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Do not believe in anything simply because you have heard it.
Do not believe in anything simply because it is spoken and
rumored by many. Do not believe in anything simply because
it is found written in your religious books. Do not believe in
anything merely on the authority of your teachers and elders.
Do not believe in traditions because they have been handed
down for many generations. But after observation and anal-
ysis, when you find that anything agrees with reason and is
conducive to the good and benefit of one and all, then accept
it and live up to it.

Buddha

Introduction



2 1.1 Introduction

1.1 Introduction

Typical digital cameras nowadays have resolutions of millions of pixels. Medical
imaging devices like CT and MRI scanners produce 3D data sets of hundreds of
millions of pixels. The consumer market thrives with new digital HDTV 1080p
videos of 1920 x 1080 pixels at 60 complete frames per second. These examples
show that the number of digital images in the world are sheer endless. This still
vastly growing amount of digital images results in a big demand for computer
algorithms to analyze all this digital information.

Computer vision is concerned with computer processing of images from the real
world. One could for example think of algorithms that detect certain objects in
images or of algorithms that assign an object class to an image. A specific example
of this would be a computer algorithm that searches through a large database of
images to find all images containing a certain object. Nowadays, internet image
search engines like e.g. Google Images or Picsearch, use annotations found in the
text surrounding an image or in the image file name, as employable search terms
in their algorithms. Thus their success rate hinges on non-image attributes rather
than image content. It would however be much more efficient and useful if the
computer itself could determine which objects are contained in the images. With
such an algorithm it would even be possible not to use specific search terms, but
to hand the computer an image of an object and ask it to return a number of
images containing similar objects.

These examples might seem to be trivial tasks at first, but one should keep in mind
that the innate human visual system has evolved over millions of years into the
most intricate sensory system. On top of these innate recognition capabilities, the
visual system is subject to a life long learning. Where we humans easily recognize
objects in images, intuitively ignore partial object occlusion or noise and have
little problem with identifying objects in different poses, a computer will need a
set of intelligent algorithms for its input is merely a record of numbers.

1.2 The DSSCYV Project

The work in this thesis has been part of the ‘Deep Structure, Singularities, and
Computer Vision’ (DSSCV) project, supported by the IST Program of the Euro-
pean Union fifth framework program (contract IST-2001-35443).

The members of this project consisted of several experts from four European
universities, the I'T University of Copenhagen (Denmark), the University of Liv-
erpool (United Kingdom), the University of Copenhagen (Denmark) and from the
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Eindhoven University of Technology (the Netherlands). The project started on
October 1st 2002 and had a duration of 36 months.

The DSSCV consortium was brought together to develop sophisticated represen-
tations of images and shapes by syncretizing principles and methods from scale-
space theory, singularity theory and algorithmics. The consortium’s main goal
has been to create new fundamental insights in image understanding as well as to
develop elegant, robust and effective algorithms for solving computer vision tasks.

The work in the consortium has lead to the first ‘International Workshop on Deep
Structure, Singularities and Computer Vision” which took place in Maastricht in
2005 [107].

1.3 Summary of this Thesis

This thesis will focus mainly on techniques for automatic image matching. The
results from the study are applicable in image analysis applications such as wide
baseline matching, texture recognition, object retrieval, robot localization, video
data mining, building panorama’s object class recognition and object location
and pose retrieval. Over the years many different methods have been developed
for these tasks and a number of these methods function well in specific areas
of image analysis. However a trend in these methods is that they depend more
and more on ad hoc parameters and thresholds. These parameters are often not
representing a physical entity and it is therefore difficult to assign meaningful
values to them. The approach often used to ‘solve’ this problem is extensive
training that exhaustively tries all possible parameters within a certain range and
simply choses the parameter set yielding the best results for the training set of
images. This results in algorithms that work well for the image modality for
which they were trained, but as soon as the input images differ too much from
the training set, these algorithms break down.

The goal of the research described in this thesis is to find a general method for
image matching, regardless of the type of input images. Our method has to have a
reasonable physical motivation and should have as few parameters and thresholds
as possible.

To come up with this algorithm old methods are revisited that are rooted in
scale-space theory, physics and mathematics. These form the building blocks of
our new image matching algorithm. The new algorithm minimizes the amount of
parameters and thresholds. Thresholds that will remain have a physical and thus
understandable meaning and can be set according to the task at hand.
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This thesis is based on a number of published articles. These will be mentioned
at the title page of each chapter.

The following shortly summarizes the contents of this thesis.

Chapter 2 reviews the principles of scale-space theory and the related deep
structure of images. Essential for a general image analysis algorithm is scale
invariance. Objects and details exist as meaningful entities only over certain
ranges of scale and since it is not known a priori which scale to look at, all scales
have to be considered as equally important. Essential operations as blurring and
taking derivatives at certain scales are discussed and implementation examples
are given. Catastrophe theory is reviewed for the scale-space case. It studies how
critical points move as scale is changed, which is essential for each of the proposed
algorithms in this thesis. Interest points, in particular top-points, which will be
used in the image matching algorithms, are derived directly from catastrophe
theory.

Chapter 3 discusses a number of methods for generating a hierarchical structure
from an image. The methods generate a general image segmentation, which does
not incorporate any prior knowledge about the image. To overcome the problems
that occur in the existing methods a new method is proposed. The DSSCV
project conjectured that the hierarchical representation of the deep structure of
an image could be used for image description and matching purposes. In this
chapter however reasons are given why the proposed hierarchical representations
are unfeasible for the task of image matching or object recognition.

Chapter 4 suggests a new representation to overcome the problems that are
inherent in the hierarchical representations from chapter 3. The suggested algo-
rithm encodes the scale-space structure of top-points, resulting from catastrophe
theory, in a directed acyclic graph. This new representation does allow for the
utilization of powerful graph matching algorithms to compare images represented
in terms of top-point configurations, rather than using point matching algorithms
to compare sets of isolated interest points.

