced above, data flow is shown horizontally, whereas
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3.3 Petri Net Execution Model
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(a) The Node is unlocked and
free. It can either process
data at ti, or handle slot s2.

ti

ni

to

no

s1s1n s2n s2

e1ne1 e2ne2

E

(b) The node is processing the
messages. The lock has been
taken, so s2 cannot occur.

ti

ni

to

no

s1s1n s2n s2

e1ne1 e2ne2

B

B

E

(c) The node is done process-
ing, the lock is returned. Now
s2 can occur.

Figure 3.11: While a process is executed, no slots can be evaluated and vice versa.

events are shown vertically. The net can process incoming data using the input transition
ti, and it can process incoming events using the slot functions si. The additional synchro-
nization arcs, shown in bold, ensure, that no locking is necessary: While an event is not
enabled, the processing function fk cannot be executed, ensuring that fk can trigger every
event on each iteration.

Another way to view the two types of data flow is shown in Figure 3.12. Synchronous
data flow is propagated to the sink nodes until the notifications are sent back (solid line).
Asynchronous data flow immediately returns a notification (dashed lines).

ti

ni

to

no

s1s1n s2n s2

e1ne1 e2ne2

ti

ni

to

no

s1s1n s2n s2

e1ne1 e2ne2

Across multiple,

synchronous connections.

Figure 3.12: Synchronous data flow (solid line) is propagated to sink nodes before any
notifications are sent. This propagation can happen across many nodes in the graph.
Asynchronous data handling in slots immediately returns a notification (dashed lines.)
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3.3.5 Execution Example
Using the Petri nets defined above, we now shortly look at an example that contains both
a node and some connections. This demonstrates how a node with multiple inputs can be
modeled. Figure 3.13 shows a Petri net for a node with two inputs and two outputs.
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(a) Both incoming connections are enabled.
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(b) The connections have forwarded the tokens and are now disabled. The node is enabled.

Figure 3.13: Message tokens are arriving at a node and thereby enable it.

After the node is enabled by receiving messages on all inputs, it can call the processing
function. As shown in Figure 3.14, the node is then disabled until a notification is received.
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(a) The node starts processing, locking all slots.
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(b) The node has finished processing and has produced outputs.

Figure 3.14: Processing the inputs disables the node until a notification is received.

The graph downstream now processes the generated tokens until there are no more
nodes. Sinks send back notifications, which will arrive at outgoing connections of the
current node (Figure 3.15a). These then forward the notification to the node (Figure 3.15b).
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(a) Notification tokens are received at the outgoing connections.
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(b) The outgoing notification transition no of the node is enabled.

Figure 3.15: When all outgoing connections have been notified, the node itself gets
notified, allowing the next iteration of processing.

Once all notification places connected to no have received a token, the node is notified.
This corresponds to all outgoing connections being processed downstream. At this point
in the example, no can occur (Figure 3.16a), which places a token at the enabling place of
the node. Additionally, the notification is forwarded to all connections upstream, which
all get re-enabled before again propagating the notification (Figure 3.16b).
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(a) The notification restores a token to the enabling place of the node.
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(b) The notification is fully propagated, another iteration can begin.

Figure 3.16: When the node gets notified, it can again be enabled.

This example has demonstrated the synchronous data flow of SDF+. Events are handled
directly in a node and therefore do not allow this kind of process chaining. The Petri net
model for a connection, however, is also valid for events.
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3.3.6 Scheduling
Scheduling the execution of G requires a policy to decide when to execute the different
nodes. There can be multiple enabled nodes at any time, which allows concurrent
execution. The order in which these nodes are executed does not matter, they can run in
a sequence or fully in parallel. To allow dynamic modification of the data flow graph at
run-time, a static scheduling scheme, as originally developed for SDF graphs by Lee et al.
(1987), cannot be employed.

3.3.7 Execution Pruning
Since we propose a push-based model, the active drivers of a flow graph are the source
nodes, which are pushing messages through the graph. In addition, the SDF approach is
homogeneous, meaning that for each invocation of a node, every output has to produce
exactly one token. That is why we publish a ⊥ token for all outputs that would otherwise
produce no token in an iteration.

A homogeneous flow is required, otherwise there could arise a situation as the one
depicted in Figure 3.17. Here ti is still waiting for a token from the upper connection,
which will never be received. Using a ⊥ token solves this problem. This marker message
has to be forwarded to every node in the connected component down-stream.

ti

ni

to

no

i

ni

o

no

i

ni

o

no

Parent node generated no token

A token was sent B

Figure 3.17: Without the use of ⊥ tokens, nodes can cause a dead-lock at ti.

When a node vk receives a ⊥ token on a non-optional port, the function fk will not
be executed. Instead all incoming tokens are read and ⊥ tokens are published on all
the outputs. The flow is then synchronized, however there are many marker messages
transmitted. In larger graphs, this can cause performance problems: Every marker has to
be propagated, even though the nodes down-stream cannot be executed.

To avoid this penalty, we make full use of the graph-based nature of SDF+. If a node
vk cannot be executed due to a ⊥ token, we analyze the connected component of vk to
determine if the ⊥ token has to be propagated to the children of vk. This analysis can be
precomputed and only has to be updated, once the graph is changed.
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3.4 Simplified Graphical Representation

There are special cases of nodes that need to receive marker messages, which we call
essential nodes. The following three characteristics are computed for each node:

vk is essential⇔ vk needs to process marker messages. (3.6)

vk is required⇔ There exists a path from vk to an essential node. (3.7)

vk has siblings⇔ There exists a node down-stream of vk joining streams. (3.8)

If vk is required, i.e. it leads to an essential node, we need to forward the ⊥ token,
otherwise the behavior of the system would change. If vk has siblings, we also need the
token, otherwise the scenario shown in Figure 3.17 can occur. In any other case, that is if
vk is not required and if it does not have siblings, we can drop a ⊥ token completely.

3.4 Simplified Graphical Representation
In most cases, nodes have multiple different message and event ports. This can quickly
complicate the graphical notation, especially in large graphs. We therefore simplify the
notation and do not show the individual ports where possible, as is demonstrated in
Figure 3.18. We omit multiple arcs between nodes, if they are not essential in the current
situation. We show synchronous data flow with dark arcs and asynchronous flow with
light arcs.

kI1

.

.

.

kIik

vk

kO1

.

.

.

kOok

kS1 · · · kSsn

kE1 · · · kEen

(a) Nodes with many different ports can be-
come unclear when fully visualized.

vk
B

E

(b) Dark edges carry data flow, light edges
carry events. Available messages are marked
with B for data flow and E for events.

Figure 3.18: We omit representing ports and multiple arcs in contexts where they are not
necessary. The side on which arcs connect to nodes also determines their function.

Using this simplified notation reduces the complexity of larger graphs. The example
graph shown in Figure 3.19a can be reduced to the one shown in Figure 3.19.
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(a) An example graph in the detailed depic-
tion.
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(b) The example from Figure 3.19a in the
simplified variant.

Figure 3.19: We omit representing ports and multiple arcs in contexts where they are not
necessary. The side on which arcs connect to nodes also determines their function. The
connection labeled with E is asynchronous, the one labeled B is synchronous.

3.5 Finite State Machine
Simple mission control could be modeled using data flow, where each data flow node
represents a single task and the flow of data determines which tasks are executed. This
approach breaks down, when the missions become too complex, since our variant of SDF
cannot represent recursive connections, which means that at some point the flow reaches
a sink and the program is finished.

Reactive programming using events could more readily be used to model a robot’s
mission, if the usage of events were to be constrained. However, each event in a graph can
be fired at any moment, resulting in concurrent events flowing through the event graph.
This makes it difficult to represent a single sequence of actions that is guaranteed to be
performed without any other parts of the graph interfering.

That is why both data flow and event-based reactive programming, as described so far,
are defined to be basically state-less. It is also the reason for the third component in the
SDF+ model: A separate finite-state machine. The FSM is used to represent any form
of high level state that is necessary to model mission control for a robot, i.e. performing
sequences of tasks at a high level of abstraction. The state machine can generate events
that can be reacted to by the flow graph, e.g. by disabling currently unnecessary sub-
graphs. In addition, the output of any node can be forwarded to the active state in the
FSM, which can be used to trigger a state change. More examples of how the FSM and
the flow graph can interact will follow in Chapter 4.
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3.6 Exemplary Usage

3.6.1 Conditional Branching
One of the most basic control flow building blocks of a program are conditional statements.
We can model an if-statement using SDF alone, as we demonstrate in Figure 3.20.

vs

vc

Switch

vtrue

vfalse

B

condition c

B if c

B if ¬c

Figure 3.20: The switch node takes a boolean and forwards an incoming token based on
the boolean’s value on one of two possible outputs.

A source node vs generates a message, which is sent to the switch node, which also gets
a boolean message c from some other node vc. Based on the value of c, the switch node
either sends the message to vtrue, if c is true, or to v f alse if c is false. The other node
receives a ⊥ token.

3.6.2 Filter
Similarly to the conditional branching example, it is straight-forward to implement a
filtering node using the ⊥ token in combination with execution pruning. Figure 3.21
shows the interface of a generic filter node.

vs Filter vt
B Bor ⊥

Figure 3.21: The B token can be dropped by the filter node, resulting in a ⊥ token.

Let us, for example, consider a throttle node that receives a video stream and forwards
only every n-th image. This can easily be achieved by an internal state variable in the
implementation of the filter node, where we ensure to send exactly n−1 tokens of type ⊥
messages before relaying another B. In graphs where the ⊥ token can safely be pruned,
this results in a negligible overhead.

3.6.3 Translation between Asynchronous and Synchronous Flow
So far we have viewed SDF and asynchronous events separately, since connections
between events and inputs, or outputs and slots are not allowed in the SDF+ model. It is,
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vk

Bu�er vl
B

E

(a) The buffer family of nodes converts signals
to synchronous data flow.

vk Emitter

vl

B

E

(b) The emitter nodes convert data flow to
events.

Figure 3.22: Special nodes can translate between SDF and asynchronous events.

however, possible to translate between the two using additional nodes. For this we define
two families of nodes: Buffers and emitters (cf. Figure 3.22a).

Buffer nodes are nodes that are sources in the synchronous data flow and receive the
data they produce via an asynchronous slot. Buffers can vary in their behavior, e.g. they
can repeatedly publish the latest token they have received (aka. latching). They can also
just publish the latest node once. Both these behaviors effectively act as a decoupling
device, since a high frequency signal stream can be translated in a low frequency SDF or
vice versa. In contrast, emitter nodes (Figure 3.22b) are used to translate SDF into events,
e.g. when a token fulfills some specific criteria. This translation between the two types
of data flow has to be done explicitly, there is no direct way. We address this issue in
Chapter 5, where the two data flow paradigms are merged.

3.6.4 Parameter Optimization
In the SDF+ model, parameters are first class objects - they fully participate in the data
flow. This enables many meta applications, one of which is parameter optimization. Here
the key idea is that we can generate a set of parameters P and evaluate the performance of
a SDF+ graph G′ by calculating a fitness E(P) value for the parameters. By minimizing
E, we can optimize the behavior of G′.

EvA2 G′ e EvA2
Pi B E(Pi)

Figure 3.23: Evolutionary optimization of a graph G′ using EvA2.

One way, visualized in Figure 3.23, is to use Evolutionary Algorithms (EA), e.g. from
EvA2 by Kronfeld et al. (2010), which randomly generates populations of parameters and
mutates them according to selectable mutation laws. In each iteration, the EA generates
a parameter set Pi which is transferred to the graph G′, which we want to be optimized.
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3.7 Conclusion

The graph generates messages which flow to an evaluation node e, which has to be
implemented for each specific optimization. Once the fitness E(Pi) is calculated, it is then
returned to EvA2, which uses it for the EA. This process can then be repeated indefinitely,
until an optimal parameter set P∗ is determined.

As can be seen from Figure 3.23, only a single new node has to be implemented to
optimize a new problem: The fitness calculation node e. It is therefore easy to optimize
the free parameters of any graph constructed using SDF+, given that such a node e can be
implemented.

3.7 Conclusion
The SDF+ model uses nodes to merge both synchronous data and event messages in a
single process. Each node processes all its inputs at the same time, which means that
there is no way to achieve asynchronous processing of individual inputs. This way of
processing is only possible using event-based message passing. A single node can receive
an arbitrary amount of events or trigger several events itself. There is, however, no way to
handle an event in a synchronous sub-graph, which means that the sender of an event will
immediately continue operating, once a triggered event has been posted to all its children.

Another limitation of using SDF and events separately is that every node in each
connected SDF component of the graph has to operate at the same frequency. Although
it is possible to translate messages into events, there is no way to achieve guaranteed
synchronous data processing with varying frequencies.

Many problems can be solved by SDF+, i.e. using synchronous data flow and event-
based message passing separately. Translating between the two ways of passing messages,
however, requires additional nodes in the graph. Additionally, there are some problems
that cannot easily be solved: Homogeneous SDF is incapable of modeling loops. This
also means that it is not possible to model iteration of a set of messages. Instead, such
looping and iteration has to be done inside a single node.

We address these limitations in Chapter 5, where we formulate a unified data flow
model. In addition, we propose in Chapter 7 a way to also eliminate of the use of a
separate FSM model by introducing additional properties. In the next chapter, we show
an example application of the SDF+ model to model a fetch-and-delivery robot.

Even though the SDF+ model has many limitations, it can be applied to many robotic
systems. Figure 3.24 shows a real-world SDF+ graph that was developed for the partici-
pation in the SICK robot day 2014 competition. The graph is shown as a screen shot of
the CS::APEX graphical user interface, which allows the construction, evaluation and
application of SDF+ models. Problem specific nodes in the graph are shown in blue, the
other nodes are completely generic and show the re-usability aspects of the graph based
system. The individual components shown are described in detail in the following chapter.
The architecture of the CS::APEX framework, which is presented in Chapter 9, also
allows the construction of HFG and AFG graphs, as derived in Chapter 5 and Chapter 7.
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Chapter 4

Modeling a Fetch-and-Delivery Robot

4.1 SICK Robot Day 2014
Participation in a competition poses multiple constraints on the design and implementation
of a robotic system. Contrary to many other situations, deadlines cannot be extended
and the system has to perform autonomously on the first try. Every part of the system
has to perform at the same time and every part has to collaborate with every other part
reliably. Competitions are therefore a challenge that motivate a design that is simple and
efficient, yet robust to influences that cannot be controlled or anticipated. Smaller robotics
competitions are an exercise in team work and act as benchmarks, just as well as larger
contests like RoboCup, the DARPA challenge and others (Behnke, 2006).

The SICK Robot Day is a bi-annually hosted competition by the SICK AG, Waldkirch,
Germany, a well known producer of sensor systems. In the past the objectives have varied
notably, from perception and interaction, as described by Scherer et al. (2011), Masselli
et al. (2013), Cigolini et al. (2013) and Fejfar and Obdržálek (2014), to navigational tasks
as depicted by Fredriksson et al. (2007). Additional difficulty has always been caused by
multiple competing robots performing simultaneously in an arena that is small enough to
provoke robots encountering each other.

In this chapter we describe our design for the participation in the SICK Robot Day 2014,
which is based on the SDF+ model. This time, the challenge was to fetch and deliver
objects in a scenario resembling the tasks in an automated warehouse, where four robots
were competing in a relatively small area at the same time. Besides a mechanism for
collecting and delivering the objects, participating robots had to be able to detect filling-
and delivery stations, navigate autonomously, and at the same time avoid collisions with
other robots. The goal was to deliver as many objects as possible, where each correctly
delivered object was awarded one point and each erroneous delivery one penalty point.

The rest of this chapter is structured as follows: Section 4.2 states the requirements
posed by the rules of the competition. Section 4.3 illustrates the design of the resulting
system and presents the different components of the SDF+ model. Section 4.4 presents
experimental results. Section 4.5 summarizes the conclusions. This chapter is based on
the articles published in (Buck et al., 2015) and (Huskić, Buck, and Zell, 2016).
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4.2 Requirements
The competition was held in an approximately circular arena with about 12m diameter in
which four robots competed at the same time. With a time limit of 10 minutes, each robot
had to alternately collect labeled objects at filling stations and transport them to delivery
stations based on the object label (cf. Figure 4.1). The octagonal collection area, where
the robots had to approach one of four filling stations, was located in the central part of
the arena. Once a robot had reached the designated filling spot, it had to signal the human
operator to provide an object to be delivered. These objects were known to be wooden
cubes of side length 6cm, which were labeled on each side with the designated delivery
station using a bar code imprint. On the outer boundary there were four delivery stations,
one for each possible object label. Whereas the filling stations could be selected freely,
every delivery station could only be used to hand off one specific object type. Therefore
robot-robot interactions were inevitable and had to be accounted for.

Both filling and delivery stations comprised of a ring of diameter 30cm at a height
of around 50cm and a bull’s eye target sign for precise positioning (cf. Figure 4.1b).
Delivery stations were additionally marked with a large sign displaying one of the digits
printed onto the wooden cubes. The robots therefore had to be able to detect both the
bull’s eye and the number signs. Once a robot had reached a station, it had to activate a
green signal lamp to indicate its intention to collect or deliver an object. A human operator
would then insert or remove a cube within at most 10 seconds.

(a) The robot receives an item. (b) The item is removed at a delivery.

Figure 4.1: The robot signals the operators to add or remove an item using a green light.

To successfully participate, a robot therefore had to fulfill the following requirements:

• Detection of signs displaying the digits 1 to 4, as well as bull’s eye target signs

• Receiving a cube and reading the imprinted bar codes

• Localization and navigation in a shared space with three other robots

36



4.3 Design and Implementation

4.3 Design and Implementation
Here we present the final system design and implementation we used for participating in
the SICK Robot Day 2014. All perception tasks are implemented using the SDF+ model.
For each task we first present an interface describing the inputs and outputs of the graph,
as well as the major components of the graphs.

4.3.1 Target Detection

Target Detection

Bcamera image

Blaser scan Bpose or ⊥

The primary part of localizing filling and de-
livery stations is the detection of bull’s eye pat-
terns as seen in Figure 4.3a. These patterns
are used to accurately position the robot below
wooden rings through which the objects are
thrown by the human operators.

Figure 4.2 shows the final SDF+ implementation, which corresponds to the abstract
interface. Since the height of the surrounding border of the arena is known to be about
50cm, we first use a mask to quickly dismiss large parts of the camera image by extracting
a band of 35cm around the expected height of target signs. This is achieved by projecting
each point pi of the front laser scanner onto the camera image using the camera calibration
matrix A and the static transform between camera and laser scanner frames CTL to calculate
the image coordinates (u,v)i.

Laser Mask

Adaptive Threshold

Morphological

Normalisation

Connected Components

Canny Edge

Cross Detection

Bcamera image Bbinary image

Bmask

Blaser scan

Bpose or ⊥

Figure 4.2: The SDF+ graph that implements the target sign detection has the camera
image and the current laser scan as inputs and returns the pose of the target, or ⊥ if the
target is not found. Highlighted nodes are problem specific.

The points (u,v)i are calculated twice, first for a height of z = 0 and then for z = 35cm,
resulting in two sets Llow and Lhigh where Llow corresponds to the projection of the laser
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scan and Lhigh is shifted upwards. The polygon between Llow and Lhigh is then filled to
generate a matte as shown in Figure 4.3b. The masked image is then examined for regions
of interest by first applying a blackhat morphological operator and then performing
a connected component analysis using cvBlob (Linán, 2014). Large components are
normalized to improve robustness against lighting changes and are then further processed.

(a) Number sign and partly occluded bull’s eye. (b) Image masked based on laser projection.

Figure 4.3: Bull’s eye detection is performed on regions of interest.

We calculate Canny edge features (Canny, 1986) and apply the probabilistic Hough
transform (Matas et al., 2000) in order to extract the horizontal and vertical line in the
pattern. Detected lines are processed using various heuristics to reject short or skewed
lines. Remaining intersecting lines with an angle of intersection near 90° are classified
as targets, resulting in a situation as shown in Figure 4.4b. In the end, only two problem
specific nodes have to be used.

(a) Regions of interest. (b) Resulting detection of a target.

Figure 4.4: Dark patches with light backgrounds patches are then extracted and analyzed.
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4.3.2 Sign Detection

Sign Detection

Blaser scan

Bcamera image Bposes

Delivery stations are marked with signs display-
ing the numbers 1 to 4, whereby the number
represents the type of cube that can be deliv-
ered. Figure 4.5 shows the graph to detect these
signs and read the depicted number. To solve
this problem we compared two multilayer per-
ceptron (MLP) neural networks, the one we
used at SICK robot day 2010 based on the Stuttgart Neural Net Simulator (SNNS) which
was described in detail by Scherer et al. (2011) and a later approach using JANNLab by
Otte et al. (2013). The need for an alternative classifier stemmed from the observation
that some numbers could not be detected as well as others by the existing network.

