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Abstract

We propose a unified approach for bottom-up hierarchi-
cal image segmentation and object candidate generation
for recognition, called Multiscale Combinatorial Grouping
(MCG). For this purpose, we first develop a fast normal-
ized cuts algorithm. We then propose a high-performance
hierarchical segmenter that makes effective use of multi-
scale information. Finally, we propose a grouping strategy
that combines our multiscale regions into highly-accurate
object candidates by exploring efficiently their combinato-
rial space. We conduct extensive experiments on both the
BSDS500 and on the PASCAL 2012 segmentation datasets,
showing that MCG produces state-of-the-art contours, hi-
erarchical regions and object candidates.

1. Introduction
Two paradigms have shaped the field of object recog-

nition in the last decade. The first one, popularized by
the Viola-Jones face detection algorithm [27], formulates
object localization as window classification. The basic
scanning-window architecture, relying on histograms of
gradients and linear support vector machines, was intro-
duced by Dalal and Triggs [7] in the context of pedestrian
detection and is still at the core of leading object detectors
on the PASCAL challenge such as Deformable Part Models
[11].

The second paradigm relies on perceptual grouping to
provide a limited number of high-quality and category-
independent object candidates, which can then be described
with richer representations and used as input to more so-
phisticated learning methods. Examples in this family
are [18, 13]. Recently, this approach has dominated the
PASCAL segmentation challenge [6, 3, 5], improved object
detection [24] and proven competitive in large-scale classi-
fication [26].
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Figure 1. Top: original image, instance-level groundtruth from
PASCAL and our multiscale hierarchical segmentation. Bottom:
our best object candidates among 400.

Since the power of this second paradigm is critically de-
pendent on the accuracy and the number of object candi-
dates, an increasing body of research has delved into the
problem of their generation [6, 10, 1, 15]. However, those
approaches typically focus on learning generic properties of
objects from a set of examples, while reasoning on a fixed
set of regions and contours produced by external bottom-up
segmenters such as [4, 12].

In this paper, we propose a unified approach to multi-
scale hierarchical segmentation and object candidate gen-
eration called Multiscale Combinatorial Grouping (MCG).
Fig. 1 shows an example of our results and Fig. 2 an
overview of our pipeline. Our main contributions are:

• An efficient normalized cuts algorithm, which in prac-
tice provides a 20⇥ speed-up to the eigenvector computa-
tion required for contour globalization [4, 21] (Sect. 3.1).

• A state-of-the-art hierarchical segmenter that lever-
ages multiscale information (Sect. 4).

• A grouping algorithm that produces accurate object
candidates by efficiently exploring the combinatorial space
of our multiscale regions (Sect. 6).
We conduct a comprehensive empirical validation. On the
BSDS500 (Sect. 5) we report the best results to date in
contour detection and hierarchical segmentation. On the
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VOC2012 segmentation dataset (Sect. 7), our candidates
obtain overall state-of-the-art object-level accuracy. At a
regime of 1100 candidates per image (c/i), we report the
best results on 12/20 object categories and a relative im-
provement of +20% over Selective Search [26]. At 100 c/i,
our candidates provide a relative improvement of +7.8%
over CPMC [6].

2. Related Work
For space reasons, we focus our review on recent normal-

ized cut algorithms and object candidates for recognition.

Fast normalized cuts The efficient computation of
normalized-cuts eigenvectors has been the subject of recent
work, as it is often the computational bottleneck in group-
ing algorithms. Taylor [25] presented a technique for using
a simple watershed oversegmentation to reduce the size of
the eigenvector problem, sacrificing accuracy for speed. We
take a similar approach of solving the eigenvector problem
in a reduced space, though we use simple image-pyramid
operations on the affinity matrix (instead of a separate seg-
mentation algorithm) and we see no loss in performance
despite a 20⇥ speed improvement. Maire and Yu [16] pre-
sented a novel multigrid solver for producing eigenvectors
at multiple scales, which speeds up fine-scale eigenvec-
tor computation by leveraging coarse-scale solutions. Our
technique also uses the scale-space structure of an image,
but instead of solving the problem at multiple scales, we
simply reduce the scale of the problem, solve it at a reduced
scale, and then upsample the solution while preserving the
structure of the image. As such, our technique is faster and
much simpler, requiring only a few lines of code wrapped
around a standard sparse eigensolver.