However, the new representation suffers from another artifact, viz. its unpre-
dictable behavior under non-scale-Euclidean transformations like affine or pro-
jective transformation. For this reason subsequent chapters do not pursue this
algorithm any further, but instead elaborate on an alternative approach based on
interest points.

Chapter 5 discusses interest points suitable for image matching. Interest points
are characteristic points derived from the image. They should be as invariant as
possible under changes in the image. Consider for example the task of locating
an object in a scene image (an image containing, among other things, the object).
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It is important that the interest points in the query image of the object are found
in a similar configuration in the scene image. The configuration of interest points
should remain similar even if the object in the scene image has been rotated,
scaled, exposed to different lighting conditions or affected by some noise. In this
chapter the popular Harris, Harris-Laplace and SIFT interest point detectors are
discussed and compared to the interest points suggested in this thesis based on
catastrophe theory: the top-points. The existing methods are dependent on a
large amount of tunable ad hoc parameters. For different types of images these
parameters have to be trained on new training sets. The introduced top-points
do not have these tunable parameters and yet yield competitive results in a set
of repeatability experiments. Top-point localization does not have to be very
accurate, since it is possible to refine the localization using local differential image
structure. This enables fast detection, without losing the exact location of the top-
point. Another beneficial property of the top-points is the ability to analytically
predict the sensitivity of each top-point to additive noise. This ability can be
used to eliminate unstable interest points before further processing is done.

Chapter 6 describes neighborhood descriptors. For image description and thus
image matching purposes, a set of interest points is insufficient. Distinct infor-
mation has to be added to these points to distinguish them from others. The
extra information assigned to each interest point is referred to as a descriptor.
Such a descriptor contains information about the local neighborhood of an in-
terest point. In this chapter the popular SIFT descriptor will be discussed and
compared to the more mathematically founded differential invariant descriptor.
The differential invariant descriptor is based on scale-Euclidean invariant combi-
nations of derivatives. This means that rotation, scaling and translation will not
affect the descriptor. This descriptor was deemed to perform poorly in a set of
experiments by others, but in this chapter it is shown that when using a proper
distance measure between a differential invariant descriptor with only 6 degrees
of freedom (d.o.f.), it will even outperform the 128-d.o.f. SIFT descriptor under
various circumstances.

Chapter 7 presents the last step in the chain of the image matching algorithm
based on interest points and descriptors. It describes the specific problem of object
location and pose retrieval. Given a query image of an object the algorithm will
try to find the location and pose of this object in a scene image. To do so a point
set in a 4-dimensional pose space is constructed, representing the translation,
rotation and scaling the query object has undergone in the scene. This point
set is given by the matches obtained from the comparison of interest points and
descriptors of the object with interest points and descriptors of the scene. From
this pose space one or more clusters are obtained, depending on the number of
times the object is found in the scene. From these clusters and the features
contained in these clusters, the pose of the object in the scene is estimated based
on affine or projective transformations.






The challenge is to understand the image really on all these
levels simultaneously, and not as an unrelated set of derived

images at different levels of blurring.

Koenderink (1984)

Scale Space & The Deep Structure of Images
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2.1 Introduction

An inherent property of objects in the world and details in images is that they
only exist as meaningful entities over certain ranges of scale.

A simple example that is often used to clarify the notion of scale is the concept of
a branch on a tree. The branch makes sense from a scale of a few centimeters to
a few meters at most. It would be meaningless to discuss the concept of a branch
at nanometer or kilometer level. At those scales it is more relevant to talk about
the molecules that form the tree, or a forest in which the tree grows.

The fact that objects appear in different ways depending on the scale of observa-
tion (e.g. Figure 2.1) implies that the concept of scale as well as the notion of a
multi-scale representation are of crucial importance when describing them.

The same holds for image analysis tasks. An image is a physical observable, with
an inner scale limited by the resolution of the sampling device and an outer scale
limited by the field of view. Since it is not known a priori at which scale to
observe an object or feature in an image, a multi-scale representation is of crucial
importance. As Koenderink states in one of the first scale-space papers: “The
challenge is to understand the image really on all these levels simultaneously, and
not as an unrelated set of derived images at different levels of blurring”.

The goal of this chapter is to review some fundamental results concerning the
theory for multi-scale representation called scale-space theory and the related
deep structure of images.

2.2 Linear Scale-Space Theory

Gaussian scale-space was proposed by Iijima [45] in the context of pattern recog-
nition in 1962. Outside of the Japanese scientific community his work went
largely unnoticed for a couple of decades, mostly due to the fact that the papers
were in Japanese. In western literature scale-space was introduced in 1983 by
Witkin [137], in a paper that discussed the blurring properties of one-dimensional

signals. The extension to more dimensional signals (e.g. images) was made by
Koenderink [63] in 1984.

Since Koenderink’s first seminal paper in 1984 a lot of work has been done in the
scale-space community. The interested reader might have a look at some of the
following fundamental scale-space books and papers.
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Figure 2.1: The painting “Gala Contemplating the Mediterranean Sea which at Twenty
Meters becomes a Portrait of Abraham Lincoln, Homage to Rothko”, by Salvador Dali,
1976, illustrates that the scale at which an image is viewed can change the object that
is observed.

e The papers by Weickert, Ishikawa an Imija [133, 134] present a review on
the early developments in Gaussian scale-space regarding the early Japanese
scale-space paper.

e The first book completely dedicated to scale-space was written by Lindeberg
[87] in 1994.

e A tutorial introductory book about multi-scale image analysis has been
written by ter Haar Romeny [37].

o Florack [24] gives a mathematically rigorous and complete account of image
structure.

e A rather complete collection of articles on scale-space theory can be found
in the edited volume [128], resulting from the Gaussian scale-space theory
workshop in 1996.

e The proceedings of the scale-space conference held every second year starting

from 1997 contain many interesting papers on scale-space theory [39, 103,
60, 36, 62].