To optimize the runtime cost, we also use the laser projection mask as described in
Section 4.3.1. Here we extract a band above the wall in which the signs are expected,
which further reduces costs compared to the previous approach. Detected signs are
then mapped for future reference, such that the robot does not have to search for the
appropriate sign for every delivery run. We use a Gaussian mixture model to be able to
model hypotheses in a way robust to false detections. For the model of a sign we use a
two dimensional Gaussian distribution for the x-y position and a von Mises distribution
for the orientation. As shown by Bishop et al. (2006), the maximum-likelihood solution
θ̄ for the orientation of a hypothesis is then given by

θ̄ = atan2

(
1
N

N

∑
i=1

sin(θi),
1
N

N

∑
i=1

cos(θi)

)
, (4.1)

where θi are the individual measurements of the orientation and N is the number of
measurements. For path finding we refer to this sign map and choose the target pose based
on the best hypothesis.

Laser Mask

Adaptive Threshold

Morphological

Connected Components

ANN Sign DetectionBimage

Bbinary image

Bmask

Blaser scan

Bposes

Figure 4.5: The SDF+ graph that implements the number sign detection. Highlighted
nodes are problem specific.
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4.3.3 Cube and Bar Code Detection

Cube Detection

Bcamera image

Bnumber or ⊥

After collecting a new cube, the target deliv-
ery station has to be determined. To get the
numerical value of the cube’s bar code we use
the ZBar library (Brown, 2013). Bad lighting
conditions or a wedged cube can cause a failure
of the bar code analysis. Therefore we use a
robust secondary system to frequently check
whether an object is in the hopper or not. Figure 4.6d displays such a case in which no
bar code can be detected even though a cube is in the basket.

(a) Empty, no pattern (b) Empty, with pattern

(c) Cube in optimal position (d) Cube wedged

Figure 4.6: The cube hopper camera scene.

Our first approach to realize a cube detection was to calculate the standard deviation
of the intensity values. The robot’s hopper is painted black, so the standard deviation of
the empty camera scene is minimal, as can be seen in Figure 4.6a. The moment a cube
enters the scene, the standard deviation rises considerably. A problem with this approach
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is, however, that it heavily relies on a well configured camera which adapts to the lighting
conditions.

As JANNLab is already a part of the software infrastructure, we therefore implement a
more robust solution based on neural networks. We use a multilayer perceptron neural
network (MLP) to detect the characteristics of the pattern seen in Figure 4.6b indepen-
dently of the lighting conditions and resulting image brightness. The network is trained
using data generated under several different lighting conditions. We also take conditions
into account which are more extreme than those expected at the competition. As input for
the MLP, we use a normalized vector of 100 intensity values, extracted from the pattern
within the scene.

4.3.4 Map Analysis

Map Analysis

Bgrid map
Bmap metrics

Bfilling stations

One important reason for performing SLAM
instead of driving reactively is to be able to
use a map of the environment for determining
the positions of filling and delivery stations.
Delivery stations are assumed to be on the arena
border. In case a station is unknown, the robot
has to scan the border systematically by driving
counter-clockwise around in the arena while looking in the tangential direction. The filling
stations are placed on every second side of an octagonal island at the center, whereby the
side facing the starting position of the robot is guaranteed to be a station.

To determine the exact positions of the four filling stations, we first classify every occu-
pied cell in the grid map into center and border. Hereby we assume that the segmentation
filter described in Section 4.3.5 is able to completely remove every robot from the laser
scans such that the map only contains occupied cells for walls. On all cells labeled as
center we perform RANSAC with an octagon model: We sample two points and assume
that they are the endpoints of one side s1 of the octagon. We then extend s1 in the direction
of the centroid of the map to a full octagon by adding s2 to s8 and checked the hypothesis.

Using the best hypothesis model, we select side si as a filling station side, for all i which
minimize the angle between side si and the starting position. We then add the appropriate
three remaining sides and check a rectangular box in front of the filling station sides for
laser scan hits in order to decide which filling station is free and which is in use. As shown
in Figure 4.7a, we also perform this procedure for the remaining sides, because we had
assumed a square center and only had limited time to change the algorithm.

4.3.5 Localization and Mapping
To localize the robot in the arena, a graph based simultaneous localization and mapping
(SLAM) algorithm is used. This module is not implemented using the SDF+ model. We
decided against a pure localization algorithm, because the exact map of the arena was
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(a) Analysed map showing the detected octagon
and 8 free sides

(b) Cost map (simulation) used for path plan-
ning. High costs are red.

Figure 4.7: RANSAC analysis of the grid map given by SLAM and generation of a cost
map using the distance transform.

unknown before the competition and we did not want to depend on prior information.
A SLAM algorithm using only scan matching without odometry information, like the
open-source module of the Hector framework by Kohlbrecher et al. (2014), did not work,
because the arena was too symmetric to correctly detect movements from the scans. Out
of the evaluated open-source implementations of graph-based SLAM, Karto (Vincent
et al., 2010) was found to be the most accurate for our case. However, this algorithm
assumes a static environment and is usually used for exploration and not for long term
use, which required us to implement extensions.

The requirement of a static environment is not given, since there are other robots in the
arena that move and sometimes stand still. If another robot is not moving for a certain
time, it will be included as occupied space in the map, which would then be remembered
by the algorithm for several iterations, even after the robot moves away. This would
complicate path planning by adding unnecessary costs to the cost map. To solve this
problem we pre-process the laser scan with a jump distance segmentation, which filters
a scan using the difference ∆r = |rk− rk+1| of two neighboring rays rk and rk+1. If ∆r
exceeds a threshold T a new segment is started. A segment is removed if the euclidean
distance of its start and endpoint is below a minimum value Smin.

The second problem is that Karto stores all matched scans. Every time a map is
requested from the path planner, all n stored scans have to be integrated into a grid map.
Therefore, the computational complexity and the time to provide a map increases linearly
with the number of stored scans. Since long waiting times would cause time-outs in the
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path planner, we limit the map creation time without decreasing the localization accuracy.
This is done by limiting the number of scans being used for a map update. To also include
some older scans in the map, scan selection for n scans is divided in to three intervals:
A dense interval comprises the latest scans sk with k ∈ [n−100,n). Additionally, a semi
dense interval with k ∈ (n− 200,n− 100) and k = 0 (mod 10) is considered. Finally,
we consider a sparse section with k ∈ (n−1000,n−200) and k = 0 (mod 100). In the
background all scans are kept in the graph to achieve high localization accuracy from loop
closures and to avoid drifting of the map.

4.3.6 Navigation
We use a full navigation stack including path planning and following, that has been
developed to work with all of our robot platforms. For this implementation, the navigation
stack is not using the SDF+ model. The map generated by the SLAM subsystem is
preprocessed and then used for path finding. The resulting path is post-processed and
then used by a path following controller.

Map Preprocessing

Before every request r = (s,g) for a path from starting pose s to goal pose g, our navigation
stack requests a grid map representation m of the current pose graph. The map m is treated
as an image and submitted to a morphological convolution to grow obstacles and close
small unknown regions, whereas circular regions around s and g are kept unchanged
to allow planning as closely to obstacles as possible. Afterward, a combined map m′

is computed by integrating the current readings from both laser scanners into the map
m. Using m′ we compute a cost map mc, by calculating the distance transform and then
scaling the values such that costs are maximal at obstacles and go to 0 for distances larger
than 2.5m, which can be seen in Figure 4.7b.

Path Planning

Given the map m and a cost map mc, we use a variant of A∗ using the simple L2 heuristic
given by the norm || · ||2. Since our robots are omnidirectional, we also implement a
simple omnidirectional motion model using the natural 8-neighborhood of a grid map.
For the past-cost we use g′(q) = g(q)+mc(q), where g(q) denotes the known distance
from s to the current configuration q and mc(q) the cost of configuration q. We manually
tune the scale of mc such that resulting paths stay as far away from obstacles as possible
while not completely ignoring configurations q with mc(q)> 0.

In a post-processing step we use a heuristic to simplify path segments by recursively
removing nodes in regions with no costs associated and checking if the resulting path
is still valid. This is motivated by the fact that slanted paths in an 8-neighborhood are
often longer and more ragged than necessary due to only being able to represent multiples
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of 45◦ when expanding a node. After simplification we perform path smoothing and
interpolation to allow for a better path following.

Path Following

The path following algorithm is based on the ideas described by Mojaev and Zell (2004),
which was further extended in Li (2009). We use a simple and efficient control law
based on the orthogonal projection of the vehicle to the planned path, which is shown in
Figure 4.8.

v
xt

xn

θt

YW

XWO P

α

ϕc

Figure 4.8: The principle of the orthogonal projection path following algorithm.

The orthogonal projection xn is defined as an exponential function of the tangential
component xt in the projected point on the path. Let xn0 be the initial distance from the
path, then we get

xn = xn0 exp(−kxt), (4.2)

where k is a positive constant which regulates the convergence speed of the orthogonal
projection. The tangential angle of the exponential function is given by

φc = tan−1(−kxt). (4.3)

If we consider that the robot is omnidirectional, its linear velocity in the world frame
can be described as

vx = vcos(α),

vy = vsin(α),
(4.4)

with α = φc +θt . Here, v is the linear velocity, θt the tangential angle of the desired path
and α is the driving direction angle (cf. Figure 4.8).

For the given scenario, we extend the algorithm by adding velocity control (Huskić,
Buck, and Zell, 2016). The angular velocity is controlled with a PID controller, indepen-
dently of the linear velocity. In contrast to (Mojaev and Zell, 2004) and (Li, 2009), the
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linear velocity is dependent on the curvature, the distance to the obstacles, the distance
to the goal and the angular velocity. The basic idea from Maček et al. (2005) is slightly
changed, so that the velocity changes exponentially. The combined velocity is then given
by

v = vnexp

(
−
(

Kκ

l

∑
i=iP

||κi||+Kω |ω|+
Ko

do
+

Kg

dg

))
(4.5)

Here, vn is the nominal velocity, the constants Kκ ,Kω ,Ko,Kg are used to adjust conver-
gence, iP is the index of the currently projected point on the path, and l is the index of the
look-ahead distance. The curvature in a certain point is κi, ω is the angular velocity, do
the distance to the nearest obstacle, and dg the distance to the goal.

Obstacle Avoidance

The path planner is fast enough to allow a simple obstacle avoidance scheme: Once we
detect an obstacle that stays on the current path for too long, the robot stops and issues
the system to generate a new path. We have developed several layers of safety: The
path planner prefers paths that stay away from obstacles because of the cost map. The
control in Equation (4.5) decreases the velocity of the robot in the vicinity of obstacles.
We additionally employ a safety field in the driving direction, such that if an obstacle is
detected in this zone, the robot is stopped completely.

4.3.7 Finite-State Machine
For high level robot control we again use the SDF+ model, i.e. we implement a finite-state
machine, which is depicted in Figure 4.9. After waiting for a user to give the "go" signal by
pressing a sequence of buttons on the remote control, the robot is completely autonomous.

explore centre wait for go signal

fetch cube

deliver cube find delivery for N

no cube

timeout

received cube N station N is unknown

station N is known

station N found

cube still inside hopper

cube delivered

Figure 4.9: The finite state machine we implemented. Error states are omitted.

A first state is introduced to explore the central area, such that the map analysis

45



Chapter 4 Modeling a Fetch-and-Delivery Robot

component is able to determine the position of the filling stations. This initial exploration
consists of driving a predetermined distance diagonally in order to allow the SLAM
system to build up a map. Afterwards we iterate fetching and delivering cubes, where
both states consist of several sub-states.

position to
target 

go to free 
filling station

drive to
wall

error or
timeout

signal on

wait

signal off

back upevaluate cube

at target

positioned

no target 
found timeout

at wall

at target

received cube N

did not
get a cube

Figure 4.10: The meta state fetch cube in Figure 4.9.

Fetching a cube, visualized in Figure 4.10, includes selecting a free filling station, as
well as planning and following a path there. Once the calculated target pose is reached,
the robot uses the bull’s eye target detection to orientate itself towards the station. It then
drives forward until the distance to the wall is below 5cm, signals the human operators
and then backs up again. If at this point no cube had been received, e.g. if the target
position is not accurately reached, the robot issues a retry. Otherwise the cube is analyzed
and the sub-state is left.

Delivering a cube is essentially the same as fetching a cube, only instead of going to a
free filling station, the path finding module is requested to plan a path to the appropriate
target station if it is known. Otherwise we switch to finding this unknown station by
driving around the arena in the counter-clockwise direction.
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4.4 Experimental Results in the Lab
Experiments have been performed in our laboratory (cf. Figure 4.11a) and in a gym of the
University of Tübingen (cf. Figure 4.11b). Some experiments have been repeated after
the competition for more precise analysis.

(a) The experimental setup in the first floor
lobby of our building Sand 1.

(b) The setup in the gym of the university.

Figure 4.11: The setup for experiments closely matches the competition arena.

4.4.1 Target Detection
The performance of the bull’s eye target sign detection was acceptable for the competition.
There is an inherent downside to our line extraction approach due to motion blur. Even at
relatively low rotational speeds, motion blur was too much of an influence for target signs
to be detected at larger distances. However, we only needed to detect these signs in the
final step of approaching a station. The map analysis was sufficient to allow planning a
path that ended directly in front of a filling station, where the signs were clearly visible.
In the case of delivery stations we relied on detecting number signs at larger distances and
then used path finding to position the robot in front of these number signs, where again
the target signs were easily visible. That is why the targets only had to be robustly seen at
distances of 2m or less, in which case motion blur did not affect the detection rates.

4.4.2 Sign Detection
For the evaluation of the sign detection we refer to Scherer et al. (2011). The approach
has not been modified, except for masking out irrelevant parts of the camera image, which
had an impact on the runtime but not on the classification performance. The new neural
net based on JANNLab was trained to achieve higher detection rates and worked fine in
our test environments, resulting in more true positives and fewer false positives. On site at
the competition, however, there were a few reproducible false positive detections caused
by the environment. This is why we decided to use the old neural net, for the benefit of
fewer false positives.
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4.4.3 Cube and Bar Code Detection
The cube detection was evaluated on datasets containing images taken under several
different poses and differing lighting conditions. In Table 4.1 the results of the evaluation
can be observed. The standard deviation based approach was tested on 1306 frames
without the background pattern used by the second approach. The variance threshold was
set to 50 to detect an object within the camera scene. The MLP based approach was tested
on 1325 different frames. The results show that the MLP based approach is more robust.

Std Dev. based Prediction
empty full

Actual
empty 563 150
full 158 435

MLP Prediction
empty full

Actual
empty 662 14
full 1 648

Table 4.1
C O N F U S I O N M AT R I C E S F O R C U B E D E T E C T I O N A P P R O A C H E S .

4.4.4 Localization
The segmentation filter produced good results because the maximum robot size was
limited to 0.6m by the rules. We set the segment size minimum value to Smin = 1.2m to
be sure that a segment is removed even if two robots are standing close to each other. The
threshold for the minimum distance of rays was set to T = 0.1m so that small robots can
still be separated from a wall, and the octagon is still seen as one segment. Our method
of limiting the map creation time also showed good results as we could limit it to 62ms,
while the time increases with 0.5ms per scan using the standard algorithm.

4.5 Results
The competition took place on October 11, 2014 in Waldkirch, Germany. Every attending
team had a few hours before the competition to test their systems on site. The arena, which
nobody had seen before, was mostly as expected. There were only four delivery stations
as opposed to the expected worst case of ten stations. The size of the arena matched our
expectation, yet the central area for filling stations was not as we had anticipated: The
rules had specified that the filling stations would be located at the 4 sides of a square
island in the center of the arena, which ended up being an octagon with 4 unused sides as
described in Section 4.3.

Every robot had two runs of 10 minutes each, whereby the better run was to be used for
ranking. Out of the 14 competing teams, five managed to score one or more points. Our
robot managed to correctly deliver six cubes in ten minutes, resulting in a second place
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with as many points as the winner RIMLab with their robot PARMA1. The tie was broken
by consulting the other run, in which our robot could only deliver three cubes, because
of a malfunction which resulted in our robot standing still for five minutes after it had
already moved for about a minute.

The delay was most likely caused by a driver problem we had infrequently observed
a few times earlier, in which the driver for our main laser scanner would freeze up and
not publish any new data. This is in accord with the log files, which show that the laser
scanner reported obstacles directly in front of the robot when clearly there were none. We
had implemented a watch dog process to restart everything related to the laser scanner
subsystem in cases when no data was transmitted for a while, but it seems that multiple
restarts were required.

There are a few optimization possibilities which would have allowed us to decrease the
time per object in order to deliver at least one more object:

• Our robot waited for the full 10 seconds on both filling and deliver stations for
safety reasons. For six delivered objects, this alone resulted in 2 minutes of waiting
time, which mostly could have been avoided.

• To avoid CPU overload, which would have been detrimental to our SLAM module,
we decided to using events to disable parts of the system when they were not
needed. This effectively reduced the frame rates of our cameras and resulted in the
need to wait in front of expected bull’s eye signs to increase the confidence in the
observation, which cost another unnecessary 5 seconds per station and about one
minute overall.

• We used a maximum velocity of 1ms−1 in the first run, which was already relatively
fast compared to other teams but was only a safety precaution to absolutely avoid
any dangerous situation.

For the second run we were able to quickly change our state machine and decrease
waiting times to the absolute minimum. We also further increased the driving speed
to 1.5ms−1, however the effort was wasted because of the above mentioned inactivity
problem.

In Figure 3.24 we have already seen a screen shot of the actual graph used for target
sign detection. Figure 4.12 shows the second graph that was used to detect the number
signs using a neural network.

1http://rimlab.ce.unipr.it/SickRobotDay2014.html
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Chapter 5

Hybrid Flow Graphs
The combination of synchronous data flow (SDF) and event-based message passing has
been introduced as the SDF+ model in Chapter 3. Most limitations of the SDF+ model
are linked to the distinction of the two flow types, which requires nodes in the compu-
tation graph to translate between synchronous data flow and asynchronous event flow.

SDF Events FSM

SDF+

Activity

HFG

AFG

Figure 5.1: Hybrid Flow Graphs
(HFG)

In this chapter, we introduce a unified graph model,
which is a hybrid of SDF and Events, as visualized
by the second layer in the flow hierarchy shown in
Figure 5.1. The Hybrid Flow Graph (HFG) model
is an extension of SDF and Events in a single and co-
herent model. HFG still distinguishes synchronous
from asynchronous data flow, however it allows for
direct connections between the two, without explicit
translation nodes. This enables new use cases and
overcomes many of the limitations of SDF+. Using
hybrid connections allows the graph to be cyclic,
which is not possible in the SDF+ model.

The HFG model is defined hierarchically. This
means that a complete graph can be seen as a single
node, or sub-graph, in a more abstract data flow graph. In contrast to SDF+, the HFG
model is therefore able to represent iterative calculations by executing a sub-graph for
each value in a list. This support for list processing enables more generic programming,
since each sub-graph used for list iteration only needs to process an individual message
and is therefore equivalent to a common node. There is no need for specialized list
processing functionality, although such nodes can also be implemented easily.

While iteration can be used to model for-loops in an algorithm, indefinite while-loops
are not easily representable in HFG. This means that complex high level state and control
flow cannot be modeled in the graph. The HFG model therefore still requires an FSM
for high level state and mission planning. The need for an FSM will be eliminated in
Chapter 7, where we introduce the concept of activity. The model is also designed to
natively support a graphical user interface for the construction and analysis of computation
graphs, which is presented in Chapter 9.
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5.1 Unified Data Flow Graph
The HFG flow graph model is derived directly from the the SDF+ model. Let G be an
HFG graph, then each node vk ∈V again consists of four different types of ports,

Ik =
{

kI1, . . . ,
kIik

}
, (5.1)

Ok =
{

kO1, . . . ,
kOok

}
, (5.2)

Sk =
{

kS1, . . . ,
kSsk

}
, (5.3)

Ek =
{

kE1, . . . ,
kEek

}
, (5.4)

which are equal to the SDF+ model. As with SDF+, inputs Ik and outputsOk are expected
to be handled synchronously, whereas slots Sk and events Ek are asynchronous. We
now generalize the arcs E to allow hybrid connections, which means that a valid edge e
between two nodes vk and vl is given by

e ∈ (Ok∪Ek)× (Il ∪Sl) . (5.5)

This definitions allows the creation of hybrid connections, connecting outputs to slots
and events to inputs. As we will see below, this allows more flexible graph constructions,
such as synchronously reacting to an event. Furthermore, no more translation nodes are
necessary to transition between asynchronous and synchronous data flow.