Object Candidates Class-independent methods that gen-
erate object hypotheses can be divided into those whose out-
put is an image window and those that generate segmented
candidates.

Among the former, Alexe et al. [1] propose an objectness
measure to score randomly-sampled image windows based
on low-level features computed on the superpixels of [12].
Van de Sande et al. [26] present a selective window search
based on segmentation. Starting with the superpixels of [12]
for a variety of color spaces, they produce a set of seg-
mentation hierarchies by region merging, which are used to
produce a set of object candidate windows. While we also
take advantage of different hierarchies to gain diversity, we
leverage multiscale information rather than different color
spaces. Furthermore, in contrast to [1, 26] we focus on the
finer-grained task of pixel-accurate object extraction, rather
than on window selection.

Among the methods that produce segmented candidates,
Carreira and Sminchisescu [6] hypothesize a set of place-
ments of fore- and background seeds and, for each con-

figuration, solve a constrained parametric min-cut (CPMC)
problem to generate a pool of object hypotheses. Endres
and Hoiem [10] base their category-independent object pro-
posals on an iterative generation of a hierarchy of regions,
based on the contour detector of [4] and occlusion bound-
aries of [14]. Kim and Grauman [15] propose to match parts
of the shape of exemplar objects, regardless of their class, to
detected contours by [4]. They infer the presence and shape
of a candidate object by adapting the matched object to the
computed superpixels.

Recently, two works proposed to train a cascade of clas-
sifiers to learn which sets of regions should be merged to
form objects. Ren and Shankhnarovich [22] produce full
region hierarchies by iteratively merging pairs of regions
and adapting the classifiers to different scales. Weiss and
Taskar [28] specialize the classifiers also to size and class
of the annotated instances to produce object candidates.

Malisiewicz and Efros [18] took one of the first steps
towards combinatorial grouping, by running multiple seg-
menters with different parameters and merging up to three
adjacent regions. In [3], another step was taken by consider-
ing hierarchical segmentations at three different scales and
combining pairs and triplets of adjacent regions from the
two coarser scales to produce object candidates.

A substantial difference between our approach and pre-
vious work is that, instead of relying on pre-computed hier-
archies or superpixels, we propose a unified approach that
produces and groups high-quality multiscale regions. With
respect to the combinatorial approaches of [18, 3], our main
contribution is to develop efficient algorithms to explore a
much larger combinatorial space by taking into account a
set of object examples, increasing the likelihood of having
complete objects in the pool of candidates. Our approach
has therefore the flexibility to adapt to specific applications
and types of objects, and can produce candidates at any
trade-off between their number and their accuracy.

3. The Segmentation Algorithm
Consider a segmentation of the image into regions that

partition its domain S = {S
i

}
i

. A segmentation hierar-
chy is a family of partitions {S⇤

,S1
, ...,SL} such that: (1)

S⇤ is the finest set of superpixels, (2) SL is the complete
domain, and (3) regions from coarse levels are unions of re-
gions from fine levels. A hierarchy where each level Si is
assigned a real-valued index �

i

can be represented by a den-
drogram, a region tree where the height of each node is its
index. Furthermore, it can also be represented as an ultra-
metric contour map (UCM), an image obtained by weight-
ing the boundary of each pair of adjacent regions in the hi-
erarchy by the index at which they are merged [2]. This
representation unifies the problems of contour detection and
hierarchical image segmentation: a threshold at level �

i

in
the UCM produces the segmentation Si.
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Figure 2. Multiscale Combinatorial Grouping. Starting from a multiresolution image pyramid, we perform hierarchical segmentation
at each scale independently. We align these multiple hierarchies and combine them into a single multiscale segmentation hierarchy. Our
grouping component then produces a ranked list of object candidates by efficiently exploring the combinatorial space of these regions.