2.2.1 Axiomatic Foundations of Linear Scale Space

Since the pioneering work by Witkin and Koenderink, a large number of different
scale-space formulations have been stated. Most of these formulations are based
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on a set of assumptions, that are usually referred to as scale-space arioms. An
overview of the different scale-space formulations can be found in [88].

In essence these axioms are a mathematical formulation for uncommittedness;
stating that there is no prior knowledge and no preference of how to treat a signal
or image. From these requirements four basic constraints follow.

e Linearity, stating that there is no preferred way to combine observations.
Non-linearities would involve some kind of knowledge or memory in a sys-
tem.

e Spatial shift invariance, meaning that there is no preferred location in the
image. Any location should be measured in the same fashion.

e Spatial isotropy, indicating that there is no preferred orientation.

e Spatial scale-invariance, implying that there is no preferred size. Any size
of structure, objects, textures, etc. is just as likely as any other.

From the axioms of linearity and spatial shift invariance it follows that a blurred
version of a signal has to be a convolution of the signal with an aperture function.

The derivation of the Gaussian scale space has been accomplished in many ways.
Some examples of ways to derive the Gaussian scale space are given here. The
exact and complete derivation will not be explained in this thesis, for this the
reader is referred to one of the following references.

e Dimensional analysis, a formulation by Florack [28], and continued work
by Pauwels [110] shows that the class of allowable scale-space kernels can
be restricted under weak conditions by combining the earlier mentioned
conditions of linearity, shift invariance, rotational invariance and semi-group
structure with scale invariance. From physics this is known as dimensional
analysis, which states that a function that relates physical observables has
to be independent on the choice of dimensional units.

o Causality, as derived by Koenderink [63], defines that it should be possible
to trace every gray-level at coarse scale to a corresponding gray-level at a
finer scale. In other words this implies that new level surfaces

{(x;t) e RN xR : L(x;t) = Lo} (2.1)

must not be created in the scale-space representation when the scale param-
eter t is increased. By combining causality with the notions of isotropy and



2.2 Linear Scale-Space Theory 11

homogeneity, it is shown that the scale-space representation has to obey the
diffusion equation.
Li(x,t) = AL(x,t) (2.2)

A similar result is given by Yuille and Poggio [141].

e Regularisation, Florack [22] and Nielsen[102], derived a series of regularisa-
tion filters e~ (@0 for p € N, the Gaussian kernel is one of them.

e Entropy, Nielsen [101] derived the Gaussian kernel by expressing the notion
of uncommittedness in a statistical way using the entropy of the observed
signal.

e Biological Inspiration, the human visual system samples the outside world
on multiple scales. On the retina lie receptive fields, groups of receptors
assembled in such a way that they form a set of apertures of widely varying
size. Together they measure a scale space of every image [25, 26, 37, 38, 44].
Using the Gaussian kernel can simulate this effect as argued by Koenderink
[64, 67, 68, 69, 70, 71, 72]. Young [139, 140] reports that cells in the visual
cortex have receptive field profiles that agree with Gaussian derivatives.

2.2.2 Generating a Scale-Space Representation

A brief review of the complete procedure for embedding an image into a Gaussian
scale-space is as follows:

Given an N-Dimensional image I(x) : RY — R, the scale-space representation
L(x,t) : RV x Ry — RY is defined such that the representation at ‘zero scale’ is
equal to the original image

L(x,0) =1(x) (2.3)

and the representations at coarser scales are given by convolution of the given
image with Gaussian kernels of successively increasing width

L(x,t) = (g¢ * I)(x), with gi(x) = g(x,t) =(2.5). (2.4)

where g : RV x R, — R is the Gaussian kernel

1 T
_ —x"x/(4t)
g(x,t) = aNE° /(48 (2.5)

In terms of explicit integrals the result of the convolution operation ‘*’ is written

Loot = [ ateniie—g)de (2.6)
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Scale space is named after the space that is formed by looking at an image at all
different scales simultaneously. When we stack all these scales we get an extra
dimension, the scale dimension, as demonstrated in Figure 2.2 and 2.3.

. {
\
-

Figure 2.2: An image at successive, exponentially increasing, scales.

Mathematica™ Implementation

Implementation in Mathematica™ is done by using the MathVisionTools
package [2]. Calculating a scale-space image at scale ¢ is easily done as follows:

<< MathVisionTools*
L; = GaussianDerivative[{t, 0}, {¢, 0}][image];

2.2.3 Separability

Although sometimes mentioned as one of the scale-space axioms, separability is
merely a technically useful property of the Gaussian kernel. The N-Dimensional
Gaussian kernel g : RV x R, — R can be written as the product of N one-
dimensional kernels ¢g; : R — R.

N
g(x,t) = Hgl(ﬂci,t). (2.7)
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Figure 2.3: A scale space originating from Figure 2.2. Left: a stack of images at
successive scales. Right: a cut through the scale space shows the images at successive
scales.

In terms of explicit expressions for the Gaussian kernels this can be written as

1 e—xTx/(4t) _ ﬁ L e—xf/(4t)- (28)
(4mt)N/2 o Vant

The separability is beneficial in terms of computational efficiency when imple-
menting the smoothing operation by convolutions in the spatial domain. Assume
that the smoothing operation is implemented by some discrete approximation and
that the discrete convolution mask has width M along each dimension. In the
standard case the number of operations for every point is M. By using the
separability property of the Gaussian kernel, the amount of operations per point
reduces to M N.

