21 research outputs found

    How good are detection proposals, really?

    Full text link
    Current top performing Pascal VOC object detectors employ detection proposals to guide the search for objects thereby avoiding exhaustive sliding window search across images. Despite the popularity of detection proposals, it is unclear which trade-offs are made when using them during object detection. We provide an in depth analysis of ten object proposal methods along with four baselines regarding ground truth annotation recall (on Pascal VOC 2007 and ImageNet 2013), repeatability, and impact on DPM detector performance. Our findings show common weaknesses of existing methods, and provide insights to choose the most adequate method for different settings

    Multiscale combinatorial grouping

    Get PDF
    We propose a unified approach for bottom-up hierarchical image segmentation and object candidate generation for recognition, called Multiscale Combinatorial Grouping (MCG). For this purpose, we first develop a fast normalized cuts algorithm. We then propose a high-performance hierarchical segmenter that makes effective use of multiscale information. Finally, we propose a grouping strategy that combines our multiscale regions into highly-accurate object candidates by exploring efficiently their combinatorial space. We conduct extensive experiments on both the BSDS500 and on the PASCAL 2012 segmentation datasets, showing that MCG produces state-of-the-art contours, hierarchical regions and object candidates. 1

    Local optimal scale in a hierarchical segmentation method for satellite image: an OBIA approach for the agricultural landscape

    Get PDF
    Overrecentdecades,remotesensinghasemergedasaneffectivetoolforimprov- ing agriculture productivity. In particular, many works have dealt with the problem of identifying characteristics or phenomena of crops and orchards on different scales using remote sensed images. Since the natural processes are scale dependent and most of them are hierarchically structured, the determination of optimal study scales is mandatory in understanding these processes and their interactions. The concept of multi-scale/multi- resolution inherent to OBIA methodologies allows the scale problem to be dealt with. But for that multi-scale and hierarchical segmentation algorithms are required. The question that remains unsolved is to determine the suitable scale segmentation that allows different objects and phenomena to be characterized in a single image. In this work, an adaptation of the Simple Linear Iterative Clustering (SLIC) algorithm to perform a multi-scale hierarchi- cal segmentation of satellite images is proposed. The selection of the optimal multi-scale segmentation for different regions of the image is carried out by evaluating the intra- variability and inter-heterogeneity of the regions obtained on each scale with respect to the parent-regions defined by the coarsest scale. To achieve this goal, an objective function, that combines weighted variance and the global Moran index, has been used. Two different kinds of experiment have been carried out, generating the number of regions on each scale through linear and dyadic approaches. This methodology has allowed, on the one hand, the detection of objects on different scales and, on the other hand, to represent them all in a sin- gle image. Altogether, the procedure provides the user with a better comprehension of the land cover, the objects on it and the phenomena occurring

    Exploring the deep structure of images

    Get PDF

    Automatic Detection of Geospatial Objects Using Multiple Hierarchical Segmentations

    Full text link
    corecore