As an example, in the gPb-ucm algorithm of [4], bright-
ness, color and texture gradients at three fixed disk sizes are
first computed. These local contour cues are globalized us-
ing spectral graph-partitioning, resulting in the gPb contour
detector. Hierarchical segmentation is then performed by
iteratively merging adjacent regions based on the average
gPb strength on their common boundary. This algorithm
produces therefore a tree of regions at multiple levels of ho-
mogeneity in brightness, color and texture, and the bound-
ary strength of its UCM can be interpreted as a measure of
contrast.

Coarse-to-fine is a powerful processing strategy in com-
puter vision. We exploit it in two different ways to develop
an efficient, scalable and high-performance segmentation
algorithm: (1) To speed-up spectral graph partitioning and
(2) To create aligned segmentation hierarchies.

3.1. Fast Downsampled Eigenvector Computation
The normalized cuts criterion is a key globalization

mechanism of recent high-performance contour detectors
such as [4, 21]; Although powerful, such spectral graph par-
titioning has a significant computational cost and memory
footprint that limit its scalability. In this section, we present
an efficient normalized cuts algorithm which in practice
preserves full performance for contour detection, has low
memory requirements and provides a 20⇥ speed-up.

Given a symmetric affinity matrix A, we would like to
compute the k smallest eigenvectors of the Laplacian of A.
Directly computing such eigenvectors can be very costly
even with sophisticated solvers, due to the large size of A.
We therefore present a technique for approximating them
much more efficiently by taking advantage of the multiscale
nature of our problem: A models affinities between pixels
in an image, and images naturally lend themselves to mul-
tiscale or pyramid-like representations and algorithms.

Our algorithm is inspired by two observations: 1) if A
is bistochastic (the rows and columns of A sum to 1) then

the eigenvectors of the Laplacian A are equal to the eigen-
vectors of the Laplacian of A2, and 2) because of the scale-
similar nature of images, the eigenvectors of a “downsam-
pled” version of A in which every other pixel has been re-
moved should be similar to the eigenvectors of A. Let us
define pixel decimate (A), which takes an affinity ma-
trix A and returns the indices of rows/columns in A corre-
sponding to a decimated version of the image from which
A was constructed. That is, if i = pixel decimate (A),
then A [i, i] is a decimated matrix in which alternating rows
and columns of the image have been removed. Computing
the eigenvectors of A [i, i] works poorly, as decimation dis-
connects pixels in the affinity matrix, but the eigenvectors
of the decimated squared affinity matrix A

2 [i, i] are sim-
ilar to those of A, because by squaring the matrix before
decimation we intuitively allow each pixel to propagate in-
formation to all of its neighbors in the graph, maintaining
connections even after decimation. Our algorithm works by
efficiently computing A

2 [i, i] as A [:, i]
T
A [:, i] (the naive

approach of first squaring A and then decimating it is in-
tractable), computing the eigenvectors of A2 [i, i], and then
“upsampling” those eigenvectors back to the space of the
original image by multiplying by A [:, i]. This squaring-
and-decimation procedure can be applied recursively sev-
eral times, improving efficiency while sacrificing accuracy.

Pseudocode for our algorithm, which we call “DNCuts”
(downsampled normalized cuts) is given in Alg. 1, where A
is our affinity matrix and D is the number of times that our
squaring-and-decimation operation is applied. Our algo-
rithm repeatedly applies our joint squaring-and-decimation
procedure, computes the smallest k eigenvectors of the
final “downsampled” matrix A

D

by using a standard
sparse eigensolver ncuts(AD, K), and repeatedly “upsam-
ples” those eigenvectors. Because our A is not bistochastic
and decimation is not an orthonormal operation, we must do
some normalization throughout the algorithm (line 5) and
whiten the resulting eigenvectors (line 10). We found that



Algorithm 1 dncuts(A,D,K)

1: A0  A

2: for d = [1 : D] do
3: i

d

 pixel decimate (A
d�1)

4: B

d

 A
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d

]
5: C

d

 diag(B
d
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B

d

6: A

d

 C

T
d

B

d

7: X

D

 ncuts(A
D

,K)
8: for d = [D : �1 : 1] do
9: X

d�1  C

d

X

d

10: return whiten(X0)

values of K = 2 or K = 3 worked well in practice. Larger
values of K yielded little speed improvement (as much of
the cost is spent downsampling A0) and start hurting per-
formance. Our technique is similar to Nystrom’s method
for computing the eigenvectors of a subset of A, but our
squaring-and-decimation procedure means that we do not
depend on long-range connections between pixels.