2.2.4 « Scale Spaces

Work by Florack [22], Nielsen [101], Pauwels [110] and Duits [19] argues that
Gaussian scale space is just an instance of a more general linear scale space.
Florack has observed that there exists a whole parameterized class of possible
filters, namely the ones of which the Fourier Transform equals

Flw,t) = el (2.9)
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Which yields the Gaussian scale space for & = 1. Duits has proven that one has
to restrict the parameter interval to a € (0,1] and has scrutinized the special
case o = % leading to the so called Poisson scale space. For implementation in
the spatial domain Poisson filtering is an alternative to Gaussian filtering in the
sense that typical properties are maintained, besides the fact that all scale space
axioms are satisfied. Drawbacks however are that the separability property is lost
in all cases except for the Gaussian case and that the spatial convolution filters
are heavy-tailed. Both result in longer calculation times. For implementation in
the Fourier domain, all « scale spaces are equally straightforward in practice.

2.2.5 Sampling the Scale Axis

The scale parameter o (= \/2_15) gives a local length parameter for the level of
resolution. The parameter o can be parameterized with a dimensionless parameter
7 as shown by Florack [31]. Scale invariance implies that Z—‘; is proportional to
o. Without generality loss Z—Z = o may be taken, with o|,—o = €, where € is a
‘hidden scale’ carrying the dimension of a length. This parameter is limited by
the image modality. The dimensionless parameter 7 is called the natural scale

parameter, o = ee” where T can be any real number, even negative.

2.2.6 Scale-Space Derivatives

Derivatives in images are often used when computing image descriptors such as
features or differential invariants (Chapter 6). Since differential geometry is a nat-
ural framework for describing geometric relations, a large number of formulations
in terms of derivatives are found in vision problems. Calculating derivatives from
discrete data is not a well-posed problem. Derivative estimators enhance noise
and it is obvious that some sort of smoothing is necessary. This is immediately
obvious when looking at a dithered image as in Figure 2.4.

The scale-space representation provides a well-defined way to deal with the notion
of scale in the computation of derivatives. A partial derivative

Ly« =0yl =0,01 ... on L (2.10)
1 N
of the scale-space representation can, because of its linearity, be written as
O (I % g¢)(x) = (I % Oz gt) () = (I * grae ) (%), (2.11)

which implies that

Loe(x,t) = /E (eI =g de (2.12)
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Figure 2.4: A zoomed-in part of a dithered image demonstrates the need for smoothing
image data when taking derivatives.

This means that differentiation is done by convolution with a Gaussian derivative
kernel. Examples of these kernels are given in Figure 2.5 and their effect is
demonstrated in Figure 2.6.

Figure 2.5: Some Gaussian derivative kernels.

Mathematica™ Implementation

Creating the images for Figure 2.6 is done by evaluating the following code:
L. = GaussianDerivative[{t, 1}, {¢, 0}][image];

L.; = GaussianDerivative[{t, 2}, {t, 0}][image];

AL = Ly, + GaussianDerivative[{t, 0}, {t, 2}][image];
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L. Lo Low + Lyy

Figure 2.6: Results obtained by convolution of a test image with the Gaussian deriva-
tive kernels from Figure 2.5.

2.3 Multi-Scale vs. Multi-Resolution

Next to the scale-space representation which is generated by smoothing and pre-
serves the same grid-size at all scales, a pyramid representation that reduces the
number of grid points from one layer to the next is used for multi-resolution
purposes. This representation is popular in many computer vision tasks for its
speed.

A pyramid representation of an image is a set of successively smoothened and sub-
sampled representations of the original image. This representation is organized in
such a way that the number of pixels decreases with a constant factor (usually 2V
for an N-dimensional signal) from one layer to the next. A pyramid representation
of a two-dimensional image is obtained by setting each value of a pixel at a
coarser scale L**1 to be an average of a neighborhood of pixel values in the finer
scale representation L(*). By recursively applying this operation and stacking the
resulting representations on top of each other a pyramid of L is generated. This
is illustrated in Figure 2.7.

There are some advantages of a pyramid representation. The most important one
is that it leads to a rapidly decreasing image size. This reduces the computa-
tional work both in the actual generation of the representation as well as in the
subsequent processing. The memory requirements are small and the generation
is simple and easily implementable, even on hardware.

There are however also many disadvantages of the pyramid representation. The
most import disadvantage, for this work, is that the pyramid is generated by an al-
gorithmic process, which makes theoretical analysis very cumbersome. Moreover
the pyramid representation has a very coarse discretization along the scale axis,
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2n71 % 2n71

2" % 2"

2n+1 % 2n+1

Figure 2.7: A pyramid representation is obtained by successively reducing the image
size by combined smoothing and subsampling.

whereas in the scale-space case the scale parameter is continuous. This makes
it very hard to match image structures across scales. Due to their implementa-
tion pyramids are not translation invariant, which implies that the representation
changes when the image is shifted.

2.4 Catastrophe Theory in Scale-Space

In many practical situations families of functions are encountered that depend on
control parameters. An example of this is the scale parameter in a scale-space
representation of an image. Catastrophe theory is the study of how critical points
(Section 2.4.1) of a function change as the control parameters change. The theory
was originated in the 1960’s with the work of Thom [129, 130]. The interested
reader can find more information on general catastrophe theory in one of the
following books [3, 34, 112, 117]. In this thesis the survey of catastrophe theory
will be restricted to the theory applicable to scale-space representations of two-
dimensional images.

