14,592 research outputs found

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    Cooperative Virtual Sensor for Fault Detection and Identification in Multi-UAV Applications

    Get PDF
    This paper considers the problem of fault detection and identification (FDI) in applications carried out by a group of unmanned aerial vehicles (UAVs) with visual cameras. In many cases, the UAVs have cameras mounted onboard for other applications, and these cameras can be used as bearing-only sensors to estimate the relative orientation of another UAV. The idea is to exploit the redundant information provided by these sensors onboard each of the UAVs to increase safety and reliability, detecting faults on UAV internal sensors that cannot be detected by the UAVs themselves. Fault detection is based on the generation of residuals which compare the expected position of a UAV, considered as target, with the measurements taken by one or more UAVs acting as observers that are tracking the target UAV with their cameras. Depending on the available number of observers and the way they are used, a set of strategies and policies for fault detection are defined. When the target UAV is being visually tracked by two or more observers, it is possible to obtain an estimation of its 3D position that could replace damaged sensors. Accuracy and reliability of this vision-based cooperative virtual sensor (CVS) have been evaluated experimentally in a multivehicle indoor testbed with quadrotors, injecting faults on data to validate the proposed fault detection methods.Comisión Europea H2020 644271Comisión Europea FP7 288082Ministerio de Economia, Industria y Competitividad DPI2015-71524-RMinisterio de Economia, Industria y Competitividad DPI2014-5983-C2-1-RMinisterio de Educación, Cultura y Deporte FP

    FAST : a fault detection and identification software tool

    Get PDF
    The aim of this work is to improve the reliability and safety of complex critical control systems by contributing to the systematic application of fault diagnosis. In order to ease the utilization of fault detection and isolation (FDI) tools in the industry, a systematic approach is required to allow the process engineers to analyze a system from this perspective. In this way, it should be possible to analyze this system to find if it provides the required fault diagnosis and redundancy according to the process criticality. In addition, it should be possible to evaluate what-if scenarios by slightly modifying the process (f.i. adding sensors or changing their placement) and evaluating the impact in terms of the fault diagnosis and redundancy possibilities. Hence, this work proposes an approach to analyze a process from the FDI perspective and for this purpose provides the tool FAST which covers from the analysis and design phase until the final FDI supervisor implementation in a real process. To synthesize the process information, a very simple format has been defined based on XML. This format provides the needed information to systematically perform the Structural Analysis of that process. Any process can be analyzed, the only restriction is that the models of the process components need to be available in the FAST tool. The processes are described in FAST in terms of process variables, components and relations and the tool performs the structural analysis of the process obtaining: (i) the structural matrix, (ii) the perfect matching, (iii) the analytical redundancy relations (if any) and (iv) the fault signature matrix. To aid in the analysis process, FAST can operate stand alone in simulation mode allowing the process engineer to evaluate the faults, its detectability and implement changes in the process components and topology to improve the diagnosis and redundancy capabilities. On the other hand, FAST can operate on-line connected to the process plant through an OPC interface. The OPC interface enables the possibility to connect to almost any process which features a SCADA system for supervisory control. When running in on-line mode, the process is monitored by a software agent known as the Supervisor Agent. FAST has also the capability of implementing distributed FDI using its multi-agent architecture. The tool is able to partition complex industrial processes into subsystems, identify which process variables need to be shared by each subsystem and instantiate a Supervision Agent for each of the partitioned subsystems. The Supervision Agents once instantiated will start diagnosing their local components and handle the requests to provide the variable values which FAST has identified as shared with other agents to support the distributed FDI process.Per tal de facilitar la utilització d'eines per la detecció i identificació de fallades (FDI) en la indústria, es requereix un enfocament sistemàtic per permetre als enginyers de processos analitzar un sistema des d'aquesta perspectiva. D'aquesta forma, hauria de ser possible analitzar aquest sistema per determinar si proporciona el diagnosi de fallades i la redundància d'acord amb la seva criticitat. A més, hauria de ser possible avaluar escenaris de casos modificant lleugerament el procés (per exemple afegint sensors o canviant la seva localització) i avaluant l'impacte en quant a les possibilitats de diagnosi de fallades i redundància. Per tant, aquest projecte proposa un enfocament per analitzar un procés des de la perspectiva FDI i per tal d'implementar-ho proporciona l'eina FAST la qual cobreix des de la fase d'anàlisi i disseny fins a la implementació final d'un supervisor FDI en un procés real. Per sintetitzar la informació del procés s'ha definit un format simple basat en XML. Aquest format proporciona la informació necessària per realitzar de forma sistemàtica l'Anàlisi Estructural del procés. Qualsevol procés pot ser analitzat, només hi ha la restricció de que els models dels components han d'estar disponibles en l'eina FAST. Els processos es descriuen en termes de variables de procés, components i relacions i l'eina realitza l'anàlisi estructural obtenint: (i) la matriu estructural, (ii) el Perfect Matching, (iii) les relacions de redundància analítica, si n'hi ha, i (iv) la matriu signatura de fallades. Per ajudar durant el procés d'anàlisi, FAST pot operar aïlladament en mode de simulació permetent a l'enginyer de procés avaluar fallades, la seva detectabilitat i implementar canvis en els components del procés i la topologia per tal de millorar les capacitats de diagnosi i redundància. Per altra banda, FAST pot operar en línia connectat al procés de la planta per mitjà d'una interfície OPC. La interfície OPC permet la possibilitat de connectar gairebé a qualsevol procés que inclogui un sistema SCADA per la seva supervisió. Quan funciona en mode en línia, el procés està monitoritzat per un agent software anomenat l'Agent Supervisor. Addicionalment, FAST té la capacitat d'implementar FDI de forma distribuïda utilitzant la seva arquitectura multi-agent. L'eina permet dividir sistemes industrials complexes en subsistemes, identificar quines variables de procés han de ser compartides per cada subsistema i generar una instància d'Agent Supervisor per cadascun dels subsistemes identificats. Els Agents Supervisor un cop activats, començaran diagnosticant els components locals i despatxant les peticions de valors per les variables que FAST ha identificat com compartides amb altres agents, per tal d'implementar el procés FDI de forma distribuïda.Postprint (published version