3.2. Aligning Segmentation Hierarchies
Spatially transforming an UCM is nontrivial because

its boundaries are one-dimensional entities whose topology
and strength determine the underlying hierarchy, and an er-
ror at a single pixel can have drastic effects. We therefore
opt for sampling uniformly K levels in the hierarchy, trans-
forming them sequentially, and reconstructing from their
boundaries a transformed UCM.

We consider two different segmentations R = {R
i

}
i

and
S = {S

j

}
j

. We define the projection of the segmentation
R onto a region S

j

2 S as the majority label

⇡(R, S

j

) = argmax
i

|S
j

\R

i

|
|S

j

| (1)

And the projection of R onto S as

⇡(R,S) = {⇡(R, S

j

)}
j

. (2)

In order to project an UCM onto a target segmentation S ,
which we denote ⇡(UCM,S), we project each of the levels
in the hierarchy in turn.

In the next section, we will iterate this procedure, and
project an UCM recursively to a set of target segmentations
{S1⇤

, ...,SN⇤}. However, note that the composition of two
such projections can be written as :

⇡(⇡(UCM,S1),S2) = ⇡(UCM,S1) � ⇡(S1
,S2). (3)

In practice, this property means that successive projections
of the target segmentations can be pre-computed, the UCM
has to be projected only to the first target segmentation, and
its final labels are obtained by N � 1 look-ups. This proce-
dure is summarized in pseudo-code in Algorithm 21.

1Note that, by construction, the routines sampleHierarchy and

Algorithm 2 UCM Rescaling and Alignment
Require: An UCM and a set of levels [t1, ..., tK ]
Require: A set of target segmentations {S1⇤

, ...,SN⇤}
1: Pre-compute target projections:
2: ⇡(S1⇤

,S2⇤), ⇡(⇡(S1⇤
,S2⇤),S3⇤), ...

3: UCM
⇡

 0
4: for t = [t1, ..., tK ] do
5: S  sampleHierarchy(UCM, t)
6: S  rescaleSegmentation(S,S1⇤)
7: S  ⇡(S,S1⇤)
8: S  readLabels(S, {S1⇤

, ...,SN⇤})
9: contours extractBoundary(S)

10: UCM
⇡

 max(UCM
⇡

, t ⇤ contours)
11: return UCM

⇡

4. Multiscale Hierarchical Segmentation
Single-scale segmentation We consider as input the fol-
lowing local contour cues: (1) brightness, color and texture
differences in half-disks of three sizes [19], (2) sparse cod-
ing on patches [21], and (3) structured forest contours [8].
We globalize the contour cues independently using our fast
eigenvector gradients of Sect. 3.1, combine global and lo-
cal cues linearly, and construct an UCM based on the mean
contour strength. We tried learning weights using gradient
ascent on the F-measure on the train set [4], but evaluat-
ing the final hierarchies rather than open contours. We ob-
served that this objective favors the quality of contours at
the expense of regions and obtained better overall results by
optimizing the Cover metric.

Hierarchy Alignment We construct a multiresolution
pyramid with N scales by subsampling / supersampling
the original image and applying our single-scale segmenter.
In order to preserve thin structures and details, we declare
as set of possible boundary locations the finest superpixels
SN⇤ in the highest-resolution. We extract the finest super-
pixels of each hierarchy, rescale them to the original image
resolution, pre-compute their successive projections to SN⇤

and then transfer recursively the strength of all the coarser
UCMs by applying Algorithm 2.