Koenderink [69, 64, 67, 65, 66] was the first to point out that Thom’s classification
theorem could be applied to scale-space representations of images. In a scale-
space representation there is only one control parameter, the isotropic inner scale.
The fact that a scale space is considered which is constrained by the isotropic
diffusion equation further restricts the way in which critical points behave through
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scale. Damon [13, 14] probably gives the most comprehensive account on this
subject, but many others have investigated the theory as well, like Griffin [35],
Johansen [49, 50, 52], Kuijper [74, 73], Lindeberg [85, 84] and Loog [91]. Florack
and Kuijper’s work on the topological structure of scale-space images [33] gives a
very clear and thorough account on the behavior of critical points in scale space
for generic images.

2.4.1 Critical Points

A critical point of a function f : R — R is a point at which the gradient vanishes,
Vf=0.

This occurs typically at isolated points at which the Hessian (i.e. the matrix of
second order derivatives)

2f 2y ... _9f
Ox? Ox10x2 Ox10x,
o> f 2°f o 22f
H=— Ox20x1 032 0x20x, (213)
oy ey ... 92f
O0x,0x1 O0x,0x2 ox2

has nonzero eigenvalues. Critical points for which these conditions hold are re-
ferred to as Morse critical points. Critical points for which one of the eigenvalues
of the Hessian is zero are referred to as non-Morse critical points or top-points.
These top-points will prove to be very useful as characteristic points of an image
in the following chapters of this thesis.

For two-dimensional images critical points can best be illustrated by looking at
the gray-value images as a height plot. The critical points; saddles, minima and
maxima correspond to passes, dales and peaks of the virtual landscape respec-
tively. This is illustrated in Figure 2.8 (note that the input image is blurred to
reduce the amount of critical points).

2.4.2 Critical Curves

While varying a control parameter in a continuous fashion, a Morse critical point
will move along a critical curve. At isolated points on such a curve one of the
eigenvalues of the Hessian may become zero, so that the Morse critical point turns
into a non-Morse critical point.
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a. b. C.

Figure 2.8: a. Blurred image, b. Image a. as a height plot with annotated extrema
(black) and saddles (white), c. Contour plot of image a. showing saddles and extrema.

After a small perturbation Morse critical points may move and the corresponding
function values may change, but their type will stay the same: if ¢ eigenvalues of
the Hessian were negative prior to the perturbation, then this will remain the same
after the perturbation. A non-Morse critical point however changes qualitatively
when perturbed. In general, a non-Morse critical point will split into a number
of Morse critical points. This event is called a morsification.

When considering only generic situations, and limiting the input images to be
‘typical’, catastrophe theory for scale-space representations simplifies a lot. The
only generic morsifications in scale-space are creations and annihilations of pairs
of Morse hypersaddles of opposite Hessian signature (also known as topological
charge)

q = sign(det H). (2.14)

The topological charge of a non-Morse critical point equals the sum of charges of
all Morse critical points involved in the morsification. Figure 2.9 demonstrates
the two generic catastrophes in isotropic scale-space.

In one-dimensional signals, creations are prohibited by the diffusion equation and
only annihilations occur between minima and maxima in the signal for increasing
scale. In the scale-space representation of two-dimensional images, annihilations
and creations occur between maxima and saddle points, and minima and saddle
points (as demonstrated in Figure 2.10). In three-dimensional scale-space rep-
resentations of images there are two distinct types of hypersaddles, one with a
positive and one with a negative Hessian signature. Also minima and maxima
have opposite topological charges in this case, so there are various possibilities
for annihilation that are consistent with charge conservation. However, only the
catastrophes in which one and only one eigenvalue of the Hessian matrix changes,
occur generically.
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scale

space annihilation creation

Figure 2.9: The generic catastrophes in isotropic scale-space. Left: annihilation of a
pair of Morse critical points. Right: creation of a pair of Morse critical points. The
involved points have opposite Hessian signature.

Figure 2.10: Critical curves and critical points for an image. Saddle curves are visu-
alized darker than extrema curves. Visualization done in ScaleSpaceViz [55, 56]
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2.4.3 Detection of Critical Points and Critical Curves

There are many ways to detect critical points in images, some of the methods will
be discussed here.

Topological Number

The concept presented in the following can be studied in more detail in [53, 54,
23, 46]. The topological number is a natural quantity that classifies singularities
of scalar images of any dimension.

Suppose P is a point in the image (either singular or regular) and Sp is a closed
hypersurface, topologically equivalent to a (d — 1)-dimensional sphere, containing
point P and not containing any singularities except possibly P itself.

Because Sp does not contain any singularities, the normalized gradient vector
field

P (2.15)
is well defined on the surface Sp.

At a non-singular point Kalitzin [54] defines a d — 1 form:
O =&, d&i, N ANdEiet (2.16)
Where ¢ is the Levi-Civita or permutation tensor defined as

S 0, if any two labels are the same
ghr2 N — 1, if4q,49,...,7y is an even permutation of 1,2,3 (2.17)
—1, if 41,49,...,4in is an odd permutation of 1,2, 3.

Substituting (2.15) in (2.16) yields the following expression:

o LidLi, A ... NdL;, "N
- (L,L;)V/?

(2.18)

The topological number vg for the hyper-surface Sp surrounding point P is de-
fined as

v, = 7£€SP B(x). (2.19)

For two-dimensional images the topological number (2.19) is also referred to as
the winding number. The winding number represents the number of times the
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normalized gradient turns around its origin, as a test point circles around a given
contour (illustrated in Figure 2.11). In two dimensions ® (2.16) describes the
angle between the normalized gradients in two neighboring points. Integration of
this angle along a closed contour yields the winding number associated with this
contour.

minimum maximum saddle

Figure 2.11: The gradient vectors and the winding-number path for a two-dimensional
minimum, maximum and a saddle respectively.

The winding number of any closed contour is an integer multiple of 27. For regular
points the winding number is zero. For local extrema the winding number is 427
and for saddle points the winding number is —27.

The winding number can be calculated from (2.19) and (2.16), but in two dimen-
sions it is more convenient to use a complex number representation.