    LeaF: A Learning-based Fault Diagnostic System for Multi-Robot Teams

    Get PDF
    The failure-prone complex operating environment of a standard multi-robot application dictates some amount of fault-tolerance to be incorporated into every system. In fact, the quality of the incorporated fault-tolerance has a direct impact on the overall performance of the system. Despite the extensive work being done in the field of multi-robot systems, there does not exist a general methodology for fault diagnosis and recovery. The objective of this research, in part, is to provide an adaptive approach that enables the robot team to autonomously detect and compensate for the wide variety of faults that could be experienced. The key feature of the developed approach is its ability to learn useful information from encountered faults, unique or otherwise, towards a more robust system. As part of this research, we analyzed an existing multi-agent architecture, CMM – Causal Model Method – as a fault diagnostic solution for a sample multi-robot application. Based on the analysis, we claim that a causal model approach is effective for anticipating and recovering from many types of robot team errors. However, the analysis also showed that the CMM method in its current form is incomplete as a turn-key solution. Due to the significant number of possible failure modes in a complex multi-robot application, and the difficulty in anticipating all possible failures in advance, one cannot guarantee the generation of a complete a priori causal model that identifies and specifies all faults that may occur in the system. Therefore, based on these preliminary studies, we designed an alternate approach, called LeaF: Learning based Fault diagnostic architecture for multi-robot teams. LeaF is an adaptive method that uses its experience to update and extend its causal model to enable the team, over time, to better recover from faults when they occur. LeaF combines the initial fault model with a case-based learning algorithm, LID – Lazy Induction of Descriptions — to allow robot team members to diagnose faults and to automatically update their causal models. The modified LID algorithm uses structural similarity between fault characteristics as a means of classifying previously un-encountered faults. Furthermore, the use of learning allows the system to identify and categorize unexpected faults, enable team members to learn from problems encountered by others, and make intelligent decisions regarding the environment. To evaluate LeaF, we implemented it in two challenging and dynamic physical multi-robot applications. The other significant contribution of the research is the development of metrics to measure the fault-tolerance, within the context of system performance, for a multi-robot system. In addition to developing these metrics, we also outline potential methods to better interpret the obtained measures towards truly understanding the capabilities of the implemented system. The developed metrics are designed to be application independent and can be used to evaluate and/or compare different fault-tolerance architectures like CMM and LeaF. To the best of our knowledge, this approach is the only one that attempts to capture the effect of intelligence, reasoning, or learning on the effective fault-tolerance of the system, rather than relying purely on traditional redundancy based measures. Finally, we show the utility of the designed metrics by applying them to the obtained physical robot experiments, measuring the effective fault-tolerance and system performance, and subsequently analyzing the calculated measures to help better understand the capabilities of LeaF

    The art of fault-tolerant system reliability modeling

    Get PDF
    A step-by-step tutorial of the methods and tools used for the reliability analysis of fault-tolerant systems is presented. Emphasis is on the representation of architectural features in mathematical models. Details of the mathematical solution of complex reliability models are not presented. Instead the use of several recently developed computer programs--SURE, ASSIST, STEM, PAWS--which automate the generation and solution of these models is described
    corecore