Multiscale Hierarchy After alignment, we have a fixed
set of boundary locations, and N strengths for each of them,
coming from the different scales. We formulate this as a bi-
nary boundary classification problem and train a classifier
that combines these N features into a single probability of
boundary estimation. We experimented with several learn-
ing strategies for combining UCM strengths: (a) Uniform
weights transformed into probabilities with Platt’s method.

extractBoundary are fast, as they involve only connected component
labeling and thresholding operations. The complexity is thus dominated
by the transformations in Steps 6 and 7, which are computed K times.



(b) SVMs and logistic regression, with both linear and ad-
ditive kernels. (c) Random Forests. (d) The same algo-
rithm as for single-scale. We found the results with all
learning methods surprisingly similar, in agreement with
the observation reported by [19]. This particular learning
problem, with only a handful of dimensions and millions
of data points, is relatively easy and performance is mainly
driven by our already high-performing and well calibrated
features. We therefore use the simplest option (a).

5. Experiments on the BSDS500
We conduct extensive experiments on the BSDS500

[23], using the standard evaluation metrics and following
the best practice rules of that dataset. We also report results
with a recent evaluation metric F

op

[20], Precision-Recall
for objects and parts, using the publicly-available code.
Single-scale Segmentation Table 1-top shows the perfor-
mance of our single-scale segmenter for different types of
input contours on the validation set of the BSDS500. We
obtain high-quality hierarchies for all the cues considered,
showing the generality of our approach. Furthermore, when
using them jointly (row ’single-combined’), our segmenter
outperforms the versions with individual cues, suggesting
its ability to leverage diversified inputs. In terms of effi-
ciency, our fast normalized cuts algorithm provides an av-
erage 20⇥ speed-up over [4], starting from the same local
cues, with no significant loss in accuracy and with a low
memory footprint.
Multiscale Segmentation Table 1-bottom evaluates our
full approach in the same experimental conditions as the
upper panel. We observe a consistent improvement in per-
formance in all the metrics for all the inputs, which validates
our architecture for multiscale segmentation. We tested also
two degraded versions of our system (not shown in the ta-
ble). For the first one, we resized contours to the origi-
nal image resolution, created UCMs and combined them.
For the second one, we transformed per-scale UCMs to the
original resolution, but ommited the strength transfer to the
finest superpixels. The first ablated version produces inter-
polation artifacts and smooths away details, while the sec-
ond one suffers from misalignment. Both fail to improve
the performance of the single-scale result, which provides
additional empirical support for our multiscale approach.

Since there are no major changes in our results when tak-
ing as input the different individual cues or their combina-
tion, in the sequel we use the version with structured forests
for efficiency reasons, which we denote Ours-multi.
Comparison with state-of-the-art. Figure 3 compares
our multiscale hierarchical segmenter on the BSDS500 test
set against all the methods for which there is publicly avail-
able code. We also compare to the recent ISCRA [22] hi-
erarchies, provided precomputed by the authors. We obtain
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Figure 3. BSDS500 test set. Precision-Recall curves for bound-
aries [23] (left) and for objects and parts [20] (right). The marker
on each curve is placed on the Optimal Dataset Scale (ODS). The
isolated red asterisks refer to the human performance assessed on
the same image and on a swapped image. In the legend, the F mea-
sure of the marked point on each curve is presented in brackets.
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Table 1. BSDS500 val set. Control experiments for single-scale
(top) and multiscale (bottom) hierarchical segmentation.

consistently the best results to date on the BSDS for all op-
erating regimes, both in terms of boundary and region qual-
ity.

Note that the range of object scales in the BSDS500
is limited, which translates into modest absolute gains for
multiscale segmentation. However, we will observe more
substantial improvements when we move to PASCAL in
Section 7 (See Fig. 5).

Ground-Truth Hierarchy. In order to gain further in-
sights, we transfer the strength of each ground-truth seg-
mentation to our highest-resolution superpixels SN⇤ and
construct a combined hierarchy. This approximation to the
semantic hierarchy, “GTH” in Fig. 3, is an upper-bound for
our approach as both share the same boundary locations and
the only difference is their strength. Since the strength of
GTH is proportional to the number of subjects marking it,
it provides naturally the correct semantic ordering, where
outer object boundaries are stronger than internal parts.