Let z =2z +iy and Z = z — iy be the complex conjugated couple of coordinates
in the two-dimensional image space and let L(z,Z) be the image in this notation.
Then the complex function W = (L, +1L,)/2 = 8zL(z, Z) represents the gradient
vector field in complex coordinates.

In accordance with (2.16) ®(x) can now be written in complex notation as:

(A) = LdEy — §yd&s = %
(Ly —1Ly)d(L, +1Ly)
LyLy+ LyL,
=Im(WdW/(WW)) = Im(dW /W)
=Im(dln W). (2.20)

=Im

Since InW = In|W| + iarg W the last equation justifies the interpretation of @
as a relative angle change of the gradient field.
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The winding number approach for two-dimensional images is easily implementable
for all scale levels and is fast to calculate. An implementation example is given
in the Mathematica™ Implementation box.

Mathematica™ Implementation
(- )

The following module uses the winding number approach to locate extrema an
saddles in a two dimensional image. A small four pixel neighborhood is used for
the calculation of the gradient vectors.
windingnumber2D[image_, t_]:=Module[{},

complexgradient = GaussianDerivative[{t, 1}, {t, 0}][image]

+ i GaussianDerivative[{t, 0}, {t, 1}][image];

v = RotateLeft[complexgradient, #]&/@{{0, 0}, {—1, 0}, {—1, -1}, {0, —1}};

wn = 5= Plus@@Arg[v/RotateLeft[v]]//Round;

Position[wn, #]&/@{1, —1}];
The location of extrema and saddle points in the image at scale ¢ can now be
calculated.
{extrema, saddles} = windingnumber2D[image, t];

code adopted from [37]

\_ )

Hexagonal Grid

Detection of the critical points using a hexagonal grid for two-dimensional images,
has been demonstrated by Blom [8]. In the algorithm the differences in intensity
between the pixel that is analyzed and its neighbours are considered. Pixels in
the neighbourhood that have a greater intensity than the pixel that is considered
are marked as positive pixels and the pixels in the neighborhood that have a
lower intensity are marked as negative. The considered pixel is then classified
by counting the number of sign changes that are observed while walking over
the neighbourhood pixels. This results in the following rules (demonstrated in
Figure 2.12):

e Zero sign changes, the point is a maximum or minimum
e Two sign changes, the point is a regular point

e Four sign changes, the point is a saddle point
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soes

regular point maximum minimum saddle

Figure 2.12: Different types of pixels on a hexagonal grid. The regarded pixel is in the
middle. Points with a lower intensity are darker, and with a higher intensity are lighter.

Since digital images are usually stored on a rectangular grid, the hexagonal lattice
has to be constructed out of this data. Horn [42] suggests to move the row above
the pixel of interest half a pixel length to the left and the row below half a pixel
distance to the right to construct a hexagonal lattice. Blom [8] shifts every odd row
half a pixel length to the right to construct a hexagonal lattice. Blom’s method
is implementable by considering a six neighborhood of a pixel. The construction
of the different types of grids is shown in Figure 2.13.

The critical point detector based on Blom’s hexagonal grid is easily implementable
and very fast as demonstrated in the Mathematica™ Implementation box. It is
however more stable to resample the odd rows of a rectangular grid. Instead
of taking samples at distances 0,d,2d,--- (d denotes the grid distance), samples
are now taken at %d, %d, %d, -++. The resampling can for example be done with
interpolation polynomials. This resampling will however slow the critical point
detection algorithm down significantly.

regular grid Horn’s grid Blom’s grid Blom’s neighborhood

Figure 2.13: A hexagonal grid is constructed from a regular grid by shifting the rows
half a pixel. The way in which the rows are shifted is different between authors. The
neighborhood of a pixel in Blom’s grid is easily represented in a rectangular gird as seen
on the right.
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/ Mathematica™ Implementation \
ect

The following module uses the hexagonal grid suggested by Blom to det
extrema and saddles in a two dimensional image.

hexnumber2D[image-, t-]:=Module[{},
imscaled = GaussianDerivative[{t, 0}, {t, 0}][image];
imstack = (RotateLeft[imscaled, #] — imscaled)& /@

{{-1,0},{-1,1},{0,1},{1,0}, {0, -1}, {-1,-1}}

hex = Transpose[imstack, {3, 2, 1}];
countsignchanges:=Plus@Q@QAbs[Sign[#] — RotateLeft[Sign[#]]]/2&;
nsignchanges = Map[countsignchanges, hex, {2}];
Position[nsignchanges, #]&/@{0, 4}]

The location of extrema and saddle points in the image at scale ¢ can now
be calculated.

k{extrema., saddles} = hexdetector2D[image, t]; /

Zero Crossings of the Gradient

Another method for finding critical points in an image uses zero crossings of the
first order derivatives to locate points with a zero gradient. For a two-dimensional
image this is done by intersecting the level lines L, = 0 with the level lines L, = 0,
as demonstrated in Figure 2.14.

This method can be used on the scale-space representation of an image to find
all the critical curves. By intersecting the level surfaces L, = 0 and L, = 0,
the critical curves are obtained as shown in Figure 2.15. By intersecting the
critical curves with the level surface det H = 0, in which H is the Hessian matrix
(2.13), the non-Morse critical points (top-points) can be located on the curves
(Figure 2.15). This algorithm has been implemented by Kanters [55, 56].

