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Abstract

The failure-prone complex operating environment of a standard multi-robot application
dictates some amount of fault-tolerance to be incorporated into every system. In fact, the
quality of the incorporated fault-tolerance has a direct impact on the overall performance
of the system. Despite the extensive work being done in the field of multi-robot systems,
there does not exist a general methodology for fault diagnosis and recovery. The objective
of this research, in part, is to provide an adaptive approach that enables the robot team to
autonomously detect and compensate for the wide variety of faults that could be experi-
enced. The key feature of the developed approach is its ability to learn useful information
from encountered faults, unique or otherwise, towards a more robust system. As part of this
research, we analyzed an existing multi-agent architecture, CMM – Causal Model Method
– as a fault diagnostic solution for a sample multi-robot application. Based on the analysis,
we claim that a causal model approach is effective for anticipating and recovering from many
types of robot team errors. However, the analysis also showed that the CMM method in
its current form is incomplete as a turn-key solution. Due to the significant number of pos-
sible failure modes in a complex multi-robot application, and the difficulty in anticipating
all possible failures in advance, one cannot guarantee the generation of a complete a priori
causal model that identifies and specifies all faults that may occur in the system. Therefore,
based on these preliminary studies, we designed an alternate approach, called LeaF: Learn-
ing based Fault diagnostic architecture for multi-robot teams. LeaF is an adaptive method
that uses its experience to update and extend its causal model to enable the team, over time,
to better recover from faults when they occur. LeaF combines the initial fault model with
a case-based learning algorithm, LID – Lazy Induction of Descriptions — to allow robot
team members to diagnose faults and to automatically update their causal models. The
modified LID algorithm uses structural similarity between fault characteristics as a means
of classifying previously un-encountered faults. Furthermore, the use of learning allows the
system to identify and categorize unexpected faults, enable team members to learn from
problems encountered by others, and make intelligent decisions regarding the environment.
To evaluate LeaF, we implemented it in two challenging and dynamic physical multi-robot
applications.

The other significant contribution of the research is the development of metrics to mea-
sure the fault-tolerance, within the context of system performance, for a multi-robot system.
In addition to developing these metrics, we also outline potential methods to better inter-
pret the obtained measures towards truly understanding the capabilities of the implemented
system. The developed metrics are designed to be application independent and can be used
to evaluate and/or compare different fault-tolerance architectures like CMM and LeaF. To
the best of our knowledge, this approach is the only one that attempts to capture the effect
of intelligence, reasoning, or learning on the effective fault-tolerance of the system, rather
than relying purely on traditional redundancy based measures. Finally, we show the utility
of the designed metrics by applying them to the obtained physical robot experiments, mea-
suring the effective fault-tolerance and system performance, and subsequently analyzing the
calculated measures to help better understand the capabilities of LeaF.
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Chapter 1

Introduction

1.1 Introduction

In recent years mobile robotics has carved a niche in various complex military and civilian
applications such as urban search and rescue, and future combat systems. The most common
use of heterogeneous multi-robot teams is to achieve functionally-distributed missions, in
which the mission tasks require a variety of capabilities not possessed by any single robot
team member. In these applications, team members must decide which robot should perform
which task, based upon the unique capabilities of each robot. These applications require
complex coordination among multiple robots performing multiple tasks such as planning,
mapping, localization, formation-keeping, information sharing, and so forth. For multi-
robot systems to be commercially and practically viable, the system should be efficient
and robust. The operating environments for such applications are highly dynamic and
possibly hazardous. The dynamic nature of these environments leads to a high likelihood
of component fault. Despite extensive system design and testing, breakdowns and faults
often develop during the course of regular action. A fault can cause the robot(s) to lose
functionality, which in turn may lead to a drop in the overall performance of the system. In
extreme cases, faults can lead the robot towards incorrect actions or dangerous situations
[Carlson and Murphy, 2003]. Fault diagnosis is defined as the ability of the system to detect
and identify faults that occur during the course of operation, whereas fault recovery refers
to the ability of a system to recover from these diagnosed faults. Any system that has the
capability to diagnose and recover from faults is considered to be a fault-tolerant system.

Unfortunately, fault diagnosis for large teams of robots is an extremely difficult problem
due to the large number of system components that must operate properly to successfully
accomplish the team’s mission. Faults are extremely common and can stem from a num-
ber of sources: malfunctions, mis-calibration, mis-coordination and/or software errors. In
addition to these, any unexpected changes in the operating environment of the robots can
directly or indirectly have a detrimental effect on overall system performance — for example
changing lighting conditions can wreak havoc with the best vision algorithms, and clutter
in a key area of the environment, such as a doorway, may cause traffic deadlock and lead to
one area of the environment being inaccessible. Physical sensor faults (e.g., loss of power)
can often be detected at the hardware level, given a well-designed sensor package. With an
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environmental change, however, it can be difficult to differentiate between a sensing fault
due to an environmental condition or some other cause, such as a sensor anomaly.

Due to the significant number of possible failure modes in a multi-robot domain, it is
useful to develop a general solution for fault-tolerance that can be applied to a new problem
(new robot and/or task) without extensive modifications. Murphy and Carlson [Carlson
and Murphy, 2004] identify four important factors in the success of a diagnostic system for
mobile robots:

• Efficiency — ability of the system to best utilize the available resources,

• Dealing with uncertainty — ability of the system to adapt to the changes in the
operating environment,

• Robustness to noise — ability of the system to identify and recover from faults,

• Dealing with sparse information — ability to extract and integrate useful system
information during the course of task execution, without the need for a large number
of examples or a long training time.

Existing methods for fault diagnosis are mostly application-driven and are incomplete
when applied to a larger more dynamic domain like the ones in which multi-robots operate.
A key current limitation of existing architectures is their inability to incorporate sparse in-
formation towards improving system performance. Another drawback of most robotic fault
diagnostic architectures is that they are primarily designed for identifying single robot sens-
ing failures. One research area, related to the field of robotics, where a significant amount
of work on fault-tolerance for teams has been done is that of multi-agent systems. The
techniques designed for multi-agent systems offer an intriguing possibility when translated
towards multi-robot domains. The latter sections of this thesis detail the work regarding
one such strategy: the Causal Model Methodology (CMM) [Horling et al., 2000b]. This
method is studied in detail when applied to an illustrative multi-robot test application.
Subsequent chapters evaluate the technique and identify the potential stumbling blocks of
this technique.

As applications and environments vary, the lack of a standard metric for evaluating
the fault-tolerance of a system forces the designers to develop application-specific fault
diagnosis instead of being able to develop a more generic approach. Promising methods
such as effective measure [Hamilton et al., 1996] tend to focus on fault-tolerance based
on redundancy, thereby not providing a true measure of learning and fault-tolerance in
the system. Therefore, there is a need for a general metric for measuring the extent of
fault-tolerance of a system.

In this thesis, we outline an application independent autonomous learning-based ap-
proach for multi-robot fault diagnosis. In addition to developing a generic fault-diagnostic
system, we attempt to identify the influence of fault-tolerance towards achieving overall sys-
tem goals of efficiency and robustness. Towards that purpose, we develop metrics to measure
the system performance and fault-tolerance exhibited by the system. The developed met-
rics are designed to be application-independent and can be applied to any fault-diagnostic
architecture. In the subsequent sections, we detail the scope of the problem that we address
and outline our approach to solve it.

2



1.2 Problem and proposed approach

The primary objective of our research is to outline a framework for developing a robust
turn-key solution for fault diagnosis in complex teams of heterogeneous mobile robots. The
generic approach would enable the robot team to autonomously detect and compensate for
the wide variety of fault modes that could be experienced in an indoor environment. The
high level goal of this research is to design a system capable of autonomously adapting
itself based on the information obtained from encountered faults, thereby improving system
robustness over time.

Identifying, classifying and analyzing the list of possible faults that might be encoun-
tered by the system gives us a good starting point about when, what, and where to apply
diagnosis. However, despite extensive detailing, post-experimental analysis on a sample test
application will nearly always identify some previously faults. For a robot team, the faults
that occur during the course of operation provide an opportunity for the system to learn
about its environment, thereby adapting to it. Based on this key principal, we design our
fault diagnostic architecture called LeaF. LeaF uses a partial causal model for representing
the various faults in the system. The usage of a partial causal model reduces the search
space and decreases the overall size and complexity of the model, making it scalable for
large teams. When an unknown fault is encountered, the system uses a case-based learning
approach to adapt and categorize it and subsequently add it to the causal model for future
use. The ability of the system to effectively learn from its own faults makes it a more robust
and efficient fault-tolerance architecture than prior approaches.

As the influence of fault-tolerance towards overall performance determines the effective-
ness of the system, it is useful to have a metric that can measure the effective fault-tolerance
in achieving the tasks of the application. Based on this concept of effective fault tolerance,
this thesis addresses the following problem: Develop metrics for calculating the influence
of fault-tolerance towards system performance and identify potential methods for analyzing
the obtained measures towards evaluating the true capability of a multi-robot system.

1.3 Motivating application

The motivating test application we are using to develop our approach is a prior research
task that we performed as part of the DARPA/SDR (Software for Distributed Robotics)
project∗, involving a large number (up to 80) of physical heterogeneous robots. This project
defined an indoor locate-and-protect mission [Howard et al., 2006]. The robot team had
a very strict set of goals: to autonomously explore and map a single story in a large
indoor environment such as the one shown in Figure 1.1, detect a valued object, deploy a
sensor network and use the network to track intruders within the building. Cost and power
considerations dictated that the bulk of these robots should be relatively simple; i.e., they
have no sensors for localization or obstacle avoidance, and minimal sensing for robot kin
recognition (using a crude camera). The robots must, however, retain the ability to make
maps of the environment, detect valued objects, and navigate safely — tasks that would

∗The DARPA/SDR project was accomplished by researchers in University of Tennessee’s Distributed
Intelligence Laboratory from 2002–2004, in collaboration with researchers from the University of Southern
California and SAIC (McLean, VA).
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Figure 1.1: Test environment for the heterogeneous multi-robot application. The environ-
ment is approximately 45 by 25 meters in size, with an internal area of about 600 square
meters.

normally require the use of expensive ranging sensors such as scanning laser range-finders or
stereo vision. To solve this apparent conundrum, a heterogeneous approach [Parker et al.,
2003] using complex behavior coordination (see Figure 1.2) was designed, utilizing three
distinct classes of robots with varying capabilities.

The final composition of the team shown in Figure 1.3 consisted of three classes of robots:
four (4) mapping robots equipped with scanning laser range-finders and a unique fiducial;
three (3) helper robots equipped with scanning laser range-finders and cameras; and a large
number (approximately 70) of simple sensor net robots equipped with a microphone and a
crude camera. All of the robots had 802.11 WiFi, and a modified ad-hoc routing package
(AODV) was used to ensure network connectivity.

With this heterogeneous team, the locate-and-protect mission was divided into two
distinct phases: exploration and mapping, and deployment and detection. For the first
phase, the mapping sub-team explored the environment, built an occupancy grid and located
the valued object. Exploration was coordinated, and mutual observations were used to
solve difficult correspondence problems (i.e., the mapping robots observed one other, and
thereby identify loops in the environment). The second stage involved moving the simple
mobile robots into deployment positions that were optimal for serving as a sensor network.
Because these sensor-limited robots could not navigate safely on their own, we used complex
heterogeneous teaming behaviors that allowed the small group of helper robots to deploy the
simple robots (typically, 1–4 of these simple robots at a time) to their planned destinations
using a combination of robot chaining and vision-based marker detection for autonomous
tele-operation [Parker et al., 2003].

The unpredictable nature of the operating environment of the test application provides
an ideal basis for testing our fault diagnostic system. As discussed earlier, the probability
of encountering faults is high for a highly complex system such as that described here. For
the current research described in this thesis, I attempt to recreate a similar scenario as the
test application, using the available robots — Pioneers and Amigobots (see Figure 1.4) —
from the University of Tennessee’s Distributed Intelligence Laboratory (DI Lab). The exact
details of the application are described in detail in subsequent chapters.
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Figure 1.2: Cooperative behaviors that implement the heterogeneous deployment task.

Figure 1.3: The heterogeneous robot team — mapper, helper and simple robots.
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Figure 1.4: The two types of robots from the DI Lab used in this research — Pioneer (right)
and Amigobot (left).

1.4 Contributions

The main contributions of this research to the multi-robot community are two-fold. First,
this research designs and develops an application-independent, learning-based adaptive ar-
chitecture for fault diagnosis and recovery that can be easily incorporated into a wide variety
of existing systems to improve system performance over time. The unique feature of this
system is its ability to learn from the encountered faults towards future fault tolerance.
Second, the research introduces a new set of evaluation metrics to measure the extent of
fault-tolerance towards system improvement over a period of time. In addition, by fus-
ing existing methodologies from the fields of agents and physical robots towards a more
complete fault diagnostic system, the aim is to bridge the gap between the two commu-
nities, providing a new and promising direction for future research in fault tolerance for
autonomous teams.

1.5 Outline

The rest of this thesis is organized as follows. Chapter 2 discusses the previous work relevant
to the issue of fault diagnosis. Chapter 3 details the preliminary work done in analyzing
existing techniques for a sample multi-robot application and identifies the drawbacks of the
existing systems. In Chapter 4, we describe our proposed solution LeaF. The architectural
details of LeaF are provided along with preliminary experimental data validating it. Chap-
ter 5 formally details the derivation of the proposed metrics. Chapter 6 presents the results
from implementing LeaF and CMM for the physical robot experiments and applies the de-
veloped metrics to the obtained results towards performance analysis. Finally, we conclude
with a summary of the contributions of this research to the multi-robot community.
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Chapter 2

Related Work

Toyama and Hager [Toyoma and Hager, 1997] identify robustness as a key challenge in the
face of uncertainty in complex, dynamic environments for intelligent agents. One major
drawback of most current methods is that the programmer is responsible for accounting
for all possible failures during the design stage. Atkins [Atkins et al., 1997] describes the
inherent explosion of state space complexity in such dynamic environments that inhibits
the ability of any designer to specify the correct response in each possible state in advance.
Despite thorough consideration, it is not realistic to expect that all such failure modes will
be accurately predicted. Several areas of related work apply to this research, including
fault diagnosis [Cavallaro and Walker, 1994, Mahdavi and Bentley, 2003, Broxvall et al.,
2004,Pell et al., 1997,Beetz and McDermott, 1997,Muscettola et al., 1997,Long et al., 2003,
Lamine and Kabanza, 2000], robot assistance [Hamilton et al., 2001], learning [Visinsky,
1991,Gambardella and Versino, 1994,Mahadevan and Connell, 1991,Torras, 1994,Wermter
et al., 2004], etc. In this chapter, we focus specifically on current and existing work that
provides the background material for our research.

2.1 Fault diagnosis

According to a NASA survey conducted by Cavallaro and Walker [Cavallaro and Walker,
1994], the reliability and fault-tolerance efforts in robotics are application-specific. Unlike
other domains such as engineering there do not exist any standards and protocols for im-
plementing fault-tolerance. Most of the work in the area of fault-tolerance in robotics is
aimed towards industrial robotics. Various techniques based on repeated testing for error
recovery have been proposed and successfully demonstrated [Mahdavi and Bentley, 2003].
Bongard and Lipson [Bongard and Lipson, 2004] demonstrated an approach for automati-
cally providing a diagnosis and recovery for unanticipated failure, specifically the recovery
of locomotion of a severely damaged leg on quadrupedal and hexapedal robots. According
to Carlson and Murphy [Carlson and Murphy, 2003], the mobile robot technology available
today is often hand-built, making it nearly impossible for any designer to duplicate. As a
consequence, diagnosis information on mobile robots is likely to be limited.

The experimental nature of the equipment and its uncertain interactions with the envi-
ronment make detailed modeling for multiple failures, like that used in industrial robotics,
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difficult in multi-robot teams. This is the reason most researchers focus on single instance
fault diagnosis systems for mobile robots [Muscettola et al., 1997] rather than multiple
instance failures, namely [Long et al., 2003], [Lamine and Kabanza, 2000]. To better un-
derstand current work on fault tolerance for multi-robot systems, we classify it into two
distinct yet related areas of research — multi-agent-based and robot-based. Multi-agent
based systems integrated with distributed computing are becoming an essential part of
AI programming. Such systems are designed as a possible replacement for existing sys-
tems such as monitoring, continuous diagnostic, process control, and decision support. A
group of agents can be mapped to one or more systems to perform complex tasks including
fault-tolerance. In the case of robot-based fault-tolerance, diagnosis is aimed at building a
reliable, highly autonomous system consisting of a team of physical robots that operate in
rich, uncertain environments. This necessitates robots that can reason about uncertainty,
and diagnose and recover from unanticipated errors.

Fault-tolerance in multi-agent systems

Typically multi-agent tasks include modern transportation, industrial, agricultural, and
fishing related tasks that can be performed by a group of autonomous agents. These tasks
are parallelized with small amounts of coordinating communication at either the start or
at the end. Some of the more popular examples include the ignorant swarms of Mataric
[Mataric, 1993] and the swarms of Dudek et al. [Dudek et al., 1993]. Much of the work
is geared towards equipping agents with functions to map the environmental conditions to
coordinated actions or using learning to predict the future actions of other agents. Kaminka
and Tambe [Kaminka and Tambe, 1998] present an approach for monitoring and diagnosis
for multi-agent domains called SAM — Socially Attentive Monitoring. SAM uses social
psychology-based fault detection, in which an agent utilizes other agents as a source of
information for detecting failures. Social diagnosis is performed by reasoning about failures
using an explicit model of teamwork and uses model sharing to alleviate inefficiencies in
model representation.

A similar approach, called the CMM (causal model method [Horling et al., 2000b]),
is a type of model-based parameter tuning approach for fault diagnosis that predefines a
decision graph for detecting and diagnosing problems that occur during system operation.
The ability of a model-based system to adapt depends on detecting failed expectations, and
determining their cause so they may be corrected. To achieve this, CMM was designed to
incorporate domain and coordination independent diagnosis capabilities into the individual
agents within the multi-agent system. The initial design of CMM was specifically aimed to
address performance issues in situation-specific coordination strategies. In this method, the
strategy used for agent coordination must be tailored to meet the specifics of the current
environment and the coordination situations an agent will encounter. Of all the approaches
that we have seen, CMM appears to be the most feasible approach for implementation in
a large multi-robot team environment. Unfortunately, when CMM is applied to a large
test multi-robot application, certain significant shortcomings, like its inability to handle
unexpected faults and to incorporate sparse information, are identified. On the other hand,
the analysis of the CMM method led to an interesting observation: the partial causal
model used by CMM for fault diagnosis provides us with a building block for systematically
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representing system faults towards designing a more robust system capable of handling
unanticipated failures. We discuss the CMM model along with its shortcomings in more
detail in Chapter 3.

Robot-based fault-tolerance

The literature on distributed fault recovery for autonomous robotics is limited. Despite
the extensive work on fault detection and diagnosis, Long, et al., [Long et al., 2003] claim
that the issue of how to handle sensing failures is largely un-investigated, and work on
distributed sensing recovery towards improving system performance is scarce. ROSEY [Le,
2002] is an example of a fault diagnostic robot that is capable of tracing a causal chain from
initial state to conclusion. Unfortunately, these methods are designed to be self-explanatory
systems as opposed to a fast and efficient fault diagnostic approach for improved system
performance.