We add additional ports for the graph: I∗,O∗,S∗,E∗, which are not associated with any
node, but with the graph itself. The graph is then specified by

G = (V, E, (I∗∪O∗∪S∗∪E∗)) = (V,E,P∗), (5.6)

where we denote the set of all graph ports with P∗ and where E now also contains
connections between node ports and graph ports. Figure 5.2a demonstrates these additional
ports for a general graph G. These ports can be considered to be external data sources and
sinks, which behave exactly the same as the node counterparts. To name a few examples:
O∗ can contain outputs that publish externally produced data, I∗ can provide inputs that
forward data to the system, S∗ can contain slots to perform actions like terminating the
execution of the graph and E∗ can have events triggered by the operating system.

Using these graph ports, G itself can be made to implement the interface of a node vG:
For each graph port we add the complementary port to vG and relay messages between
them. For example, an input GI1 is created for vG in Figure 5.2b to represent the graph
output ∗O1. Tokens received by GI1 are then forwarded to ∗O1 and notifications are
relayed in reverse. Relay outputs, events and slots are similarly created for the other graph
ports. This allows the creation of composite structures, with graphs containing sub-graphs
as nodes, as demonstrated in Figure 5.2b.
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∗O1
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.

∗Ook

G

∗I1

.

.

.

∗Iik

∗E1 · · · ∗Een

kS1 · · · ∗Ssn

(a) Each HFG graph G has additional, external
ports which can be connected to its nodes.

∗O1 v1

G

∗I1GI1
GO1

vG

vs

vt

(b) The graph G itself implements the interface
of a node vG. Here vG is transparently used in
a graph with vs and vt .

Figure 5.2: Additional ports allow a sub-graph to act as a node in a higher level graph.

This type of nested graphs could also be achieved using the SDF+ model. The added
complexity, however, reduces the similarity to the original definition of SDF and would
therefore make the SDF+ model less comparable. Furthermore, the largest benefit of
composite graphs can be achieved by using hybrid connections, as we will show in
Section 5.4.

5.2 Hybrid Execution Model
The execution model mostly corresponds to the SDF+ model, using the same Petri
net components. We will demonstrate the newly achievable structures using hybrid
connections. In addition, we give a model for relaying messages in a sub-graph.

5.2.1 Event to Data Flow
Using HFG it is possible to synchronously process a token generated in an event. This is
demonstrated in Figure 5.3a and Figure 5.3b, where an event is connected to a connection
which leads to a synchronous sub-graph.

e1ne1

i

ni

o

no

Synchronous sub-graph

Returns noti�cation

(a) When e1 is triggered, a token is sent to the
connection.

e1ne1

i

ni

o

no

Synchronous sub-graph

Returns noti�cation

(b) e1 is disabled, until the token is processed.
e1’s node is disabled as well.

Figure 5.3: A hybrid connection between an event and a synchronous sub-graph.
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Once the event is triggered it becomes disabled until a notification returns. If the
connection would lead to a slot, this would result in the same behavior as seen in the
SDF+ case: A notification would be sent immediately after the token was processed at
the slot. With a hybrid connection to a synchronous graph, however, the node sending
the event token is disabled until the token is processed. This is because a notification in a
synchronous graph is only sent once all sinks have received the token.

Using this construct, we can now synchronously handle asynchronous events in a
sub-graph. With SDF+ this would only be possible, if the sub-graph consisted of only one
node, because the pure asynchronous connections immediately return notifications. This
allows the creation of pipelines to handle events.

5.2.2 Data Flow to Event
Hybrid connections also allow to connect a synchronous data stream to a slot, as shown in
Figure 5.4a. This means that a connection between an output and a slot is used to translate
the synchronous data flow to an asynchronous event in each iteration. As Figure 5.4b
demonstrates, this can be used to asynchronously handle different, synchronous streams in
a single node. A hybrid connection between an output and a slot behaves in the same way
as a synchronous connection from an output to a sink node. Each data token is received
and a notification token is returned immediately.

i

ni
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no

Synchronous

data �ow

s1s1n

(a) A hybrid connection from data flow to a slot is
equivalent to a sink in regular synchronous data flow.

i

ni

o

no

i

ni

o

no

s1s1n s2n s2

(b) Multiple synchronous data tokens
can be handled asynchronously.

Figure 5.4: Hybrid connections allow a node to asynchronously handle incoming tokens
from synchronous sources without a need for buffers.

There is therefore no difference in using an asynchronous slot to replace a single
input for sink nodes. For general nodes, with one input and one or more outputs, there
is a semantic difference: Even though there is only one token received, the slot will
immediately return a notification, while an input will only send a notification up-stream,
once the node itself is notified. A hybrid connection to a slot can therefore be used to
break a synchronous stream, e.g. to allow sub-graphs to run at different frequencies, as
shown in Section 5.4.
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5.2.3 Sub-Graph Relaying
A sub-graph G can be used as a black-box node vG, i.e. it behaves exactly like any other
node to the parent graph. This puts some constraints on the implementation shown in
Figure 5.2: Inputs of vG still have to be handled synchronously, whereas slots have to be
handled asynchronously. We can use the same model for inputs as before, where each
input GIk of vG relays incoming tokens to the graph-external outputs ∗Ok of G. This is
demonstrated in Figure 5.5b.
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s1s1n nS1

e1ne1
nE1

(a) Review of the essential interface
transitions of a node. Locking places
are not shown.
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Gs1n
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∗e1∗ne1
∗E1

Ge1
Gne1

GE1

∗s1∗s1n ∗S1

vG

(b) A Petri net showing token relaying to a sub-graph.
Locking and enabling places are not shown. The graph
G corresponds to Figure 5.2a.

Figure 5.5: Comparison of a node and a nested graph. The only difference is that the slots
do not immediately return notifications but relay tokens to G. The dashed lines show the
external control flow, when valid connections are constructed.

For the external events ∗Ek of G we need a slightly different model to correctly imple-
ment relaying messages from a slot GSk to the graph event ∗Ek. The difference can be
seen by comparing the event in Figure 5.5a with the internal event ∗E1 in Figure 5.5b: Just
relaying all tokens could lead to a build-up of queued messages, if the source is running at
a higher frequency. For this reason, notifications for each slot GSk can only be sent, once
the relaying event ∗Ek is notified, which is achieved with Figure 5.5b. The dashed lines
show the flow of individual tokens and the corresponding notifications. The sub-graph
has to be constructed such that incoming, synchronous data reaches the output transition.

55



Chapter 5 Hybrid Flow Graphs

5.3 Updated Graphical Representation
Since SDF+ graphs cannot contain connections between synchronous and asynchronous
ports, the visual notation there only allows horizontal or vertical connections between
nodes. In contrast, the hybrid connections of HFG graphs can be directly visualized using
arcs that change direction from vertical to horizontal or vice versa. This circumstance
is visualized in Figure 5.6, where we compare the two ways to translate between asyn-
chronous and synchronous data streams: In Figure 5.6a with SDF+ and in Figure 5.6b
with HFG. Since HFG is a superset of SDF+, however, both are valid HFG graphs.

vk

vlBu�er

Emitter

B

E E

B

(a) In the SDF+ model, translation requires ad-
ditional nodes and connections.

vk

vl
E→ B

B→ E

(b) With HFG the translation is directly possible
and is therefore less verbose.

Figure 5.6: Translation between asynchronous and synchronous data streams is natively
supported by HFG graphs.

In addition to hybrid connections, HFG also introduces nested graphs. Every sub-graph
consists of many global and relaying ports, as shown in Figure 5.5, which quickly leads
to cluttered visualizations. We therefore also omit these types of ports, when they are not
explicitly needed to convey any meaning, resulting in graphs such as shown in Figure 5.7.

v1

vG

vs

vt

(a) To show a nested graph, we also omit graph-
global ports, when possible.

process description

vs

vt

(b) A sub-graph is equivalent to a node. The
node can be used as a black box by giving a
description.

Figure 5.7: In some contexts, nested sub-graphs can be used as a black box.
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5.4 Exemplary Usage

5.4.1 Synchronous Reaction to Asynchronous Event
In SDF+ we introduced buffers to translate events to SDF, however avoiding the use of
an unbounded buffer is preferable in long lasting data flow graphs. On the other hand,
bounded buffers require tokens to be dropped, once the bound is reached. In contrast,
the HFG model allows complete interaction between synchronous and asynchronous
data streams. This makes it possible to implement a synchronous reaction to an event,
guaranteeing that every event is handled. Figure 5.8a shows an example graph, where an
event is synchronously handled and then converted back into an event.

5.4.2 Converging Data Steams
Besides a synchronous reaction to an event, where we use hybrid connections from events
to inputs, we can also make use of hybrid connections from outputs to slots. This is
demonstrated in Figure 5.8b, where a node v has several slots that each receive tokens
from possibly different, synchronous data streams. All of these streams can operate at
different frequencies, they can even be irregular. The node v handles all received tokens
separately, in contrast to the synchronous data flow case, where all inputs have to hold a
token for the node to become enabled.

v1 v2 · · · vn

vs

vt

(a) A synchronous sub-graph is used to handle
the event generated by vs.

v
v1

v2

.

.

.

vn

(b) Node v handles different synchronous data
streams asynchronously.

Figure 5.8: HFG allows nodes to directly translate synchronous to asynchronous streams.

5.5 Conclusions
HFG resolves most of the limitations of SDF+, however we still need a separate FSM to
model high level state. In Chapter 7 we show how to eliminate of the use of a separate
FSM model by introducing activity flow. Figure 5.9 shows a hierarchical HFG that was
used in the PATSY project to find optimal parameters for an obstacle detection algorithm
(Chapter 6). The figure shows two screen shots from CS::APEX, one of the top-level
graph and a second of the sub-graph that is optimized.
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Chapter 6

Modeling a Person-detecting
Autonomous Guided Vehicle

6.1 Container Transport in Dynamic Environments
Automated guided vehicles (AGVs) are mainly used for the automated transport of heavy
payloads in large-scale environments, such as hospitals (Fung et al., 2003), (Ozkil et al.,
2009), (Evans et al., 1989), warehouses (Ronzoni et al., 2011), (Martinez-Barbera and
Herrero-Perez, 2010) or factories (Cardarelli et al., 2014). A typical mission of a single
AGV may consist of navigating to a central station, picking up a payload package and then
delivering it to a target station. Dedicated sending stations are used to prepare containers
for transport, where the pose of the containers is known. This allows AGVs to pick up
containers without explicitly detecting their pose.

An AGV is traditionally guided by markings on the factory floor or precisely mapped
reflective markers throughout the workspace. It can follow any predetermined path
via a network of routes, which have to be kept devoid of obstacles. Externally guided
vehicles can be localized very precisely, however they can only be employed in controlled
environments. The landmarks used for localization have to be clearly visible, which
may not be the case in more dynamic environments like hospitals. To implement an
AGV system in such environments, it is beneficial to use a probabilistic localization
approach, such as Monte Carlo Localization. These systems can easily cope with dynamic
environments by allowing the localization certainty to decline in some situations. The
downside of a less certain pose estimate is that precise, absolute positioning might not
always be possible. This does not pose a problem for navigation, however the acquisition
of payload containers can then become infeasible.

To fulfil industrial safety standards, AGVs have to be equipped with certified sensors
that can immediately halt the vehicle in case of a safety hazard. These sensors are usually
2D laser scanners that monitor a virtual safety field around the vehicle. Better safety can
be achieved using infrastructure sensors (Sabattini et al., 2015). The vehicles cannot,
however, be autonomously used in areas inexperienced people have access to, without
considering further safety measures. The aim of our research is to expand the domain of
applicability of AGVs to these areas.
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Contrary to controlled conditions in closed-off areas, AGVs have to be able to detect
small obstacles below the plane of measurement of the laser scanners with on-board
sensors. Obstacles above that plane and people have to be detected and treated properly
as well. Cameras can be used to detect such obstacles in 3D (Wang et al., 2001), but they
depend on proper lighting conditions. Additional information can be gained by using
active sensors such as actuated 2D LIDAR systems and 3D laser scanners. There exist
laser scanners that can survey not only a 2D plane, but a 3D volume. These scanners
can be used to detect obstacles that are beneath or above the plane of the safety fields.
They function similarly as 2D scanners by having a moving mirror that sweeps a laser
beam across the environment. These moving parts are the biggest downside of 3D laser
scanners, because they result in large and heavy sensors.

3D time-of-flight (TOF) cameras are a more recent active sensing technology: Just
as 3D laser scanners, they probe a volume in front of the sensors and can therefore be
used for detecting obstacles which two dimensional sensors cannot see (Alenyà et al.,
2014). Contrary to 3D laser scanners, however, they do not utilize moving parts and
can therefore be built smaller and more robustly. They send out modulated light and
capture the reflection of this light from the environment. This allows TOF cameras to
have a comparatively high resolution and information density, which makes them very
interesting for 3D scene understanding. However, TOF cameras suffer from various types
of measurement errors that cause data artifacts (Frank et al., 2009) which have to be
handled.

In this chapter we present a complete model of an AGV, largely based on Hybrid Flow
Graphs, that addresses the following main contributions:

1. We detect arbitrary obstacles using TOF cameras that are operated close to the
ground on an AGV with limited resources, using a simple and efficient classification
process. We handle different types of data errors caused by the TOF measurement
principle. Our approach does not assume that the floor is planar and can detect
obstacles that are smaller than the average sensor noise by using depth and intensity
information. The algorithm is applicable to any TOF camera system and has also
been used with other depth sensors, e.g. RGB-D and stereo cameras.

2. The 3D information extracted by the obstacle detection is used to detect the presence
of people in front of the AGV.

3. The pose of the payload is detected in 2D laser range scans based on an exhaustive
search. The 3D pose is then recovered and the existence of the payload is verified
using the detected 3D obstacles as well.

4. A reactive controller is used to steer the AGV beneath the payload containers.

5. We use a variant of Adaptive Monte Carlo Localization (AMCL) that is based on
architectural maps in vector form.
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This chapter is based on previously published articles (Buck et al., 2016a, 2017), and
(Hanten, Buck, Otte, and Zell, 2016), as well as a currently submitted article (Hanten,
Kuhlmann, Buck, Otte, and Zell, 2018).

6.2 Related Work

6.2.1 Obstacle Detection for AGVs
Bostelman et al. (2006) present an approach in which they detect obstacles using both
intensity and depth information from a TOF camera. They treat all points with high
intensity values as obstacles, if they are high enough above the floor. Compared to our
approach, they assume a perfectly calibrated camera and a flat floor surface, to which
they need to fit a plane model. They verify their approach using a set of vertical obstacles
that vary in width but have a minimum height large enough for a planar laser to detect
them. Experiments were performed 0.8 m above the floor, where the effects we discuss in
Section 6.4.2 are negligible. Another TOF-based approach by Wang et al. (2014) is based
on clustering. Their approach also explicitly handles wrapping artifacts and uses intensity
values to estimate the noise. We cannot compare the algorithms easily since the authors
only provide qualitative detection results.

There are many similar approaches for obstacle detection, most of which are using
actuated LIDAR sensors to generate point clouds. All of them have in common that
they do not consider measurement artifacts, since LIDAR sensors are not as prone to
measurement errors as TOF cameras. Furthermore, all these algorithms are either meant
for use with robots that have a high ground clearance or the authors do not mention how
the algorithms perform for small objects. Schafer et al. (2008) detect obstacles based on
LIDAR measurements. They use a vertically spinning laser scanner, and iterate columns
of data to calculate the slope of the environment, ignoring intensity information. However,
their approach requires the data to be sorted by distance before the iteration and cannot
cope with the presented TOF artifacts. Morton and Olson (2011) present a classifier that
can detect both positive and negative obstacles using 3D LIDAR. In their approach they
discretize the point cloud into a grid and detect obstacles based on the comparison of cells
with a size of 15 cm. This approach works very well for actuated laser scanners, however
the runtime is 200 ms, which means it cannot be used to interpret all the data of a TOF
camera.

Nüchter et al. (2006) detect drivable surfaces in outdoor scenarios using high resolution
point clouds recorded by a tilting laser scanner. They calculate the slope at every point
in the cloud using a fixed index offset to determine the preceding and succeeding points.
Similarly, the approach by Zhu et al. (2010) also uses a fixed step size to calculate
features for each point in the point cloud that are then classified using a support vector
machine. Compared to our local search, these fixed step approaches cannot handle large
depth discontinuities very well and we found that a fixed offset causes many erroneous
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classifications when used indoors. They do not use the intensity of the measurements and
they do not handle measurement artifacts.

A well-known approach to detect obstacles in autonomous cars is the stixel-world
approach by Badino et al. (2009). Stixels represent vertical slices in a stereo depth image.
Compared to our approach, these vertical slices are more coarse and optimized to detect
larger obstacles. This algorithm is tailored to be used outdoors in cars and is therefore not
suitable for detecting small obstacles indoors. Broggi et al. (2013) present another stereo
camera based approach for outdoor use, which is real-time capable with a frequency of ca.
10 Hz. The approach is not able to detect obstacles smaller than 25 cm due to the use of a
voxel grid approximation.

RGB-D and fusion based approaches are also common. Stimming et al. (2015) detect
obstacles based on the fusion of stereo vision and LIDAR scanners. In their scenario, they
can position the 3D sensor high up, which causes fewer artifacts and they rely on their 2D
scanners for detecting small objects. Lee et al. (2012) use RGB and depth information,
however, they do not aim to detect very small objects.

6.2.2 Payload Detection for AGVs
AGVs are commonly used to automate the transport of goods in large environments.
Typical scenarios, as surveyed in (Niechwiadowicz and Khan, 2008), (Karabegović et al.,
2015), consider a manually designed system in which human designers are laying out all
the paths that the vehicles can travel on. This approach requires a very precise positioning
system or external markings that allow the vehicles to accurately follow their course.
Payload containers are usually not explicitly detected, but have to be positioned into
sending and receiving stations by human operators. These stations are built in a way that
the wheels of the containers are automatically positioned with their wheels in parallel,
such that the robots can easily drive beneath them.

Object detection from 3D data is well studied in literature. Liebelt and Schmid (2010)
employ a detection pipeline that detects parts of an object and then fits a 3D model. Other
approaches, such as (Rusu et al., 2008) and (Lai et al., 2012), require many resources and
do not achieve real-time performance.

Varga and Nedevschi (2014) describe an architecture using stereo vision to detect
payloads in the form of euro pallets. The approach employs a scrolling window search on
a restricted sub-image and requires several hundred milliseconds of run-time. The authors
therefore propose to position the AGVs at a distance of approximately 2.5m in front of
the payload to calculate a trajectory. In contrast, our approach detects container carts and
relies on direct distance measurements from 2D and 3D sensors and can run at the speed
of data acquisition, which allows us to detect the pose of the payload continuously.

Weichert et al. (2013) propose a system that can detect payloads on euro pallets using
3D TOF cameras. Their system is capable of detecting individual packages on a pallet
using a multiple stage model fitting algorithm that aligns simple box models with the
observed data. In contrast, our approach uses a similar box model to detect the pose of
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the payload container itself. Thamer et al. (2013) similarly detect the components of the
payload using 3D information by employing a segmentation and surface fitting pipeline.
The detection of freely positioned container carts is so far not discussed in the literature.

6.2.3 Person Detection
Person or pedestrian detection is extensively studied in literature. Many common ap-
proaches are based on image processing and combine feature extraction with machine
learning techniques. The arguably most popular feature, described by Dalal and Triggs
(2005), is the Histogram of Oriented Gradients (HOG) descriptor. Other approaches,
such as Haar-like features (Viola and Jones, 2001), ACF (Dollár et al., 2014) and FPDW
(Piotr Dollár et al., 2010) are proposed as faster alternatives.

Another common class of algorithms is based on fusing visual with metric sensor
information, such as approaches to detect people in RGB-D data (Salas and Tomasi, 2011).
Some of these approaches extend HOG to RGB-D data (Luber et al., 2011; Spinello
and Arras, 2011; Wu et al., 2011), others use stereo cameras (Enzweiler et al., 2010).
Many approaches require the removal of the ground plane, which is not feasible in our
case. Other approaches are very computationally expensive and require a GPU (Jafari
et al., 2014), which also includes approaches based on deep neural networks, such as the
algorithms proposed by Sermanet et al. (2013) and Toshev and Szegedy (2014).

For our scenario, we require an approach with reduced computational complexity that
nonetheless achieves sufficiently good results. We use a feature-based approach, using
the generic obstacle detection as a proposal generator.