A drawback of the zero-crossings algorithm is that it does not automatically
distinguish between the different types of critical points. This can however simply
be calculated afterwards, by observing the local neighborhood of such a detected
critical point.
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zero-crossings of Ly zero-crossing intersections

Figure 2.14: Crossing level lines with L, = 0 with level lines with L, = 0 yields the
critical points at the intersections.

paths & top-points Ly =0and L, =0 paths and det H = 0

Figure 2.15: Intersecting level surface L, = 0 with level surface L, = 0 yields the
critical curves. Intersecting the critical paths with the level surface det H = 0 yields the
top-points.
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2.4.4 Refining the Location of Critical Points

The described methods for finding critical points operate at pixel precision. For
a critical point x. any of the above described detectors obtains an approximate
location x,. The sub-pixel location x. of a critical point can be calculated by
evaluating a Taylor expansion at the detected location x,. For a two-dimensional
image the Taylor expansion of the first order derivatives in the critical point is

Ly(xc) = Le(Xa) + Lea(Xa) (e — 24) + Lzy(xa)(yc — Ya)

+ lezz(Xa)(-Tc - :Ca)Q + mey(xa)(-rc - -Ta)(yc - ya)

N — N

+ 5 Layy(Xa) (ye — ya)2 +... (2.21)

and

Ly(xc) = Ly(Xa) + Lay(Xa)(¥e — Za) + Lyy(Xa) (Ye — Ya)

+ %Lzzy(xa)(zc - xa)Q + Lmyy(xa)(xc — Za)(Ye — Ya)

1
+ 5 Lyyy(Xa) (Y —ya)* + .. (2.22)

Since the first-order derivatives at the true location of the critical point L,(x.)
and L, (x.) are exactly zero and the Gaussian derivatives up to any order can be
calculated at the estimated location x,, Equations (2.21, 2.22) can be solved to
yield the true sub-pixel location x. of the critical point.

Florack and Kuiper [33] have shown that it is possible to calculate a vector
pointing to the location of a non-Morse critical point (top-point) from a point
sufficiently close by. If (4, %ya4,ts) denotes the approximate location of a top-
point it is possible to find the true location of the top-point (x4 + &, Yo + 1, ta +7)
by:

¢ -1 g
7= —M {detH } (2.23)
where
M[;{T ZV} (2.24)
g=Vu, H=Vg, w=0g, z= VdetH, ¢ = d;detH, (2.25)

in which g and H denote the image gradient and Hessian matrix, respectively,
and in which all derivatives are taken in the point (x4, ya, ta)-
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In Section 5.4.1 this theory will be used to determine the exact location of top-
points in the scale-space representation of a two-dimensional image.

2.5 Conclusion

A multi-scale representation is essential for scale-invariant operations. In this
chapter the basics of this linear scale space have been discussed. The most suit-
able kernel for generating a linear scale-space representation has shown to be the
Gaussian kernel. The kernel obeys all scale-space axioms and its separability
allows for fast calculation.

In the scale-space representation of an image critical points can be identified.
Catastrophe theory describes the movement of these critical points as the scale
parameter changes. Morse critical points move through scale forming critical
curves and eventually annihilating with critical points of opposite Hessian signa-
ture in a non-Morse critical point called a top-point. These top-points will show
to be important as image descriptors and key-points in the next chapters.

The location of critical points and top-points can be determined up to pixel pre-
cision by fast detection algorithms. A sub-pixel location can afterwards be cal-
culated from the local differential image structure. This enables fast detection
without losing the exact location of Morse and non-Morse critical points.
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The Hierarchical Structure of Scale-Space Images
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3.1 Introduction

There exists a great need for general segmentation and classification methods
that work regardless of the input image. Most segmentation and classification
methods are designed for a specific combination of image modality and specific
need, and do not work in a different context. These tools are often based on
existing methods endowed with various tunable parameters and more or less ad
hoc choices for these parameters.

In this chapter three methods are discussed that can represent images in a hi-
erarchical way using the deep structure of an image and exploiting the results
from catastrophe theory for scale-space representations explained in the previous
chapter.

The idea of a hierarchical image description based on multiple scales and regions
is nicely explained by a quote from Lifshitz and Pizer [82]: “A face might be
described as a light spot containing a light spot (a reflection from the forehead)
and three dark spots (the mouth and the regions of the two eyes). In turn the eye
regions would be described as containing a dark spot (the eyebrow), a light spot
(the eyelid), and a dark spot (the eye), with the latter containing a light spot
(the eyeball) which itself contains a dark spot (the iris) which finally contains a
yet darker spot (the pupil).”.

3.2 Hierarchical Segmentation from Intensity Extrema

The method presented here was suggested by Lifshitz and Pizer [83] in 1990.
This is the first seminal paper suggesting a hierarchical representation of the deep
structure of an image, based Koenderink’s work [63]. The aim of their research
was to create a computer algorithm to segment grayscale images into regions
of interest by constructing a tree structured region descriptor. The hierarchical
descriptor introduced by Lifshitz and Pizer is based on the behavior of extrema
in the scale-space representation of the image and is referred to as the extremum
stack.

3.2.1 Extremum Paths and Extremal Regions

By using catastrophe theory as explained in Section 2.4, the paths of extrema are
tracked in the scale-space representation of an image. Progressively blurring an
image causes extrema to move continuously and eventually to annihilate as they
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collide with saddles. The resulting paths are called critical curves as explained in
detail in Section 2.4.2. Lifshitz and Pizer disregard the saddle part of the critical
curves and focus only on the path that a minimum or a maximum follows through
scale. This path they refer to as the extremum path. A set of these extremum
paths is illustrated in Figure 3.1.

Figure 3.1: A small set of extremum paths of an image. The catastrophe points are
indicated with white dots.

For the sake of segmentation a region is assigned to each extremum path. When
moving along an extremum path to coarser scales, the intensity change is mono-
tonic (increasing for minima and decreasing for maxima). On an extremum path
each point can be associated with a level surface (an iso-intensity surface in the
scale-space representation) of that point’s intensity. A set of these level surfaces
for a simple image containing two light blobs and an image containing a light and
a dark blob is given in Figure 3.4. A level surface originating from a point on a
extremum path surrounds the extremum in the original image, as demonstrated
in Figure 3.2. The pixels in the original image that are encapsulated by the level
surface of an extremum form an extremal region.