A common approach to fault diagnosis is to endow the system with the ability to use
knowledge-based techniques to reason about the state of the execution, detect anomalies,
and to autonomously generate a recovery plan. A failure in perception, including the
inability to acquire the perceptual data needed to perform the desired actions, often results
in a robot unable to execute its goals. In this context, Murphy and Hershberger [Murphy
and Hershberger, 1996] have suggested a two-step approach: a strategy for classifying sensor
failures, and a recovery strategy. The sensor fusion effects architecture (SFX-EH) [Murphy
and Hershberger, 1999] for handling sensing failures in autonomous mobile robots is based
on this two-step methodology. SFX-EH is robust, efficient and to an extent is able to handle
uncertainty. It uses extensions to the generate-and-test method to classify failures based
on a partial causal model of the sensor/environment/task interactions for the robot. The
generate-and-test methodology exploits the ability of the robot as a physically situated agent
to actively test assumptions about the state of sensors, condition of the environment, and
validity of task constraints. SFX-EH uses the type of failure to determine the appropriate
recovery strategy. The error handling approach presented is concerned primarily with a
single autonomous robot based error recovery, with implicit fault detection. The hypotheses
library used to identify faults does not easily extend to a multi-robot domain because of
the inherently dynamic nature of the operating environment. Despite recent work by Long,
et al. [Long et al., 2003], which looks at extending the SFX-EH architecture from a single
robot to a small team of distributed robots, the architecture was primarily designed for
single robot sensing fault diagnosis. Our studies involving post-experimental analysis of
fault data for a sample test application, which is detailed in subsequent chapters, bring
to light a type of fault that is specific to the multi-robot domain. This type of fault —
a coordination fault — occurs due to the interaction of system components, even though
individual sensors and behaviors are performing properly. SFX-EH, in its present form, is
not designed to handle such faults that are specific to the multi-robot domain. Another
drawback of the existing systems is their inability to incorporate sparse information towards
improving system performance. Even with these shortcomings, the fault representation of
the SFX-EH provides us with another useful building block for designing a more robust
fault diagnosis system for multi-robot teams.
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2.2 Learning in robotics

As we mentioned in the previous sections, the inherent nature of the operating environment
dictates the system ability to dynamically adapt in order to accurately diagnose existing
and new faults. The capacity of a system to learn from experience, analytical observation,
and other means, results in increased efficiency and effectiveness. Currently, learning is
used as a method for bounded-rational agents/robots to adapt to an optimal strategy in a
situation with incomplete information.

Reinforcement learning [Sutton, 1998] is one of the most widely used online learning
techniques in robotics. With an online approach, the robot learns during action and acts
during learning, which is neglected in supervised learning methods. With reinforcement
learning, the learner perceives the state of its environment (or conditions at high level), and
based on a predefined criterion chooses an action (or behavior). Mataric [Mataric, 1994]
describes a methodology for automatically combining basic robotic behaviors into higher-
level ones, through unsupervised reinforcement learning based on the agents’ interactions
with the environment. To make learning possible, a reformulation was proposed such that it
elevates the level of system description from states and actions to conditions and behaviors.
A popular form of reinforcement learning used is the one-step Q-learning [Watkins, 1989]
algorithm in which the external world is modeled as a Markov decision process with discrete
finite-time states.

The methods that implement learning for fault-diagnosis, such as Nolan and Madden’s
IFT [Madden and Nolan, 1999], depend heavily on models or classified raw data. Other
work by Madden includes fault diagnosis based on the natural hierarchy of components
and sub-components in electrical and/or mechanical systems [Madden, 1998]. Wang and
Dai [Wang and Dai, 1999] use a control theoretic architecture with each model having its
own learning-based diagnosis agent. The advantages of decomposing a complex learning
task into smaller ones include formulating a complicated learning task as a series of smaller
ones thereby reducing the extra information which the learning system may use. This leads
to an improved performance of the system as smaller learning tasks typically have simpler,
more fundamental concepts associated with them that can be learned easily. Based on the
above concept, [Madden, 1998] describes a novel approach for systematically performing
a set of machine learning tasks in order to build a monitoring system with a hierarchical
structure which corresponds to that of the machinery being monitored. Successful multi-
robot systems like ALLIANCE [Parker, 2000] use learning to improve the efficiency of the
team’s performance. The extended architecture, L-ALLIANCE, monitors the performance
of the robot team members to achieve learning and to take advantage of the fault-tolerance
capabilities of ALLIANCE to enable task-oriented solutions.

Most traditional methods of learning, like the ones we have seen, require a large amount
of training data. Unfortunately, for the application domain that we are interested in, it may
not be possible for the robot to obtain large amounts of a priori training data. Incorporating
new information regarding faults may involve rebuilding the entire rule-base. This could
have a detrimental effect towards system performance in terms of complexity and execution
time.
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2.2.1 Case-based reasoning

A more recent learning technique, called case-based reasoning [Kolodner, 1993], appears
better suited to match the domain criteria. In this method, no explicit description of the
target concept is learned with the training data; the system simply stores training examples
for future use. Each case typically contains a description of the problem, plus a solution
and/or the outcome. The system does not have a pre-defined model based on the training
data and performs the computation during prediction time. This is different from other
conventional learning methods which rely on a set of classical rules. When a query is raised,
the learner searches the database for similar data points and builds an on-line local model.
By not forming an a priori model of the data, the system can dynamically adapt to the
environment. When a test example is given, the case-based reasoner tries to find the closest
match in the training examples. Based on the small set of training examples correlating to
the faults identified by the designer, we may be able to handle newer unexpected faults by
using distance functions like k-nearest locally weighted regression [Atkins et al., 1997] to
extrapolate data corresponding to the current fault to the training data.

Armengol et al. [Armengol and Plaza, 2001a] introduced a method called LID — Lazy
Induction of Deductions — in which solutions are obtained by explanations derived from
symbolic descriptions of the similar aspects between the current problem and existing train-
ing data. In this method, the system uses the notion of structural similarity [Borner
et al., 1996] to identify similarity between the two cases. Furthermore, the concept of
anti-unification [Plotkin, 1970] is then used to formally define the structural similarity.
The resultant similitude term contains only the relevant cases based on the outlined crite-
ria. The authors have successfully implemented LID for a biologically-inspired classification
application for a team of agents [Plaza et al., 1996,Armengol and Plaza, 2005]. We explore
the LID method in detail in Chapter 4.

2.2.2 Metrics

In the last decade, several researchers have studied fault-tolerance for robotic systems (e.g.,
[Mahdavi and Bentley, 2003,Bongard and Lipson, 2004,Mataric, 1993,Dudek et al., 1993,
Kaminka and Tambe, 1998,Horling et al., 2000a,Murphy and Hershberger, 1996,Long et al.,
2003]). However, still missing from this research are standard metrics for evaluating new
and existing multi-robot fault-tolerance methods. In the absence of an accepted metric, it is
difficult for a designer to calculate the true measure of a system capability. This is especially
true when attempting to compare two different fault-tolerant strategies, and determining
which strategy can achieve the best performance.

The concept of metrics for quantifying performance is not new. In 1994, Cavallaro and
Walker [Cavallaro and Walker, 1994] recognized the lack of standard metrics and discussed
the applicability of protocols based on NASA and military standards. Evans and Messina
in [Evans and Messina, 2000] analyze the importance of defining universally accepted per-
formance metrics for intelligent systems. The analysis outlines current efforts to develop
standardized testing and evaluation strategies and argues the need for industry accepted
metrics for inter-comparison of results and to avoid duplication of work. Extending the
analysis of Evans and Messina, Pouchard in [Pouchard, 2000] explores metrics specific to
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the software agent perspective. Both sets of authors extend a challenge to the research
community to actively work towards the process of developing standard metrics.

Traditional engineering methods that address fault tolerance predominantly deal with
reliability analysis of systems and components. Reliability is defined as the probability
with which a system will perform its specified function/task without failure under stated
environmental conditions over a required lifetime. Stancliff et al., [Stancliff et al., 2006]
present a quantitative analysis supporting the argument that larger teams of less-reliable
robots perform certain missions more reliably than smaller teams of more-reliable robots.
Based on the concept of reliability, Carlson and Murphy extensively analyze failure data for
mobile robots in [Carlson and Murphy, 2005]. Using MTBF (Mean Time Between Failures)
as a representation for average time to the next failure, reliability for mobile robots is
calculated. The MTBF metric is defined as:

MTBF =
No. of hours robot is in use

No. of failures encountered
(2.1)

Other metrics used for evaluation include MTTR (Mean Time Taken to Repair) and Avail-
ability, which measures the impact of failure on an application or project. These metrics
are defined as:

MTTR =
No. of hours spent repairing

No. of repairs
(2.2)

Availability =
MTBF

MTTR + MTBF
· 100% (2.3)

The resulting study illustrates that the reliability among mobile robots is low, with
failures occurring at regular time intervals, mainly due to the operating platform. This
study is very helpful in providing a detailed analysis of the component failure rate in mobile
robots, and in highlighting the complexity of the operating environment as a significant
determining factor for failures. However, it does not capture other types of fault tolerance
that may be present in a system. It is also difficult to compare the merits of differing robot
team control architectures purely using the standard manufacturing metrics of MTBF and
MTTR.

In our work on metrics, we want to capture the notion of reasoning and intelligence as it
affects the fault tolerance of a system. As our earlier work shows [Parker et al., 2004], [Parker
and Kannan, 2006], ultimately, multi-robot systems should be able to intelligently handle
failures, and thus improve over time. Hence, it is important for any performance metric for a
multi-robot system to measure the extent of intelligence exhibited by the system. Recently,
there has been a renewed interest in exploring the problem of metrics for intelligent systems.
Lee et al. [Lee et al., 2000], propose an engineering based approach for measuring system
intelligence. In this method, learning is used to theoretically measure system intelligence
through a formal analysis of system software architecture and hardware configurations.
Other related works include Yavnai’s [Yavnai, 2000] approach for measuring autonomy for
intelligent systems and Finkelstein’s Analytical Hierarchy Process (AHP [Finkelstein, 2000])
for measuring system intelligence.
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Unfortunately, existing work does not apply or extend these measures to help eval-
uate system fault-tolerance. In fact, relatively little research has addressed the issue of
metrics specific to the field of fault-tolerance in multi-robot teams. Most existing architec-
tures are evaluated purely based on task-specific or architecture-specific quantities [Parker,
2001]. The consequences of such an evaluation are that the general characteristics of fault-
tolerance, robustness, and so forth, are not explicitly identified, and instead are hidden in
the application-specific measures.

The most promising work related to our objectives is the work of Hamilton, et al.
[Hamilton et al., 1996]. Their approach outlines a metric (which we call the HWB metric)
for calculating “effective” fault-tolerance for single robot manipulators by combining the
observed fault-tolerance with a performance/cost rating. The measure has two distinct
terms: the first is based on a fault-tolerance rating and the second term is derived from a
performance/cost value, as follows:

HWBeff = k1(f)2 + k2(p)
2 (2.4)

where HWBeff is the calculated measure, f is the fault-tolerance rating, pis the perfor-

mance/cost rating, and k1 and k2 are normalizing constants. Here, fault-tolerance is calcu-
lated as f = m/n, where m is number of tolerable subsystem failures and n is number of
available subsystems. The performance/cost rating is given by p = (S + R + C)/3, where
S is performance speed, R is recovery time rating, and C is the cost measure. The authors
evaluated their metrics on a number of multiprocessor control architectures.

This proposed metric has a few shortcomings that restrict its applicability for the multi-
robot domain. First, the system calculates the effect of robustness purely based on redun-
dancy, and thus does not capture the use of intelligence or reasoning to compensate for
failure. Our research in the development of LeaF [Parker and Kannan, 2006], [Parker et al.,
2004] identifies online learning from faults as an integral component of successful fault-
tolerant systems. Hence, it is imperative for a evaluation strategy to quantify learning as
part of the fault-tolerance measure. Also, as previously mentioned, most multi-robot sys-
tems are task-centric rather than robot-centric. Hence, it is easier to evaluate the system
if the metrics focus on task performance. As part of our research, we extend the concept
of “effective” evaluation of fault-tolerance to multi-robot systems. The newly proposed
metrics are task-centric and include measures to identify system intelligence or learning.

2.3 Summary

In this chapter, work relevant to the primary concept of the thesis is presented. Current
methods like CMM, SFX-EH and LID, though successful for fault diagnosis in specific
applications, have limitations when applied to a larger more dynamic domain like multi-
robot team based applications. On the other hand, all these methods provide fundamental
building blocks for a more effective fault diagnostic architecture. We plan to adapt the LID
learning technique for our problem and combine it with the existing CMM model based
approach to enable the robot system to train itself based on the encountered faults.
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Chapter 3

Investigating the Causal Model
Method (CMM)

Existing architectures for fault-tolerance, such as SFX-EH and CMM, are robust, efficient
and to an extent are able to handle uncertainty. The inherent explosion of state space
complexity in multi-robot environments inhibits the ability of any designer to specify the
correct response for every possible state in advance. Despite thorough consideration, it is
not realistic to expect that all such failure modes will be accurately predicted. The faults
occurring during the course of normal operation provide an opportunity for the system to
learn about its operating environment, thereby reducing future occurrences of failures. A
key current limitation of existing systems is their inability to incorporate sparse information
towards improving system performance. Among the different techniques we analyzed, the
CMM described by Horling, et al., [Horling et al., 2000b,Hudlická and Lesser, 1987] appears
to be the most feasible one for multi-robot applications.

In this chapter, we analyze the applicability of the CMM approach to the complex
multi-robot application scenario defined in Chapter 1. The CMM approach is a type of
model-based parameter tuning approach for fault diagnosis that predefines a decision graph
for detecting and diagnosing problems that occur during system operation. We decided to
analyze CMM for our multi-robot test application for the following reasons:

• The CMM uses diagnosis as a means to adapt to changes,

• A causal model is designed to handle multiple failures,

• The diagnosis can be done in a domain-independent manner, and

• The approach described by Horling and Lesser [Horling et al., 2000b] consists of two
distinct and independent parts – a framework for task analysis, environment modeling,
and simulation called TAEMS [Decker, 1996] and a causal model that is used for the
fault diagnostic process.

Because of the inherent distributed nature of the multi-robot application, it is advantageous
to modularize the system. Specifically, the implemented system is broken down into two
distinct parts — a standard behavior based model for task allocation and completion, and
a fault diagnosis model for diagnosing and recovering from faults in the system. Thus, the
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two distinct parts of the approach in [Horling et al., 2000b] fit well with our application
scenario.

In our earlier research, we have successfully implemented and demonstrated a distributed
behavior based structure for the test scenario [Parker et al., 2004, Parker et al., 2003].
While the obtained test results were quite encouraging, there remained important issues
that needed to be addressed, such as the influence of fault diagnosis towards overall system
efficiency and robustness. In order to better understand the CMM for the multi-robot
domain, we apply it to the test scenario from [Parker et al., 2003]. Here we restrict the
analysis to focus exclusively on implementing the causal model based structure for fault
diagnosis and recovery. In the subsequent sections, we provide a brief overview of the
CMM approach. The analysis consisted of two distinct stages — the first stage involves the
motivation and the design behind the Phase I causal model. In Phase I, a causal model for
fault representation is designed. The design of the model depends solely on the designer’s
experience in the operating environment to predict faults in the system. The designer
attempts to identify, a priori, all possible faults for the application. Based on the results
of the testing of the application, we analyze the data collected from the experimental runs.
The subsequent stage involves the development of the Phase II causal model. The Phase
II causal model builds on the Phase I model using the post-experimental data. The newer
model is more detailed than the first model and attempts to incorporate additional fault
information not present in the Phase I model. Based on the experimental data, the designer
attempts to recreate a new model containing all possible fault nodes. Finally we compare
the differences in the models and their implications for generating turn-key solutions for
multi-robot fault diagnosis.

3.1 CMM

The causal model as described by Horling and Lesser consists of two mutually exclusive
modules — a goal/task decomposition language called the TAEMS and a structure to de-
scribe the pertinent assumptions for diagnosis based on the causal model. The model has
an a priori base set of assumptions about behaviors and availability of resources. Fault
detection is defined as the ability of the agent(s) to recognize when an assumption be-
comes invalid. Given this invalid assumption, fault diagnosis is defined as the ability of
the system to identify the resource behavior or sensor that is responsible for the failure.
Prior knowledge about the expected behavior provides a comparison monitor for the sub-
sequent actions of the system. The knowledge can be of two types: information about the
agent’s expected behavior and methods for detecting deviation. Further, the model encodes
the information/task using a domain independent goal/task decomposition language called
TAEMS [Vincent et al., 2000]. TAEMS provides an explicit representation of goals and
pathways to achieve them. Method behavior and interactions between other methods and
resources are also represented by means of the TAEMS structure. TAEMS provides an
organized knowledge structure to be used by the agent(s) for successful task completion.
The initial model as designed by Bazzan, Lesser and Xuan focused on designing the diag-
nosis closely to the underlying system architecture. Based on the work of Sugawara and
Lesser [Sugawara and Lesser, 1998], the subsequent model used a causal model to organize
the diagnostic process in addition to the TAEMS structure.
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The original CMM was defined as a directed, acyclic graph, written left to right, used
for organizing a set of diagnosis nodes. The model makes use of the information available
within the TAEMS structure to detect faults. Within the TAEMS structure, each node
is defined by means of a set of characteristics defining the node and its relation to other
nodes. In addition, some nodes in the model are marked as triggerable, meaning that they
periodically perform simple comparison checks to determine if a fault may have occurred.
The system then checks for deviations from the expected value of the characteristics and
if a deviation is detected, a flag is set for that error. This in turn triggers the diagnosis
model to identify the exact source of the fault. This trigger-checking activity is a primary
mechanism for initiating the diagnostic process.

In order to apply the CMM to the multi-robot domain, certain modifications were made
to the original model. These include:

• The CMM was modified to be an undirected graph. This enables the system to
incorporate new information anywhere within the causal model.

• All nodes were made triggerable. Every node actively monitors for a variation from
known behavior knowledge.

• Behavior knowledge is represented by means of characteristics that better describe
the fault; e.g., symptoms associated with the fault, influence of the fault towards task
completion, etc.

• The existing TAEMS model was combined with the generate-and-test methodology
[Lindsay et al., 1980] from the SFX-EH architecture to help trace the fault.

• Each node has a corrective action associated with it. A corrective action consists of
a set of instructions that the robot has to successfully execute to recover from the
encountered fault.

Figure 3.1 illustrates a simple causal model designed for a sample multi-robot appli-
cation. Each node in the graph corresponds to a particular fault diagnosis with the level
of precision increasing from left to right. As the nodes produce diagnosis, the generate-
and-test strategy is used to find more detailed levels of diagnosis to further categorize the
problem. Using this methodology, the robot generates tests about possible causes for failure
and uses the results of the tests as a means for further classifying the encountered fault. The
extreme right nodes in the graph, called the leaf nodes, provide the highest precision or the
lowest abstraction of diagnosis based on available information for a given fault. Generally,
the leaf nodes correspond to sensor level diagnosis.

Multiple faults are handled by incorporating a single fault node that uses the diagnosis
of several other nodes for verification. The causal model allows easy addition and removal
of nodes by the designer depending on the specifics of the diagnosis required for the system.
The designer is also free to make the nodes as domain independent as possible. By making
the design as generic as possible, the model can be applied to each agent or robot with little
modification. On the other hand, the design and the precision of the model is also dependent
on the individual capabilities, the computation power, sensors, etc., of each individual or
type of robot in a multi-robot team.
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Figure 3.1: Phase I causal model for SDR – based on the failure recovery table from [Parker
et al., 2004]

Therefore a system can have one or multiple causal models depending on the team
composition. We explain the model in more detail in the following sections.

3.1.1 Phase I causal model

Using the above described CMM approach, we developed a Phase I causal model for fault
diagnosis based upon our experience in testing and debugging the complex heterogeneous
robot behaviors of the motivating example in Chapter 1. Figure 3.1 illustrates the im-
plemented causal model for Phase I. Due to the computational constraints on the simpler
sensor-limited robots, Phase I has one primary causal model implemented only on the helper
robots. The comparison monitor used for fault detection was based on a simple case-based
reasoning structure. A set of rules describing the fault characteristics were defined for the
structure; in the event of a match, a flag was set, diagnosis performed, and a corrective
action taken. Table A.1 (see appendix) lists the rules used to recognize the fault states
predefined and implemented for this application. In addition, Table A.1 also lists the series
of tests from the generate-and-test methodology used for improving the fault diagnosis. For
our implementation, the characteristic set describing the fault was restricted to a single
defining element, the symptom representing a fault. The symptom was derived from the
system exception that was generated when a fault occurs. By comparing the symptoms
of the encountered fault with the existing rule-base, we can identify the fault. Once the
fault is identified, the robot, using the generate-and-test method, generates further tests
about the cause of failure, eliminates redundancy and confounding effects, analyzes the test
results, and attempts to determine as accurate a diagnosis as possible. The symptom-fault
rule base along with the corresponding corrective action for the Phase I model is detailed
in Table A.1.
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As an example of this approach, consider the situation in which the simple sensor-
limited robot has motor problems during deployment and stops. The helper robot uses
the camera to periodically monitor the following sensor-limited robot during the course of
deployment. The helper robot is also in constant communication with the simple robot,
coordinating with the simple robot to maintain formation. Once a sufficient amount of
time has elapsed and the helper robot realizes that the follower is not present behind it, an
exception correlating to a missing robot symptom is raised. The helper robot then attempts
to coordinate with the simple robot and perform additional tests (see generate-and-test
section of Table A.1) to better determine the possible fault mode. Additional tests identify
no sensing or communication errors on either one of the two robots. Also during the course
of testing, an inconsistent map information symptom is identified. Once it matches the
symptom to the corresponding fault, unexpected environment behavior, as the primary cause
for failure, it performs remedial actions which involves the helper attempting to activate the
follower into acoustic sensor network detection mode (provided the follower robot is within
an acceptable vicinity of its original goal and its other sensors are operational).