6.2.4 Vector-based Adaptive Monte Carlo Localization
Navigation is arguably the most important task of an AGV. To enable successful navigation,
a robust localization method has to be available. This is commonly achieved using external
landmarks that are introduced into the workspace. In our case, however, we aim to develop
a freely navigating AGV that can also operate in areas that are populated by people. For
this reason we use Monte Carlo Localization based on prior knowledge, in our case using
architectural maps of the building.

Using vector-based maps of the environment is a natural approach to localization in
known environments. We make use of pure localization algorithms, although there are
SLAM approaches using vector representations (Garulli et al., 2005; Sohn and Kim,
2009; Elseberg et al., 2010). Existing localization algorithms usually make use of either
manually created maps or manually translated architectural plans (Cox, 1991; Sohn and
Kim, 2008; Luo et al., 2008).

Many existing approaches are not directly applicable, because the do not model un-
certainty, i.e. they do not implement Bayesian filters (Thrun et al., 2005). Instead we
extend an existing MCL implementation based on Fox et al. (1999) to directly work with
unaltered architectural plans of the environment.

63



Chapter 6 Modeling a Person-detecting Autonomous Guided Vehicle

6.3 Overview

6.3.1 Requirements
Figure 6.1 again shows the AGV developed for the PATSY project, which is designed to
transport containers by driving under them and lifting them up.

Figure 6.1: The AGV has to be low enough to be able to drive under containers to lift
them up. A TOF camera for 3D obstacle detection in the front of the AGV is mounted
close to the floor, at a height of 10 cm and an inclination of 15°.

We can state the following requirements:

• Since the AGV has a small ground clearance, obstacles range from a few centimeters
to several meters in size.

• People have to be recognized for additional safety.

• Payload containers have to be reliably collected, without the use of sending or
receiving stations.

• The AGV has to localize itself in a known environment.

• Due to the low height of the AGV, all sensors have to operate close to the ground.

• All algorithms have to run in real-time on the on-board computer.

In the following we present the final system architecture that implements these require-
ments. The HFG model is used to implement every perception component.
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6.3.2 System Architecture
To fulfil these requirements, we use a collection of different modules that together form
a complete robotic architecture, which is visualized in Figure 6.2. Most of the modules
are implemented using the HFG model, except for low-level control modules that are
communicating with the hardware. The navigation and localization functionality are
also not implemented using data flow models, because they are based on pre-existing
functionality.

Navigation

Sensors Localization (V-AMCL)

Robot Controller

Hardware Interface

Perception (HFG)

3D Obstacle Detection

Laser Processing

Local Hazard Map

Payload Detection

Person Detection

Payload Approach

Person Tracking

Figure 6.2: The data flow in the complete PATSY software architecture. HFG components
and their interface are shown.

The basic component is the detection of obstacles from 3D TOF data, which is necessary
for safe navigation and is also used as a pre-processing step for person- and container
detection. Furthermore, we implement a person tracking component that maintains
hypotheses for multiple people to smooth the detection results and to mitigate false or
missing detections. Another node is implemented to approach a payload container, which
is only used when the payload has to be collected.

In this chapter we describe the individual modules, mainly focusing on the data flow
components. In Chapter 8 we then show how to combine perception and high level control
in a common framework using activity flow graphs.
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6.3.3 Point Cloud Structure
Depth sensors generate depth images, such as the one shown in Figure 6.3a. This image
can be projected into a full, three dimensional point cloud (cf. Figure 6.3b) using the
camera model for the sensor.

(a) Depth image of a container mock-up. (b) Point cloud of a container mock-up.

Figure 6.3: The point cloud is structured the same as its underlying depth image.

It is computationally expensive to work with unordered point clouds. Instead we assume
that every point cloud is structured, i.e. that it was generated from a depth image. With
this assumption it is possible to infer a pixel in the depth image for each point in the cloud.

6.3.4 Obstacle Types
Let PC = {pi | 0≤ i≤ n} be a point cloud consisting of n points pi that represent the
environment. The goal of obstacle detection is to decide for each pi, whether it belongs to
an object that is an obstacle to the AGV. We differentiate the following types of obstacles:

1. Objects are all the pi that belong to an obstacle that can also be detected by the 2D
scanners. Objects are therefore large and relatively easy to detect.

2. Overhanging obstacles are those pi that lie above the 2D plane.

3. Small obstacles are points so low that they completely lie below the laser scanner
plane. In our case this means that they are lower than 6 cm. They are especially
hard to detect by depth alone due to noise in the depth measurements.

4. Negative obstacles are hazards to the AGV that are below the floor level, such as
descending stairs or large holes in the floor.

The obstacle type is only relevant for the following discussion. During the operation of
the AGV, however, collisions have to be avoided with every obstacle type equally.
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6.4 Time-of-Flight Cameras
Different types of 3D sensors have been evaluated for the presented scenario by Rauscher
et al. (2014). The E70P TOF camera by Fotonic has then been selected as the 3D sensor
for our AGV, since it is smaller than 3D laser scanners and can handle stray sunlight better
than RGB-D cameras. Stereo cameras have not been considered, since indoor scenarios
often entail low textured floors and walls, which cannot reliably be used for disparity
estimation. Additionally, TOF cameras are active sensors, which means they also work in
bad lighting conditions and even in darkness, where stereo cameras will fail.

6.4.1 Characteristics of the Fotonic E70-P Camera
The E70P sensor (cf. Figure 6.4) has a minimum range of 0.15 m and can measure the
floor at a minimum of 0.65 m due to its field of view and the way it is mounted in our case.
This is an important factor for safety, because there is always some delay until an obstacle
is recognized and until the brakes can halt the vehicle. When an obstacle is detected
directly in front of the sensor, this delay can cause the AGV to approach the obstacle so
closely, that it cannot be seen any more. For objects this is not a problem, since they can
be seen by the 2D sensors. Small and overhanging obstacles, as well as negative obstacles,
on the other hand, have to be remembered such that collisions can be avoided. This is the
motivation for obstacle mapping, which we will only shortly describe in this chapter.

Figure 6.4: The Fotonic E70P sensor. (Source: http://www.fotonic.com/product/fotonic-e-
serie-4w/)
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The maximum range of the E70P sensor is ca. 10 m in perfect conditions. Due to the
low operation height, the angle at which the emitted light hits the floor in front of the
vehicle is very sharp. At greater distances, too much of the emitted light is reflected by
the floor, which then cannot be detected any more. Hence the effective distance at which
the floor can reliably be measured is only about 2 m.

In the vicinity of walls or large obstacles, the effective range is increased since more
light is reflected off the walls back to the sensor, which can be seen in Figure 6.5. Large
obstacles are therefore easier to detect, which is demonstrated in Figure 6.5a. When facing
small or negative obstacles in an otherwise free environment, however, the amount of
missing information causes problems. When confronted with a situation such as depicted
in Figure 6.5b, where the floor cannot be seen further than ca. 1.5 m, it is difficult to
decide whether there is an obstacle ahead.

(a) Facing a wall, the floor is detected up to ca.
7 m.

(b) Facing a long corridor, the floor is detected
only up to 2.5 m.

Figure 6.5: The range at which the floor is still detected varies depending on the envi-
ronment. If the sensor is facing a large obstacle, more light is reflected and the effective
range is higher. The range at which the floor is still detected varies.

The last challenge is the signal to noise ratio of the sensor. Especially with stray
sunlight, the measurement noise is quite high, as can be seen in Rauscher et al. (2014).
Even with relatively small disturbances, there is more noise to deal with than with laser
scanners, for example. In addition to the sensor noise, there are other artifacts in the data
that have to be dealt with, before obstacles can reliably be detected.
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6.4.2 TOF-Camera Sensor Errors
A major issue with many TOF cameras is a static distortion effect, which is shown in
Figure 6.6. Flat surfaces near the sensor are disturbed so severely, that an otherwise flat
floor can no longer be measured as a plane. The amount of distortion depends on many
factors, such as the distance to the sensor and the distance to the nearest object in the
direction of the emitted light. Some of these effects can be corrected by calibration, as
shown by May et al. (2009), but depending on the environment there are still distortions
remaining. Many perception algorithms in the literature, e.g. (Bhatia and Chalup, 2013),
assume a flat ground and perform some form of plane fitting. Since the floor is not
measured as a plane, such algorithms are not possible in our case.

(a) Side view of the distorted ground plane. (b) Top down view of the distorted ground
plane.

Figure 6.6: Various effects accumulate and cause a distorted image.

The second type of artifacts are interpolation errors on edges of objects. As explained
by Reynolds et al. (2011), these are caused by large distance discontinuities, when light is
reflected both by the foreground object and the more distant background. These errors
result in flying pixels that lie between the foreground and the background. Since these
measurements do not correspond to any real-world objects, they must neither be classified
as obstacle nor as traversable.

The last class of artifacts are so-called wrapping errors which are directly caused by the
measurement procedure: A TOF camera emits infrared light and calculates the distance
for each pixel using the time it takes for the reflected light to be received again. The
emitted light is the carrier of a modulated signal wave that has a wave-length λ of several
meters. The round-trip duration is calculated from the phase-shift between the emitted
and the received signal. Since the modulated wave is periodic, the determined phase-shift
for a measurement z is the same as for z+ iλ for any integer i. This results in erroneous
measurements for objects that are further away than dmax =

λ

2 , where the distance wraps
around and is reported in the ambiguity interval [0,dmax] which results in flying pixels.

Normally, there is not enough light received from objects that are further away from
the sensor than dmax. However, if the camera is oriented towards a large surface that is
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(a) The dark points above the floor are wrapping
errors caused by a wall that is narrowly out of
range. There is no obstacle.

(b) Artifacts caused by a retro reflector that is
positioned a little more than three times dmax

away. The scene is otherwise empty.

Figure 6.7: Wrapping errors caused by strongly reflecting surfaces.

just outside the ambiguity interval, there can be enough reflected light to cause wrapping
errors, as can be seen in Figure 6.7a. Highly reflective surfaces are even worse. Looking
directly at glass or mirrors, most of the emitted light can be collected at the sensor, even
at large distances.

Retroreflecting materials are reflecting incoming light back to the source, independent
of the angle of the incident light. These materials therefore cause wrapping errors at very
large distances, many multiples of the wave-length λ , as can be seen in Figure 6.7b. Retro
reflectors are common in a variety of settings, because they are required for safety reasons,
such as for reflective vests and bicycle wheel reflectors. They are also used as landmarks
for some types of AGVs and can therefore not be neglected during obstacle detection.

Wrapping errors can be eliminated by using different frequencies for the modulated
signal. One can send multiple waves with different frequencies and compare the resulting
distances. The measurement is valid if all measurements report the same distance, other-
wise there has to be at least one wrapping error. However, a generic obstacle detection
approach has to be able to cope with wrapping artifacts since there are TOF cameras, such
as the Fotonic E70P, that do not implement multi frequency measurement.
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6.5 Generic 3D Obstacle Detection

3D Obstacle Detection

Bpoint cloud Bobstacle cloud

Btraversable cloud

Our goal is to decide for each point in a given
point cloud whether it is an obstacle to the AGV.
The 3D Obstacle Detection module has a sim-
ple interface: It receives a point cloud, given in
the robot’s base coordinate frame. Every point
in this cloud is then analyzed, before the node
publishes two point clouds of its own: The first cloud contains all obstacle points, the
second all traversable points. We require the point cloud to be structured like a depth-
image, which is a reasonable assumption since TOF cameras generally output depth and
intensity images from which the point clouds are then generated. We work directly with
the point clouds, since this way we do not need to know the intrinsic camera parameters.
The Fotonic E70P sensor can directly output point clouds with a built-in camera model.

We assume that the TOF camera is mounted horizontally, such that a column in the depth
image corresponds to a line of points leading away from the AGV in viewing direction
(see Figure 6.8.) We then detect obstacles by iterating each column and searching for
different features, such as distance discontinuities.

y

z

(a) One column of the depth image is inspected.

x

z

(b) Side view of the inspected column.

Figure 6.8: One column in the depth image is highlighted. A column in the depth image
corresponds to a line of points along the viewing direction of the TOF camera in the
metric point cloud. The column is a slice through a container mock-up, with the colors
representing corresponding structures.

The input point cloud is filtered before it is analyzed in order to remove as many data
artifacts as possible. This step is highly sensor specific, due to the specificity of the
artifacts themselves. The point cloud analysis, however, is completely generic and has
also been successfully used with many other types of depth sensors.

71



Chapter 6 Modeling a Person-detecting Autonomous Guided Vehicle

Figure 6.9 shows an outline of our algorithm. Artifacts, as described in Section 6.4.2,
are first removed in a pre-processing step using different heuristics. The remaining points
in each column are then classified using depth and intensity information. After the point
cloud is classified, detected obstacles and free space are inserted into a local hazard map
both to filter false detections and to serve as a memory of obstacles out of view. This map
is also used to detect negative information.

Input: Point cloud PC, Number of rows R, Number of columns C
Input: Local obstacle map M
Output: Updated local obstacle map M′

1: function OBSTACLEDETECTION(PC,R,C,M)
2: D← PREPROCESS(PC) . Section 6.5.1
3: for col← 0 to C do . Iterate columns
4: for row← 0 to R do . Iterate current column
5: label(Lrow,col)← CLASSIFY(D,col,row) . Section 6.5.2
6: end for
7: end for
8: M′← UPDATEMAP(M,D) . Section 6.5.3
9: FINDNEGATIVE(M,D) . Section 6.5.3

10: return M′

11: end function

Figure 6.9: Pseudo code of the proposed obstacle detection algorithm. We calculate for
each point pi of the point cloud PC whether it is an obstacle.

6.5.1 Data Representation and Pre-Processing
Camera images, and therefore structured point clouds, are normally represented in row-
major form. Since we are iterating the columns, we first convert the point cloud to
column-major representation to get an optimized memory layout that results in better
cache line sharing. At the same time we transform every point pi into robot coordinates,
such that the x-axis is pointing forward and z-axis upward.

Next we use different heuristics to remove as many data artifacts as possible:

1. We remove a point pi, if it is closer than the minimum range of the sensor dmin,
which makes it an obvious wrapping artifact. We also recursively remove direct
neighbors p j of pi with ||pi− p j||< δedge, which gets rid of artifacts as shown in
Figure 6.7a. The threshold δedge represents the largest allowed distance for the
recursion and will be used again for filtering interpolation artifacts in a later step.

For the Fotonic E70P we have experimentally seen that every wrapping artifact,
which is not caused by highly reflective surfaces, falls into this category. This
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is because non-reflective wrapping errors only occur very close to the ambiguity
interval, which wraps around below the minimum range of the sensor.

2. To the remaining points we apply a low-pass filter in the z dimension to reduce
sensor noise.

3. We split the volume in front of the AGV in two parts, namely unknown with
z ∈ (−∞,z0] and overhanging z ∈ (z0,∞). Points in the overhanging group are
either obstacles or artifacts.

The unknown points are either floor points, small obstacles or objects and have to
be further classified. Since we cannot assume the floor to be planar, the threshold
z0 has to be set so that all of the points corresponding to the floor and to small
objects are in the unknown volume. We use an experimentally determined value of
z0 = 0.12m.

4. We apply an edge filter to the overhanging volume, which removes a point pi if
||pi− p j|| > δedge for every neighboring point p j. This eliminates interpolation
artifacts at object edges. Edge artifacts are not as common in the unknown volume,
since there are not many large distance discontinuities so close to the floor. By not
filtering the unknown points, we avoid further reducing the effective range of the
sensor. We experimentally found good results for δedge = 7cm.

5. As described above, the floor can only be seen up to a fraction of the maximum range
dmax. Therefore there cannot exist any wrapping artifacts on the floor. This is why
we further assume that all remaining wrapping errors emerge in the overhanging
volume only.

A more aggressive filter heuristic is only applied to those points to remove retro-
reflective wrapping artifacts: We remove a point pi in the overhanging volume, if its
intensity I(pi) is above a threshold δI. We also recursively remove direct neighbors
p j of pi with ||pi− p j||< δedge, which gets rid of artifacts as shown in Figure 6.7b.
Experimentally, we determined δI = Imax−3 where Imax = 1024 is the maximally
possible intensity value of the sensor.

Importantly, this filter is not applied to the unknown volume such that small obstacles
cannot be overseen even if they reflect at maximal intensity.
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6.5.2 Point Classification
After the pre-processing step, we assume that all artifacts have been eliminated and
only valid points are remaining. As a next step, we estimate the probability Pi :=
p(obstacle(i) | pi) that the i-th point belongs to an obstacle as

Pi = min(1.0, αhD(pi)+βhI(pi)) , (6.1)

where hD(pi) and hI(pi) are functions that calculate the hazardousness of pi, and α,β
are used to weight both components. Here hD(pi) calculates a score based on depth
measurements and hI(pi) based on intensity values and both are in the range [0,1].
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(a) Predecessor p− and successor p+ of p are
found with distances ∆−x and ∆+

x of at least δx.

o

 f 

o

f

(b) For o we approximate the curvature. For f
we use the minimum of the slopes.

Figure 6.10: Neighbors for hazardousness calculation are determined by a local search.

Given a point pi, we first search for a preceding point p−i and a successor point p+i
in the same column as sketched in Figure 6.10. Starting at index i, we first search
backwards until we find a point p−i := p j with j < i such that the distance in x direction
∆−x = |pi,x− p j,x| is larger than a threshold δx. Similarly we search the first successor
point p+i with a distance larger than δx. The searches are limited to 16 steps which we
found to work well in practice. Having found both p−i and p+i , we calculate the probability
Pi, otherwise we classify the point as unknown. Both scores are calculated using pi, p−i
and p+i .

We define the depth based hazardousness hD(pi) using the points seen in Figure 6.10.
First, let p̄ be the mean of p+ and p− and let the z coordinate of p be denoted by pz. If pz
is larger than p̄z, we approximately calculate the curvature at point p as the difference
between the slope towards p+ and the slope towards p−. Otherwise, if pz is lower than
the mean, we use the smaller of the two slope values. This second case is defined to better
classify floor points directly beside an obstacle. This differentiation prevents obstacles to
be grown in relation to the search distance δx.

We introduce two parameters that control this function. First we use a threshold
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εz = 1cm for the height difference, below which the hazardousness score is 0. For the
remaining points we define a maximum curvature κmax above which the hazardousness is
1.0. More formally, we define

gD(p) =


0.0 if ∆z < εz,

|α−−α+| if ∆z ≥ εz and pz ≥ p̄z,

min(|α−|, |α+|) if ∆z ≥ εz and pz < p̄z

, (6.2)

hD(p) =min
(
1.0,κ−1

max ·gD(p)
)

(6.3)

with the auxiliary variables

p̄ =
1
2
(p++ p−), (6.4)

∆
∗
c =|p∗c− pc|, (6.5)

∆c =∆
−
c +∆

+
c , (6.6)

α
∗ = tan−1

(
∆∗z
∆∗x

)
, (6.7)

where c ∈ {x,z} and ∗ ∈ {+,−}.
For the intensity based hazardousness hI(pi) we use a simple approach. Since we are

using this approach indoors, we assume the floor to be roughly uniform in intensity and
expect to detect large discrepancies in intensity at obstacle points. We then compare the
intensity I(pi) at the point pi with I(p+i ) and I(p−i ):

hI(p) =

{
1.0 if I(p)> Imax,

min
(
1.0, I−1

max max
(∣∣∆+

I

∣∣ , ∣∣∆−I ∣∣)) otherwise
, (6.8)

with a free parameter Imax for the intensity difference corresponding to a hazardousness
of 1 and the differences of intensities

∆
+
I =I(p+)− I(p), (6.9)

∆
−
I =I(p)− I(p−). (6.10)

The measure hD is thus able to detect obstacles based on changes in curvature, which
includes objects and overhanging obstacles. On the other hand, hI can detect obstacles that
are very small and shallow, given that they are made of materials that differ from the floor
material. Using evolutionary optimization, we determined the thresholds δx = 0.12cm,
Pt = 0.92 for the probability Pi and α = 25.57,β = 19.18 for the weighting factors (cf.
Section 6.10.1).
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6.5.3 Local Hazard Map

Local Hazard Map

Bobstacle cloud

Btraversable cloud

Bobstacle map

Btraversable map

In a last step we perform local obsta-
cle mapping similar to the approach in
(Schafer et al., 2008): We keep a rolling
window based local grid map to describe
the surroundings of the AGV. This way,
the map has a constant size and can be effi-
ciently implemented using cyclic buffers. The discretization of the space around the robot
smooths out single false detections that are caused by the remaining data artifacts.