Recently, Maire et al. [17] developed an annotation tool
where the user encodes explicitly the “perceptual strength”
of each contour. Our approach provides an alternative
where the semantic hierarchy is reconstructed by sampling
flat annotations from multiple subjects.



6. Object Candidate Generation

Our proposal for object candidate generation is to create
a large-enough set of hypotheses with a very high achiev-
able quality (Sect. 6.1) and then to learn to rank them using
low-level features (Sect. 6.2) to keep the maximum quality.

6.1. Combinatorial Grouping of Candidates

We consider the singletons, pairs, triplets, and 4-tuples of
regions from the three individual scales and the multiscale
hierarchy as 16 lists of ranked candidates. Since the full
joint set of candidates is very large and redundant, our goal
is to reduce it by keeping only the top N

i

candidates from
each ranked list L

i

, resulting in a total number of candidates
N

c

=
P

N

i

.
At training time, we would like to find, for different val-

ues of N
c

, the number of candidates from each list N
i

such
that the joint pool of N

c

candidates has the best achievable
quality. We frame this learning problem as a Pareto front
optimization [9] with two conflicting objective functions:
number of candidates and achievable quality. At test time,
we select a working point on the Pareto front, represented
by the

�
N

i

 
values, based either on the number of can-

didates N

c

we can handle or on the minimum achievable
quality our application needs, and we combine the N

i

top
candidates from each ranked list.

Efficient learning: Formally, assuming R ranked lists L
i

,
an exhaustive learning algorithm would consider all pos-
sible values of the R-tuple {N1, . . . , NR

}, where N

i

2
{0, . . . , |L

i

|}; adding up to
Q

R

1 |L
i

| parameterizations to
try, which is intractable in our setting.

To reduce the dimensionality of the learning step, we
start by selecting two ranked lists L1, L2 and we sample the
list at S levels of number of candidates. We then scan the
full S2 different parameterizations to combine the candi-
dates from both. Each of these sets is analyzed in the plane
of number of candidates-achievable quality, so the full com-
bination can be assessed as S2 points in this plane.

The key step of the optimization consists in discarding
those parameterizations whose quality point is not in the
Pareto front. We sample the Pareto front to S points and we
iterate the process until all the ranked lists are combined.
Each point in the final Pareto front corresponds to a par-
ticular parameterization {N1, . . . , NR

}. At test time, we
choose a point on this curve, either at a given number of
candidates N

c

or at the achievable quality we are interested
in, and combine the

�
N1, . . . , NR

 
top candidates from

each ranked list. The number of sampled configurations us-
ing the proposed algorithm is (R�1)S2, that is, we have
reduced an exponential problem (SR) to a quadratic one.

6.2. Regressed Ranking of Candidates
The previous section tackles the reduction of candidates

from millions to thousands while keeping the achievable
quality as high as possible. To further reduce their number,
we train a regressor from low-level features, as in [6].

We focus on features that can be computed efficiently in
a bottom-up fashion. This way, we can precompute all the
features for the original regions and efficiently calculate the
features for the candidates in a few operations. We compute
the following features:

• Size and location: Area and perimeter of the candi-
date; area, position, and aspect ratio of the bounding box;
and the area balance between the regions in the candidate.

• Shape: Perimeter (and sum of contour strength) di-
vided by the squared root of the area; and area of the region
divided by that of the bounding box.

• Contours: Sum of contour strength at the boundaries,
mean contour strength at the boundaries; minimum and
maximum UCM threshold of appearance and disappearance
of the regions forming the candidate.
We train a Random Forest using these features to regress the
object overlap with the ground truth, and diversify the rank-
ing based on Maximum Marginal Relevance measures [6].

7. Experiments on PASCAL 2012
Evaluation Measures: We assess the generation of can-
didates in terms of achievable quality with respect to the
number of candidates, that is, the quality we would have if
an oracle selected the best candidate among the pool. As a
measure of quality of a specific candidate with respect to an
annotated object, we will consider the Jaccard index, also
known as covering, or overlap, which is defined as the in-
tersection over the union of two sets.