3.1.2 Experimental results

The application described in Chapter 1 was tested in the sample environment shown in
Figure 1.1. The experiments consisted of repeated deployments of 1, 2, or 3 simple robots
per team. The experiments were tightly controlled by a set of human evaluators who
were not the system operators. Over the course of the experiment, various failures were
encountered, some of which were expected and some that were unexpected. If a deployment
failed on one experiment, the consequences of that failure were not corrected, except on
rare occasions. Thus, the data reported here incorporates propagation of error from one
experiment to the next. This is an important difference between single robot and multi-
robot teams in terms of fault occurrence. In these experiments, a total of 61 simple robot
deployments were attempted. The experimental data showed an overall deployment success
rate of 60% - 90%, depending upon the environmental characteristics. In other words, for
each attempt at deploying a simple robot, 60% - 90% of those robots successfully reached
their planned deployment position. The reason for the low success rate is the complexity
of the heterogeneous robot system. As discussed in Chapter 1, the system is composed
of several non-trivial modules, including localization, path planning, navigation, helper
following, visual marker detection, and inter-robot communication (refer to Table 3.1).

The completion of the entire deployment process depends upon the successful completion
of all of the system modules while the robots are operating in cluttered environments along
complex paths. Such an application provides us with a useful scenario for testing the
causal model. Despite the limited number of failure states identified and implemented,
the success rate of the helper robots making it back home autonomously in these rigorous
experiments was 91% (over 45 trials). Table 3.1 depicts the probability of success of each
individual module in this implementation and the overall system probability, based upon
the experimental results. Each component/module is designed to be highly reliable, yet due
to the overall interaction between the components, the overall system probability is only
around 59%. In order to make each component highly reliable, each component must be
able to identify, recognize and recover from errors.
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Table 3.1: Overall System Success Rate, averaged over 45 trials
Localization Probability Subsystem

Success
Rate

Experimental
Success Rate

Localization p1 0.83

Path Planning p2 0.99 (est.)

Navigation p3 0.95 (est.)

Follow Helper p4 0.78 (est.)

Marker Detection p5 0.98

Communication p6 0.91

Complete System p1 × p2 × p3× 0.54 (est.) 0.67 (2 robot depl.)
p4 × p5 × p6 0.48 (1 robot depl.)

0.59 (combined
over all trials)

3.1.3 Phase II causal model

The post-experimental analysis highlighted the shortcomings of the original fault diagnostic
causal model. It also identified certain unexpected faults that the system was not equipped
to handle. One such fault occurred in the communication protocol. The layout of the en-
vironment in Figure 1.1 from Chapter 1, was such that communication between the base
station and the room in the upper right corner required the signal to pass outside the
building and then back into the building, which affected the quality of the signal propaga-
tion. Also, the experiments were conducted during a snowstorm, which also likely interfered
with WiFi signal propagation. This resulted in strong interference over the WiFi signals
that were confined to that particular room alone. This, in turn, caused the robots to lose
communication with the base and with other robots, leading to a failure in achieving its
objective.

Based upon the lessons learned from testing, we developed a Phase II version of our
causal model that incorporates the previously unknown faults that were identified during
experimentation. Figure 3.2 illustrates this new Phase II causal model based on the modified
symptom-fault rule base (see Table A.2). This model was not implemented on the robots as
it was developed from post-experimental data analysis. However, it is instructional to step
thorough this model to see how the robots could have used it for improved fault-tolerance.
In the case of the above example, interference in communication would have triggered the
communication error node. Tracing through the Phase II model, communication failure
could have been caused by one of the following three reasons:
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Figure 3.2: Post-Experimental, Phase II causal model for SDR — based on [Parker et al.,
2004].
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physics of communication, protocol failure, or environmental conditions. Once the potential
failure node was identified, the robot could have performed a series of tests from the cor-
relating generate-and-test strategy associated with the communication failure node. This
would have included exploring the area, trying to re-establish communication with other
robots. Since the problem was restricted to that particular room, the affected robot would
have been able to establish communication with other robots as soon as it left that room.
As mentioned in Chapter 1, the robots used communication as a means for coordinating
observations. Cross-verification of the fault diagnosis information from other team members
would have resulted in the robot eliminating physics of communication and communication
protocol as a possible failure diagnosis. This would have left the robot to conclude that the
loss in communication was due to an environmental anomaly. Comparing the two causal
models in Figure 3.1 and Figure 3.2, we can conclude that it is unlikely that the designer
will anticipate and incorporate every possible fault that the system may encounter. This is
especially true in the case of large multi-robot team environments because of the inherent
nature of the domain and the large number of behaviors and moving parts in the system.

3.2 Discussion and summary

The key current limitation of CMM and other such techniques is their inability to incorpo-
rate sparse information towards improving system performance. From the design, exper-
iments, and post-experimental data analysis, we have formed the belief that multi-robot
applications, such as the one we studied, are executed in environments with unbounded
indeterminacy, meaning that it is impossible to enumerate all possible contingencies. We
therefore hypothesize that the experimentation of a revised implementation that incorpo-
rates the newer Phase II causal model shown in Figure 3.2 would still result in the iden-
tification of additional faults that were not pre-defined in the causal model. For example,
a minor change in the characteristics of the environment, such as a change in the incli-
nation of the slope of the floor (which results in the camera mounted on the helper not
being able to see the simple robot due to the non-planar paths of the two robots) could
result in the designer having to build a completely new causal model. This is potentially an
infinitely iterative process that can never be completely solved. The CMM model requires
an enormous amount of fine-tuning by the designer for it to be truly robust in a specific
environment. This prevents the system from ever truly becoming a turn-key solution for
fault diagnosis. The model in its current stage is unable to adapt to different environments
and the resulting faults. On the other hand, the causal model does provide a good basis
for developing a more generic framework for fault diagnosis. The failures occurring during
the course of normal operation provide an opportunity for the system to learn about its
operating environments, thereby reducing future occurrences of failures.
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Chapter 4

The LeaF Approach

The ability to learn from mistakes is a unique feature that enables humans to adapt to
a wide variety of situations. Faults provide valuable information about the environment.
Identifying and learning about the faults encountered can improve a system’s performance.
Our analysis of the causal model revealed that it cannot handle unknown faults that are
not modeled a priori into the system. Further analysis revealed that a possible solution
to overcome the existing drawbacks is to incorporate learning into the system to handle
unexpected failures. Learning across the team members would allow the system to extend
its causal model based on team experience. Hence, we focus our research on enabling the
system to learn more about its working environment and as a consequence adapt to it. The
specific objectives of learning include:

1. Using experience to refine the process of diagnosis,

2. Incorporating new edges in the causal model, based on information extracted from
the faults, and

3. Enabling dynamic software reconfigurability based on information learned from other
team members.

These capabilities would enable the system to handle situations such as bad communi-
cation in one area, bad lighting in one area, an environment too complex for navigation in
one area, and a blocked passageway, without compromising the overall system goals. In ad-
dition, the system could use learning to incorporate the sparse information, obtained from
the encountered faults, into the causal model. This information would be represented as
new nodes and their relationship to other existing nodes. Adapting the causal model dur-
ing experimentation eliminates the need for the designer to attempt to identify all possible
faults a priori.

LeaF is designed as an adaptive method capable of using its experience to update and
extend its causal model to enable the team, over time, to better recover from faults when
they occur. A modified case-based learning algorithm is used to adapt and categorize a
new fault and add it to the causal model for future use. In addition, the learner refines
the current diagnosis process based on the frequency of occurrence of specific faults. The
system consists of a hierarchical set of blocks or modules of predefined functionality, such
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as fault detection, diagnosis, recovery, learning, etc. The faults are detected and recovered
from by each individual module with minimal communication with the other modules of
the system; i.e., the decision making is distributed across each robot in the team based on
its partial knowledge of the environment. This allows the system to be flexible in terms
of modularity, fault-tolerance, and extendibility. More importantly, it eliminates the single
point of failure that is associated with a centralized architecture. In addition, the design
allows LeaF to be easily incorporated into most existing robot architectures without major
modifications.

Our ultimate goal is to build a cross-architecture system capable of constantly learning
from its own faults and those of other team members, making it a domain- and application-
independent architecture. We believe that learning is the key characteristic needed to
develop a turn-key solution for a fault diagnostic system for heterogeneous multi-robot
teams performing complex tasks.

At a higher level, the entire process of fault representation and diagnosis can be viewed
as a fully connected graph, with nodes representing faults and edges highlighting the re-
lation between the faults. For such a system, the goal would be to autonomously learn
the probability values associated with each edge that maximizes system performance for a
specific application or environment.

4.1 LeaF Architecture

This section details the process of incorporating LeaF into a standard multi-robot applica-
tion [Parker et al., 2004]. Figure 4.1 illustrates the combined architecture, where the upper
portion depicts a basic behavior-based robot architecture while the bottom portion of the
figure represents LeaF. The system consists of two main functional modules:

• Behavior Control Module (BCM) responsible for executing specific tasks or goals,

• Fault-tolerance Module (FtM) responsible for fault diagnosis and recovery.

Embedded within the fault-tolerance module is another important component — the case-
based learner.

4.1.1 Flow of control

The robot starts out by receiving task information from the human operator and then
proceeds to execute it. The task information is fed into the state machine which then
determines the operating state based on the type of task.

State machine

The state machine consists of a set of states that the system operates in, and a transition
function that maps current states to a next state. The set of states the system operates
in are: NORMAL, DIAGNOSIS and RECOVERY in addition to a transition state
called WAIT (see Figure 4.2). Any tasks, tests or recovery actions are fed through the
state machine to streamline the control of sensors and effectors.
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Figure 4.1: Architectural details of LeaF.

Figure 4.2: State diagram for modes of operation of LeaF.
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The sensors feed back into the state machine, which determines the current operating
state and transfers control to either the BCM or the Fault-tolerance module. The robot
begins in the NORMAL state. In this state, the robot executes the assigned task based
on the set of available behaviors, such as the ones in Figure 4.3 [Parker et al., 2004]. Once
the state machine identifies the mode of operation and task, it passes the information to the
BCM for execution. In the event of an unexpected variation in the behavior, an exception
is raised. When an exception occurs, the BCM stops normal behavior execution, shifts the
robot to a WAIT state and attempts to obtain all useful information regarding the problem,
including information about sensors and behaviors. This information is represented by
means of a top-down tree structure, with the level of abstraction decreasing from left to
right. The information allows LeaF to identify new fault nodes that can be incorporated
into the CMM. In addition, the BCM also saves the system’s state at the time of exception.
This is called the safe point of the system. All the collected information is then transferred
to the state machine. Once the state machine receives all relevant information, it transitions
the system to the DIAGNOSIS state. In this state, the robot tries to identify and classify
the fault encountered. The FtM is responsible for fault identification, classification and
subsequent recovery. Based on the gathered data, the diagnosis block of the FtM outlines a
series of tests to identify potential failure nodes. To ensure a tight flow of control, the FtM
itself does not execute the tests; instead it transfers the control back to the state machine.
The state machine passes on the test to the BCM for execution. The feedback of the tests
are filtered through the state machine before being sent back to the FtM. The diagnosis
block compares the results of the tests with the behavior knowledge stored in the nodes of
the CMM to identify the exact type of failure. The origin of exception helps restrict the
search within the CMM. In the event of an unknown fault, the diagnosis block passes the
information on to the Learner. The Learner attempts to diagnose the unknown fault based
on a case-based learning algorithm. For certain difficult cases, it may be beneficial to request
additional human input to short circuit the process. Once the fault is diagnosed, the control
is transferred to the recovery block and the system transitions to the RECOVERY state.
As both the diagnosis and the recovery modules fall under the FtM, control is transferred
directly from one to another without having to pass through the state machine. This reduces
redundancy and overall system complexity. The recovery block comes up with a corrective
action for the diagnosed fault. A corrective action is defined as a sequence of steps that need
to be executed successfully to facilitate the transition of the system from the RECOVERY
state to the NORMAL state of operation. Once the recovery is successfully completed
and the fault eliminated from the system, the system shifts back to the NORMAL state
and transfers control to the BCM controller block. The module starts execution from the
last safe point and the robot attempts to complete its assigned task. In the event the
recovery mission fails to eliminate the error, the state machine temporarily shifts the robot
into the WAIT state, gathers any relevant information and restarts the process of fault
diagnosis. Figure 4.3 shows a similar state diagram implemented for the simple robots from
the motivational example in Chapter 1.
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4.1.2 Behavior Control Module (BCM)

As mentioned in detail in Chapter 1, complex cooperative behaviors are required for suc-
cessful completion of the defined tasks (see Figure 1.2). Parker, et al. [Parker et al., 2003]
implement one such method for the task of navigation-assistance. We believe that as the
complexity of the application increases, so does the heterogeneity of the components in-
volved. As behavior-based representations for robotics are parallel, distributed, and active,
in order to accommodate the real-time demands of other parts of the system, they are ide-
ally suited for the type of applications that we are interested in. However, more traditional
control-theoretic approaches could also be used; LeaF does not require a particular type of
robot control. In order for the architecture to be portable and modular, we separate the
behavior-based control from the rest of the fault-tolerance module.

The behavior module consists of the coordinator and the controller. The controller con-
tains the list of individual behaviors associated with the robot. Based on the task to be
completed and the environment map, the coordinator arranges an order of execution for
the behaviors. Currently the coordinator is hand-coded, but a future goal might be to in-
corporate a system such as ASyMTRe ( Automated synthesis of multi-robot task solutions
through software reconfiguration) [Tang and Parker, 2005] for automatically synthesizing
task solutions. The controller translates high level commands into motor and sensory com-
mands.

CMM

The CMM block contains the Diagnosis and Recovery sub-modules. As mentioned in Chap-
ter 3, the causal model for LeaF is designed as an undirected graph, where the faults are
represented as nodes of the graph [Horling et al., 2000b].

4.1.3 Fault-tolerance Module (FtM)

The fault-tolerance module combines the CMM with a case-based learner to help identify
and subsequently recover from faults. The subsequent sections describe the individual
sections of the FtM in detail.

Figure 4.3: State diagram for normal operation of a simple sensor-limited robot.
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The model has an a priori base set of assumptions about the faults and the symptoms
associated with them (refer to Figure 3.1 and Table A.1). Once the fault is classified, recov-
ery is straightforward. All nodes of the model have an action associated with them; when
the diagnosis determines that the cause for a fault is one of the nodes, the corresponding
corrective action is then selected and subsequently executed. The recovery strategy could
vary from using an alternate logical sensor to graceful degradation depending on the type
of fault diagnosed. The successful execution of the recovery strategy results in the robot
switching back to the original task and operation. In the case of unknown faults the pre-
defined causal model is inadequate for fault diagnosis and recovery. In such cases we use
the learning algorithm to identify, diagnose and recover by extrapolating the fault type and
associated action based on the existing sample space.

In most applications, some faults occur more commonly than others. One of the draw-
backs of our CMM architecture is that it does not distinguish between diagnosis in terms of
the frequency of occurrence. In order to better prioritize the faults, we associate a weight,
called the probability of occurrence or POC (σ), with every edge of the CMM. For an en-
countered fault with an observed symptom, the σ for an edge E1, connecting nodes x and y,
is the probability with which edge E1 is selected from current node x to the connected node
y within the CMM and is denoted by σ(x, y). The cumulative outgoing probability from
any node sums to 1. The edges in the CMM are initialized by the designer. By allowing
the designer to assign initialization values, the system takes advantage of prior experience
of the designer’s field experience. This reduces the need for an elaborate training stage.
Alternately, the starting data set can be obtained by operating the robot in a training phase
for a fixed period of time and calculating the probability of occurrence for the edges of the
CMM. To improve the quality of the weighted value, the training data can be collected
separately for individual team members. This ensures that robots weigh their individual
CMM’s specific to their functionality or task capability. Figure 4.4 illustrates the modified
Figure 3.1 CMM having weighted nodes.

Learner

As described in the previous sections, previously unknown faults cannot be classified using
the causal model. To categorize and recover from such types of errors, we propose to use
a case-based learning [Aamodt and Plaza, 1994] approach to identify, categorize and add
the new fault to the causal model for future use. As mentioned in Chapter 2, we want
our multi-robot team to learn quickly and efficiently from the limited failures it encounters.
Case-based reasoning (CBR) [Plaza and Arcos, 2002] is one such method that can be used
to autonomously learn from experience. Using case-based reasoning, a new fault can be
diagnosed by identifying its similarity to one or several previously classified faults stored in
the causal model and by adapting known solutions instead of working out a new solution
from scratch. As our work involves teams of robots performing individual tasks, we want
to design the CBR in a decentralized fashion; that is, each robot has a copy of the causal
model and the learner and attempts to identify the new fault by itself.
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Figure 4.4: Modified causal model with assigned probability of occurrence.

In the event the robot’s learner cannot classify the fault, the robot communicates the
relevant information to a human operator for inference.

The identification of similarities between faults is done using a technique called Lazy
Induction of Descriptions (LID [Armengol and Plaza, 2001a]). LID builds a symbolic sim-
ilarity description, similitude [Armengol and Plaza, 2001b], between existing sample data
and the encountered fault. Specifically, similitude is constructed by identifying prior cases
that best share certain pre-defined characteristics with the encountered fault. Unlike other
distance-based approaches for CBR, similitude measures the relevance between faults using
relations among entities, rather than using arbitrary distance metrics. LID identifies rel-
evance by only selecting the nodes with similar characteristics to that of the encountered
fault. This approach provides a better reasoning for fault diagnosis and reduces overall
system complexity and the time spent in fault diagnosis.

LID

We first describe the formal framework for LID summarizing [Armengol and Plaza, 2001a]
and adapting it to our multi-robot domain. We then apply this technique to our sample
team application, giving an example of how LID enables us to create an adaptive causal
model.

For our domain, we define the problem space, PS, as the set of all possible fault de-
scriptions that can be encountered by the system over the duration of the experiment. PS
includes the faults that are identified by the designer before experimentation as well as those
that are encountered during testing and experimentation. The solution set (S), pertaining
to the problem space, is the set of all corrective actions for the corresponding fault from
the problem set. Specifically,

• PS=<V,E>, where the vertices set V = {f1, f2, f3, f4, ..., fm} represents faults and
the edges E = {{f1, f2}, {f1, f3}, {f2, f3}, ..., {fi, fj}} represent relationships between
the faults, according to the causal model.
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• S = {s1, s2, s3, s4, ..., sm}, where sj is the corrective action associated with fault fj .

Typically, fault relationships indicate increasing (or decreasing) order of specificity in the
fault description.

• For a system consisting of n robots, the sample case base, C, is defined as:

C = {C1, C2, C3, ....Cn}, where Cj = {(PSj , Sj)} and PSj is the problem space defined
for robot Rj having a solution set of Sj .

For the LeaF system, PSj represents all nodes and edges of the CMM for robot Rj

and Sj constitutes the corrective action associated with the nodes. Also, a path π(fi, fj) is
defined as the sequence of inter-related nodes going from node fi to node fj in the CMM.