The map is split in two parts, namely floor m f and obstacles mo. In m f we remember
all points that are classified as non-obstacle and in mo we remember the obstacle points.
Using m f we can detect negative information by observing an area A in front of the AGV.
If a cell of m f inside A is not mapped, we signal the detection of obstacles caused by
missing information. Additionally, we use mo to signal detected obstacles, if a cell inside
A exceeds the threshold Pt defined for the detection itself.

6.6 Payload Detection

Payload Detection

Eobstacle cloud

Blaser scan segments

Bpose or ⊥

After the detection of generic obstacles,
we generate payload candidates using 2D
information and then verify the presence
of a container using this 3D information.
The approach requires a 2D laser scanner
mounted close to the ground plane that can
see the wheels of the containers. The AGV
used in this work is equipped with a SICK S300 safety laser scanner with an angular
resolution of 0.5°.

In contrast to most 3D sensors, planar laser scanners have a very large field of view
of more than 180°. Therefore a detection approach primarily based on laser scans also
works out, when the AGV is not directly facing the payload. Furthermore, the minimal
measurable distance for a laser scanner is very short, allowing the perception of the wheels
of the container while driving beneath it.

By separating detection and verification, we can implement a robust control law to
acquire containers. The detection using planar data still provides pose estimates, even
when the AGV starts to drive beneath the container. On the other hand, the 3D data is
only available during the last few meters of the approach.

Figure 6.11 shows a flow chart of the proposed algorithm pipeline. We do not view the
problem of payload detection in isolation, but assume a full perception pipeline for general
navigation. As input for the 3D verification we assume a point cloud of detected obstacles
to the AGV, as well as a list S of connected segments of a laser scan. To generate pose
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candidates from S we use an exhaustive search over all pairs of segments. The verification
using 3D data is based on a simple box model. The output is then used to reactively steer
the AGV.

laser scan segmentation exhaustive search

3D obstacle detection 3D pose veri�cation

reactive control
S

O

p̂

p̂

p

Figure 6.11: Flow chart of the proposed payload detection pipeline.

6.6.1 Container Detection in 2D
The only visible parts of the container in the laser scan are the wheels, as visualized
in Figure 6.12a. Therefore, the 2D container detection reduces to detecting laser scan
clusters that are appropriately positioned to one another, according to the dimensions of
the expected container. Furthermore, no other points are supposed to be seen between the
four clusters, because that would either mean that there is an obstacle beneath, or that the
clusters do not correspond to a container. Additional difficulty arises from the fact, that
the closer two wheels of a container can obscure the ones farther away, such as shown in
Figure 6.12a. We therefore cannot assume to see all four wheels at the same time.

(a) Input laser scan. (b) Partial container detection.

Figure 6.12: Example view of a container in two dimensions.

Laser Scan Segmentation

At first we cluster the laser scan into individual segments using a simple jump-distance-
segmentation where two neighboring measurements ri,ri+1 are grouped in the same
segment, if their distance |ri− ri+1|< δs is smaller than a segmentation threshold δs =
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15cm, which is experimentally selected so that all the laser points on a wheel are grouped
together in any orientation. The resulting segments are then filtered using basic heuristics
that remove clusters that are too large or too far away.

Exhaustive Search

Given a set S of laser scan segments, we perform an exhaustive search over all pairs
of segments to both determine, whether a container is visible, and to calculate its pose
relative to the AGV. We use a two-point model, as visualized in Figure 6.13. Each pair of
segments a,b ∈ S we assume to be the two forward facing wheels of the container. Let ca
and cb be the centroids of both segments, where

cs =
1
2

(
max

i
(si,x)−min

i
(si,x) ,max

i
(si,y)−min

i
(si,y)

)T

(6.11)

is the mid-range of segment s, for all points si ∈ s.

a
b

(a) Two examined segments are assumed to
be two wheels.

u
v

x
y

l

wl

ww

w

(b) Container model showing the box model
for consensus calculation.

Figure 6.13: Box model of a payload container.

We immediately reject a hypothesis if ||ca− cb||+ww 6∈ [w−δw,w+δw], i.e. when the
distance between the two segments is significantly different from the container width w (cf.
Figure 6.13b), with a free parameter δw = 15cm that makes the model more permissive.

Now we calculate the orientation θ̂ of the container as

θ̂ = atan2(~vy,~vx)
T (6.12)

with the base line vector~u
~u = cb− ca (6.13)
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between ca and cb and the longitudinal vector~v

~v = (−~uy,~ux)
T · l−wl

||~u|| (6.14)

along the container.
The center of the container is now given by

~C = ca +
1
2
~u+

1
2
~v (6.15)

which results in the estimated pose p̂ of the container

p̂ =
(
~Cx,~Cy, θ̂

)T
(6.16)

We interpret p̂ as a transformation LTO from the coordinate system L of the laser scanner
to the local object frame O. We can now calculate the consensus set, which are all points
in the laser scan, that agree with a simple axis-aligned box model, which is visualized in
Figure 6.13b. For this we transform each point L p of the laser scan into the local object
frame using transform OTL =

(LTO
)−1 as

O p =O TL
L p. (6.17)

Then we can calculate the inliers I by testing for each O p, whether it is contained in one of
the four boxes, representing the wheels (cf. the green boxes in Figure 6.13b). Similarly we
find the outliers O, which are all points that are contained in the footprint of the container,
but do not belong to any wheel.

If the consensus set I contains enough points and if there are few enough outliers O,
given if |I| ≥ dI,2d and |O|< dO,2d , the error ε for the hypothesis

ε = (|w−ww|− ||ca− cb||)2 (6.18)

is calculated as the squared difference of the wheel distance from the expected distance
w−ww. This way, the procedure will result in the hypothesis which best fits the closest
wheels. The farther wheels are not used to calculate ε , since they can be hidden from
view. This procedure is iterated N times, where in practice we can observe good results
for N ≈ 200 in cluttered environments.

6.6.2 Container Verification in 3D
The payload pose p̂ is determined using data in a plane parallel to the floor, where only
the wheels of the container are visible. In a real-world scenario, however, three or four
random objects of roughly the size of the wheels can be distributed in such a way, that
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they become indistinguishable from the payload.

(a) Ambiguity of pose estimation, caster wheel
axes are highlighted.

(b) 3D box model of a container.

Figure 6.14: Verification of the 2D detection using 3D data.

Furthermore, typical containers are built using caster wheels, which are passively
rotating around an axis which is offset from the center of the wheel. Therefore, we cannot
unambiguously recover the 3D container pose from the wheels alone, as demonstrated in
Figure 6.14a.

Obstacle Clustering

To solve this problem, we propose to employ the forward looking 3D TOF camera in
order to recover the 3D pose. The idea of the verification step resembles the 2D detection:
A point cloud captured by the TOF camera is clustered into candidates for the container.
First we analyze the point cloud using the approach presented above to separate the points
belonging to objects from points belonging to the floor. This approach works well even in
environments with uneven ground and with high levels of noise.

This leaves us with a filtered point cloud which only contains points belonging to
objects in the environment. For the 3D verification we next apply euclidean clustering
similar to (Trevor et al., 2013), using a voxel grid structure for performance reasons. This
results in a set O, which contains all the detected clusters of 3D obstacle points.
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Container Verification

With the set O as input, we can recover the pose of the container. First we remove clusters
that are too large or to small. Then we use the prior pose p̂ in analogy to Section 6.6.1

O p =O TPC
PC p (6.19)

to transform all cluster points PC p into the object frame O.
In the second step, we split the points in two sets:

U =
{

O p | O pz ≥ ht

}
, (6.20)

L =
{

O p | O pz < ht

}
, (6.21)

where U contains the points in the upper volume of the container model and L the points
in the lower part, i.e. the wheels. Here ht is the distance between the floor and the body of
the container above the wheels.

Now we resolve the ambiguity problem, which mostly consists of a translational error.
We iterate all upper points p ∈U and estimate the longitudinal offset ox of the nearest
points to the model as

ox =
1
|F |

(
∑
p∈F

px

)
− l

2
, (6.22)

F = {p ∈U | |px− x̃|< δo} , (6.23)
x̃ = min{px | px ∈U} , (6.24)

where x̃ is the x-coordinate of the closest point p̃ in the upper part U and F is the set of all
points in the front of the container whose x-coordinate differs less than δo from p̃.

With ox we can update our prior estimate p of the pose p̂ to account for the translational
error

p =

p̂x + cos(θ̂)ox

p̂y + sin(θ̂)ox

θ̂

 . (6.25)

The inliers I and outliers O are then calculated similarly to the 2D case described in
Section 6.6.1. We first apply the offset ox to all points and then determine two inlier sets
IL and IU for the lower and upper half of the 3D box model shown in Figure 6.14b. Both
sets are again calculated by testing the points for inclusion in an axis-aligned bounding
box. We then get

I = IL∪ IU (6.26)
O = {p ∈ L∪U | p 6∈ I} . (6.27)
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We consider a container as verified, if |I| ≥ dI,3d and |O|< dO,3d are satisfied, where
dI,3d and dO,3d depend on the type of container and are determined experimentally.

6.7 Reactive Control For Payload Acquisition

Payload Approach

Epayload pose

Bcommand

As a next step, we use a simple control law
to steer the AGV beneath the payload. This
also demonstrates the real-time capability
of the proposed method. This law is imple-
mented using a simple switching control
system, where we differentiate between ap-
proaching the closest container face and approaching the final pose. The controller is
developed for our asymmetric AGV, that consists of a differentially driven base and a
passively steered trailer.

Let b be the pose of the base of the AGV and let t be the pose of the trailer, expressed
in the inertial frame of the odometry. Using a virtual vehicle formulation similar the one
described by Egerstedt et al. (2001), we search for a desired pose b̃ for the base on the
center line of the container, as shown in Figure 6.15.

Then eb = b− b̃ is the error of the AGV base and et = t− t̃ is the error of the rear-most
point on the trailer. To improve numerical stability, we then select b̃ by minimizing ||eb||
with the constraint ||eb||> δmin for a free minimal distance parameter δmin.

Let b̃g be the final goal pose for the AGV. Depending on the distance the AGV still has
to travel, we distinguish two states: In the first state, we position the AGV as closely as
possible to the target line while we are approaching the container. In the second state, we
position the AGV to the final pose b̃g.

Case A Case B
t

b

b bg
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eb
t

la lax
y

~
~

~

Figure 6.15: The error to the central line of the cart is minimized.
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Steering Control

The first of the two states is active, when the distance ||b− b̃g|| ≥ la is greater than the
length la of the AGV. In this case, we use the steering angle

ψ = ψa := ka atan2
(
eb,y,eb,x

)
+ kb atan2(et,y,et,x) , (6.28)

where the term dependent on eb drives the AGV base towards the line and the term consist-
ing of et the trailer. By enforcing δmin� 0, we avoid numerical problems. Experimentally,
we determined ka = 0.7 and kb = 1.8.

The second state is reached, when the distance ||b− b̃g||< la is smaller than the length
of the AGV. In this case we can assume, that the AGV is already close to the target line
and that only small steering commands are necessary. We choose as control input

ψ = ψb := kceb,y (6.29)

the error in y direction relative to the container (cf. Figure 6.13b), scaled by a free
parameter kb. Experimentally, we determined the value kc = 0.6.

Velocity Control

Finally, we control the linear velocity of the AGV with a simple proportional controller

vx = max
(
vmin,min

(
vmax, kveb,x

))
(6.30)

which gives another control parameter kv. The velocity falls off linearly with the distance
to the resting pose and is constrained to be in the interval (vmin,vmax).

6.8 Multi-sensor Person Detection

Person Detection

E3d obstacles

Blaser segments

Bpersons

One of the aspects of the PATSY projects
is the detection of persons around the AGV.
This is done in order to enable the system
to be more careful in the vicinity of inex-
perienced people. As with the detection of
payload containers, we make use of the al-
ready classified depth information coming
from the obstacle detection module. Similarly, we use a segmentation of the planar laser
scanners to track people that are not visible in the limited field of view of the TOF camera.
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6.8.1 3D Person Detection
As a first step we again apply a clustering step to generate candidates for the presence of
persons using the detected obstacles. We do not directly use the same clustering parameters
as in the payload detection, so that the parameters can be independently adjusted and
optimized. For each cluster we calculate a region of interest (ROI) in the corresponding
intensity image (cf. Figure 6.16a). Every ROI is then processed individually. First we
extract the corresponding sub-image IROI from the intensity image I, which is trivial in
structured point clouds. We then calculate a feature descriptor for the image, which can
be either HOG (Dalal and Triggs, 2005) or ACF (Dollár et al., 2014). These descriptors
are then classified by a machine learning algorithm. For this we compare Random Forests
(RF), Support Vector Machines (SVM), AdaBoost and Multi-layer Perceptrons (MLP) in
Section 6.10.3.

In addition to the 3D information, we use the planar laser scanners to detect persons
all around the vehicle. Similarly to the container detection, we segment the laser scans
into clusters. A Random Forest is then used to predict for every cluster, whether it might
be a leg of a person. Due to the low information density, however, we cannot reliably
determine, whether a segment really belongs to a person.

(a) Regions of interest classified as persons. (b) Two people are tracked in 2D and 3D.

Figure 6.16: Person detection and tracking.

6.8.2 Person Tracking

Person Tracking

Epersons

Btracked persons

The output of the person detection module
are direct measurements of people. Detec-
tions from 3D data can be used with high
confidence, those from planar laser scan-
ners only with low confidence. In order
to fuse both measurement types, we use a
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Multi-Hypothesis Tracker (MHT) based on the Kalman Filter, similar to the algorithm
proposed by Arras et al. (2008). The tracker is implemented as a buffer (cf. Section 3.6.3)
with asynchronous inputs for detected persons.

For each detected person we find the closest existing hypothesis and update it with the
measurement. New hypotheses are created for measurements that cannot be assigned to
an existing hypothesis. We use two different update functions, one for 2D detections and
one for 3D detections. This way we can weaken the update for the more error-prone leg
detection relative to the more accurate camera based detection. The combination of both
detectors is beneficial for the performance, because we can tolerate missing detections or
false positives of both individual modules. Figure 6.16b shows the same situation as seen
before, now displaying two hypotheses for the two persons.

6.9 Vector-based Adaptive Monte Carlo Localization
To localize the AGV we use Monte Carlo Localization (MCL) based on architectural
maps in vector format. Particle filters are used to approximate the posterior probability
with partially observable Markov chains (Thrun, 2002). This is then used to estimate the
pose xt of a robot at time t from the complete history of measurements z1, . . .zt and all
control commands u1, . . . ,ut . In the particle filter, this is done by estimating the belief

bel(xt) = p(xt | z1, . . .zt , u1, . . .ut) (6.31)

by keeping a set St

St =
{

x[n]t | 1≤ n≤ N
}

(6.32)

of N particles.
In the case of an AGV, there usually exists a precise plan of the workspace. Architectural

plans, such as the one shown in Figure 6.17, are very memory efficient compared to
occupancy grid maps, due to the continuous representation. The lack of discretization also
makes them more precise, assuming that they accurately represent the actual building.

Figure 6.17: An architectural map of the Cognitive Systems chair.
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One way to use such an architectural map would be to discretize it into an occupancy
grid. This would, however, negate the previously mentioned advantages. A large architec-
tural mapM may contain thousands of line segments. Without pre-processing, each of
those lines would have to be intersected with every hypothetical laser beam, in order to
calculate the likelihood of each particle.

To reduce the computational effort, we create a lookup table I for discrete chunks of
the environment. I is three dimensional, using the x-y position and the yaw-orientation
θ . When we need to generate a virtual laser beam at pose p = (x,y,θ), we look up the
cell cp that p is located in. The possibly visible segments are then used for intersection
calculation. To determine the visibility, a shadow polygon Ps(si) is calculated for each
segment (cf. Figure 6.18a). All segments that do not lie in any shadow polygon of another
segment are then stored in I. The shadow Ps(si) is calculated by finding the convex hull
of the cell c and both ends of si. The newly added segments are extended into infinite
lines, as demonstrated in Figure 6.18b.

c

s1

s2

(a) The segment s2 is invisible to the cell c
because it is shadowed by s1.

Ps(s1)

c

s1

(b) Construction of Ps(s1) using the convex
hull of c and s1.

Figure 6.18: Calculation of visible segments relative to cell c.

6.10 Experimental Results

6.10.1 Obstacle Detection
Quantitative values for the obstacle detection pipeline are given on a frame-by-frame basis.
The complete system is demonstrated in a video.1 Table 6.1 shows the average runtime
over 10000 frames recorded while driving the AGV through various environments. As
can be seen in the table, the average runtime required is 7.5 ms, which corresponds to
a frequency of ca. 120 Hz, which is clearly real-time since the employed sensor has a
maximum frequency of 60 Hz.

To select the optimal parameters, we created a set of ca. 50 manually labeled point
clouds, where we specified for each point whether it is caused by an artifact or whether it

1A video demonstration can be seen at https://youtu.be/vn3cyXHYyHQ
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Table 6.1
P E R F O R M A N C E R U N N I N G O N T H E AG V

Runtime in ms Mean Standard deviation
Conversion 0.56 0.38

Intensity Filter 0.27 0.28
Edge Filter 0.48 0.42

Classification 6.20 2.01
Overall 7.50 3.09

should be classified as an obstacle or as floor. Points that are ambiguous or not relevant
have not been not labeled. New scenes were added to the set, if they proved difficult to
classify. We focused on small objects, since detection of objects larger than ca. 10 cm was
found to be very stable. Using the evolutionary algorithm framework EvA2 developed by
Kronfeld et al. (2010), we optimized all parameters using the AUC as the fitness function.
Finally, we selected the threshold Pt = 0.92 using the optimal ROC curve. Included in
the data are small objects that we placed in front of the AGV. Also included are different
floor types, including stone, PVC, wood and concrete.

(a) Objects included in the manually labeled
data set are mostly smaller than 10 cm.

(b) Detection result for a screwdriver at a dis-
tance of 2 m. The detected points are high-
lighted.

Figure 6.19: Small objects contained in the test data set.

Due to the resolution of 160×120 pixels of the Fotonic E70P, there is a limit for how
small an object we can detect. To evaluate the effective detection range of the algorithm,
we created a second data set by placing small objects in front of the AGV at various
distances, as can be seen in Figure 6.20. We measured the number of detected obstacle
points and reported an object as detected, if there were at least 10 detected points. A
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subset of the objects can be seen in Figure 6.19a. The use of the sum of intensity and
depth based detection allows the detection of weakly reflecting and transparent objects,
although both components are only weakly discernible. We found that these objects,
which include dark and clear plastics, as well as glass, can be detected up to a distance of
ca. 1.3 m. Detecting tools like screwdrivers (cf. Figure 6.19b), hammers and wrenches
proved to be possible up to a distance of 2.3 m. Very small and weakly reflecting objects
cannot be detected reliably, since neither the depth nor the intensity data is sufficient to
gain information about the objects. Larger objects and overhanging obstacles can reliably
be detected up to 5 m.
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Figure 6.20: The number of detected points for different object classes.

6.10.2 2D Container Detection
We evaluated the container detection algorithm in three experiments: First we determined
the 2D detection accuracy using a stationary laser scanner and a four-wheeled cart in
a tracking system. In the second experiment we used the full pipeline to evaluate the
accuracy while the AGV was autonomously driving beneath a realistic container mock-up.
A final experiment was done in simulation to evaluate the approach of a payload cart from
many different initial poses.
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Stationary 2D Detection

We evaluated the 2D localization accuracy using a four-wheeled cart in place of a real
container, which is shown in Figure 6.21a. The 2D sensor was mounted at the same height
as in the AGV. Both the pose of the cart and the pose of the laser scanner were tracked
using OptiTrack.

(a) A cart equipped with tracking markers (high-
lighted in red.)

(b) A mock-up of a real container is used for
experiments.

Figure 6.21: Experimental setup.

The experiment was performed using a stationary laser scanner and a moving cart. The
motion of the cart was varied to simulate different scenarios:

1. Straight motion. The cart’s motion leads towards or away from the scanner. From
the reference frame of the laser scanner, this is equivalent to the application scenario,
where the AGV is driving towards the cart.

2. Rotation. The cart is rotated around its central axis at varying distances.

3. Random. The cart is pushed and rotated randomly with directional changes that
cause the wheels to have non-parallel orientations.

Figure 6.22 shows the detection rates of the tracked cart in these scenarios and Table 6.2
shows the detection rates.