When computing the overall quality for the whole
database, we will consider two metrics. First, we define the
Jaccard index at class level (J

c

) as the mean over classes
of the covering of all pixels of each class (the segmenta-
tion accuracy of PASCAL). Second, to avoid the bias of J

c

towards methods focusing on large objects, we define the
Jaccard index at instance level (J

i

) as the mean best overlap
for all the ground-truth instances in the database (also Best
Spatial Support score (BSS) [18]).

Learning Strategy Evaluation: This section estimates
the loss in performance due to not sweeping all the possible
values of {N1, . . . , NR

} via the greedy strategy proposed.
To do so, we will compare it with the full combination on
a reduced problem to make the latter feasible. Specifically,
we combine the 4 ranked lists coming from the singletons at
all scales, instead of the full 16 lists, and we limit the search
to 20 000 candidates.

In this situation, the mean loss in achievable quality
along the full curve of parameterization is J

i

=0.0002, with
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Figure 5. VOC12 val set. Object candidates achievable quality at instance and class level. We
also compare favorably to Scalpel [28] on VOC10 val set.

N

c

Plane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse MBike Person Plant Sheep Sofa Train TV Global

MCG 5086 82.9 52.0 85.6 80.5 77.2 81.8 77.7 90.5 74.8 88.1 84.5 87.6 82.8 78.8 79.7 77.4 87.1 87.2 84.0 89.6 80.8

MCG 1100 80.0 47.8 83.9 76.4 71.1 78.5 68.9 89.3 68.5 85.9 79.8 85.8 80.4 75.4 73.5 69.3 84.9 82.6 81.7 85.8 76.0
[10] 1100 75.1 49.1 80.7 68.8 62.8 76.4 63.3 89.4 64.6 83.0 80.3 83.7 78.4 78.0 66.9 66.2 69.5 82.0 84.3 81.8 71.6
[3] 1100 74.4 46.6 80.5 69.4 64.6 73.5 61.2 89.0 65.1 80.5 78.4 85.2 77.2 70.6 67.9 68.8 73.5 81.6 75.8 82.0 71.4

[15] 1100 73.8 40.6 75.8 66.7 52.7 79.7 50.6 91.2 59.2 80.2 80.7 87.4 79.0 74.7 62.1 54.6 65.0 84.6 82.4 79.5 67.4
[26] ad. 1100 68.3 39.6 70.6 64.8 58.0 68.2 51.8 77.6 58.2 72.6 70.4 74.0 66.2 59.9 59.8 55.4 67.7 71.3 68.6 78.7 63.1

[26] 1100 55.9 34.6 56.0 62.0 55.1 76.2 50.4 70.7 52.4 67.7 65.0 67.4 58.2 59.9 55.2 53.5 59.5 68.5 70.8 85.7 58.9

MCG 100 70.2 38.8 73.6 67.7 55.3 68.5 50.6 82.4 54.4 78.1 67.7 77.7 69.3 66.3 59.9 51.4 70.2 74.1 72.6 78.1 63.7
[10] 100 70.6 40.8 74.8 59.9 49.6 65.4 50.4 81.5 54.5 74.9 68.1 77.3 69.3 66.8 56.2 54.3 64.1 72.0 71.6 69.9 61.7
[6] 100 72.7 36.2 73.6 63.3 45.4 67.4 39.5 84.1 47.7 73.2 64.0 81.1 72.2 64.3 52.8 42.9 62.2 72.9 74.3 69.5 59.0

Table 2. VOC12 val set. Per-class and global Jaccard index at instance level (Ji)

a maximum loss of J
i

= 0.004 (0.74%). In exchange, our
proposed learning strategy on the full 16 ranked lists takes
about 1 minute to compute on the training set of PASCAL
2012, while the limited full combination takes 4 days

Combinatorial Grouping: We extract the lists of candi-
dates from the three scales and the multiscale hierarchy, for
singletons, pairs, triplets, and 4-tuples of regions, leading
to 16 lists, ranked by the minimum UCM strength of the
regions forming each candidate.