Interpreting the rule-base from Table A.1 and Figure 3.1 from Chapter 3, we can define
the vertex and edge sets for our test application as follows:

• V = { Goal not reached, Camera error, Lost follower, Path planning error, Localiza-
tion error, Communication, Bad initialization, Faulty sensor, Motor problems, Unex-
pected Environmental-behavior}

• E= {{ Goal not reached, Path planning error}, {Path planning error, Localiza-
tion error}, {Camera error, Faulty sensor}, {Lost follower, Motor problems},
{Lost follower, Unexpected Environmental-behavior}, {Localization error,
Bad initialization}}

Also, a sample path from Goal not reached to Bad initialization is given by:

• π(Goal not reached, Bad initialization) = {Goal not reached, Path planning error,
Localization error, Bad initialization}, and

As mentioned earlier, a fault is described by means of its characteristics. The collection
of terms (ψ) defines the characteristics of the fault sorted in terms of their relevance. We
define ψ as follows:

• ψ = s[ψ1, ψ2, ....], where ψ1, ψ2, ... are the fault characteristics and s is the application-
specific sort function defined by the designer.

For LeaF, currently we restrict the characteristic defining the problem to a single term
that represents the fault symptom.

Having introduced the above terms, we can then re-define similitude as finding nodes
from the causal model that best describe the encountered fault based on the observed
symptom. To classify an encountered fault, fi, the adapted LID builds a similarity space,
called Df , such that:

• Df contains only the most relevant characteristics of fi.

• Df induces a subset of the problem set that satisfies the description: Dsp =
{f1, f2, ..., fj , ... | ∀fj ∈ V : ψ ∈ fi and ψ ∈ fj}; Dsp is called the “discriminatory
set” of Df .
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Hence, for LeaF, the similarity space is simply the set of all nodes in the causal model
that have the same symptom as the encountered fault. To illustrate the concept of simil-
itude, consider a scenario in which a helper robot encounters a fault, fi, while teleoper-
ating a simple robot. This fault has the symptom ψ= {“inconsistent pose info”}. Ap-
plying the above criteria to the Table A.1, the generated similitude term, Df , is given by
{Localization errors}.

Heuristic Assessment

In order for the robots to diagnose and recover from a fault, it is not enough to identify a set
of similar cases. The solution should be similar to the problem in aspects that are important
to the current task. In order to identify the relevance of the elements in the similarity
set, LID uses a top-down strategy that determines which of the characteristics present in
the fault are the most discriminatory. The process of using only the most discriminatory
characteristics eliminates unrelated cases and narrows down the similarity space to contain
only the most relevant cases to the encountered fault.

Unlike the original method, which builds a dynamic heuristic, the lack of prior knowl-
edge of the distinct similarities between faults forces us to predetermine the most important
characteristics for our causal model. As we are interested in diagnosing faults of varying
abstraction, it is difficult to define generalized characteristics common to all of them. Fault
symptom is one such characteristic that provides information that is common to all encoun-
tered faults. Even though a fault symptom by itself is not an exact indicator of what went
wrong, it does provide the designer with enough information to identify the most likely
event that could have gone wrong. The fault-symptom relation can be better described by
means of the following:

• Every fault has a symptom associated with it,

• Symptoms are not unique to a fault, and

• There is a possibility existing symptoms may be an indicator for a previously unknown
fault.

Future work involves analyzing the faults in the system to possibly design a more dynamic
heuristic.

Once the characteristics are determined, they are sorted in terms of their relevance
and are then used to build the similarity space, Df . The initial similarity space is built
by identifying and grouping all cases possessing the most relevant characteristic(s) to the
encountered fault. Subsequent steps involve pruning the similarity space, based on the
sorted characteristic set, until a single case that provides the most specific reasoning for the
encountered fault can be identified. Algorithmically, this is determined by checking for one
of two termination criteria, as detailed in Algorithm 1.
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Algorithm 1 Terminating Criteria

1: if ∃ at least one leaf node (fl) in the similarity space, fk ∈ Df then
2: STOP
3: else if Adding further characteristics of fi into Df does not produce a leaf node fl then
4: Execute Algorithm 2
5: STOP

When the termination occurs due to the second criterion it means that system is unable
to build a structural similarity between the fault fi and any of the leaf nodes of the causal
model. Then, in order to prune the candidate cases down to just one most relevant case,
we apply a diagnosis Algorithm (Algorithm 2) to Df .

The diagnosis algorithm forms the core of the learner. The algorithm recursively applies
the LID learning process to the causal model, reducing the search space until a node from the
CMM that best describes the encountered problem, fi, is selected. By selecting a leaf node,
we attempt to identify a diagnosis with the lowest level of abstraction, thereby providing a
more refined recovery strategy for the encountered fault. Unfortunately, the diagnosis may
not always lead to the identification of a leaf node. For such cases, as the classification of
the faults or nodes are done based on their structural similarities, it is reasonable to assume
that if there exists a leaf node associated with the fault, it lies closer to the nodes described
by the similarity set than the other nodes of the CMM. Based on this assumption, the
diagnosis algorithm has the flexibility to expand the search space to include outlying nodes
to the similitude term.

After initialization, the first step in the algorithm involves selecting the edge with the
highest probability of occurrence for the observed symptom. Once the edge is identified, the
next step involves replacing the current problem, fi, with the selected node, fj of set Df .
Once the problem is redefined, we recursively re-apply the LID strategy to the problem. This
process is repeated until either a leaf node is eventually diagnosed or until all structurally
similar nodes in the CMM are explored. If the system is unable to diagnose a leaf node,
then the node from the similarity space having the highest path weight is selected as the
initial diagnosis node.

Generally the recovery action associated with the selected leaf node solves the encoun-
tered fault and the system can then resume normal operations, but in some cases the
recovery action does not eliminate the encountered fault. In such a scenario, the entire
process of building the similitude term and applying the diagnosis algorithm is repeated
with the last generated similitude term, from the previous iteration of the algorithm, acting
as the initial similitude term for the latest application of the algorithm. Thus assuming a
selected leaf node did not solve the problem, node fq is added to the explored nodes list
(Dexplored) and Algorithm 2 is restarted with Dinitial = Dfinal.

Also, it may be possible that the diagnosis corresponding to the encountered fault may
be part of the CMM but does not have a connected edge from the initial diagnosis node.
This would lead to selection of a non-leaf node as the diagnosis for the encountered fault.
In order for LID to expand the similarity space to include other marginal cases from the
CMM, the algorithm attempts to retrace a level of abstraction, i.e., explore a larger sub-tree
of the entire CMM, and include it as part of the modified similarity space. The process of
expanding the similarity space continues until a leaf node is identified or the path weight
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Algorithm 2 Diagnosis algorithm for LID (adapted from [Armengol and Plaza, 2001a])

1.5emindent=0.10em

1: Initialize variables Dinitial, Dfinal and Dexplored; Set Dinitial = Df , Dfinal = ∅, and
Dexplored = Df

2: while Dinitial 6= ∅ do
3: Select some fj ∈ Dinitial

4: Initialize top search node to fj ; ftop = fj

5: Select fj from Dinitial. Initialize variable ftop = fj

6: Select a node, fq ∈ V : fq /∈ Dexplored and ∃ an edge E(ftop, fq) that has the highest
probability of occurrence (sigma)

7: if ∃ a node fq then
8: Apply generate-and-test methodology, from the CMM, on the selected node fq

9: if test result is a success then
10: Replace fault fi with selected node fq

11: Re-build similitude term (Dfq
) for the new fault fq

12: Apply terminating criteria algorithm (Algorithm 1)
13: if ∃ a leaf node fl ∈ Df then
14: Dfinal = {fl} and exit.
15: else
16: Calculate and store the path weight W (π(fj , fq)); W (π(fj , fq)) =
{σ(fj , fj+1) + σ(fj+1, fj+2) + ...+ σ(fq−1, fq)}

17: Assign ftop = fq,

18: Add fq to explored set; Dexplored = Dexplored + {fq}
19: GOTO Step 4

20: else
21: if ftop ∈ Dinitial then
22: Remove ftop from Dinitial; Dinitial = Dinitial − {ftop}
23: GOTO Step 2
24: else
25: Back-trace a level of abstraction to explore alternate nodes; ftop = {fq | ∃ an

edge E(fq, ftop) and fq ∈ Dexplored}
26: GOTO Step 4

27: if Dfinal = ∅ then
28: Dfinal = {fq : fq ∈ Dexplore and max(W (π(fi, fq)))}. Select fq as the diagnosis, i.e.,

the node in the CMM having the largest path weight from the initial diagnosis, based
on the observed symptom.

29: Expand similitude set to go up a level of abstraction; Df = {{f1, f2, ..., fn, ....} | fn ∈
V and ∃ a connected edge E(fn, fj) and W (π(fn, fj)) ≤ threshold-value, ∀fj ∈ Df}

30: if Df 6= ∅ then
31: GOTO Step 1

32: if fj ∈ Dfinal = froot) then
33: Refer to human operator for classification. (i.e., the fault could not be classified.)
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calculated from the selected node to any node of the original similarity space Df exceeds
a threshold value. As long as the path weight is calculated to be lesser than the threshold
value, the search process continues. Depending on the system requirements, the designer
pre-defines the threshold value. If the system is unable to altogether build a similarity space
for the encountered fault, the robot transfers control to a human for further analysis. The
resultant diagnosis is then used to adapt the causal model for future use by the multi-robot
team.

Example

To illustrate how the learner works in a multi-robot application, we now detail the steps
taken by the learner to diagnose a sample fault with the help of an example. Consider the
following simple scenario from our sample application.

Problem

A helper robot, R1, is attempting to go from one fixed position to another in a pre-mapped
environment. The problem space (PS1) (in the form of the causal model) for the robot
is shown in Figure 4.5. The symptoms (ψ) and the solution set (S1) associated with the
faults are detailed in Table A.1. Before actual experimentation, the system is put through a
training phase and a probability of occurrence for each node is calculated and incorporated
into the CMM. During the course of task execution, a fault fi is encountered. The symptom
associated with the fault is identified as ψ = {“time out in goto goal behavior”}.

Figure 4.5: Causal model for robot R1.
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Stepping through the Algorithm

Once the exception is raised, the the state machine transfers control to the FtM for diagnosis
and recovery∗. Based on the encountered symptom and the information stored in the CMM
(see Figure 4.5), the learner in the FtM attempts to build a similarity space, Df , for the
encountered fault fi (see step 0 of Table 4.1). Once the similitude has been built, the learner
checks for termination by applying the above mentioned criteria. Since Df has only one
node, Goal not reached, and it does not correspond to a leaf node, the learner invokes the
diagnosis Algorithm 2.

The diagnosis algorithm starts out initializing variables Dfinal, Dexplored, Dinitial. As
LID is based on the concept of similitude, the scope of the algorithm is restricted to a valid
non-empty similarity space. If the initial similitude term (Dinitial) is an empty set, then the
diagnosis algorithm fails and a human user has to intervene to guide the system towards an
eventual diagnosis.

Also, as the diagnosis algorithm involves modifications to the initial similitude term,
the validity check is performed at regular intervals using a loop structure like while. In
our example, as Dinitial is non-empty, the algorithm successfully passes through the while
condition. Once inside the main body of the loop, the first step involves selecting a node
from the initial similitude term and assigning it as the current top node (ftop) for exploration
(see step 2 of Table 4.1)†. As we have only one node in Dinitial, ftop =Goal not reached .
The next step involves identifying a connected node from the ftop with the highest value
of σ. From Figure 4.5 this corresponds to the node Invalid Map. Once the node fq is
selected, to ensure that the diagnosis is proceeding in the right direction, the generate-and-
test associated with fq from Table A.1 is executed. The result of the test provides further
information that can be used for diagnosis. Assuming the test to be successful for the above
problem, the next step is to replace the fault symptom with the symptom correlating to the
selected node fq. This is done to further streamline the diagnosis by temporarily restricting
the search process to involve only the sub-graph created by the selected node fq. This is
represented as the modified problem value for fi in step 4 of Table 4.1. Once the problem is
re-defined, the algorithm then builds a new similitude term called Dfq

. Once the similitude
term is built, the terminating algorithm (Algorithm 1) is applied on Dfq

to check for leaf
node. If a leaf node exists, that node is selected as the final diagnosis and the algorithm
exits. Since the generated similitude term contains the leaf node, Invalid map, the first
terminating criterion from Algorithm 1 is satisfied and the recovery action associated with
Invalid map is executed. The selected leaf node that solves the fault along with the final
similitude term Dfinal is shown in step 5 of Table 4.1. The corresponding recovery action
associated with the diagnosis, obtained from Table A.1, is given by si = {“Alert human to
replace map”}.

∗Table 4.1 illustrates the step by step progression within the diagnosis algorithm that corresponds to the
textual description.

†Since all selected nodes have a single characteristic they are equally similar to the fault.
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Table 4.1: Step-wise illustration of Algorithm 2
Step Variable Value

Step 0 fault (fi) Symptom = “time out in goto goal”

Similitude (Df ) {Goal not reached}

Step 1 Initial Similitude set (Dinitial) {Goal not reached}

Final Similitude set (Dfinal) {∅}

Explored Similitude set (Dexplored) {∅}

Step 2 Top node (ftop) {Goal not reached }

Step 3 Connected node (fq) {Goal not reached}

Step 4 Modified fi Symptom is “Map not found”

New similitude (Dfq
) {Invalid Map}

Step 5 Leaf node (fl) {Invalid Map}

Final similitude (Dfinal) {Invalid Map}
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Updating the case base

When a fault is encountered in the system, two stages are involved in the recovery process.
First, the system diagnoses the fault, and second, useful information is extracted from
the fault for future use. Using the LID technique for identifying similitude enables us to
consider only the most relevant cases to the encountered fault. This enables us to quickly
and accurately narrow down the nodes responsible for the fault. However, the trade off for
such a method is that by ignoring other less relevant characteristics, we are throwing away
potentially useful information regarding the system and the environment. Currently, as we
restrict the heuristic set to a single characteristic, no useful information is thrown away. On
the other hand, the diagnosis process may identify new nodes and/or different connections
between existing nodes.

To incorporate information on the current fault, we update our original case set based
on new relevant information extracted from fault fi. Let δ = Dfinal. The updated vertex
set is represented as V ′ = {f1, f2, f3..., fn} ∪ δ and the edge set is updated to hold any new
relation between the newly added node and existing nodes. The updated edge set is given
by

E = E + {{fs, fi} | ∀fs ∈ Dinitial&fi ∈ Dfinal} (4.1)

In addition, the system needs to update the probability of occurrence associated with each
node, taking into consideration the current diagnosed fault. Updating the node weights
enables LID to dynamically adapt its search strategy towards more frequently occurring
faults. This in turn reduces the time spent in fault diagnosis and enhances overall system
performance. Node weights are given as follows,

∀fj ∈ π(fi, fl) · σ(fj , fj+1)←
σ(fj , fj+1) ∗ sample size

sample size + 1
(4.2)

where fi is the initial diagnosis node and fl is the final diagnosis or the leaf node, and sam-
ple size is the total number of faults that have been encountered by the system todate. This
could include faults during initialization, testing and during normal operation. Sample size
can also be used to control the rate of convergence or learning for a system‡.

Once the appropriate action has been executed and the case base updated, the robot
coordinates with other team members regarding the newly diagnosed fault. The other
robots attempt to identify the new fault based on their individual case bases. If the fault
is not identified, then all additional information regarding the fault is requested. Once all
information is exchanged, the new fault is then added and the case base updated. This type
of cooperation between team members ensures all team members maintain current causal
model information.

For our above detailed example, if we assume the selected recovery action solved the
encountered failure, we must then attempt to identify any new information identified during
the course of diagnosis and incorporate it back into the causal model shown in Figure 4.5.

‡A designer can use an arbitrary value for sample size based on his/her experience in dealing with the
operating environment.
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As there are no new nodes or edges added, the vertex set and the edge set remain the
same. Figure 4.6 represents the updated causal model with updated σ values representing



Chapter 5

Metrics for Evaluating System
Performance and Fault Tolerance

Any system that has the capability to diagnose and recover from faults is considered to be
a fault-tolerant system. Unfortunately, achieving fault-tolerance for large teams of robots
is an extremely difficult problem due to the large number of interacting system compo-
nents. The inherent explosion of state space complexity [Atkins et al., 1997] for multi-robot
teams means that a practical system restricts the scope of fault-tolerance towards opti-
mizing system performance. One possible way of measuring fault-tolerance is by defining
the redundancy in a system, perhaps achieved through interchangeable components that
can substitute for each other if one (or more) of the components fail. Most multi-robot
applications are distributed in nature, and when robots are homogeneous, they can pro-
vide a natural redundancy to each other. However, while redundancy by itself is a useful
measure, it is incomplete as an evaluation metric, since a system can also be effectively
fault-tolerant through reasoning methods other than redundancy. Thus, it is preferred to
have a metric that can measure the effective fault-tolerance as it influences overall system
performance in achieving the tasks of the application. In addition to measuring the extent
of fault-tolerance exhibited by a system, it is useful to have a metric that can evaluate the
quality of the implemented fault-tolerance.

5.1 Problem Definition

As it is difficult to objectively evaluate metrics, it becomes important for a given metric
to identify and subsequently evaluate the key features that define the fault-tolerance of a
system. According to Murphy and Carlson [Carlson and Murphy, 2004] four important
factors are essential for the success of a diagnostic system:

• Efficiency — ability of the system to optimize available time and resources towards
task completion,

• Robustness to noise — ability of the system to identify and recover from faults, and

• Learning — There are two types of learning a system can exhibit,
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– Dealing with uncertainty — ability of the system to adapt to the changes in the
operating environment,

– Dealing with sparse information — ability to extract and integrate useful system
information during the course of task execution, without the need for a large
number of examples or a long training time.

The ability of the metrics to assess a system based on the above criteria, makes it useful
for evaluating and comparing different fault-tolerance architectures based on their system
performance. Based on Murphy and Carlson’s hypothesis, we define a generic set of metrics
capable of calculating the quantity and quality of fault-tolerance in the system. The formal
definition of the problem is as follows. We are given:

• An autonomous robot team R = {R1, R2, R3, ..., Rn}.

• A pre-defined set of tasks to be executed by the robot team T = {T1, T2, T3, ..., Tm},
where each task Tj is executed by a separate robot Ri.

We assume the following:

• The task assignment is pre-defined by means of a set of pairings < Ri, Tj >. An
individual task Tj is executed by the specific robot Ri.

• Faults can occur naturally during task execution or can be artificially introduced into
the system.

• Faults are broadly categorized into three (3) types: known, faults the designer can an-
ticipate; unknown, faults not anticipated by the designer, but which can be diagnosed
by the system based on experience and available sparse information; and undiagnos-
able, faults that cannot be classified autonomously and need human intervention. The
number of faults in each category are represented as fknown, funknown, and fundiagnosable.

• The robots have three (3) functionally significant operating states: Normal state, in
which a robot focuses all its system resources and operating time towards completing
the assigned task; Fault state, in which a robot spends all available time and resources
in attempting to identify the source of the encountered fault; and Recovery state, in
which a robot spends its resources and operating time in executing the recovery action
for the diagnosed fault.

• Once assigned to a robot, a task can have two possible outcomes: success or failure.
Task success is defined as the ability of the robot to successfully complete its assigned
task. A task failure is defined as the inability of the robot to complete its assigned
task in the presence of faults.

• If a robot (Rj) fails to complete a task (Tj), then based on the system design, the
system can either assign task Tj to a different robot Ri, re-assign Tj to the task queue
of robot Rj , or remove task Tj from the system task list.

• Every task-assignment, 〈Ri, Tj〉, is considered a task attempt and is evaluated sepa-
rately towards overall system performance.
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• An award is associated with every successfully completed task, given by the utility
component uj ; the punishment associated with a failed task attempt is given by the
cost component for task failure, cj .

• Based on the importance of each individual task relative to the others, the designer

builds a utility-cost table, in which the summation of the term
∑

u is normalized to
1.

• To ensure normalized metrics across differing systems, the cost value is tied to the
corresponding task term, i.e., cj = uj .