Table 6.2
E X P E R I M E N T 1 : T R U E A N D FA L S E - P O S I T I V E - R AT E

toward away rotating random combined
TPR (%) 93 92 87 85 87
FPR (%) 0 0 1 1 1
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The combined translational error is −1.49cm±5.26cm in x direction and −0.43cm±
3.97cm in y direction. The average orientation error is 0.126◦± 3.323◦. The larger
uncertainty in x direction is expected, do to the asymmetric caster wheels. This also shows
that the 2D detection is not sufficient to localize the payload. In the combined case, 87%
of the time the container can be detected, whereas false detections only happen rarely.
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(a) Signed translational errors.
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(b) Rotational error (yaw angle.)

Figure 6.22: Results of 2D tracking of a cart.

Full Container Acquisition

The second experiment shows the combined approach of using both 2D and 3D informa-
tion. This experiment was performed on the real AGV using a mock-up of a payload cart.
The mock-up, which is shown in Figure 6.21b, was built to match the dimensions of a real
cart, where the poles result in an equivalent laser range scan as four parallel caster wheels.

(a) 2D and 3D capture of the container mock-
up.

(b) Detected Pose and height of the container.

Figure 6.23: Experiment 2: Combined detection and approach.
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Figure 6.23 shows the data of both sensors, while the AGV is approaching the container.
Figure 6.24a shows the average error along the x-axis for ca. 4000 measurements with
different poses at three distances. The error along the y-axis is shown in Figure 6.24b. As
desired, the 3D information considerably reduces the error in x direction.

The run times of the individual steps are shown in Table 6.3, evaluated on the AGV.
The complete pipeline has a delay of ca. 16 ms, which makes it real-time capable with
60 Hz. Once the 3D verification has been successful, only 2D information is needed for
the controller. The 2D sub-system is decoupled and allows for ca. 160 Hz, which is far
higher than the 12.5 Hz operating frequency of the employed laser scanner.

Table 6.3
C O N TA I N E R D E T E C T I O N R U N T I M E S

Step Mean [ms] Standard Deviation [ms]
2D Segmentation 0.632 0.023

2D Payload Detection 3.247 0.837
Clustering 0.765 0.235

3D Verification 0.686 1.162
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Figure 6.24: Accuracy using 3D verification depending on the distance to the container.

Simulation

In the last experiment we evaluated the approach towards a container cart from various
different poses. This experiment was done in simulation, where we fully simulated the
robot’s kinematics. The start pose of the AGV was varied on a grid (cf. Figure 6.25) with
x ∈ [−2m,2m] and y ∈ [−4m,4m] with a step size of 0.5m in both directions. The pose
of the container was set to (4m,0m). The orientation was varied as θ ∈ {−0.5,0,0.5}.
Figure 6.25 shows the results, where every starting pose from which the container can be
successfully picked up is visualized.
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Figure 6.25: Simulated approach from various initial poses. Shown are the container
(black) and all poses from which the approach is possible (blue).

6.10.3 Person Detection
The person detection using 3D data was evaluated on a dataset of ca. 6,000 sensor
measurements of the Fotonic E70P, which have been manually annotated with ca. 16,000
annotations. The data set is intentionally designed to be challenging.

Table 6.4
P E R S O N D E T E C T I O N S TAT I S T I C S

Descriptor ACF HOG
Classifier SVM RF AdaBoost SVM RF MLP
TPR (%) 27 74 75 78 76 78
FPR (%) 5 21 20 22 27 23

A large portion of samples contains more than one person and there are many partially
visible people. Table 6.4 contains the statistics of all evaluated features and classifiers.
The strongest variant for this data set is the HOG descriptor in combination with an SVM,
albeit all variants except for ACF with SVM are comparable. A true positive rate of 78%
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can be achieved, which is sufficient for the PATSY project but should be improved in the
future. A more detailed evaluation with more recent experiments can be found in (Hanten,
Kuhlmann, Buck, Otte, and Zell, 2018).

6.11 Discussion and Conclusions
We have presented an architecture for a person detecting AGV, mainly based on the
Hybrid Flow Graph model. The key component is a simple and efficient approach to
detect obstacles in 3D point clouds that can deal with various data artifacts caused by
the measurement principle of TOF cameras. By using both depth and intensity data we
can detect objects of various sizes, ranging from less than 10 cm to several meters. Small
objects cannot be detected without using intensity data, because of the high signal to
noise ratio, especially in sunlight. The downside of using intensity values is that the floor
has to be rather uniform. However, since we are using the gradient of the intensity, this
is only problematic if there are very high contrast changes between floor types. Using
evolutionary optimization we have found parameters that work with a variety of floor
types.

Our obstacle detection algorithm is kept as generic as possible and is directly applicable
to any TOF camera system. The approach has also been tested on a 3vistor-T TOF camera,
which is developed by the SICK AG. Compared to the E70P, the 3vistor-T camera employs
multiple frequency scanning and therefore does not suffer from wrapping artifacts. The
floor plane, however, is also not measured completely flat and cannot be measured further
than with the E70P. The distortions of floor are largely equivalent for both sensors and
interpolation artifacts on object corners have to be filtered in both cases. We classify each
column of the point cloud independently, which means that the algorithm can be directly
used on spinning LIDAR, RGB-D or stereo systems. However, the artifact filtering step is
mostly necessary for TOF cameras. We have also used a variant of the presented algorithm
for an outdoor robot in rough terrain by adjusting the hazardousness function.

Transportation of payload carts is the central task for single unit AGVs. We have shown
that the location of these carts can efficiently and robustly be determined in real-time
on the vehicles themselves. Such an approach could replace the state of the art in real
application scenarios, where containers can usually only be collected in sending stations
with arrangements to perfectly align the wheels of the carts. The unconstrained payload
acquisition allows AGVs to navigate freely, i.e. AGVs can be made independent of
predefined paths and specialized stations to send or receive payloads. Instead, any area
in the environment can become a (temporary) designated station, without the need for
additional hardware.

The results of the generic obstacle detection are also used to detect people around the
AGV. We have presented a fast person detection method based on candidate proposals
generated from obstacle clusters. In combination with a tracking step, the results are good
enough to allow the AGV to safely navigate in populated areas.
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It remains a matter of future work to replace the last and most aggressive filtering step
of the obstacle detection with more sophisticated models, such as the probabilistic phase
unwrapping approach by Droeschel et al. (2010). Future work also includes the creation
of a benchmark of a variety of objects under different conditions for a more systematic
evaluation. Concerning the detection of payload, future work includes the use of more
than one container model to differentiate between different types of payloads. Additional
work includes the implementation of a least-squares fit to further refine the search results,
which could improve the accuracy even further.

In this chapter we have presented the individual modules of the PATSY architecture in
detail. We have, however, omitted details about the high level control structures needed to
make the system fully autonomous. These will be presented in Chapter 8, once we have
introduced the concept of activity.
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Chapter 7

Activity Flow Graphs
In the previous chapters we have derived the first two layers of the flow graph hierarchy
that pervades this work. At first we have defined the SDF+ model, which separately
implements both synchronous and asynchronous data flow. With HFG we have then
unified both data flow models into a coherent framework, which is a hierarchical data flow
model. In both cases, however, we still need additional structures to model high level
state that changes orders of magnitudes less frequently than the data flow.

SDF Events FSM

SDF+

Activity

HFG

AFG

Figure 7.1: Activity Flow Graphs
(AFG)

A common way to model any complex system is
using the various forms of UML diagrams. Finite-
state machines (FSMs) are often used, both in the
design and as the foundation of the implementation.
They are, however, not really capable of modeling
concurrent or data-driven processes.

In this chapter we propose a novel way to model
high level robot control based on data flow. Many
existing approaches (Ethan Rublee et al., 2015;
Biggs et al., 2011; Hart et al., 2014) that model
perception and mission control in a single frame-
work use a combination of multiple models, such as
data flow for perception and finite-state machines
for high level mission control. Statemate (Harel
et al., 1990) uses three separate model types: Module, state and activity charts. We,
however, want a coherent graphical computation model that can be used to model both
perception and high level mission control in a single framework.

Other approaches base their unified model on state-machines and extend them by also
modeling data flow. RAFCON by Brunner et al. (2016), implements state machines that
support hierarchies and concurrency. The data flow is used to represent parameters and
return values for the states. The system needs a separate solution for the implementation
of perception tasks. Sequentially constructive statecharts (von Hanxleden et al., 2014) are
another way to represent synchronous computation based on state machines, which are
designed for safety-critical applications.

Flow diagrams are also common in workflow specification for businesses. Data flow
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and control flow are used in business process management to analyze and verify workflow
processes (Trcka et al., 2008; Sadiq et al., 2004). As with the similar sounding Activi-
tyFlow (Liu and Pu, 1997), a workflow process schema typically specifies activities that
constitute the workflow process and dependencies between these activities. Activities thus
represent steps required to complete a business process. In our model, we view activity as
an abstract property that flows through a graph, the same as with data and control flow.

We eliminate the need for an FSM by introducing the concept of activity. This approach
is inspired by UML Activity diagrams (Dumas and Ter Hofstede, 2001), which are
capable of modeling both computational and organizational processes. We show that the
expressiveness of FSMs can be translated into HFG with minimal changes to the model,
resulting in Activity Flow Graphs (AFG) . In Chapter 8 we show how to apply AFG to
modeling high level robotic mission control.

7.1 Activity Flow Graphs

7.1.1 State Representation
So far we have not formally defined how a flow graph and an FSM can interact. This
is due to the fact that flow graphs are focused on data flow and FSMs are focused on
control flow and state representation. Informally, we assume that state machines and flow
graphs interact asynchronously, which can be implemented using events in both the SDF+
and the HFG models. Every state of an FSM can therefore send and receive signals, as
visualized in Figure 7.2.

Figure 7.2: Technical example of an
interaction between an HFG and an
FSM to wait for a message B:
First state S1 emits signal E1 and
transitions via δ2 to state S2.
E1 is handled by vl , which sends E2,
once B is received.
Only now will the FSM transition
to Sq via δq.

vk

vl

HFG

S1

S2

Sq

FSM

δ2

δq

B

E2

E1

Figure 7.2 demonstrates a solution to a stateful problem, where the system has to wait
for the arrival of a specific message, before it can continue. This could be an AGV that is
waiting for a container to be placed in its vicinity, as described in Chapter 6. The example
demonstrates one of the main reasons, why HFG alone is not sufficient to model more
complex systems: Flow graphs are inherently state-less, with all components representing
functional units. A sophisticated robotic system, on the other hand, always needs to
consider the global state of the robot and its mission.
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We can also see that the vertices of the graph can be split into two disjoint sets, one
representing data flow and the other representing the FSM, where interactions between
the two sub-graphs are only possible via asynchronous message passing. Instead of giving
a more precise definition for FSMs in the context of flow graphs, we directly generalize
the concept of states and state machine graphs into a coherent model we call Activity Flow
Graphs (AFG).

7.1.2 Activity Flow
Let us again consider the exemplary situation from Figure 7.2. If we only observe the
state machine, we can interpret the FSM graph as a data flow graph: Each state is a data
flow node and the transition edges between states are asynchronous connections. When
the FSM transitions from state S1 to S2, we can imagine a message being sent via the
transition δ2. The FSM always has a single active state, which is why we can say that the
message sent via δ2 transfers the activity of the graph. This also holds in general, there is
always exactly one active node in an FSM and the activity can only be transferred using a
transition.

We now transfer the activity concept to HFG, with the aim to eliminate the need for an
FSM altogether. Let G = (V,E,P∗) be a flow graph according to the HFG model with the
nodes V , edges E and graph ports P∗. For each vk ∈V we define an activated attribute

A(vk) ∈ {0, 1} , (7.1)

where 1 indicates an activated node. We initially set A(vk)← 0 for all vk ∈ V . The
behavior of an activated node is the same as that of an active state in an FSM, i.e. it stays
active until the activity is transferred to another node. Importantly, whether a node is
activated or not does not influence the behavior of the node in the data flow. If no activity
is injected into the graph, we have a pure HFG model. Otherwise, an activated node still
participates normally in the data flow, except for specially implemented nodes that behave
differently depending on their activation.

For a node to become active, it has to receive the activity via a connection, i.e. via a
message passed from another node. We therefore define an activity modifier attribute

a(•) ∈ {0, +1, −1} (7.2)

for tokens, which can take on one of three values: 0 representing no change, +1 repre-
senting an activation and −1 a deactivation. Then we can define a simple update rule for
the activity of any node vk upon receiving a token to be

A(vk)←max(0,min(1,A(vk)+a(•))) , (7.3)

which means that an inactive node receiving a token with a(•) = 1 becomes activated.
Likewise, if an activated node receives a token with a(•) =−1, it will be deactivated.

In order to control the flow of activity, we need an equivalent structure to the transition
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in FSMs. We therefore define an active attribute for connections ek ∈ E as

A(ek) ∈ {0, 1} , (7.4)

such that only active connections can transfer the activated property of a node to another.
Let EA = {ek ∈ E | A(ek) = 1} be all active edges and E¬A all the inactive edges of G.

A second update rule, this time for the tokens sent via connection ek, is then given by

a(•)← a(•) ·A(ek), (7.5)

which means that all tokens sent via an e ∈ E¬A will be assigned a modifier of 0. This way,
only active connections can transmit tokens with a(•) 6= 0. Whereas the activated state of
a node changes over time to reflect the state of a higher level system, the activity of an
edge is a fixed part of the graph structure. Since only active connections can transfer a
token with an activity modifier, GA = (V,EA,P∗) forms a sub-graph of G that describes the
flow of activity between nodes. Note here that EA ⊆ E, so each ek ∈ EA still participates
in the regular data flow.

The transfer of activity is then defined as follows: When a node vk produces a token •
via an output, we set

a(•)← A(vk), (7.6)

so that a node sends active tokens while it is active itself. Sending an active token should,
however, deactivate the sending node to achieve a similar behavior to an FSM. Therefore
we set

A(vk)← 0, (7.7)

once vk has sent a token with a(•) = +1.
This way, analogously to an FSM, activity is transferred between nodes via edges,

however we do not have to define additional node or port types. Instead, every output
kO and every event kE of node vk is able to relay activity and vk can be implemented
in an activity-agnostic way. This definition results in a more general model than FSM,
however, since an active node can send activity to more than one succeeding node at a
time. Additionally, nodes can become activated from other sources, e.g. any inactive node
can send a signal E with a a(E) = +1.

In AFG, more than one node can be active concurrently, which means that not every
active sub-graph GA = (V,EA,P∗) can be represented as a UML state diagram. Using
the familiarly sounding UML Activity Diagram, we can, however, represent the activity
sub-graph GA, if we restrict the generation of activity to a single source.
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7.2 Exemplary Usage

7.2.1 Finite-State Machine
We first show that activity flow graphs are capable of representing any finite-state machine,
by translating a general FSM into AFG. Let (Σ,S,s0,∆,F) be a finite-state machine where
Σ is the input alphabet, S = {s0, . . . ,sn} is the set of all states, s0 is the initial state, ∆ is the
set of all transitions and F is the set of all final states. We construct an AFG G = (V,E,P∗)
in the following way:

1. Create a graph event ∗E1 ∈ P∗ that emits an active token to initialize the graph and
represents the initial state s0.

2. For each state sk ∈ S, except for s0, create a node vk representing that state.

3. For each transition δt = (si,s j) ∈ ∆ between state si and s j:

a) If si 6= s0 create an event iEt for node vi and a slot jSt for node v j and add an
active connection (iEt ,

j St) to E.

b) Otherwise create a slot jSt for node v j and add an active connection (∗E1,
jSt).

4. Implement each node vk analogously to the implementation of state vk. Instead of
invoking a transition δt = (si,s j), publish an active signal token E with a(E) = +1
on the event jSt . Ensure for each node, that only one active token is sent at a time,
otherwise G implements a non-deterministic finite-state machine.

Figure 7.3 shows an example of this transformation.

S1 S2

Sq

δ0

δ2

δ3 δ4

(a) Finite-State Machine

∗E1

v1 v2

vq

(∗E1,
1S0)

(1E3,
qS3) (2E4,

qS4)

(1E2,
2S2)

(b) Activity Flow Graph

Figure 7.3: Translation of an FSM into the AFG framework. States are replaced by nodes,
transitions are modeled as connected pairs of events and slots. The initial state is modeled
as a graph port.
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7.2.2 Data Flow and High Level State Interaction
We can implement a solution to the problem shown in Figure 7.2 using activity flow. The
idea is to wait, until a node vk has produced a message and only afterwards continue
propagating the high level state. This can easily be modeled using AFG, as demonstrated
in Figure 7.4. We can use a buffering node vb, as introduced in Section 3.6.3. A node vk
is sending a message to vb, which simply relays it in form of an event to Sq.

Figure 7.4: A solution to the same
problem as in Figure 7.2, with ac-
tive edges shown doubly lined. The
buffer node vb relays incoming to-
kens B1 to B2. Once E0 activates
node vb, the buffer transfers the ac-
tivity to Sq with the next B2.

vk

vb

Sq

B1

E0
B2

As long as vb is inactive, the signals B2 will have a modifier of a(B2) = 0, so Sq
will not be activated. However, once a E0 token with a(E0) = +1 arrives, vb will be
activated. The next relayed B2 will then have a modifier of a(B2) = +1, deactivating vb
and activating Sq. We therefore have constructed a graph where Sq will be activated only
after vk has produced a message.

Note that we do not have to consider activity in the implementation of vk, vb or Sq, all
of which are completely activity-agnostic. Only when constructing the graph do we have
to consider which edges have to be active for the activity flow to be correct. We have a
lower complexity than in the solution shown in Figure 7.2, which needed two different
graphs with completely different semantics, as well as many more nodes and edges.

7.2.3 Unified Data Flow and Robot Control
Previous examples have shown how we can use the activity concept to control the current
state of a robotic system from within the data flow. Additionally, we can trivially model
the reverse situation, where we control the data flow according to the high level state.
This can be used to activate parts of a perception pipeline exactly when it is needed and
thereby conserve computational power when it is not needed.

With SDF+ and HFG we have used an FSM to deactivate parts of the system, where
we needed additional complexity and where we did not have fine-grained control over the
data flow. With AFG we can, for example, throttle a currently unimportant sub-graph to a
lower frequency instead of completely deactivating it. All of this can be achieved, without
any of the involved nodes having to be differently implemented. This is particularly useful
for robotic systems with limited computational power, where not all possible pipelines can
be executed at the same time. In Chapter 8 we will demonstrate how to model different
robotic systems using AFG alone.
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Chapter 8

High Level Robot Control Using
Activity Flow
In this chapter we show how to model different robotic systems using activity flow graphs.
In Section 8.1 we review the scenario described in Chapter 4, this time using AFG instead
of the basic SDF+. Afterwards, in Section 8.2, we apply the AFG model to the PATSY
project, which completes the perception algorithms described in Chapter 6 into a fully
autonomous robotic system. Finally, we apply AFGs to an outdoor robot which is first
used as a simulated space exploration platform (Section 8.3) and then used as a person-
following robot (Section 8.4). All these exemplary use-cases are used to highlight the
advantages of a unified and coherent framework.

Parts of this chapter have been published as an article in (Buck and Zell, 2018). Other
parts are based on the article in (Huskić, Buck, Ibargüen González, and Zell, 2017a).

8.1 Fetch-and-Delivery Robot using AFG
In Chapter 4 we have presented a robotic fetch-and-delivery system designed for the SICK
robot day 2014 competition. The design, based on SDF+, required the use of an FSM
to implement the high level mission planning aspects, including different behaviors for
fetching and delivering items. We now present a solution using AFG that requires fewer
problem specific implementations.

8.1.1 Building Blocks
Except for the FSM, we reuse all the sub-graphs presented in Chapter 4. These include
the detection of cross-hair targets and number signs, the detection and evaluation of
items in the robot’s basket, as well as the analysis of the environmental map. Underlying
systems, such as navigation and mapping, are also kept. This leaves the implementation
of additional functional units to replace the FSM.
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Waiting for a start signal and controlling the signalling light

In the SDF+ model, we require an explicit state that remains active until a starting signal
is sent to the robot. With AFG, we do not need an explicit state to wait for a message,
as was already demonstrated in Figure 7.4. Instead, we only need a source node that
reads on a data channel. Every produced token is then compared to the predefined starting
command, and activity is transferred once the incoming token matches. We do not need
any problem specific implementation, everything can be achieved using the sub-graph
shown in Figure 8.1a.