Figure 4 shows the Pareto front evolution of J
c

with re-
spect to the number of candidates for up to 1, 2, 3, and 4
regions per candidate (4, 8, 12, and 16 lists, respectively) at
training time. As baselines, we plot the raw singletons from
Ours-multi, gPb-UCM, and Quadtree.

The improvement of considering the combination of all
1-region candidates from the 3 scales and the Ours-multi
with respect to the raw Ours-multi is significant, which cor-
roborates the diversity obtained from hierarchies at different
scales. In turn, the addition of 2- and 3-region candidates
noticeably improves the achievable quality. The improve-
ment when adding 4-tuples is marginal at the number of
candidates we are working.

The red asterisk ( ) marks the selected configuration�
N1, . . . , NR

 
we choose, and the red plus sign ( ) rep-

resents the set of candidates after removing duplicates with
an overlap higher than 0.95. The candidates at this point
(5 038 per image in mean with J

c

= 0.85) are the ones
that are ranked by the learnt regressor, the result of which is
plotted in black (on the training set).

In summary, the full set of candidates (i.e., combining
the full 16 lists) would contain millions of candidates per
image. In the validation set of PASCAL 2012, the multi-
scale combinatorial grouping allows us to reduce the num-
ber of candidates to 5 086 with a very high achievable J

c

of
0.84. The regressed ranking allows us to further reduce the
number of candidates below this point.

Comparison with State of the Art: We compare our re-
sults against [1, 15, 6, 3, 26, 10], using the implementations
from the respective authors.

Figure 5 shows the achievable quality of all methods on
the validation set of PASCAL 2012. We plot the raw regions
of Ours-multi, ISCRA, gPb-UCM, and QuadTree as base-
lines. To compare more fairly with selective search [26] and
objectness [1], we adapted their boxes to the superpixels of
our multiscale hierarchy, obtaining a small improvement.

At instance level (J
i

), MCG candidates outperform the
state-of-the-art at all regimes. At class level (J

c

), our can-
didates practically achieve the same quality than CPMC.
To evaluate their complementarity, we compute the Pareto
front of combining the two sets of ranked candidates; that is,
we evaluate the sets of candidates corresponding to combin-
ing some candidates from MCG and CPMC. The curve ob-
tained (dashed magenta ), shows that MCG and CPMC
are very complementary: the combination of both methods
leads to an improvement of J

c

= 0.03 at around 650 c/i.
We also present a faster single-scale version of MCG

(SCG), which takes the hierarchy at the native scale only
and combines up to three regions. We decrease the timing



one order of magnitude while keeping competitive results.
Table 2 shows the quality (J

i

) on each of the 20 PAS-
CAL classes at two different number of candidates (100 and
1100), comparing MCG with the relevant state-of-the-art
techniques at that number of candidates. MCG outperforms
all techniques on the two regimes at the global level and the
majority of classes.

MCG and SCG Timing: Table 3 shows the timings of
our approach from scratch, on a single core using less than
2Gb of RAM. Our full MCG takes about 25 s. per image
to compute the multiscale hierarchies, and 10 s. to generate
and rank 5 038 candidates on the validation set of PASCAL
2012. Our single-scale version produces a segmentation hi-
erarchy of quality comparable to gPb-ucm [4] in just 3 s.

Hierarchical Candidate TotalSegmentation Generation

MCG 24.4± 3.6 9.9± 3.5 34.3± 6.2
SCG 3.2± 0.4 1.5± 0.5 4.7± 0.7

Table 3. Time in seconds per image of MCG and SCG

8. Conclusions
We proposed Multiscale Combinatorial Grouping, a uni-

fied approach for bottom-up segmentation and object can-
didate generation. Our approach produces state-of-the-art
contours, hierarchical regions and object candidates. At its
core are a fast eigenvector computation for normalized-cut
segmentation and an efficient algorithm for combinatorial
merging of hierarchical regions. In order to promote repro-
ducible research on perceptual grouping, all the resources
of this project – code, results and evaluation protocols – are
publicly available.
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