5.2 Measuring System Performance

In developing our metric, we first define the total number of faults for the ith attempt of
task Tj as the summation of all encountered faults during the course of task execution.
That is, F i

j = f i
knownj

+ f i
unknownj

+ f i
undiagnosablej

.

Successful completion of task Tj is measured by means of a success metric, Aj :

Aj = uj (5.1)

Then, the system level measure of success (A) is calculated as:

A =
∑

j:Tj∈X

uj (5.2)

where X = {Tj | Task Tj ∈ T was successfully completed}. That is, the system level
measure of success is the sum of the utilities of the tasks that were successfully completed.

Similarly, we associate a task failure metric, Bi
j , for each unsuccessful attempt of task

Tj by a robot. On the other hand, as the performance is closely tied with the robot’s ability
to recover from faults, every failed task has a robustness component associated with it.
The effect of the task failure metric towards performance is discounted by the extent of
the robustness in the task, i.e., the higher the robustness, the lower the value of the task
failure. In other words, we can use robustness to quantify the extent of fault-tolerance in
the system. We define ρi

j as the measure of robustness for the ith attempt of task Tj and is
given by

ρi
j =

f i
knownj + f i

unknownj

F i
j

(5.3)

That is, ρi
j gives the fraction of the faults that the system could successfully recover from.

Based on equation 5.3, the task failure metric for the ith attempt of task Tj is:

Bi
j = cj ∗

(

1− ρi
j

)

(5.4)
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Grouping all failed attempts of a task Tj , we get the combined task failure metric (Bj)
for a task Tj as:

Bj = (cj ∗ qj) ∗

qj
∑

i=1

(1− ρi
j) (5.5)

where qj is total number of failed attempts of task Tj . The upper bound of q is application
specific and needs to be determined by the designer before implementation.

Extending equation 5.5 across all task failures, gives:

B =
∑

j:Tj∈Y

(cj ∗ qj) ∗ (qj −

qj
∑

i=1

ρi
j) (5.6)

where Y = {Tj | Task Tj ∈ T failed}.
Finally, the measure of performance can be obtained by subtracting the cost associated

with a task failure from the utility for successful task completion, i.e.,

P = A−B (5.7)

Substituting for A and B from equations 5.2 and 5.6 respectively, we obtain our desired
effective performance metric:

P =
∑

j:Tj∈X

uj −
∑

j:Tj∈y

(cj ∗ qj) ∗ (qj −

qj
∑

i=1

ρi
j) (5.8)

P provides the designer with a measure of the system’s effective performance. The
measure results in P values in the range (−∞, 1]. A value of 1 indicates an optimal system
performance, whereas P approaching −∞ indicates a total system failure. As P by itself
does not provide all the information necessary for evaluation, we need to identify additional
individual metrics that help give a complete picture of the system.

5.2.1 Measuring Fault-tolerance

In addition to outlining a measure for performance, we are interested in identifying the
fault-tolerance exhibited by the system. As mentioned above, we measure the system fault-
tolerance in terms of robustness, efficiency and learning. These components provide a good
metric for identifying the extent and usefulness of fault-tolerance towards improving overall
system performance.

Combining individual task robustness measures from equation 5.3, system robustness
can be represented as:

ρs =

∑

j:Tj∈Y

qj
∑

i=1

ρi
j +

∑

q:Tq∈X

ρ1
q

X + Y
(5.9)

A high value of ρs (an ideal system exhibits a ρs value of 1) indicates a highly robust system
and a ρs value of 0 indicates a system with no robustness to faults.

41



As the ultimate goal of any fault-tolerance architecture is to achieve task success in the
presence of failures, it is important that the system maximizes its usage of resources and
time towards the completion of the assigned task. Towards that, it is necessary to define the
system efficiency metric (ǫ), the total task-execution time spent by a robot on a successfully
completed task, Tj . This is given by the summation of time spent in Normal (tNormal),
Fault (tFault) and Recovery (tRecovery) states for that attempt, i.e.,

tj = tNormalj + tFaultj + tRecoveryj
(5.10)

ǫj =
tNormalj

tj
(5.11)

Similar to the robustness measure, combining efficiency across the tasks gives:

ǫ =

∑

j:Tj∈X

tNormalj

tj

X + Y
(5.12)

A more efficient system has a higher value of ǫ and an inefficient system has ǫ near 0.
Subsequently, the influence of learning exhibited by a system towards system perfor-

mance can be measured by tracing the rate of change of diagnosis for the known and
unknown types of faults∗. By comparing the efficiency of the system over the set of trials†,
we get an estimate of the learning exhibited by the system.

δk = ǫ
′

k − ǫ
0
k (5.13)

δu = ǫ
′

u − ǫ
0
u (5.14)

where ǫ
′

k is efficiency metric for the known faults for final trial, ǫ0k is the efficiency value
for known faults for initial trial, ǫ

′

u is efficiency metric for the unknown faults for final
trial and ǫ0u is the efficiency value for unknown faults for initial trial. Typically, a negative
value for P or a δ value close to 0 is a good indicator of the lack of adequate learning
in the system. Additionally, plotting and tracing the efficiency rate over the course of
normal operation can be used to identify the effectiveness of the implemented learning
algorithm. Hence, after computing the metric values, we attempt to reason about the
observed behavior of the evaluated system. The reasoning tools are especially useful for
fine-tuning an implemented fault-tolerance architecture, leading to the development of more
refined and effective solutions. We describe our approach in detail in Chapter 6. Finally,
based on the above definitions for robustness, efficiency and learning, we can represent
system level effective fault-tolerance as an unordered triple given by (ρ, ǫ, δ).

5.2.2 Discussion

In the previous section, we have detailed distinct and separate measures for calculating
system performance and fault-tolerance. In justification, when measured separately neither
of the two measures provide a complete assessment of the application in use. Using only

∗As undiagnosable faults fall outside the realm of classification for any fault-tolerance architecture, we
can ignore such faults and restrict our focus to the known and unknown types of faults.

†An experiment consists of a set of more than 1 trials.
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system performance, we do not get a fair idea regarding the extent of fault-tolerance in
the system. On the other hand, fault-tolerance by itself is not a strong enough measure
for evaluating the intelligence in the system. The combined metrics provide a good basis
for evaluating and comparing different fault-tolerance architectures based on their system
performance.

As mentioned earlier, it is difficult to develop a truly objective set of metrics. The
somewhat arbitrary nature of any particular metric leaves it open for subjective interpreta-
tion. Specifically, our metrics are designed as an empirical measure, i.e., they are calculated
post-experimentation based on the collected data, to account for the ability of a system to
adapt to unexpected changes in the environment. Though the metrics can be applied to
any environment, static or dynamic, if the operating environment is modified, then there is
a need to recompute the metrics for the new data. As a consequence it is difficult to theo-
retically prove the correctness of the developed metrics. However, by focusing on measuring
the essential qualities that define a fault-tolerance system, that of robustness, learning and
efficiency, we attempt to make the metrics less arbitrary and more objective in evaluating
and comparing system performance of different fault-tolerance architectures.
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Chapter 6

System Evaluation

6.1 Evaluation

In the previous chapters, we have introduced two different methods for multi-robot fault-
tolerance (CMM and LeaF), reasoned on the drawbacks of CMM and discussed the need
for a more robust, learning based method like LeaF. However, in order to meaningfully
evaluate the two architectures, we need to implement and analyze their performances for
sample multi-robot applications. Towards that,

• We implement CMM and LeaF for two distinct physical multi-robot experiments,

• Analyze the obtained data to compare the performance of the two systems, and

• Subsequently, we apply the set of developed metrics described in Chapter 5 to the
obtained experimental results. The ensuing analysis will help identify the extent of
intelligence or reasoning on the fault-tolerance influencing the overall performance of
the system.

Additionally, in order to validate the developed metrics, we contrast it with the only other
existing method [Hamilton et al., 1996] for evaluating (that we are aware of) effective fault-
tolerance for multi-robot teams. The comparison highlights the inadequacies of the existing
method and furthers the necessity for a more well-rounded metric capable of effectively
rating a robot system, such as the one we have developed as part of this research.

This chapter is organized as follows. Sections 6.2 and 6.3 detail the experimental plat-
form and the programming details respectively. In Section 6.4, we briefly discuss the initial
simulation tests for exploring the applicability of LID in the multi-robot fault-tolerance
domain. In Section 6.5, We use the Box pushing task as my first of the two implementation
examples. The obtained results are compared and inferences are drawn. The two systems
are then further evaluated based on the derived metrics. Section 6.6 details how the sys-
tems performed for an alternate physical robot experiment, the locate-and-protect task that
serves as our motivational example (see Chapter 1). Finally, in Section 6.7, we apply the
alternate set of metrics (HWB) to the obtained results from the two sets of experiments,
and discuss the differences between the two metrics.
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Figure 6.1: Amigobot and Pioneer used in experimentation.

6.2 Experimental Platform

For my experiments, we use Activmedia’s Pioneer 3DX (Figure 6.1) and Amigobot robots as
my hardware platform. The Pioneer 3DX is a differential-drive based wheeled mobile robot.
The core of the robot’s on-board processing unit is an Intel Pentium III processor (850MHz).
As the predominant task of the robot is active sensing and navigation, it has a standard suite
of sensors including a ring of 16 sonars (8 on front and 8 at the back), a SICK LMS-200 laser
range-finder and a forward mounted Sony VC4 Pan-Tilt-Zoom camera. The Amigobots are
a physically smaller sized robots equipped with an external Via 8000 processor that provides
processing power up to 1.64 GHz. The sensor suite on the Amigobots includes a differential
drive motor system, an external logitech web cam, connected via the sub interface, and a
ring of sonars located at front and back. For the purposes of our experiments, we restrict
the Amigobot to use only its camera and motor sensors. Information is sent in packets over
a tethered RS232 serial connection to and from the Via boards to the Amigobots. Both
the Pioneers and the Amigobots use a Orinoco gold wireless card (using 802.11 Ad-hoc
network) for external communication.

6.3 Programming Details

Both fault-tolerance architectures, CMM and LeaF, are implemented using the standard
C++ programming language structure developed on a Linux (Gentoo) platform. The fault-
tolerance architecture code is meshed with the corresponding robot control code using the
Player robot software (version 2.0.1). Player [Gerkey et al., 2003] is a Linux based network
server that provides a simple interface to the robot’s sensors and actuators over a network.
Client programs written in C++ communicate over a TCP socket, reading data from sensors,
and writing commands to actuators. As Player is an established open-source software in the
robot community, it provides support to a variety of robot hardware. In addition, Player’s
modular architecture makes it easy to add support for new hardware.
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6.4 Experiment 0: The LID Simulator

In order to ensure the validity of our adapted LID algorithm, we test it in simulation before
applying to the physical robots. The setup involves simulating a single robot performing
a random task when a fault occurs. The initial CMM is hand coded into the system. A
fault exception is artificially introduced into the system. The symptom correlating to the
exception is predefined and fed into the system along with the exception. This simulates
the data gathering stage of the real robot. The simulator then applies the LID algorithm
to the fault and identifies the new fault. Any useful information is extracted and added
to the existing CMM. The fault diagnosis performance and the time taken for analysis are
noted. The test is then repeated with the new CMM and the subsequent times are noted.
The tests are performed for different faults and different starting CMM’s. The experimental
setup does not really provide a realistic approximation of the multi-robot environment and
as a consequence the collected data bears no significance towards the overall performance
of the developed system. However, the simulator does work as a proof of concept test and
provides a developmental ground for implementing LeaF.

6.5 Experiment I: Box Pushing Task

In order to illustrate the usefulness of LeaF, we apply it to a standard problem in the multi-
robot community: the box pushing task. The implemented box pushing algorithm is based
on prior work done by Tang [Tang, 2006] as part of her dissertation work. As in the original
implementation, we use a team of two Pioneer robots equipped with a laser-scanner, a ring
of sonars, and a forward mounted camera. The experiment could be extended to include
a larger team of robots. The fundamental idea behind the box pushing protocol used in
the experiments is adapted from the work done by [Donald et al., 1994], [Parker, 1998].
The robots are placed on either end of a box and the task is to push the box over a pre-
determined distance. The robots locate the goal position, indicated by a red blob, and
calculate an appropriate pushing direction based on the relative orientation of the box∗

to the goal. In addition, based on the relative distance information, the robot constantly
updates its speed profile and assumes an obstacle-free path from the starting position to
the goal. For the experiment, the robots do not need any information about the orientation
of the box or its team members (see Figure 6.2).

To ensure modularity and the re-usability of code, the overall task was broken down
into sub-tasks that were completed by teaming three base-line behavior modules. The box
pushing task is composed of three such base-line behaviors, namely: box push, communica-
tion and blob tracking. Table 6.1 shows the relation between the individual module and the
set of sub-tasks and Figure 6.3 shows how these behaviors are combined with one another.
Additionally, as the robots are initially placed close to the same face of the box, they can
locate the correct positions on the box to push and align themselves with the box such that
the orientations of the robots are perpendicular to the pushing face of the box.

∗As the robots do not know the explicit orientation of the box, the robot’s own pose information is used
as an alternate.
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Figure 6.2: Example of a box pushing task – Robots 1 and 2 push a long box towards the
goal indicated by a blob at the far end of the corridor. Robot 1 pushes one end of the box
and waits until robot 2 has successfully pushed its end. The process continues until the
goal is reached (read left to right, top to bottom).

Table 6.1: Task module relationship table for box pushing task
Sub-task Modules

Alignment Blob tracking, Push box

Go to goal Task Blob tracking, Communication, Push box
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Figure 6.3: Behavior set for box pushing task.

The two robots pushing the box concurrently share their status with each other to
synchronize their behaviors. The status information updates the robots as to whether its
partner has pushed, aligned or completed the task.

6.5.1 Experimental setup

Two separate sets of experiments were performed. For the first set, I used CMM as the
fault-diagnosis method, whereas LeaF is implemented as the fault diagnosis strategy for
the second set of experiments. To ensure consistency, data was collected from over 18 trial
runs for each set of experiments. Over the course of experiments, various failures were
encountered, some of which were expected and others that were unexpected.

The relatively simple nature of the task ensured that, apart from the individual imple-
mentation detail for each architecture, the parameters of testing for both sets of experiments
were kept the same. The rigidity of the experimental test-bed meant that the obtained re-
sults could then be compared directly with one another.

For the box pushing task, both LeaF and CMM are implemented on the robots using
a rule-based approach that defines the various possible failure modes as represented in the
causal model. Table A.3 lists the rules used to recognize the predefined failure states imple-
mented for this task, along with the corresponding corrective actions. The corresponding
causal models are shown in Figures 6.4 and 6.5. Both systems start with the same initial
causal model; however, LeaF has a probability value associated with the edges of its causal
model, based on their frequency of occurrence. The probability values associated with fault
likelihoods of occurrence at the node level are initialized to be equal at the beginning of the
experiments.

Also, the specifics of representation for the causal models are given as follows:
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Figure 6.4: Initial causal model for CMM for the box pushing task.

Figure 6.5: Initial causal model for LeaF for the box pushing task.
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• V correlates to the vertex set representing all the available nodes for both systems,

• Set ELeaF contains all the edges between the nodes for the LeaF system,

Interpreting Table A.3 and Figure 6.5, we can list the vertex and edge sets —

• V = { misalignment, goal not reached, communication issues, algorithmic inconsis-
tency, missing blob, physics of comms,“partner robot” errors, sensor malfunction,
sonar, laser, camera, motor, wireless, human error, unexpected environmental change,
synchronization issues}

• ELeaF = { {misalignment, sensor malfunction}, {misalignment, algorithmic incon-
sistency}, {goal not reached, algorithmic inconsistency}, {goal not reached, sensor
malfunction}, {goal not reached, missing blob}, {communication issues, physics of
comms}, {communication issues, “partner” robot}, {communication issues, sensor
malfunction}, {algorithmic inconsistency, sensor malfunction}, {algorithmic inconsis-
tency, human error}, {algorithmic inconsistency, unexpected environmental change},
{missing blob, sensor malfunction}, {physics of comms, synchronization issues},
{physics of comms, sensor malfunction}, {“partner robot”, sensor malfunction},
{“partner robot”, unexpected environmental change}, {sensor malfunction, sonar},
{sensor malfunction, laser}, {sensor malfunction, camera}, {sensor malfunction, mo-
tor}, {sensor malfunction, wireless}}

The problem space is then specified by < V,E > with the symptoms (ψ) and the solution
set (S1) associated with the faults being detailed in Table A.3.

After each run of the task, diagnosis information, including the number of faults en-
countered, identified, type and reasoning for the fault, are collected. These are tabulated in
Table B.1 along with additional information regarding type and number of faults encoun-
tered. The collected data provides good feedback on system performance over the length
of the trials. In the experiments using LeaF, the probability values associated with fault
likelihoods of occurrence are updated with experience; subsequent trials beyond the initial
one made use of the updated values.

6.5.2 Discussion

Towards meaningful comparisons, trials with similar characteristics, in terms of faults seen,
are grouped together. Thus Trial 8 from Table B.1 experiences communication and blob
tracking errors for both LeaF and CMM. Additionally, as every trial is an independent event
for the task of box pushing, the performance of one does not influence the performance of
subsequent trials for CMM. However, LeaF does carry over the experience (good or bad)
from one trial to another.

Analyzing the results from Table B.1 we can see the distribution of the various faults
that occur during experimentation. Over the course of 15 trials, CMM encounters a total
of 41 faults, whereas the count is 37 for LeaF. The entire set of encountered faults can
be essentially classified into one of the following two types: known(k) or anticipated, and
unknown(u)† or un-anticipated. From the initial causal model (see Figure 6.4), we can see

†Once a previously unknown error has been classified, LeaF adds it to the causal model and the error
falls into the known category. For clarity however, we will still refer to those errors as unknown errors.
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that Synchronization issues is an example of the known type of fault for the communication
sub-module. In this case, there already exists a path from the top node (communication
issues) to the leaf node (Synchronization issues). Alternately, in the case of an unknown
fault there exists no path from the top-node or the sub-module to the fault node. Commu-
nication failure due to human error is an example of an unknown fault. The distribution
of known to unknown errors is 33 to 8 for CMM and 25 to 12 for LeaF. In most cases,
the errors occurred naturally during normal task operation in a non-sterile environment. In
certain cases, the fault was introduced artificially introduced in to the system. For example,
the sonar error was experimentally created by masking the incoming raw data (causing the
sonar fault error).

Looking closely at the diagnosis time information from Table B.2, we can see that the
LeaF system shows a distinct improvement in diagnosis time over the course of the trials,
especially for certain types of faults. Consider for example, in Trial 4 (the first time an error
was seen in the communication module) both CMM and LeaF had comparable diagnosis
times (47 and 50). For subsequent failures, LeaF is able to reduce its diagnosis time to be
considerable lower than CMM. In order to understand the reason for improved diagnosis
times, we need to look at the timing data specific to faults seen during experimentation.
From the results, we can see that initially both LeaF and CMM perform comparably for
known set of faults like synchronization issues (Trials 4, 5, 6, etc.). However, as the number
of trials increases or the system becomes more experienced, we note that the time for
the LeaF diagnoses decreases. Specifically comparing values for the fault synchronization
issues in Trial 14, CMM’s time is pretty close to its original time of 50 seconds whereas
LeaF diagnosis the fault in 24 seconds. This can be explained as the system improving the
balance of the probability of occurrence values for the fault nodes for the box pushing task.
As the system stabilizes, the process of fault diagnosis becomes more efficient, leading to
faster diagnosis time and as a consequence faster execution times.

As it is impossible to anticipate all faults, how the system handles unknown faults is a
good indicator of its overall performance. The ability of a system to gracefully degrade in
the presence of un-recoverable faults is a key feature for a system to be truly application-
independent, as it eliminates the need for extensive parameter-tuning. Also, re-analyzing
the data from Tables B.1 and B.2 specific to the handling of unknown faults highlights
the advantage of LeaF over CMM. Consider a specific example: in Trial 10, the systems
encounter two different faults. As the robots start out, fault due to Synhronization issue is
encountered. Both robots are successfully able to handle the faults (3), though LeaF has
a lower diagnosis time. However, during the course of task execution the lights are turned
off which results in blob tracking faults. The table shows how CMM system was unable
to provide any useful diagnosis even after a long time interval (in excess of 600 seconds‡),
whereas the LeaF system is able to diagnose the error relatively quickly. Additionally, LeaF
shows progressive improvement in the diagnosis time for future occurrences of the fault
(Trial 12). A latter re-occurrence of the fault in Trial 13 still shows the same diagnosis
time as the POC values are yet to be balanced due to the relatively new nature of the
encountered fault.