Similarly, controlling the signaling lamp is achieved by sending a command via an
outgoing ROS data channel. As shown in Figure 8.1b, we need to employ an activity gate.
The gate only forwards messages when it is active, otherwise it sends a ⊥ token. This
way we ensure that only one message is sent and with this message the activity will be
transferred to the exporting node. Once the message is exported, the node triggers an
event which will further forward the activity.

static value "start"

ROS import

streq

a

b a = b

(a) The start signal is a string message re-
ceived on a ROS topic. The streq node
triggers a signal, when a and b are equal.
Only then will activity be transferred.

static value "true"

Activity Gate

ROS export

(b) Setting the signal light is done via a boolean
ROS topic. Since the activity gate only forwards
messages when it is activated, it forwards exactly
one (active) message.

Figure 8.1: Two simple sub-graphs to replace explicit states in an FSM. Activity is only
transferred via doubly drawn lines.

In both cases we do not need any application specific nodes, compared to the two
specific states necessary in the FSM used in Chapter 4. Rather, every node in the active
sub-graphs shown in Figure 8.1 can be interpreted as its own state.

102



8.1 Fetch-and-Delivery Robot using AFG

Searching for a delivery station

To deliver an item, the robot has to know the location of the delivery stations. A Gaussian
Mixture Model is used to track the positions of all known stations. The map may, however,
not yet contain the required station, which needs to be handled robustly. This is done
using the graph shown in Figure 8.2: At first the cube detection node becomes active.
Once a cube is detected, the imprinted number is sent to a node called MapLookup, which
also takes the current state of the sign map. The output of the sign map node is a function
that maps the number read from a cube to a pose in the world, whereas unknown stations
are represented by ⊥. The MapLookup node emits a signal if the lookup fails, i.e. when
the result is ⊥. Otherwise it forwards the result of applying the function to the key. This
way, the activity flow branches into two different flows, depending on whether the delivery
station is known or not.

Cube detection

Sign mapping

MapLookup

key: Cube number

map: {0, . . . , 9} 7→ SE(3) ∪ {⊥}

map(key) if key ∈ map

E if key 6∈ map

Figure 8.2: The sign map node produces a map of known sign poses. Unknown signs are
mapped to ⊥. The cube detection node sends the number printed on detected cubes. The
activity flow is routed depending on whether the sign pose is known or not.

In case the station is known, the pose resulting from the map lookup is used as the
goal pose for the navigation system. Otherwise, the robot switches into an exploration
mode, where it drives counter-clockwise around the arena, examining the outside wall for
possible stations. This is again implemented similarly to the FSM case, where a problem
specific node is implemented to generate goal poses for the navigation stack, based on the
current pose of the robot and the results of map analysis.

Positioning the robot reactively

Positioning the robot is done analogously to the FSM implementation: To navigate
the arena we employ a full navigation stack, including path planning and following.
Additional movements are done reactively, i.e. not using global positioning but relative
measurements. For this, the reactive programming approach achieved by the asynchronous
data flow of AFG is a perfect match.
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Chapter 8 High Level Robot Control Using Activity Flow

In the original design, the robot first quickly moved about 2 m diagonally forward to
populate the occupancy grid map with enough measurements to extract the central filling
stations. This center exploration is its own state in the SDF+ model and can be replaced
with a more generalized AFG node MoveRobot. When activated, the node MoveRobot
generates motion commands that move the robot for a given distance in a predefined
direction. Additionally, the FSM has a state to back up the robot by about 1 m after
collecting or delivering an item, for which we can immediately reuse the MoveRobot
node.

In order to precisely place the robot below either a filling or a delivery station, another
node called PositionToTarget is implemented. The new node is essentially equivalent to
the state implemented for the FSM im Chapter 4. Whereas the FSM state handled the
complete control of the robot, the AFG node is implemented in a more functional way:
As input it takes the pose of the robot, the detected target signs and the estimated pose
of the target sign, and as output it generates a motion command. The AFG approach
has the advantage that additional processing nodes can be used before and after the
generation of the movement command. For example, a Bayesian filter can be used to
improve the localization accuracy of the target without changing the implementation of
PositionToTarget. Another possibility would be an obstacle avoidance node that post-
processes the generated movement command to avoid collisions.

After the robot is positioned relative to the target sign, it is commanded to drive
towards the wall in front of it until a critical distance is reached. This is achieved using
a general motion node MoveToObstacle, which is also mostly equivalent to the FSM
case. MoveToObstacle has as input the current laser scanner measurement and as output a
motion command. Again, the advantage of the AFG approach is that we can arbitrarily
pre-process the input data using a data flow graph, e.g. filtering the laser scan. With a
single framework it is also easier to find good parameters to tweak the performance of the
robot, especially when using a graphical user interface.

Hierarchical Graph

We combine multiple nodes into a sub-graph node to reduce complexity and to make it
easier to reuse existing solutions. Keeping to the model implemented in the FSM case, we
combine selecting a filling station, navigating to the station, positioning to the target, and
evaluating the cube into a Fetch Cube node. Similarly, we group the sub-graphs shown in
Figure 8.1 into Wait for Start and Explore, respectively.

Delivering a collected cube is also grouped into Deliver Cube, which strongly resembles
the Fetch Cube node. The only difference between the two is the determination of the
target pose and whether to wait for a cube number or for a ⊥ token at the output of the
cube detection node.
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8.1.2 Resulting AFG Graph
Combining the individual building blocks, we get the AFG shown in Figure 8.3, which
completely solves the challenge without the use of any additional high level control
structure.

Cube Detection

Sign Mapping

MapLookup

Fetch Cube

Deliver Cube

Find Delivery

Explore

Wait for Start

Sign Detection

Target Detection

key: Cube#

map

Sign pose

E if key 6∈ map

Sign pose

Target Pose or ⊥

Target Pose or ⊥

Sign

Cube# or ⊥

Cube# or ⊥

Figure 8.3: A mostly complete activity flow graph that solves the SICK robot day 2014
challenge. The highlighted nodes form the active sub-graph, which also includes the cube
detection, one of the perception graphs shown earlier. Sensor source nodes and command
sink nodes are not shown to reduce complexity.

8.2 Freely Navigating AGV
As a second example, we give an AFG model that realizes the same architecture for the
PATSY AGV as seen in Section 6.3. Figure 8.4 shows the part of the model responsible
for the collection of a payload container. In Chapter 6 we did not go into detail about
the navigational aspects, as well as high level control, because we need AFG features to
implement them.
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First of all, we need to implement additional nodes, which are highlighted in Figure 8.4.
The central node for high level control is the Mission Control node, which is responsible for
making decisions about what the AGV should do. We only show the sub-graph necessary
for the collection of payload containers, which is initiated by a signal Eget container. Once
this signal is sent, Mission Control loses activity while Path Planner gains it.

Path Planner and Path Follower are two generic navigation nodes that can also be used
with other robots. While the path planner plans a path to a given input pose, the node stays
active. Only when a path is published is the activity transferred to Follow Path. There are
also signals for error handling which transfer activity. However, they are not shown here
in order to reduce the complexity.

3D Obstacle Detection

Laser Processing

Local Hazard Map

Payload Detection

Person Detection

Payload Approach

Person Tracking
Mission Control

Path Planner

Path Follower

Control Lift

Bpath

Eat goal

Eat container

Elift up

Eget container
. . .

Figure 8.4: AFG model for the PATSY architecture that also includes high level control.
The Mission Control node can select between different tasks by emitting signals. When it
emits Eget container, the payload approach is eventually used to collect a container.

When the path has been followed to the end, the signal Eat goal transfers the activity
to the payload detection node. The node stays active until the next payload pose is
successfully estimated and published to the node responsible for approaching the payload.
When the container is reached, another signal Eat container is emitted, which activates
Control Lift. This special node, which controls the lifting unit of the AGV, is used to
pick up the payload cart. The node stays active until the lift is completely in the upward
position and then forwards activity back to Mission Control.

The active sub-graph in Figure 8.4 strongly resembles an ordinary FSM, however
it overlaps with the pure data flow graph. At least two more states would have to be
implemented in an FSM, which correspond to the overlapping nodes. An additional
advantage is the fact that we only have a single graph, which speeds up development and
debugging, as well as allowing the use of a common graphical user interface, which we
will present in Chapter 9.
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8.3 Planet Exploration Robot

8.3 Planet Exploration Robot
To illustrate the re-usability benefits of AFG, we briefly present a part of our high level
design for the SpaceBot Camp 2015. Here the outdoor robot introduced in Chapter 1 was
used to simulate a planetary exploration mission. One of the simulated tasks was to detect
the object shown in Figure 8.5a and map its pose (cf. Figure 8.5b.)

(a) One of the objects to be found. (b) A map showing two detected objects
and the robot’s current pose.

Figure 8.5: The object detection task in the SpaceBot Camp.

A similar model to the one presented in Section 8.2 is shown in Figure 8.6, whereas
differences are highlighted. Many modules are completely reused, such as the generic
navigation nodes and the obstacle detection and mapping.

3D Obstacle Detection

4x Camera

Local Hazard Map

Object Detection

Object Approach

SBC Mission Control

Path Planner

Path Follower

Visual Servoing

Bpath

Eat goal

Eat object

Eobject collected

Efetch object
. . .

Figure 8.6: The AFG for the SpaceBot Camp is in part very similar to the PATSY graph.
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8.4 Human-following Outdoor Robot
As a final example, we model a high level control system for the Summit XL robot with
a stereo camera setup. The resulting robotic system is capable of following a person at
higher speeds in outdoor environments, as is visualized in Figure 8.7.

(a) An example scenario. (b) Challenging situations are handled.

Figure 8.7: The robot’s task is to accompany a person at higher speeds in outdoor environ-
ments. High level control is needed due to unknown environments and obstacles.

8.4.1 Challenges
Person following is well understood. Simple, reactive controllers can achieve accept-
able results at lower speeds. The maximum velocities for these algorithms range from
0.75 ms−1 in (Chen and Birchfield, 2007) and 1 ms−1 in (Kobilarov et al., 2006) to
1.2 ms−1 in (Bohlmann, Beck-Greinwald, Buck, Marks, and Zell, 2012). At higher
speeds, deliberate methods based on kinematic or dynamic path planning are needed to
implement safe and stable following behavior. This is especially the case for skid-steered
vehicles, such as the Summit XL used as the basis for our system, which quickly gets
unstable at higher velocities.

Our system combines multiple novel approaches that form a robust navigation solution
in any environment. The perception pipeline is based on the PATSY project and does not
pose any requirements on the environment. Dynamic obstacles are explicitly handled and
there is no need for a planarity assumption. Using the kinematic controller published by
Huskić, Buck, and Zell (2017b), our robot is able to follow a runner in uneven terrain
with a maximum velocity of 2.5 ms−1.

8.4.2 Perception
We use a single AFG to model perception and high level control. The sub-graph responsi-
ble for perception is shown in Figure 8.8.
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Object
Tracking

Obstacle
Detection

Point Cloud
Segmentation

ROS Import
(VLP-16)

Person
Detection

ROS Import
(Nerian SP1)

Figure 8.8: Obstacles are detected and tracked using 3D LIDAR data at the acquisition rate
of the sensor. Person detection uses a stereo camera. Detected persons are asynchronously
handled by the tracking.

We use a 3D Velodyne VLP-16 LIDAR to detect obstacles in the environment and
to track the person. The data is first imported using a generic ROS importing node.
Every scan is then segmented using a variant of the generic obstacle detection algorithm
described in Chapter 6. Detected obstacles are then clustered and tracked to distinguish
dynamic from static obstacles. The person detection pipeline from Chapter 6 is used with
a Nerian SP1 stereo camera to further distinguish persons from other dynamic obstacles.

The result of the perception part of the graph is visualized in Figure 8.9, where de-
tected obstacles are shown overlaid on the LIDAR scan. The currently tracked person is
visualized as an arrow, where the length of the arrow depicts the person’s velocity.

Figure 8.9: Perceived obstacles in the environment (red) and the person’s velocity (arrow).
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8.4.3 High Level Control
Figure 8.10 shows the central graph component needed to model the high level control of
this robot. The Follow Person graph takes a person’s location and tries to navigate the
robot there.

Follow Person

Bperson

EdoneEno path

(a) The nested graph takes a person and
either emits Edone or Eno path depending
on whether a path was found.

Path Planner

Path Follower

DelayBperson

Bpath

Epreempt

Eno path

Edone

(b) Implementation of the nested graph: A path to the
person is planned. If a path was found, the follower
controls the robot until the Epreempt token is received.

Figure 8.10: The Follow Person tries to navigate the robot towards the person, when it
gets activated. A Delay node is used to stop the path following after a few seconds.

The implementation of the graph (cf. Figure 8.10b) uses a predefined navigation
strategy to try to reach the person. If a path can be found using this strategy, the path is
sent to the Path Follower node, which steers the robot along the path. In addition, a Delay
node receives the same path and emits a Epreempt token after a few seconds. This token
stops the path following process and returns the activity to the outer graph via Edone. This
way, Follow Person steers the robot for a predefined amount of time towards the person.

Object

Tracking

Point Cloud

Segmentation

Obstacle

Detection

Person

Detection

Einit

Follow Fast Follow Slow

Bperson

Bperson

Eno path,F

Edone,F

Eno path,S

Edone,S

Figure 8.11: Using two instances of Follow Person we achieve a simple high level
controller, which can recover from navigation errors.
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By combining differently parametrized instances of Follow Person, we can handle
challenging situations. Figure 8.11 shows a graph using two instances: Follow Fast
and Follow Slow. Initially, the Person Detection node is activated. The activity is
then transferred to the Object Tracking node with the first message produced by Person
Detection. When a person is being tracked by the Object Tracking node, the fast following
node gets activated via the Bperson token. While it is activated, the robot follows a path
towards the person that only contains forward motion. This way the robot can drive at its
maximum speed without braking.

When Follow Fast is done, either the end of the planned path is reached or a time-out
was signaled. The activity then flows back to the object tracking via Edone,F . This way,
we achieve a circular flow of control that regularly activates the Follow Fast node. In case
no forward path can be found in Follow Fast, the Eno path,F token transfers the activity to
Follow Slow, another instance of Follow Person. In this state the navigation is configured
to slower velocities and the path planner is allowed to plan both forward and backward
motion. This way, the robot can robustly follow a person at the maximum speed possible.
It will only slow down if no forward path can be found, which rarely happens in real
experiments. One such experiment is shown in Figure 8.12, where the robot followed a
person for ca. 1.7 km.

Figure 8.12: Trajectory of the robot following a runner for ca. 1.7 km.

Using AFG, only a single computation graph is needed to implement this complex
behavior. Figure 8.13 displays a screen shot of the complete activity flow graph in
CS::APEX. Among smaller tasks, this graph models obstacle detection, person tracking,
pose estimation and high level mission planning.
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Chapter 9

Prototyping Robotic Algorithms Using
Visual Programming

9.1 Cognitive Systems Algorithm Prototyper and
EXperimenter

In previous chapters we have described activity flow graphs in detail and we have shown
multiple exemplary applications. All these robotic systems have been developed using
a common framework, called the Cognitive Systems Algorithm Prototyper and EXper-
imenter (CS::APEX), which consists of a graphical user interface and an execution
back-end. The user interface (shown in Figure 9.1) allows direct interaction with the
structure of the data flow graph and introspection into the flow of data. This enables rapid
prototyping of algorithms and also encourages reusable code and modular designs.

Figure 9.1: Exemplary workflow that imports a ROS bag, converts the camera image to
gray values, performs adaptive thresholding, morphological operations and blob detection.
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In this chapter we briefly describe how CS::APEX implements the activity flow graph
hierarchy. Our implementation of AFG is tailored to allow interactive data flow graph
manipulation. We also show how computation parameters are explicitly represented in the
user interface and introduce aspects of control flow. Finally, we show how the scheduling
of such graphs can be controlled by the user.

The following requirements were the foundation for the development of the framework:

• Data flow graphs can be created and modified at runtime.

• Parameter values can be changed through the data flow and by the user.

• Data in the flow can be inspected at any step in the process.

• The user can influence the scheduling policy of the processing nodes.

• Irregular events are made visible to the user and can be handled coherently.

• The flow of activity can be controlled by the user.

This chapter is based on the previously published article (Buck et al., 2016b).

9.2 Implementation of AFGs in CS::APEX
The aim of CS::APEX is to provide a user-centerd platform for developing and experi-
menting with flow-based algorithms for robots and other cognitive systems, encouraging
modularity, extensibility and accessibility. We follow a pragmatic approach to data flow
programming, focused on providing a user-friendly interface, concentrating on speeding
up the prototyping experience, providing useful user feedback and making parameters of
the system more easily accessible. Resulting data flow networks can be directly deployed
on a robot (Section 9.3).

The framework consists of two components: A graphical user interface (see Figure 9.1)
based on Qt5 and a computation back-end library for scheduling and maintenance1.
We achieve modularity by implementing the flow-based graph structure defined by the
AFG model hierarchy, presented in Chapter 3, Chapter 5 and Chapter 7. Flow graphs
automatically encourage users to implement component-based solutions that only depend
on message types and can thus be easily reused. Extensibility is accomplished by a plug-in
system, which makes modification of the main components unnecessary and simplifies
the distribution of implemented computing nodes among collaborators.

The user interface allows the user to dynamically add and delete computation nodes at
runtime. Nodes can also be disabled and enabled, moved and copied. Furthermore, the
user can add and delete connections between nodes and inspect the transmitted values.
No scripting or manual configuration file editing is required. The user interface is used

1An overview video can be seen at http://youtu.be/weFZZrQ1BeE

114



9.2 Implementation of AFGs in CS::APEX

to generate a network and to provide feedback during the prototyping process. Once the
configuration is done, the UI is no longer needed and the graph can be executed in a
headless fashion. This way, a prototype configuration can be used on a robot, without a
screen attached.

9.2.1 Nodes and Messages
Adding custom functionality is possible by implementing new node types and providing
parameters to allow fine tuning. Computation nodes are written in C++11 and dynamically
linked once they are needed. We provide multiple ways to add new processing nodes:
Nodes can be derived from a base class Node, or from specialized base classes, like
image filters. Furthermore, we provide a utility class that can automatically generate
nodes from a given C++ function by analyzing the function signature using template meta
programming techniques.

When a new node is needed, three functions have to be implemented: setup tells the
system about the required input and output ports, as well as event triggers and slots. The
function setupParameters declares the parameters of the new node. Every parameter
will automatically be wrapped into a UI widget so that the user can manipulate it easily
(cf. Figure 9.2). Finally, process implements the new functionality, i. e. messages from
inputs are read and processed, before output messages are generated and published on the
outputs. Asynchronous processing of slots is done using callback functions specified in
the setup stage.

Nodes are communicating by sending tokens, which contain data of specific message
types. The tokens can easily be copied and distributed among nodes without copying of
the attached message data. Packages can also provide custom message types. Other plug-
ins can use these messages without having to worry how to do I/O with them. Authors of a
custom message can provide functions to serialize the message using YAML, to read them
from a file, to visualize them and publish them via ROS. We have implemented messages
for integral types, strings, images, laser scans and more. Among others, we have also
implemented support for OpenCV2 and the point cloud library (PCL)3 via independent
libraries.

9.2.2 Parameters
Parameters are central to our approach, since the direct feedback from changing parameters
can speed up rapid prototyping. As described in Section 3.2, we create a pair of one input
and one output per parameter. Since this would lead to a lot of ports for nodes with many
parameters, we only add inputs and outputs for parameters that are marked as interactive
by the user.

2OpenCV is available at http://www.opencv.org/
3PCL is available at http://www.pointclouds.org/
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Figure 9.2: A node that performs adaptive thresholding on an image with one image
input and one output. There are five parameters: two floating point ranges (maxValue,
C), one integer range (blockSize) and two sets (adaptiveMethod, thresholdType).
maxValue and blockSize are connected to the data flow. The node has automatically
generated slots to enable and to disable it, as well as an event that fires once the input is
processed.

We provide different types of parameters: Boolean, integral and floating point values,
ranges, intervals, pairs and more specialized variants like angles, file paths and color
values. To enable fast changes to parameter values, we wrap each parameter into a
specialized UI widget that allows the user to quickly modify the parameter’s value. UI
elements and the parameters themselves are strictly separated, so that a graph can be used
on a robot completely without a graphical interface. We render these controls directly
into the graphical representation of the node, as can be seen in Figure 9.2. This way,
the controls are physically located where they are used, which makes it easy to find the
right parameter to change and allows us to provide helpful information for parameters via
tool-tips.

9.2.3 Hybrid Flow
In Chapter 5 we introduced hierarchical computation graphs, which are fully supported in
the graphical user interface. Groups of nodes can be combined into a nested sub-graph,
whereby existing connections will be automatically transformed to use graph-global ports.
Sub-graphs can optionally be used to iterate the entries of list-like messages one at a time,
which can be used to implement a map-reduce approach (Dean and Ghemawat, 2008).