‡Experiments were stopped after 600 seconds to preserve robot battery life.
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Figure 6.6 illustrates the stepwise classification sequence (based on the LeaF diagnosis
algorithm from Chapter 4) for the above mentioned fault, fi = blob tracking failure due
to environmental changes. The symptom associated with the fault is identified as ψ =
{“Unable to find blob”}. Based on the encountered symptom and the available causal
model, LeaF attempts to match all nodes correlating to the encountered fault and build a
similarity space, Df , for the encountered fault fi. Once the similitude has been built, LeaF
checks the terminating criteria using Algorithm 1 from Chapter 4. Since the built similarity
space, Df , is restricted to a single non-leaf node, Missing blob/image, further classification
is attempted using Algorithm 2. The node from the initial similarity space, Dinitial is then
selected for further diagnosis (see Figure 6.6(a)).

The next step involves identifying a connected node, from the selected node, with the
highest value of σ. Figure 6.6(b) indicates the selected node sensor malfunction. To ensure
that the diagnosis is proceeding in the right direction, the generate-and-test associated
with fq from Table A.3 is executed. As the selected node is more of a filter than an actual
hardware test, and the generate-and-test return is successful, the next step in the process is
to continue the diagnosis process further into the graph. In order to streamline the diagnosis
process, LeaF temporarily restricts the search process to involve only the sub-graph created
by the node sensor malfunction. Re-applying the algorithm to the new sub-graph, the
system builds a new similitude term called Dfq

= {sonar, laser, motor, camera, wireless},
and applies the terminating algorithm. As the new term has multiple leaf nodes with
equal probability of occurrences, the leaf node selection is implementation specific. The
order of execution implies that node sonar is the first selected leaf node (see Figure 6.6(c)).
Algorithm 1 is applied on Dfq

to see if it is a leaf node. However, applying generate-and-test
on the sonar node results in a failure. LeaF then backs up to the preceding level of the
sub-graph, sensor malfunction, eliminates sonar from the list of similitude term Dfq

, and
selects an alternate leaf node.

Unfortunately, as the fault is previously unknown the generate-and-test strategy fails
for all the nodes (see Figures 6.6(d) through 6.7(a)). Having explored all the nodes in the
sub-graph without finding a solution, LeaF then reverts back to the original graph further
expanding the search space. However, as the original selected node missing blob/image
has only one valid edge, to sensor malfunction, that has already been explored it needs to
further expand the search space beyond the original similitude space. This results in the
system backtracking to the top level module node Goal not reached (see Figure 6.7(b)). As
before, the diagnosis algorithm is then invoked and subsequently the lone un-explored node
from the most recent search space:

Dmodified = {algorithm inconsistency, sensor malfunction, missing blob}
— is selected. Figure 6.7(c) shows LeaF selecting algorithm inconsistency. After unsuc-
cessfully exploring a potential leaf node solution in Human error (see Figure 6.7(d)), the
system eventually ends up with the leaf node Unexpected environmental failure as shown in
Figure 6.7(e). With the success of the applied generate-and-test strategy for the selected
node, LeaF settles on the node as the eventual diagnosis and executes the associated recov-
ery action. The last step in the process requires LeaF to re-scan the entire causal model
to determine if there exists a forward moving path from the initial diagnosis node Missing
blob/image to the final leaf node unexpected environmental change. As there does not exist

52
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[e] [f]

Figure 6.6: Part I – Trace through of the diagnosis process for the classification of an
unknown fault: Steps a through f, the system scans through the causal model, effectively
back-tracking before continuing the diagnosis process when a fault can not be diagnosed
based on the initial symptom.
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[a] [b]

[c] [d]

[e] [f]

Figure 6.7: Part II – Trace through of the diagnosis process for the classification of an
unknown fault.
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Figure 6.8: Final updated causal model for the box pushing task

one, an edge between the two nodes is created and the probability weights are accordingly
adjusted. The updated causal model is shown in Figure 6.7(f).

A key point is that the static nature of the CMM design does not allow it to be flexible
enough to adapt to the dynamics of the environment. As a consequence, the system does not
make full use of the available information, whereas the ability of LeaF to adapt and expand
its search space beyond the initial diagnosis makes it capable of identifying previously
unknown errors. Once LeaF identifies the new error, it adds a new edge in the CMM, thus
reducing the time taken for subsequent searches. Figure 6.8 shows the final causal model
at the end of all trials.

Having looked at the timing information above, we can reason that LeaF exhibits two
different types of learning behavior, one for known type of faults and the other for unknown
type of faults. In the first one, using the probability of occurrence information, LeaF
attempts to balance the graph towards maximizing system efficiency. This type of learning
occurs constantly over the course of task execution from Trial 1 through Trial 15. This is
highlighted in Figure 6.9 which traces the diagnosis time for one such fault through the
course of the entire experiment. As the frequency of occurrence of the said fault increases,
LeaF shows considerable improvement in diagnosis time whereas CMM maintains the initial
value throughout. The other instance of learning can be considered to be an “on-demand”
type and occurs only when an unknown types of fault is encountered. As a consequence,
LeaF displays better utilization of resources at hand, which in this case is the time of
operation. By reducing the diagnosis time, LeaF can utilize most of its execution time
towards task completion.
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Figure 6.9: Rate of diagnosis for LeaF and CMM for the box pushing task.

6.5.3 Using Metrics for Evaluation

An alternate method for comparing the two systems is by applying the metrics that we
have developed to the obtained results. The metrics provide a more objective, albeit a
less detailed, analysis of the two systems, and attempt to quantify the extent of learning
and fault-tolerance exhibited by the systems. Towards that we define the the utility/cost
values associated with the corresponding tasks as shown in Table 6.2. Recall, the task-
utility is constructed by the designer based on the importance of the sub-tasks such that
the summation of the terms (

∑

u and
∑

c) are normalized between ranges of [0, 1]. For
box pushing, since both the sub-tasks carry equal importance towards the completion of
the overall task, the values are distributed equally.

The system performance measure from Chapter 5 is given by:

P =
∑

j:Tj∈X

uj −
∑

j:Tj∈y

(cj ∗ qj) ∗ (qj −

qj
∑

i=1

ρi
j)

From the collected experimental values in Tables B.1, we can calculate

PCMMTrial1 = ugotogoal + ualignment − 0

PCMMTrial2 = ugotogoal + ualignment − 0

PCMMTrial3 = ualignment − cgotogoal ∗ (1− ρgotogoal)

...
...
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Table 6.2: Utility-cost table for the experiments
Task CMM

Utility Cost

Go to goal Task 0.50 0.50

Alignment Task 0.50 0.50

PCMM = PTrial1+PTrial2+PTrial3+...+PTrial15

No.ofTrials

PCMM = 1.0+1.0+(0.5−(0.5(1−0.5)))+...

15

= 0.25

Similarly calculating for LeaF gives us,

PLeaFTrial1 = ugotogoal + ualignment − 0

PLeaFTrial2 = ugotogoal + ualignment − 0

PLeaFTrial3 = ualignment + ualignment − 0

PLeaFTrial4 = 0− (cgotogoal ∗ (1− ρgotogoal)

+calignment ∗ (1− ρalignment))

...
...

PLeaF = PTrial1+PTrial2+PTrial3+...+PTrial15

No.ofTrials

PLeaF = 1.0+1.0+1.0+...
15

= 0.7

Furthermore, we calculate values for ǫ (see Table B.3 for timing information) and ρ,

ρs =
∑

j:Tj∈Y

∑qj

i=1 ρ
i
j +

∑

q:Tq∈X ρ1
q

ρCMMTrial1 = 0;

ρCMMTrial2 = 0;

ρCMMTrial3 = ρgotogoal;

...
...
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ρCMM = 0.0+0.0+0.6+...+0.0
15

= 0.400

ρLeaFTrial1 = 0;

ρLeaFTrial2 = 0;

ρLeaFTrial3 = ρgotogoal;

...
...

ρLeaF = 0.0+0.0+0.6+...+0.0
15

= 0.734

ǫ =
∑

j:Tj∈X

tNormalj

tj

ǫCMMTrial1 = 1.0;

ǫCMMTrial2 = 1.0;

ǫCMMTrial3 = 0
...

...

ǫCMM = 1.0+1.0+0+...+0.0
15

= 0.2567

ǫ =
∑

j:Tj∈X

tNormalj

tj

ǫLeaFTrial1 = 1.0;

ǫLeaFTrial2 = 1.0;

ǫLeaFTrial3 = 0
...

...

ǫLeaF = 1.0+1.0+0+...+0.0
15

= 0.3791

The calculated performance ratings are enumerated in Table 6.3. In addition to calculat-
ing system performance, we also calculate the respective fault-tolerance values. Comparing
the two systems, we can see that LeaF outperforms CMM in all three categories. For the
box pushing task, LeaF has a performance rating that is twice as good as the CMM.

Table 6.3: Performance Evaluation table for box pushing task
System P

∈ (−∞, 1]
ρ ∈ [0, 1]
per trial

ǫ ∈ [0, 1]
per trial

δknown

per trial
δunknown per
trial

CMM 0.25 0.400 0.2567 0 0

LeaF 0.7 0.734 0.3791 1.01 2.83
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Figure 6.10: Efficiency rating discrepancy between LeaF and CMM for the box pushing task.
The missing values in the graph (Trials 1, 2, 8, 9, 10, 11) correlate to an efficiency rating
of 0; i.e., the system was unable to diagnose the fault and had to be manually rebooted.

Even though the numerical values are comparable, it is probably reasonable to expect the
rate of learning of the system, and as a consequence the system performance, to slow down
as it approaches the peak value of 1. Also, it can be said from the data that LeaF exhibits
twice as much robustness to failure when compared to CMM. The ability of LeaF to handle
un-expected faults is the reason for the higher robustness rating. On initial analysis, it
appears that the efficiency of the two systems are comparable. However, looking purely at
the net efficiency value is a little deceiving. The fact that the systems encounter a larger
number of known type of faults than the unknown type means that the system does not
have enough sample data for the new faults to show a higher overall efficiency rating. The
discrepancies in the efficiency values between the two systems are illustrated in Figure 6.10§.

We can see clearly from the graph that LeaF better utilizes operating time and resources.
In fact, LeaF displays consistent learning through the course of the trial, resulting in im-
proved values for efficiency across the system. Observing efficiency values for Trials 8, 10
and 11 for the two systems shows the ability of LeaF to not only diagnose unknown faults
but to work towards improving efficiency for future instances of the said fault. However
this is typical of a multi-robot system. Hence, despite the improvement over CMM, the low
system efficiency rating for LeaF indicates the need for a more streamlined implementation
of the diagnosis process.

For experiments involving independent trials, it would be incorrect to compare the
learning exhibited by the systems based purely on performance for individual trials. Also, as
there is potential for two distinct types of learning occurring during the course of operation,
we need a more analytical method to identify the extent of learning, if any, exhibited by
the systems. We already looked at one type of learning, for the known fault in the previous
section. Let us take a closer look at the individual execution times for each trial (see
Table B.3) to see if any further information regarding the alternate types of learning can

§For trials that are stopped after 600 seconds, the ǫ value is considered to be 0, as there is no possibility
of the system ever coming out of the diagnosis process to resume normal operations.
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be extracted. Considering only known faults like synchronization issues, camera fault, etc,
from Tables B.1 and B.3, we can calculate the rate of change of the diagnosis time. For
example, the diagnosis time for synchronization issue fault changes from 50 seconds (initial)
to a final time of 17 seconds, a change of 33 seconds over the course of 23 trials. Similarly,
we can calculate the rate of change for other faults. The net change per trial highlights the
extent of learning exhibited per trial. Similarly, the rate of change of diagnosis for unknown
fault is also calculated. An unknown fault may occur in only certain trials and may not be
present in all, so the δunknown is calculated only from the first time the fault is diagnosed,
instead of from Trial 1. This is because, once the fault has been diagnosed and an edge
added, it becomes part of the known class of faults. Finally, comparing the values of P , ρ,
and δ for the two systems, we can say that LeaF is a more suitable architecture for the box
pushing application.

6.6 Experiment II – Indoor locate-and-protect task

6.6.1 The SDR Project

The physical robot experiment described in Chapter 1 was the motivating problem be-
hind my research. The test application is a large-scale locate-and-protect mission involving
a large team of physical heterogeneous robots. The robot team has a very strict set of
goals/tasks: autonomously deploy a sensor network and use the network to track intruders
within the building. The composition of the team consisted of two classes of robots: three
(3) lead robots equipped with scanning laser range-finders and cameras; and a large number
(approximately 70) of sensor-limited robots equipped with a microphone and a crude cam-
era. All of the robots had 802.11 WiFi, and a modified ad-hoc routing package (AODV)
was used to ensure network connectivity.

Figure 6.11 shows these robots performing one such deployment, using the behavior
set shown in Figure 1.2. This scenario involves a complex combination of cooperative and
single-robot behaviors, including laser-based localization, path planning, obstacle avoidance,
vision-based autonomous tele-operation, simple vision-based following, and wireless ad hoc
mobile communication. These behaviors are run on two physically different types of robots
in a cluttered environment (like a hall-way in an office building), leading to a wide variety
of possible failure modes. Table 6.4 shows the relationship between the individual modules
and the defined set of tasks.

Similar to the box pushing task, we build a rule base representing the different potential
failure states. Table A.4 lists the rules used to recognize the predefined failure states imple-
mented for this task, along with the corresponding corrective actions. The corresponding
causal model is shown in Figure 6.12. The experiments consisted of repeated deployments
of 1 and 2 simple robots per team. Over the course of the experiment, various failures were
encountered, some of which were expected and some that were totally unexpected. If a
deployment failed on one experiment, the consequences of that failure were not corrected,
except on rare occasions.
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Figure 6.11: Deployment of a sensor robot using assistive navigation: the lead robot first
guides and then directs the sensor robot into position (read left to right, top to bottom).

Table 6.4: Task module relationship table for CMM and LeaF

Task Modules

Go to goal Task Localization, Path planning, Navigation

Tele-operation Task Marker Detection, Communication

Re charging Task Localization, Path planning, Navigation, Marker De-
tection, Communication

Follow the leader
Task

Blob Tracking

Return home Task Localization, Path planning, Navigation
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Figure 6.12: Initial causal model for the deployment behaviors in the locate-and-protect
scenario.

Thus, the data collected incorporates propagation of error from one experiment to the next.
Recall from Chapter 3, the experimental data obtained for the DARPA/SDR project

Over a period of 45 runs, the system showed an overall deployment success rate of 60% -
90%, depending upon the environmental characteristics. In other words, for each attempt
at deploying a simple robot, 60% - 90% of those robots successfully reached their planned
deployment position. Column 2 of Table 3.1 depicts the probability of success of each
individual module in this implementation and the overall system probability, based upon the
experimental results. The probability values are used to calculate individual and collective
task robustness. To better understand the pure empirical data, we apply the developed
metrics on the obtained results. During the evaluation process certain constraints had to
be accounted for, most important of which was incorporating the disparity in the task/utility
value associated with helper and sensor-limited robots. This is shown in Table 6.5.

For these experiments, ρ is a measure based on the total probability of task success.
Task success is given by the product of the individual sub-modules completion probabilities
for a specified task. Also, as the faults propagate from one run to the next, the entire set
of trials (45) is considered as a single continuous experiment.

Table 6.6 shows the evaluated values for system performance, robustness and efficiency.
The ability of CMM to handle expected faults is the reason for the higher robustness rating.
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Table 6.5: Utility-cost table for SDR
Task Utility Cost

Go to goal Task 0.20 0.20

Tele-operation Task 0.20 0.20

Re charging Task 0.15 0.15

Follow the leader Task 0.15 0.15

Return home Task 0.30 0.30

However, the performance metric indicates a negative value, which shows that for the con-
cerned application the implemented fault-tolerance does not optimize system performance.
An alternate technique could potentially be used to further improve performance. The neg-
ative value for learning illustrates our earlier point that the performance degrades over the
course of experimentation. It is to be noted that the lack of learning does not indicate a
failure of the system to learn, instead it merely highlights that the system was not designed
to be a learning system and hence its failure to adapt to unexpected changes during the
course of task-execution. This means that for multi-robot domains, a system must often
display a significant amount of active learning just for it to maintain its initial performance
levels.

The efficiency and robustness graphs (Figures 6.13(a) and 6.13(b)) for CMM show that
despite a high initial value the system shows a steady decline over the course of the trials
ending with a significant decline in its measures. Finally, the rate of system learning is
illustrated in Figure 6.20. The system performance progressively degrades over the course
of the trials. Unlike the box pushing task, the trials for the SDR experiment are sequential,
i.e., the outcome of one trial influences future trial success. As a consequence, increasing
number of components combined with a lack of learning results in a sharp downward curve.
In fact, we can make the claim that for such systems, the architecture should display
significant learning just to maintain the initial performance rating.

Table 6.6: Evaluation table for CMM over 45 trials

System P ∈ (−∞, 1] ρ ∈ [0,∞] per
task

ǫ ∈ [0,∞] per
task

δ

CMM −9.012 2.95 per task 2.89 per task −9.012
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Figure 6.13: Part I: Metrics illustrated over the period of operation for the SDR project.

Figure 6.14: Part II: Learning illustrated over the period of operation of the SDR project.
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6.6.2 Experiment IIb: Deployment task

Unlike the relatively simple nature of the box pushing task, certain restrictions, including the
lack of sufficient hardware and access to the original test environments, makes it infeasible
to recreate the SDR test scenario for both sets of experiments for my thesis work.

Also, it is important to note that without an accepted standard testing environment,
like the one described in [Jacoff et al., 2003] for Urban search and rescue, it is impossible
to recreate the exact operating environments used for testing CMM.

Hence, we redefine the problem to better suit the available resources. Based on the post-
experimental analysis outlined in Chapter 3, we identified the deployment module from the
SDR experiment as the sub-task with the highest probability of failure. Hence, we attempt
to recreate the scenario focusing on the deployment task from the motivating problem.

For system validation, the SDR application involves a small team (2-5) of mobile, phys-
ically heterogeneous cooperating robots for an indoor deployment task. The same compo-
sition of the team members was maintained from the original SDR experiment. Figure 6.16
shows a simplified single-robot deployment task performed on the first floor of the Claxton
building (see Figure 6.15 for building layout). In order to enable a fair comparison between
the two systems, we re-implemented CMM in addition to developing LeaF for the deploy-
ment task.

Figure 6.15: Layout of first floor of Claxton complex.
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Figure 6.16: Deployment of a sensor robot using assistive navigation: the lead robot reaches
a pre-specified way-point, tele-operates the sensor robot into position and heads back to
the starting position (read left to right, top to bottom).
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The corresponding initial causal models are shown in Figures 6.17 and 6.18. The ex-
periments consisted of repeated deployments of a single simple robot into the environment.
Similar to the CMM testing, various failures, expected and unexpected, when encountered
were handled autonomously with minimal human intervention. The consequences of failure
were not corrected, and the team was allowed to learn from its own mistakes, whenever
possible. Unlike, the original task, each run was considered a separate, discrete event. In
these experiments, a total of 15 simple robot deployments were attempted. After perform-
ing the experiments and collecting data, we analyze the results. Similar to the box pushing
task, trials with similar characteristics, in terms of faults seen, are grouped together. LeaF
treats the entire set of experiments as one long trial and carries over the experience (good
or bad) information from one trial to another.

Table B.4 sequentially lists all the faults encountered from Trial 1 through 15. The
distribution of faults is as follows: CMM – 23 faults, out of which only 6 were of type
unknown, and LeaF – 35 faults, 13 of which belonged to the unknown category. On further
review, the discrepancy was due to a large number of marker detection failures (5) in one
particular trial (Trial 9). Oddly, the communication module did not encounter any faults.
Also, we had one trial in LeaF that encountered 21 synchronization issues. This was due
to the synchronization thread being accidently killed before the start of process execution.
Despite the large number of faults, the average time for diagnosis was close to 25 seconds.
We threw out the error as it was anomalous and skewed the existing data. Among all
the modules in operation, it is the marker detection module that encounters the maximum
number of faults. In the case of CMM, marker detection leads to a total of 16 errors of
which 10 are recovered. This is consistent from what we saw for SDR, where the marker
detection module had the lowest probability of success (78%). This can be attributed to
the fact that the helper robot attempts to maintain line of sight with the simple robot in
order to read and process its marker information. Hence, it is imperative that the

Figure 6.17: Initial causal model for CMM for the deployment task.
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Figure 6.18: Initial causal model for LeaF for the deployment task.

robot be able to recover from such errors. Unfortunately, the inability to recover from
marker detection∗∗ results in the robot being able to complete its task only on 6 trials.
On the other hand, LeaF encounters marker detection based failures 21 times, of which all
are recovered. The drawback to an approach like LeaF is that until the system balances
the weights, there is a possibility that the system will perform worse than CMM. Consider
Trials 12 through 15; they involve blob tracking error due to the simple robot’s inability to
keep up with the helper robot. Now looking at the timing values, we can see that CMM
outperforms LeaF by about 20 seconds per diagnosis. Since the causal model for LeaF is still
imbalanced, it will explore other alternate nodes before settling on the correct diagnosis.
On the other hand, it just so happens that the implementation of CMM leads to select the
correct diagnosis node, synchronization issues. However, once enough sampling data has
been collected LeaF will perform at least as well as CMM does. The final updated causal
model for the task is given in Figure 6.19.

6.6.3 Using Metrics for Evaluation

The measures are calculated similar to the previous experiment. We start by defining the
utility/cost table values associated with the corresponding tasks as shown in Table 6.7. For
deployment, since the most important criterion is for the robot to return home (from SDR),
the module Return Home is assigned the highest utility/task value. Similarly, based on my
prior experience with multi-robot systems, we determine the order of importance for the
remaining modules and assign values. By letting the designer determine the task/utility
value, we can make best use of the human’s on-field experience.

As before, from the collected experimental values in Tables B.4 and B.5, we can calculate
P , ǫ and ρ.

∗∗To save battery life, we halted the trials after 360 seconds of diagnosis.
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Figure 6.19: Final causal model for LeaF for the deployment task.

Table 6.7: Utility-cost table for the deployment task
Task CMM LeaF

Utility Cost Utility Cost

Go to goal Task 0.25 0.25 0.25 0.25

Tele-operation Task 0.25 0.25 0.25 0.25

Follow the leader
Task

0.20 0.20 0.20 0.20

Return home Task 0.30 0.30 0.30 0.30
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P =
∑

j:Tj∈X uj −
∑

j:Tj∈y(cj ∗ qj) ∗ (qj −
∑qj

i=1 ρ
i
j)

PCMMTrial1 = ugotogoal + uteleop + ufollowtheleader + ureturnhome − 0;

PCMMTrial2 = ugotogoal + ufollowtheleader + ureturnhome − cteleop ∗ (1− ρgotogoal);

PCMMTrial3 = ugotogoal + uteleop + ufollowtheleader + ureturnhome − 0;

... =
...

PCMM = PTrial1+PTrial2+PTrial3+...+PTrial15

No.ofTrials

PCMM = 1.0+(0.75−(0.25(1−0)))+1.0+...

15

= 0.1938;

PLeaFTrial1 = ugotogoal + uteleop + ufollowtheleader + ureturnhome − 0;

PLeaFTrial2 = ugotogoal + uteleop + ufollowtheleader + ureturnhome − 0;

PLeaFTrial3 = ugotogoal + uteleop + ufollowtheleader + ureturnhome − 0;

... =
...

PLeaF = PTrial1+PTrial2+PTrial3+...+PTrial15

No.ofTrials

= 0.855

and

ρs =
∑

j:Tj∈Y

∑qj

i=1 ρ
i
j +

∑

q:Tq∈X ρ1
q

ρCMMTrial1 = 1;

ρCMMTrial2 = ρgotogoal;

ρCMMTrial3 = 1;
... =

...

ρCMM = 1.0+1.0+0.0+...+1.0
15

= 0.6133

ρLeaFTrial1 = 1;

ρLeaFTrial2 = 1;

ρLeaFTrial3 = 1;
... =

...

ρLeaF = 1.0+1.0+1.0+...+1.0
15

= 1.0

and,

ǫ =
∑

j:Tj∈X

tNormalj

tj

ǫCMMTrial1 = 0.48;

ǫCMMTrial2 = 0;
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ǫCMMTrial3 = 0.48
... =

...

ǫCMM = 0.48+0.0+0.48+...+0.74
15

= 0.1814

ǫLeaFTrial1 = 0.48;

ǫLeaFTrial2 = 0.65780;

ǫLeaFTrial3 = 0.48
... =

...

ǫLeaF = 0.48+.6578+0.48+...+0.67
15

= 0.5221

Discussion

Post-experimental analysis of the data provides the designer with a useful tool for under-
standing the capabilities and limitations of a multi-robot system. Table 6.8 compares the
system performance metric for CMM and LeaF. The tabulated values also show a marked
improvement in the per task measures of robustness, and efficiency. As mentioned earlier,
the values for the last 4 trials show CMM to perform much better than LeaF. Beyond the
initial diagnosis, node selection in CMM can be considered to be random. This means in
certain cases, based on implementation, CMM will perform better than LeaF, but in the
long run LeaF will outperform CMM. It is important to note that the value for robustness
is misleading. As, we have seen from SDR, the larger the number of interacting components
the higher the probability of failure. We believe eventually LeaF will also encounter fault(s)
that it does not handle well, similar to the sonar case in the box pushing task.

Similar to the box pushing task, it is difficult to extract learning information directly
from the performance values. So, in order to understand the learning exhibited by the
system, we examine the timing information for diagnosis for the different individual faults.

Table 6.8: Evaluation table for CMM and LeaF
System P

∈ (−∞, 1]
ρ ∈ [0, 1]
per trial

ǫ ∈ [0, 1]
per trial

δknown per
trial

δunknown

per trial

CMM 0.1938 0.6133 per
trial

0.1814 per
trial

0.0 0.0

LeaF 0.855 1.0 0.5221 0.1 1.39
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Table 6.9: Time taken to diagnose faults for deployment task
Fault name Trial num-

ber
Time
(secs) for
CMM

Time
(secs) for
LeaF

faulty laser 1 44 45

2 44 41

3 45 40

4 44 37

5 45 35

camera failure due to envi-
ronmental changes

1 360+ 65

2 360+ 32

3 360+ 17

The timing information over the set of trials for two such faults, one of known type
(Laser fault) and the other of unknown type (camera fault due unexpected environmental
change) are illustrated in Table 6.9. Figures 6.20(a) and 6.20(b) plot the diagnosis curve
for two sets of faults laser fault and camera fault due to environmental changes. For the
laser fault, the diagnosis times for CMM do not decrease over the course of trials and remain
steady at best. However, in the case of LeaF, it is interesting to note that the system uses
experience as a means to improve performance steadily over trials. The more interesting
case study is the one correlating to camera fault due to environmental changes. From the
graph in Figure 6.20(b) we can see that after a few instances of the unknown fault, LeaF
is able to better diagnose the problem. However, what is hidden is the fact that LeaF
is constantly learning about the new fault by updating the POC values. Every time the
POC becomes large enough for it precede an alternate edge, we see a jump in the diagnosis
times. The actual times only represent the quality of implementation and not the quality
of learning. We can hypothesize that over the course of future trials the system would show
significant improvement in performance, before stabilizing on the fastest possible diagnosis
implemented.

It is also worthwhile to monitor the speed of stabilization for LeaF. Table 6.10 shows
the adaptation of the probability values in the second fault case (i.e., camera failure due
to environmental changes when the lights are turned off), along with the time taken to
diagnose the fault. The data shows a rapid change in the probability values corresponding
to the increased likelihood of this particular failure occurring.
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(a) Tracing diagnosis time over the set of trials
for deployment task.

(b) Tracing diagnosis time for unknown type of
fault for deployment task.

Figure 6.20: Performance illustrated over the period of operation for CMM and LeaF.

Table 6.10: Probability adaptation for environmental state change (light being switched
off).

Fault
name

Trial
number

No. of
faults

Starting
probability
(%)

Ending
probability
(%)

Time taken
to diagnose
fault (secs)

camera
failure due
to envi-
ronmental
changes

1 5 0 33 65

2 5 33 47 24

3 6 47 63 17

4 4 63 76 17

5 6 76 84 17

6 2 63 88 17
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While this may be desirable in the case of permanent environmental state changes, it also
has the potentially negative effect of causing the team to forget the fault probability pro-
file for the previous environmental state (i.e., when the lights are on). Finally, from the
obtained data we can infer that the fault-tolerance architecture LeaF adapts faster and
more efficiently towards achieving system goals and is a more suitable system for the multi-
robot deployment task. Based on the analyzed data and our prior work with diagnostic
systems [Parker and Kannan, 2006], it is our belief that the performance trend for an intelli-
gent system would steadily improve over time once the system has gained experience about
the most common previously un-modeled faults. Finally, we make the inference that the
CMM system will perform well for static situations, but the performance starts degrading
when any dynamic changes are made to the operating environment, whereas the LeaF is a
more competent architecture for static as well dynamic systems.

6.7 Comparing metrics

As metrics are highly subjective, it is useful to compare any newly designed metrics with
other existing ones for well defined, standard applications. This helps illustrate the useful-
ness, or the lack of, for the metrics. A review of the related work in the field of fault-tolerance
metrics identified only one alternate work that could be potentially used for measuring the
extent of fault-tolerance system performance exhibited by a multi-robot system. In this
section, we apply Hamilton-Walker-Bennett metric to the obtained results from the two
different physical robot experiments. Subsequently, we compare the two metrics and ana-
lyze the effectiveness for each one in helping a designer better understand an implemented
system.

The metric is defined as follows:

HWBeff = k1(f)2 + k2(p)
2; (6.1)

where k1 and k2 are normalizing constants, f is the redundancy based system fault-tolerance
and p is the system performance. The calculated value for effective performance lies between
the ranges of [0, 1], with 0 indicating an in-effective system and 1 represents a system with
an ideal balance of fault-tolerance and performance. Translating to the multi-robot domain,

HWBeff =

m
∑

j=1

uj(ρredundancyj
)2 + cj(1−

tdiagnosisj
+tRecoveryj

tj
+ 1

2
)2 (6.2)

wherem is the total set of tasks in the application, ρredundancyj
is the correlating redundancy

based fault-tolerance, and tj is the total task execution time.
As the HWB metrics were originally designed for the multi-processor domain, in order

to apply them to the results from the multi-robot domain, certain interpretations need to
be made. These include:

• Each sub-system from the multi-processor environment can be equated to sub-tasks
in the multi-robot environment,
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• The normalizing constants used for determining the extent of fault-tolerance or per-
formance can be mapped to the defined task-utility table,

• Only redundancy based faults can be used to calculate the fault-tolerance,

• System fault-tolerance is the summation of fault-tolerance across all individual sub-
systems or sub-tasks,

• Performance speed is inversely mapped to the system efficiency from our metrics
model, and

• Finally the cost value is always set to 1, as we never take into consideration the actual
physical cost towards overall system performance.

purely empirical nature of the developed metrics towards a more exact structure of metric
definition.

We apply the HWB metric to the results obtained from the two physical robot exper-
iments. We compare the obtained values with our metric and attempt to theorize if each
of the metrics adequately explains the implemented systems. Similar to the way we fleshed
out our metrics, HWB can be calculated. Hence, for box pushing task,

HWBeff = HWBCMMTrial1+HWBCMMTrial2+HWBCMMTrial3+...HWBCMMTrial5

15

HWBeff = 1.0+1.0+0.5+...+1.0
15 = 0.3466

HWBeff = 1.0+1.0+0.5+...+1.0
15 = 0.4232

Towards a fair comparison, we scale our metrics values to the same range ([0, 1]) as
the HWB measure. We illustrate the calculated performance values for both systems in
Table 6.11. Comparing the two metric values, it immediately becomes clear that the HWB
metric does a poor job of distinguishing between the two systems. Numerically speaking,
the values for HWB metric are lower than those of of our metric. The low numerical values
are not a fair representation of the two systems. We can also infer from the table that
for the HWB metric the granularity of distinction between the two systems is not nearly
as high as that of our metric. The extent of relative difference becomes important when
comparing similar types of systems.

Table 6.11: Calculated value for effective fault-tolerance for both metrics for the different
test systems

Experiment System HWB Kannan-Parker‖

Box pushing CMM 0.3466 0.594

Box pushing LeaF 0.4232 0.8122

Deployment CMM 0.5548 0.5718

Deployment LeaF 0.6830 0.9043

‖A logarithmic scale of the form x = log
2
y + 1 is used to the scale the metrics to the range [0, 1]
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The predominant reason for this is by considering purely redundant faults, the system
does not account for other types of coordination or operational failures. In the case of
a redundancy-based manipulator system, a larger number of team members results in an
improved value for redundancy and as a consequence a higher performance rating, whereas
for a multi-robot system as the complexity of the system increases, the performance curve
goes down. Additionally, the HWB metric does not provide a means to evaluate and
measure the adaptability or learning exhibited by a multi-robot system. This is reflected in
the negative performance values for LeaF for both tasks. A negative measure is generally
a good indicator for performance degradation over time or trials, whereas based on our
analysis we know that the performance of LeaF improves over the course of the trials.
As the HWB metric is a single quantitative measure, it cannot identify the influence of
learning towards improving system performance exhibited by each system. From Murphy’s
hypotheses we know that learning constitutes an integral part of a robust fault-tolerance
architecture and an inability to measure it prevents the metric from truly evaluating the
capabilities of each system. As a consequence, a designer looking purely at the numerical
values will not be able to determine which of the two systems, for either task, performs
better. Hence, we can claim that the HWB metric in its current form is infeasible to be
used for the multi-robot domain.

6.8 Conclusions and Future work

In this chapter, we have presented results from extensive physical robot implementations
that compare and contrast CMM and LeaF. The subsequent analysis shows that a static
causal model approach, like CMM, is insufficient for guaranteeing robust solutions, since
it is practically impossible to pre-define all possible error modes in a complex multi-robot
application. These results also show the need for a more adaptive approach (LeaF) for
handling diverse fault conditions.

In addition, as new techniques in fault-tolerance are being explored, existing methods
do not provide a complete measure of system performance for multi-robot teams. In this
chapter, we evaluate two multi-robot applications based on the defined metrics. Specifically,
the research provides a quantitative measure for identifying system fault-tolerance in terms
of efficiency, robustness and the extent of learning. The research also provides the designer
with analytical methods for understanding the metrics and the implemented system.
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Chapter 7

Summary and Conclusions

7.1 Summary of Contributions

As part of my dissertation, I make several major research contributions to the multi-robot
community. The most significant one is the development of an adaptive causal model
method (adaptive CMM) for fault diagnosis and recovery in complex multi-robot teams
called LeaF. It is particularly useful for cooperating teams of multi-robot systems interacting
in a dynamic environment. The specific objectives of LeaF include:

1. Using experience as a means to better understand the system towards streamlining
future fault diagnosis,

2. Using the full extent of available knowledge via the causal model to diagnose previously
un-encountered faults, and

3. Absorbing the new information back into the existing causal model for future reference.

The LeaF approach, along with its predecessor CMM approach, has been implemented
on two different physical robot experiments involving multi-robot navigation and deploy-
ment and cooperative multi-robot box pushing. In addition, the proof of concept for LeaF
was implemented by means of a simulation setup, where the user had the option for con-
trolling the type of faults encountered in the system.

The implemented results along with subsequent analysis have shown the following:

• How the causal model approach can be implemented in a large-scale multi-robot team
and successfully enable the team to diagnose and recover from pre-defined errors. We
have presented results from extensive physical robot implementations that illustrated
the effectiveness of this approach.

• That a static causal model approach is insufficient for guaranteeing robust solutions,
since it is practically impossible to pre-define all possible error modes in a complex
multi-robot application, and

• That an adaptive causal model method like LeaF is robust enough to handle different
types of failures in a dynamic environment.
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Another significant contribution of my research is the development of metrics to measure
fault-tolerance within the context of system performance. In addition, I have also outlined
potential methods to better interpret the obtained metrics towards understanding the ca-
pabilities of the implemented system. The developed metrics are designed to be application
independent and can be used to evaluate and/or compare different fault-tolerance architec-
tures. Furthermore, a main focus of my approach is to capture the effect of intelligence,
reasoning, or learning on the effective fault-tolerance of the system, rather than relying
purely on traditional redundancy based measures.

The unique feature of LeaF, its ability to learn from the encountered faults towards
future fault tolerance, provides a foundation for developing a turn-key solution for a fault
diagnostic system for heterogeneous multi-robot teams performing complex tasks. Addi-
tionally, the presented evaluation metric provides the designer with numerical as well as
analytical methods for understanding the intricacies of a fault-tolerant architecture. To
the best of my knowledge, this is the first work that attempts to build a fault-tolerance
architecture from the perspective of a multi-robot system. Finally, I also believe my metric
is the first such one that attempts to evaluate the quality of learning towards understanding
system level fault-tolerance.

7.2 Future Work

Several promising open research problems fall within the scope of research on multi-robot
fault-tolerant system:

• Taking advantage of the distributed nature of the approach.

Though the architecture can be developed as a distributed one, we do not take full
advantage of the strengths of the distributed system. In addition to cooperating with
each other to complete a task, robots could cooperatively solve faults. This would
further expand the search area without significantly increasing the causal model size
or taxing a single robot’s resources. Extending the system to multiple robots could
result in grids of cooperating robots capable of solving large complex problems in a
short period of time. I have done some initial testing on using distributed sharing of
fault diagnostic resources and hope to address the problem in the near future.

• Adding information as nodes in addition to edges of the causal model.

A limitation of the current approach is its inability to solve for un-diagnosed faults
that cannot be mapped to any of the existing ones under the causal model; i.e., the
encountered case lies outside the existing solution set. Currently, this situation is han-
dled by transferring all available information to a human for further evaluation. This
situation could be potentially overcome in some cases if the robot had the capability
of adding nodes in addition to edges within the causal model.

• Adding predictive capabilities to the model using something like a HMM or other
Bayesian model.

Prevention is better than cure. The purpose of the fault prediction would be to
anticipate fault(s) before their occurrence based on the similitude between the current
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normal state and a prior fault state. By inferring the resultant similitude set in terms
of a known environment component, such as a map update feature, the robot might
be able to prevent the occurrence of a fault.

• Human-robot interaction.

The ability to utilize human knowledge to solve previously un-solvable faults would
greatly improve system efficiency and robustness. This involves determining the extent
of human interaction — when, where and how often — to balance the efficiency and
robustness of the system. To incorporate an extensive human-robot interaction is
beyond the scope of this research; however I would like to explore the possibility at a
later date.
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Appendix A

Tabulation of the rule-base
relationship for the experiments

Table A.1: Rule-base for Phase I CMM of SDR describing the
symptom-fault relation and the associated corrective actions

Behavior
module

Fault Node Symptom Generate-and-test
strategy

Corrective ac-
tion

All be-
haviors

Goal not reached Time out
in goto goal
behavior

Perform path planner
test

Reset path
planner and
re-attempt
goto goal be-
havior

Camera error Image not
found

Perform camera tests If fault persists,
leave simple
robot(s) in wait
state, send
camera failure
feedback to
human opera-
tor and return
home

Lost follower Missing
robot

Establish communica-
tion with simple robot
and instruct it to per-
form motor tests

Check if simple
robot is close
enough to goal;
if so, change
simple robot
state to sensor
detection, and
return home
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Table A.1 – continued from previous page

Behavior
module

Fault Node Symptom Generate-and-test
strategy

Corrective ac-
tion

Path planning error Stuck
in path
planning
algorithm

Check starting posi-
tion and ending posi-
tion

Re-attempt
path planning.