Hybrid connections are also implemented, which means that any output port can be
connected to any input port. The only constraint is that synchronous connections may
not result in a cycle. The user can, for example, connect a synchronous output o to an
asynchronous slot, which causes the slot to be triggered for every produced message from
o (cf. Figure 9.3a).
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9.2.4 Activity
Active nodes are highlighted in the interface (cf. Figure 9.3b), which gives feedback
about the current state of the system. To control the activity of the system, the user can
mark connections to be active, as defined in Chapter 7. Marking a connection ek as active
corresponds to setting A(ek)← 1 (Equation 7.4). Furthermore, the activity can be reset to
to initial state without resetting the whole system, which is especially beneficial during
prototyping and debugging.

(a) The node Person Tracking uses both syn-
chronous and asynchronous inputs: Person Detec-
tion sends messages using a hybrid, asynchronous
connection. Obstacle Detection sends messages
using a synchronous connection.

(b) Active nodes are highlighted with a
bold frame.

Figure 9.3: The user interface allows the use of hybrid connections and activity.

9.2.5 Scheduling and concurrency
Executing a node does not have any side effects on other nodes in the graph. For this
reason, concurrency can be achieved without any effort on the client side, merely the
scheduler has to deal with the details of concurrent programming. This takes away the
burden on inexperienced programmers, who can make full use of parallel architectures
with thread-agnostic modules. Parallel execution is not necessary though, all nodes can
be executed sequentially as well.

Even though users should not have to be concerned about matters of concurrency, we
want to enable them to take control of the scheduling process. For this reason, we employ
a distributed scheduling scheme using thread pools. Every node is assigned to a thread
group and all the nodes in a thread group are managed by one scheduler. By default, every
node is managed by a single scheduler, as to not fully utilize every CPU core, if that is
not desired. The interface allows users to define their own thread groups and assign nodes
to them.
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9.3 Applications
Since the development of CS::APEX began in 2012, we have developed more than 500
plug-ins to solve a variety of perception problems for research projects and robotics
competitions: We achieved the second place in the SICK Robot Day 2014, which was
described in Chapter 4. We also deployed the framework for the perceptions tasks at the
SpaceBot Camp 20154, which was hosted by the national aeronautics and space research
center of Germany (DLR). Additionally, we are using the framework in research projects:
As shown in Chapter 6, we developed a person-recognizing autonomous transportation
system in the BMBF-founded project PATSY, using data flow graphs to detect objects
and people in point clouds. In the project IZST IOC 1045, founded by the state of Baden-
Württemberg, we developed vision algorithms for laparoscopic surgery. The framework
is also used by many students to simplify the development of robotic prototypes. Some
examples have been shown in previous chapters in Figure 3.24, Figure 5.9 and Figure 8.13.

9.3.1 Evolutionary optimization ROS nodes
In Chapter 6 we said that we used evolutionary optimization to select values for all free
parameters of the obstacle detection. Here we demonstrate this optimization process in
CS::APEX using a simplified problem: The application of evolutionary algorithms to op-
timize the parameters of a ROS node called laser_scan_matcher using the Differential
Evolution algorithm (Figure 9.4). Using a plug-in to communicate with the optimization
framework Eva2 developed by Kronfeld et al. (2010), we are able to find parameters that
minimized the trajectory error on our dataset.

The scan matching process is running in a separate ROS node, whose parameters are
set using a generic ROS parameter interface, that can be seen in Figure 9.4. The values of
these parameters are determined by the optimization framework for each iteration and are
propagated through the data flow. Events and slots are used to asynchronously control
the optimization process: An event is executed every time a run of the scan matcher was
complete. This event is connected to a slot in the optimizer, which caused a new parameter
set to be generated.

The communication with the optimization framework is generic and can be applied to
other problems. The user selects an arbitrary set of parameters using the user interface,
which adds it to the optimization process. This is possible due to the generic integration of
the parameters into the data flow and can be implemented purely on a plug-in basis, since
it does not require any modifications to the framework. The only additional functionality,
that has to be implemented, is a node to calculate a fitness value for the current parameter
set. This value is needed by the optimizer to assess different parameter combinations.

Furthermore, this example demonstrates the usefulness of the additional event-based

4http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-15747
5http://www.ra.cs.uni-tuebingen.de/forschung/Chirurgische_Navigation

118

http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-15747
http://www.ra.cs.uni-tuebingen.de/forschung/Chirurgische_Navigation
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Figure 9.4: Evolutionary optimization of a ROS node for localization. A node for cal-
culating a fitness value has to be implemented. For each newly generated population,
the Evaluate event is fired. A finish slot is triggered when the current population
of parameters is fully evaluated and the fitness is finalized. Eva2’s and ROS parameter
setter’s parameters are connected. (To simplify we only show one connection. )

mechanism. Events can be used to control the execution of different data flow sub-graphs.
This way, complex processes like these can be automated and controlled based on the data
flow. To the best of our knowledge, such an approach to parameter optimization is not
possible in related frameworks.

9.3.2 Rapid Prototyping and Experimentation
The main motivation for the CS::APEX graphical user interface is to aid the user in
rapid prototyping of new algorithms. As an example we show some of the available
functionality in Figure 9.5. The depicted graph is taken from the SICK robot day model,
which was presented in Chapter 4. This graph, which was created after the competition,
combines all other graphs presented before in a single instance.

First of all, the example demonstrates the profiling options available. Five nodes are
profiled and for each of them a bar plot of the past execution durations is shown. On the
bottom of the window there is an additional profiling panel that shows the execution start
and end time points for all profiled nodes. This enables rapid prototyping since the user
can directly observe the effects of parameter changes on the performance of any node and
on the complete system.

The second feature shown is data inspection. The user highlights a connection with the
mouse cursor, which opens a second window that shows the data currently sent via this
connection. Many message types that are available can be visualized this way.

The final feature shown is the assignment of nodes to thread groups, which is here
additionally indicated by the color of the nodes. This way nodes from different groups
can be executed at the same time, as can be observed in the profiling panel.
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9.4 Comparison to Related Work
Many tools and frameworks utilizing flow-based programming have been published in
related domains, such as Ptolemy II by Eker et al. (2003) and the Ptolemy-based Kepler by
Ludäscher et al. (2006). Special purpose frameworks include the Robot Task Commander
by Hart et al. (2014), the Konstanz Information Miner (Knime) (Berthold et al., 2007)
for data mining, the Waikato Environment for Knowledge Analysis (WEKA , Hall et al.
(2009)) and Orange (Demšar et al., 2013) for machine learning and MeVisLab (Bitter et al.,
2007) for medical image processing. There are also commercial products based on data
flow processing, for example LabVIEW and MATLAB Simulink. A cognitive architecture
for artificial vision is described by Chella et al. (1997) using a more symbolic approach
than the one presented here, whereas the approach presented by in Hochgeschwender
et al. (2014) is purely declarative.

Biggs et al. (2011) provide a pipeline based approach, and show its potential with
an example for point cloud processing. They impose requirements similar to the ones
presented here, yet focus more on inter-process communication aspects and less on
interaction. Their framework implements purely asynchronous data flow, meaning that
there is a need for message queues between components. They provide a user interface
with which the graph can be modified at runtime and parameters can be adjusted, but
they do not model parameters in the data flow and don’t seem to feature event-based
functionality in their user interface.

Although our implementation can be used independently from ROS (Quigley et al.,
2009), we support ROS interaction, such as data import and export. We provide our user
interface as a single ROS node, in which ROS topics can be subscribed and published to.
ROS itself can be seen as a flow-based framework, where different nodes are separate
processes and can run on different machines in a local network. ROS is implemented using
the publish-subscribe pattern, where each node is publishing messages onto topics that
are subscribed to by other nodes, which is another case of asynchronous data flow. Our
visual programming approach allows users to construct processing graphs on the fly via a
graphical user interface instead of using text based configuration files. Our implementation
can be compared to ROS nodelets, in that all processing nodes are running in the same
process, yet ROS nodelets do not allow any interaction or scheduling control.

More relevant for our work is ecto (Ethan Rublee et al., 2015), which grew out of the
ROS scene and also represents computer vision and perception tasks as a directed acyclic
graph. In contrast to ecto, our approach explicitly handles node parameters, allowing
them to be used as data sources or sinks. The ecto framework also provides some form
of event-handling, yet these are not part of the interface of a processing node as in our
proposed solution. Graphs in ecto are meant to be specified and configured using python
programs. There exists a web-based graphical user interface for ecto which allows users
to create nodes and connect them. This approach has the advantage that the graph is
accessible via the network, yet the implementation does not allow for a high level of
interactivity. In our approach, the user interface is the key part of the framework and we
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focus on interactive graph manipulation and immediate feedback.
Another, recently published framework is RAFCON by Brunner et al. (2016), which

similarly allows developers to graphically design complex robotic systems. Their ap-
proach is based on hierarchical finite-state machines with asynchronous data flow. The
framework is more suitable for developing high-level mission control than general data
flow algorithms.

9.5 Discussion
In other fields, graphical prototyping tools have become commonplace, yet in robotics
there do not exist such standard tools. We think this is partly due to the fact that robotics is
a broad and multidisciplinary field. We aim to provide a user-friendly graphical interface
that lowers the barrier to entry into robotics, especially robotic perception. The interface
provides immediate feedback, allowing to visually construct new data flow graphs at
runtime, to get insight into the data flow in real-time and to learn the effects of different
parameters on the behavior of the algorithm. Although we provide a library of reusable
nodes, custom algorithms have to be implemented eventually. In contrast to fine-grained
visual programming, where individual instructions are composed in a graphical interface,
we rely on a plug-in based system which allows users to program custom processing
nodes in C++ and then compose them visually. This approach simplifies using unknown
modules, since inputs, outputs and parameters are directly displayed and can be connected
visually.

Many perception problems naturally show synchronous characteristics: If an online
image classification algorithm, for example, cannot operate in real-time, images have
to be dropped, synchronizing the update rate of the pipeline. On its own, however,
homogeneous synchronous data flow is a limiting factor, due to a uniform execution of the
individual nodes, whereas robotic systems are composed of many subsystems requiring
different update rates. By extending SDF+ into HFG we can solve this problem with only
little additional complexity.

Our framework can be fully applied to problems that can be separated into modules.
Highly optimized algorithms that cannot be subdivided, however, have to be implemented
as single nodes. This is not unusual in a coarse-grain data flow framework such as the
presented approach. Even though large nodes are less reusable, they can still profit
from the parameter system and other UI features such as execution profiling and data
visualization.
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Chapter 10

Conclusions

10.1 Summary
The main idea of this dissertation was to develop a coherent data flow framework that
can be used to implement any robotic system. We focused on robot perception and high
level robot control, though other components, such as localization and navigation, are also
realizable The graphical framework was derived in three stages, all of which are useful on
their own.

The lowest layer model, which we called SDF+, is based on synchronous data flow,
reactive programming and finite-state machines, and was introduced in Chapter 3. This
model consists of multiple, disjoint concepts that can be used to model any robot, as
we have shown for a fetch-and-delivery robot in Chapter 4. The main disadvantage of
this model is its complexity and variety: Synchronous data flow lends itself to modeling
perception pipelines, reactive programming is suitable for event-based algorithms. Addi-
tionally, finite-state machines are needed for high level robot control and mission planning.
These different concepts cannot easily be represented in a single, coherent framework.

The first extension to SDF+ was the addition of a hierarchical graph structure and
hybrid connections between the synchronous and asynchronous aspects in Chapter 5. This
resulted in the definition of Hybrid Flow Graphs (HFG), which unify the synchronous
data flow and the reactive programming based ideas of SDF+. These extensions give a
more precise model, allowing a seamless blending of synchronous and event-based data
processing. The application of the model was demonstrated in Chapter 6, where we have
implemented the complete perception sub-system of an AGV using HFG.

We observed that using HFG, we still need to employ two disjoint graphical structures
to model complex robotic behavior: hybrid data flow graphs and finite-state machines.
FSMs are needed, because data flow graphs are inherently state-less, yet complex behavior
requires a form of high level state management. In Chapter 7 we have transferred the
concept of activity from FSMs into HFG, which can be used to eliminate the need for
FSMs altogether. The resulting Activity Flow Graphs (AFG) model is a coherent way to
model a complete robotic system without needing any additional frameworks. In many
cases, AFG models require fewer states than equivalent HFG models with a state machine.
Additionally, the activity concept is unobtrusive to the implementation of individual nodes,
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allowing the use of any HFG node in an AFG graph. These advantages were demonstrated
in Chapter 8, where we have presented multiple AFG models of different, high level
robotic systems.

The three models form a hierarchy, where SDF+ is a real subset of HFG, which in
turn is superseded by AFG. This means that an implementation of AFG can be used
in a restricted way to achieve the other two models. In Chapter 9 we have presented
our open-source implementation of the AFG model, which is called CS::APEX. The
implementation consists of a graphical user interface and a separate computation back-end.
Developers can quickly and easily generate AFG graphs, experiment with different graphs
and settings, and debug existing solutions using a single user interface. Resulting graphs
can be directly used on any robot that supports the robot middleware ROS.

10.2 Discussion
An important aspect of any complex system is an architecture that is well defined and
that allows all collaborating users to develop their required functionality as easily as
possible. Developers in a team have different programming styles and different levels of
experience, but their implemented functionality should nevertheless be as reusable and
interchangeable as possible in order to maximize efficiency. This can best be achieved by
a consensus on common interfaces between modules. The computation graph abstraction,
which is the foundation of the AFG hierarchy, is very promising in this aspect. The
interfaces of individual nodes in the graph are defined by the types of messages the nodes
read and write. With the explicit introduction of synchronous and asynchronous input
ports in our approach, this interface description is even more precise.

The AFG model was developed with two main goals: On one hand it serves as a
reference for the real-world implementation as a theoretical model based on the well-
known Petri net formulation. On the other hand it is explicitly designed to be easily
adapted into a graphical user interface, which enables rapid prototyping and intuitive
optimization, profiling and debugging. The distinction between the two types of data
flow intuitively communicates two different meanings to users. Synchronous inputs are
processed at once and are therefore very similar to a regular function call with multiple
arguments. The synchronous inputs can only be processed again once all processing is
finished down-stream. This can also be interpreted in a functional way, since the messages
sent by a node are arguments to other functions, and so on. The functional analogy is very
natural and useful in understanding complex graphs. Slots, i.e. asynchronous inputs, are
processed individually. This gives them the character of an event- or interrupt-handler,
which are common in many programming environments. They are expected to perform
quickly and can be called in fast succession.

Given any graph constructed using AFG, the model exactly determines the behavior
of the system. It is easy to see for a given node which other nodes have to be executed
first, while parallel execution of unrelated nodes is automatically possible. During the
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implementation of individual nodes the user does not have to consider any of these factors.
Each node can be implemented completely thread agnostic and is still safe to use in
parallel with other nodes. This will become more important as CPUs are providing an
ever growing amount of available processing cores.

Another important aspect of large, complex systems is modularity. Individual modules
should have as few dependencies on each other as possible. This means that only the
modules needed to solve the task at hand have to be available. Using AFG we naturally
achieve modularity, due to the foundation on pure message passing interfaces. Depen-
dencies exist only on the types of messages sent between nodes and not on the nodes
themselves. Up to this point we have implemented more than 500 individual processing
node types and more than 20 messages types. Due to this modularity the framework has
successfully been used in many projects, competitions and student theses.

Another design goal for AFG was to provide a coherent approach, which means that
every aspect of the computation graph should be the same for all types of nodes. This
is where the lower level models (SDF+ and HFG) fall short, because they still require
the use of a finite-state machine in order to implement higher level state. It is possible
to use the lower level models to implement the perception part and a separate FSM to
model high level control, where both graphs can communicate with each other. We have
demonstrated this once with SDF+ and then with HFG. However, this requires the use of
two completely different concepts.

Of course, we could implement a graphical user interface that combines the construction
of hybrid flow graphs and finite-state machines, but then we would still need to precisely
specify the ways of interaction between the two. The AFG approach instead generalizes
the relevant aspects of finite-state machines and combines them with hybrid flow graphs.
This combined approach is at first not as intuitive as the well-known finite-state machines,
because the separation between state and data flow is lost. However, the approach also has
multiple advantages: First of all, there is no need to explicitly implement different states
in the system. Every node can be directly used as a state that is active for the duration
of the node’s execution. This is a common case for FSMs, where we switch between
states after specific computations are performed. Second, the interactions between "states"
and normal nodes are formally defined and behave deterministically. Using the Petri net
model we can precisely understand the interaction between the collaborating nodes. Third,
since there is no distinction between different types of nodes, the model becomes simpler
and easier to adapt into a graphical user interface with which users can manipulate these
graphs. Lastly, we can use a common scheduling algorithm for all nodes, which ensures
that resources are properly managed.

There are two reasons why we chose to use a dynamic scheduler in the implementation
of CS::APEX . First, it is possible to adapt the execution of larger graphs with potential for
concurrent processing at run-time. Depending on the available resources, scheduling algo-
rithms are capable of reacting to the current system load. Second, while static scheduling
is more efficient in principal, it is not possible to statically schedule asynchronous data
flow and so only the synchronous flow could be scheduled offline. This would introduce
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complications, since synchronous and asynchronous data handling in the same node must
not happen at the same time.

There is a small overhead of a few percent in execution performance due to the dynamic
scheduling. This is not a problem in the development and testing phase, but using AFG
models in performance-critical systems that operate at the limit of the hardware is not
advised. Instead the framework is meant for rapid prototyping and experimentation. It
even allows users with little programming experience to implement algorithms quickly, to
improve their performance by inspecting the data flow and profiling the execution, and
then deploy the resulting program on any robot easily.

10.3 Future Work
We have implemented a few robotic systems using AFG, which serves to demonstrate the
validity of the model. In future work we intend to apply the model to even more systems
with different requirements and tasks.

One interesting opportunity is modeling swarms of robots, each having their own AFG
model. This requires inter-robot communication, which can be implemented using AFG
alone. However, an extension of the model to explicitly manage unstable connections
between nodes would be beneficial. Furthermore, there are other aspects of the original
synchronous data flow as described by Lee et al. (1987) that could be transferred into
AFG. This includes recursive synchronous connections and inhomogeneous processing
nodes.

Another possible extension is to explicitly model time in the flow graph, allowing the
formulation of constraints to guide the execution of more complex graphs. This would
take AFGs closer to real-time systems, even on regular architectures. Additionally, time
could be introduced into the control of the activity of nodes, to realize time-out behaviors
on a model level, instead of in the implementation of individual nodes.

Future releases of CS::APEX could include further features to increase the productivity
of developers: The core implementation should be implemented using a client-server
architecture, such that the user interface can be used on a different machine from the
actual robot. This would greatly improve inspection and debugging tasks.
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ACF Aggregate Channel Features, Page 63
AFG Activity Flow Graph, Page 96
AGV Automated Guided Vehicle, Page 1
AMCL Adaptive Monte Carlo Localization, Page 60
CS::APEX Algorithm Prototyper and Experimenter for Cognitive Systems, Page 4
DP Dataflow Programming, Page 11
EA Evolutionary Algorithm, Page 32
FBP Flow-based Programming, Page 11
FPDW Fastest Person Detector in the West, Page 63
FSM Finite-State Machine, Page 15
HFG Hybrid Flow Graph, Page 51
HOG Histogram of Oriented Gradients, Page 63
LIDAR Light Detection And Ranging, Page 5
MHT Multi-Hypothesis Tracker, Page 85
MLP Multi-Layer Perceptron, Page 84
PCL Point Cloud Library, Page 115
RF Random Forest, Page 84
ROC Receiver Operating Characteristic, Page 87
ROI Region of Interest, Page 84
ROS Robot Operating System, Page 12
SDF Synchronous Data Flow, Page 13
SLAM Simultaneous Localisation and Mapping, Page 41
SVM Support Vector Machine, Page 84
TOF Time-of-Flight, Page 7
UML Unified Modeling Language, Page 15
YAML YAML Ain’t Markup Language, Page 115
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Huskić, G., Buck, S., and Zell, A. (2017b). Path following control of skid-steered wheeled
mobile robots at higher speeds on different terrain types. In IEEE International
Conference on Robotics and Automation (ICRA), Singapore.

Jafari, O., Mitzel, D., and Leibe, B. (2014). Real-time rgb-d based people detection and
tracking for mobile robots and head-worn cameras. In Robotics and Automation (ICRA),
2014 IEEE International Conference on, pages 5636–5643.

Kanjanawanishkul, K. and Zell, A. (2009). Path following for an omnidirectional mobile
robot based on model predictive control. In Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on, pages 3341–3346. IEEE.
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