Localization errors Inconsistent
pose infor-
mation

Perform laser test, at-
tempt to re-calibrate
laser

Check if simple
robot is close
enough to goal;
if so, change
simple robot
state to sensor
detection, send
laser data to
human and
return home

Communication No ac-
knowl-
edgment
signal

Attempt transmission
to simple robot, other
robots and human op-
erator

Move away from
current location
and re-attempt
transmission; If
communication
error persists,
return home

Bad Initialization Incorrect
starting
pose

Perform position test Reset starting
pose values

Faulty sensor Bad sensor
readings

Perform sensor test Alert human to
replace sensor

Motor problems Motor test
failed

Perform simple robot
status check

Change simple
robot state to
sensor detection
and proceed
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Table A.1 – continued from previous page

Behavior
module

Fault Node Symptom Generate-and-test
strategy

Corrective ac-
tion

Unexpected envi-
ronmental behavior

Inconsistent
map infor-
mation

Compare current en-
vironment state with
known map informa-
tion for deviations

If simple robot
state close to
goal, change
state to sen-
sor detection
and proceed;
else, leave sim-
ple robot in
wait state and
proceed

Table A.2: Rule-base for Phase II CMM of SDR describing
the symptom-fault relation and the associated corrective ac-
tions

Behavior
module

Fault Node Symptom Generate-and-test
strategy

Corrective ac-
tion

Path
planning

Invalid positions Invalid po-
sition infor-
mation

Check starting and
goal positions

Re-attempt
path planning

Goal not reached Time out
in goto goal
behavior

Check sensor data to
ensure all sensors are
working correctly

Re-attempt
goto goal be-
havior

Bad starting position Incorrect
starting
position

Check starting posi-
tion information from
initial config file

Reset starting
position and
re-attempt
path planning

Bad goal position Incorrect
goal posi-
tion

Check goal position
from initial config file

Reset goal
position and
re-attempt
path planning
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Table A.2 – continued from previous page

Behavior
module

Fault Node Symptom Generate-and-test
strategy

Corrective ac-
tion

Localization errors Inconsistent
pose infor-
mation

Perform laser test, re-
calibrate laser

Check if simple
robot is close
enough to goal;
if so, change
simple robot
state to sensor
detection and
inform human
to replace laser

Translation errors Inconsistent
pose infor-
mation

Request human user
to check the transla-
tion algorithm for log-
ical inconsistencies

Reset algorithm
and re-attempt
behavior

Invalid map Map not
found

Perform map test Request human
operator to re-
place map

Bad Initialization Incorrect
starting
pose

Test position values Reset starting
pose values

Faulty sensor Bad sensor
readings

Perform sensor test Alert human to
replace sensor

Task
assign-
ment

Coordination error Missing
robot

Pan around using
camera searching for
robot, communicate
with other robots for
information on lost
robot

Change simple
robot state to
sensor detec-
tion and return
home

Communication error No ac-
knowl-
edgment
signal

Attempt transmission
to simple robot, other
robots and human op-
erator

Move away from
current location
and re-attempt
transmission; If
communication
error persists,
return home
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Table A.2 – continued from previous page

Behavior
module

Fault Node Symptom Generate-and-test
strategy

Corrective ac-
tion

Physics of comm Change
in envi-
ronment
state

Attempt transmission
to simple robot, other
robots and human op-
erator, if error persists
compare current en-
vironment state with
known prior informa-
tion for deviations

Request human
user to reset
communication

Protocol failure Inconsistent
communi-
cation
feedback
data

Perform communica-
tion protocol test

Request human
user to reset
protocol

Error due to
environment

Change
in envi-
ronment
state

Check current environ-
ment state with past
states

Explore neigh-
boring area,
re-establish
connection with
other robots

Goto
goal
behavior

Deadlock Time out
in goto goal
behavior

Coordinate with other
robots, update posi-
tion information and
re-apply traffic man-
agement algorithm

Transfer control
to human to
solve deadlock

Obstacle avoidance Time out
in goto goal
behavior

Perform motion test in
all directions to check
for obstacle

Communicate
and coordi-
nate with
other robots
to identify and
navigate for
un-expected
obstacles in the
path
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Table A.2 – continued from previous page

Behavior
module

Fault Node Symptom Generate-and-test
strategy

Corrective ac-
tion

Traffic management Time out
in goto goal
behavior

Coordinate with other
robots, update posi-
tion information and
perform traffic man-
agement test

Request hu-
man user to
reset traffic-
management
algorithm

Algorithmic failure Inconsistent
data upon
testing

Run simple algorithm
test

Request user
to replace
algorithm

Hardware failure No sensor
data

Perform simple hard-
ware test

Alert human
to replace
hardware

Follow
the
leader

Blob tracking error Blob image
not found

Camera test Coordinate with
helper robot and
attempt to use
the camera to
find blob

Motor problems Increasing
distance of
separation
between
helper and
following
simple
robot

Establish communica-
tion with simple robot
and instruct it to per-
form motor tests

Check if simple
robot is close
enough to goal;
if so, change
simple robot
state to sensor
detection, and
return home

False positives Incorrect
tracking in-
formation

Take image, repeat
process and perform
quality measure test

Coordinate and
realign simple
robot to track
the correct blob
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Table A.2 – continued from previous page

Behavior
module

Fault Node Symptom Generate-and-test
strategy

Corrective ac-
tion

Error due to
environment

Change
in envi-
ronment
state

Compare current en-
vironment state with
known map informa-
tion for deviations

Check if simple
robot is close
to goal; if so,
change simple
robot state to
sensor detection
and proceed;
else, leave sim-
ple robot in
wait state and
proceed

Uneven lighting Sporadic
blob track-
ing

Perform camera light
test

Reset light
parameters and
allow for longer
sensor reading
times

Acoustic reflection Noisy sen-
sor data

Perform sensor test,
repeat process and
perform quality mea-
sure test

Average over
multiple read-
ings

Robot interference Incorrect
blob track-
ing

Test camera, test blob
tracking

Coordinate with
simple robot, re-
align robot and
reset blob track-
ing

Battery issues Battery
alarm

Perform battery status
test

Go back to
starting posi-
tion for battery
recharge

Hardware reset Incorrect
current
data

Perform hardware test Reinitialize
sensor from last
stored state
information

Tele op-
eration

Helper robot error Exception
in Helper
robot
behavior

Perform hardware,
sensor test and algo-
rithm test

Trace through
and identify
source of helper
exception
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Table A.2 – continued from previous page

Behavior
module

Fault Node Symptom Generate-and-test
strategy

Corrective ac-
tion

Simple robot error Exception
in sim-
pler robot
behavior

Perform hardware sen-
sor test

Trace through
and identify
source of simple
robot exception

Mismatched speed Error in
speed
synchro-
nization

Perform distance mea-
sure test over a fixed
time period

Coordinate with
Helper robot to
maintain forma-
tion

Acoustic
sensing

Calibration issues Incorrect
data

Perform simple sensor
test

Re calibrate
acoustic sensors
from initializa-
tion files

Table A.3: Rule-base for box pushing task describing the
symptom-fault relation and the associated corrective action

Behavior
module

Fault Node Symptom Generate-and-test
strategy

Corrective ac-
tion

Mis alignment Sensor malfunc-
tion

Incorrect
sensor in-
formation

Perform correlating
sensor tests

Report to hu-
man unable to
accurately iden-
tify troublesome
sensor

Sonar Inconsistent
sensor in-
formation

Cross verify pose in-
formation from sonar
with that of laser

Switch to al-
ternate sensor
(laser)

Laser Inconsistent
sensor in-
formation

Perform laser test
and check sensor
data with that of
team member

Align to blob,
backup away
from box and
inform failure to
team member

Motor Time out in
goto goal

Perform simple mo-
tor test

Indicate to hu-
man and team
member and
quit
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Table A.3 – continued from previous page

Behavior
module

Fault Node Symptom Generate-and-test
strategy

Corrective ac-
tion

Wireless Unable
to con-
tact team
member

Perform wireless test
with external mem-
ber (human)

Backup and go
back home

Algorithmic In-
consistency

Unable to
complete
test

Cross check sensor
information with hu-
man and team mem-
ber

Inform human,
and ask for help

Goal not
reached

Timeout
in going to
goal

Perform algorithm
test

Unable to diag-
nose failure and
return home

Blob tracking missing blob Unable to
find blob

Perform sensor test Get blob in-
formation from
team

Camera Unable to
find blob

Perform blob-test Get blob in-
formation from
team member

Communication
issues

Physics of com-
munication

Unable
to con-
tact team
member

Perform synchro-
nization test

If fault persists,
turn back and
go home, else
re-synchronize
with team
member

“Partner” robot
error

Missing
blob infor-
mation

Establish communi-
cations with partner
robot and attempt to
obtain blob informa-
tion

Communicate
to team mem-
ber and return
home
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Table A.4: Rule-base for deployment task describing the
symptom-fault relation and the associated corrective action

Behavior
module

Fault Node Symptom Generate-and-test
strategy

Corrective ac-
tion

Path planning Goal not reached Time out
in goto goal
behavior

Perform path plan-
ner test

Reset path
planner and
re-attempt
goto goal be-
havior

Invalid positions Invalid po-
sition infor-
mation

Check starting and
goal positions

Re-attempt
path planning

Bad starting
position

Incorrect
starting
position

Check starting po-
sition information
from initial config
file

Reset starting
position and
re-attempt
path planning

Bad goal posi-
tion

Incorrect
goal posi-
tion

Check goal position
from initial config file

Reset goal
position and
re-attempt
path planning

Localization er-
rors

Inconsistent
pose infor-
mation

Perform laser test,
re-calibrate laser

Check if simple
robot is close
enough to goal;
if so, change
simple robot
state to sensor
detection and
inform human
to replace laser

Translation er-
rors

Inconsistent
pose infor-
mation

Request human
user to check the
translation algo-
rithm for logical
inconsistencies

Reset algorithm
and re-attempt
behavior

Invalid map Map not
found

Perform map test Request human
operator to re-
place map
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Table A.4 – continued from previous page

Behavior
module

Fault Node Symptom Generate-and-test
strategy

Corrective ac-
tion

Bad Initialization Incorrect
starting
position

Test position values Reset starting
pose values

Faulty sensor Bad sensor
readings

Perform sensor test Alert human to
replace sensor

Tele operation Camera error Image not
found

Perform camera tests If fault persists,
leave simple
robot(s) in wait
state, send
camera failure
feedback to
human opera-
tor and return
home

Lost follower Missing
robot

Establish communi-
cations with simple
robot and instruct
it to perform motor
tests

Check if simple
robot is close
enough to goal;
if so, change
simple robot
state to sensor
detection, and
return home

Motor problems Motor test
failed

Perform simple robot
status check

Change simple
robot state to
sensor detection
and proceed
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Appendix B

Tabulation of experimental results

Table B.1: Fault diagnosis data for CMM and LeaF for the
box pushing task

Trial No. Module Faults Diagnosed Additional Notes

(k/u) (k/u)

CMM LeaF CMM LeaF

1 No Error 0 0 0 No errors encoun-
tered during opera-
tion

2 No Error 0 0 0 No errors encoun-
tered during opera-
tion

3 Communication 5
(4/1)

2
(2/0)

5
(3/2)

5(3/2) Synchronization
issues and un-
anticipated interfer-
ence from alternate
laptop

4 Communication 2
(2/0)

2
(2/0)

3
(3/0)

3
(3/0)

Synchronization
issues among robots

4 Box push 1(1/0) 1(1/0) 1(1/0) 1(1/0) Sonar data filtered
out

5 Communication 4(4/0) 4(4/0) 3(3/0) 3(3/0) Synchronization
issues among robots

5 Box push 1
(0/1)

0(0/0) 1(0/1) 0(0/0) Mis-aligned box
leading to robot con-
tinuing the pushing
task without box
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Table B.1 – continued from previous page

Trial No. Module Faults Diagnosed Additional Notes

(k/u) (k/u)

CMM LeaF CMM LeaF

6 Communication 4(4/0) 4(4/0) 1(1/0) 1(1/0) Synchronization
issues among robots
during communica-
tion

7 Communication 2(2/0) 2(2/0) 1(1/0) 1(1/0) Synchronization
issues among robots
during communica-
tion

8 Blob tracking 1(1/0) 1(1/0) 1(1/0) 1(1/0) Malfunctioning cam-
era

8 Communication 3(3/0) 3(3/0) 2(2/0) 2(2/0) Synchronization
and wireless issues
among robots

9 Communication 3(2/1) 2(2/0) 3(2/1) 3(2/1) Synchronization
issues and un-
anticipated interfer-
ence from alternate
laptop

10 Communication 4(4/0) 4(4/0) 1(1/0) 1(1/0) Synchronization
issues among robots

10 Blob tracking 1(0/1) 0(0/0) 1(0/1) 1(0/1) Un-expected lighting
change

11 Communication 1(0/1) 0(0/0) 1(0/1) 1(0/1) Human error

12 Communication 3(3/0) 3(3/0) 2(2/0) 2(2/0) Synchronization
issues among robots

12 Blob tracking 1(0/1) 0(0/0) 5(0/5) 5(0/5) Uneven lighting

13 Communication 2(2/0) 2(2/0) 1(1/0) 1(1/0) Synchronization
issues among robots

13 Blob tracking 1(0/1) 0(0/0) 3(3/0) 3(3/0) Uneven lighting and
un-expected changes

14 Communication 3(3/0) 3(3/0) 2(2/0) 2(2/0) Synchronization
issues among robots
during communica-
tion

15 No Error 0 0 0 No errors encoun-
tered during opera-
tion
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Table B.2: Time taken to diagnose faults for box pushing
task

Module Trial
num-
ber

Diagnosis Time (s) Diagnosis

CMM LeaF CMM LeaF

No fault 1,2,14 0 0 None

Communication 3 600 188 Not classified Unexpected
environment
change

Communication 4 47 50 Synchronization
issues

Synchronization
issues

Box push 4 30 30 sonar fault sonar fault

Box push 5 600 600 Not classified Unexpected
environment
change

Communication 5 47 50 Synchronization
issues

Synchronization
issues

Communication 6,7 47 42 Synchronization
issues

Synchronization
issues

Communication 8 47 40 Synchronization
issues

Synchronization
issues and
wireless fault

Blob tracking 8 40 50 camera fault camera fault

Communication 9 600 170 Not classified Unexpected
environment
change

Communication 10 50 40 Synchronization
issues

Synchronization
issues

Blob tracking 10 600 157 Not classified Unexpected
environment
change
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Table B.2 – continued from previous page

Module Trial
num-
ber

Diagnosis Time (s) Diagnosis

CMM LeaF CMM LeaF

Communication 11 600 55 Not classified Unexpected
environment
change

Communication 12 53 28 Synchronization
issues

Synchronization
issues

Blob tracking 12 600 85 Not classified Unexpected
environment
change

Communication 13 53 24 Synchronization
issues

Synchronization
issues

Communication 14 50 24 Synchronization
issues

Synchronization
issues

Blob Tracking 13 600 85 Not classified Unexpected
environment
change

Table B.3: Execution and diagnosis time for box pushing task

Trial number Diagnosis Time (s) Execution Time (s)

CMM LeaF CMM LeaF

1,2,15 0 0 40 40

3 600 390 600 430

4 600 600 600 600

5 280 230 320 270

6,7 160 126 200 166

8 220 95 260 135
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9 600 210 600 250

10 600 280 600 320

11 600 55 600 95

12 600 184 600 244

13 600 182 600 232

14 160 24 200 64

Table B.4: Fault diagnosis data for CMM and LeaF for the
deployment task

Trial
No.

Module Fault Diagnosed Time(s) Additional
Notes

(k/u) (k/u)

CMM LeaF CMM LeaF CMM LeaF

1 Localization 1(1/0) 1(1/0) 1(1/0) 1(1/0) 44 45 Laser was inter-
fered with by
a human stand-
ing directly in
front of it.

1 Marker de-
tection

3(3/0) 3(3/0) 2(2/0) 2(2/0) 50 47 Attempting to
keep the simple
robot in its
line-of-sight
resulted in the
helper robot
momentarily
lost track of the
simple robot.

1 Path plan-
ning

1(1/0) 1(1/0) 1(1/0) 1(1/0) 35 35 Laser was inter-
fered with by
a human stand-
ing directly in
front of it.
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Table B.4 – continued from previous page

Trial
No.

Module Faults Diagnosed Time(s) Additional
Notes

(k/u) (k/u)

CMM LeaF CMM LeaF CMM LeaF

2 Marker de-
tection

1(0/1) 0(0/1) 2(2/2) 2(2/2) 360 65 The lighting in
the room was
tampered with
by a human.

3 Marker de-
tection

2(2/0) 2(2/0) 4(4/0) 4(4/0) 50 30 Attempting to
keep the simple
robot in its
line-of-sight
resulted in the
helper robot
momentarily
lost track of the
simple robot.

3 Localization 1(1/0) 1(1/0) 1(1/0) 1(1/0) 44 45 Laser was inter-
fered with by
a human stand-
ing directly in
front of it.

4 Marker de-
tection

3(2/1) 3(2/0) 2(2/0) 2(2/0) 50 27 Helper robot
momentarily
lost track of the
simple robot.

4 Localization 1(1/0) 1(1/0) 1(1/0) 1(1/0) 44 45 Laser was inter-
fered with by
a human stand-
ing directly in
front of it.

5 Marker de-
tection

1(0/1) 0(0/0) 3(0/3) 3(0/3) 360 32 The lighting in
the room was
tampered with
by a human.

6 Marker de-
tection

2(2/0) 2(2/0) 1(1/0) 1(1/0) 50 28 Helper robot
momentarily
lost track of the
simple robot.
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Table B.4 – continued from previous page

Trial
No.

Module Faults Diagnosed Time(s) Additional
Notes

(k/u) (k/u)

CMM LeaF CMM LeaF CMM LeaF

6 Localization 1(1/0) 1(1/0) 1(1/0) 1(1/0) 44 45 Laser was inter-
fered with by
a human stand-
ing directly in
front of it.

7 Localization 1(1/0) 1(1/0) 1(1/0) 1(1/0) 45 37 Improper ini-
tialization of
pose informa-
tion.

7 Navigation 1(0/1) 0(0/0) 1(0/1) 1(0/1) 360 52 Improper ini-
tialization of
pose informa-
tion.

8 Marker de-
tection

2(1/1) 1(1/0) 1(1/0) 1(1/0) 360 0 The lighting in
the room was
tampered with

9 Marker de-
tection

1(0/1) 0(0/0) 5(0/5) 5(0/5) 360 31 The lighting in
the room was
tampered with

10 Navigation 1(0/1) 0(0/0) 1(0/1) 1(0/1) 360 87 Motor problem
at start up, mo-
tors were left in
locked state.

11 Marker de-
tection

1(0/1) 0(0/0) 1(0/1) 1(0/1) 360 17 The lighting in
the room was
tampered with
by a human.

12 Blob track-
ing

1(1/0) 1(1/0) 1(1/0) 1(1/0) 30 59 Speed synchro-
nization issues
between robots

13 Blob track-
ing

1(1/0) 1(1/0) 2(2/0) 2(2/0)
par

30 57 Speed synchro-
nization issues
between robots

14 Blob track-
ing

1(1/0) 1(1/0) 1(1/0) 1(1/0) 30 63 Speed synchro-
nization issues
between robots
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Table B.4 – continued from previous page

Trial
No.

Module Faults Diagnosed Time(s) Additional
Notes

(k/u) (k/u)

CMM LeaF CMM LeaF CMM LeaF

15 Blob track-
ing

1(1/0) 1(1/0) 1(1/0) 1(1/0) 30 59 Speed synchro-
nization issues
between robots

Table B.5: Execution and diagnosis time for deployment task

Trial num-
ber

Diagnosis Time (s) Execution Time (s)

CMM LeaF CMM LeaF

1 130 129 250 249

2 360 360 65 190

3 130 250 115 235

4 131 251 107 227

5 360 360 32 155

6 136 260 108 230

7 360 360 80 200

8 360 360 32 155

9 360 360 186 328

10 360 360 87 215

11 360 360 17 143

12,13,14,15 30 154 60 179
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