An extremum disappears after its annihilation. The amount of blurring necessary
for an extremum to annihilate is said to be a good measure of importance of the
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extremal region (this however in practice is not always the case, extrema in flat
regions are mostly due to noise but can go up to high levels of scale). The intensity
of the topmost point on an extremum path is referred to the path’s annihilation
intensity. This is the intensity of the level surface that forms the boundary of
the associated extremal region, as illustrated in Figure 3.2 for annihilating-point
P. The extremal regions can be seen as a pre-segmentation of an image, i.e. a
segmentation without using a priori knowledge of the image.

scale P

Cp

Figure 3.2: Extremum paths and associated isointensity contours for points on these
paths (illustration adapted from [83]).

3.2.2 Scale-Space Hierarchy

According to Lifshitz and Pizer, when an extremum annihilates another region’s
level surface encloses the annihilated extremum, as illustrated in the left picture
of Figure 3.3. As will be explained in the next section, this process of level surface
enclosement occurs already earlier in scale. Nonetheless a containment relation
among extremal regions is induced by this process. The set of extremal regions
together with their containment relations can be represented as an extremal re-
gion tree in which the nodes represent extremal regions. A node is the child of
another node if the extremal region that it represents is immediately contained in
the extremal region represented by the parent. The root of the description tree
represents the entire image. This is illustrated in Figure 3.3.
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Figure 3.3: Left: Extremum paths with their extremal regions. Right: The associated
extremal region tree. (Illustration adapted from [83]).

3.2.3 Remarks

Lifshitz and Pizer presented a basic and general approach for multiscale hierarchi-
cal segmentation. In their paper they show some results using the segmentation
algorithm on abdominal CT images. Simmons et al. [124] evaluated the perfor-
mance of the extremum stack for the case of neurological magnetic resonance
imaging data and obtained some reasonable results.

Simmons et al. also report false extrema being temporarily created due to the dis-
crete nature of the image. These ‘false extrema’ however emerge from the generic
creation events discussed in Section 2.4.2. These events are not due to discretiza-
tion but are generic events occurring commonly in two- or higher dimensional
images. Creations of extrema indeed complicate the extremal tree construction.
Including the creations in the hierarchical representation would generate a graph
structure rather than a tree, but it would be feasible.

According to Lifshitz and Pizer each pixel (non-extremum point) in the original
image can be associated with an extremum path by linking the point to the
closest point with the same intensity at the next scale level in the scale-space
representation and continuing this linking through scale until an extremum path
is reached. This idea was introduced by Koenderink in [63]. The path created
by this linking is called an isointensity path. It is however not the case that
following a level surface through scale will unambiguously lead to one extremum.
In their article Lifshitz and Pizer note this and mention “nonextrema that seem
to escape from the extremal region”. In the article these ‘escaping’ extrema are
said not to occur in the images they considered. It appears that Lifshitz and Pizer
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have missed the fact that the topology of the level surfaces through extrema on
the extremum path changes significantly when the intensity of a connected scale-
space saddle in the image is passed. The properties of these scale-space saddles
will be discussed in the next section. The change in the topology of level surfaces,
occurring after passing a scale-space saddle is demonstrated in Figure 3.4. This
shows that extremal regions are merged after passing a scale-space saddle and
not after the annihilation of the extrema. The structure becomes exceedingly
complex when more structure in the image is involved. Since multiple extremal
paths can cross the level surface it is ambiguous to assign a pixel in the original
image to a single extremal path by tracking its isointensity path. This problem
remains unnoticed in Lifshitz and Pizer’s approach as they track the isointensity
path in the direction of steepest ascent, this will assign a non-extremum to a
single extremum path.

Same type Opposite type

Figure 3.4: A number of level surfaces through the extrema on an extremum path at
different scales is illustrated. Up until the scale at which a scale-space saddle (black
dot) occurs, all the level surfaces are dome shaped and contain only the extremum path
they belong to. Level surfaces between the scale of the scale-space saddle point and
annihilation (white dot) scale contain more than one extremum path.

Simmons et al. note that the segmentation performance of the extremum stack is
poor for elongated structures and that structures are often merged prematurely.
The isotropic Gaussian kernel quickly blurs away line structures. Since the im-
portance of segments is defined by the annihilation scale of the extremum, these
segments are assigned a very low importance. Segments belonging to extrema with
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high annihilation scales are not necessarily important. Extrema, originating from
noise, can go up to high scales in areas of equal gray value. This demonstrates
that the annihilation scale alone of an extremum is not a successful measure of
importance.

3.3 Hierarchical Segmentation from Scale-Space Saddles

Kuijper [75, 78, 76, 77] proposes to use the nesting of special level surfaces in the
scale-space representation of an image to build a hierarchy of critical points and
to create a pre-segmentation.

3.3.1 Scale-Space Saddles

Kuijper’s method focusses on scale-space critical points, these points are precisely
Koenderink’s ‘hitherto unnoticed singularities’ [65]. Scale-space critical points are
points with vanishing gradient with respect to both spatial and scale direction [65].

{ VL(x,t)=0 (3.1)

AL(x,t) = Li(x,t) = 0.

As discussed in Section 2.4.2, each critical curve contains branches representing
spatial critical points. These branches are connected at catastrophe points, where
two spatial critical points are annihilated or created. For two-dimensional images
the two branches connected at catastrophe points necessarily are a saddle branch
and an extremum branch. Kuijper uses this nomenclature in his work. Note that
the extremum branch is equivalent to Lifshitz and Pizer’s extremum path.

On an extremum branch the intensities change monotonically when scale is in-
creased. This implies that the scale-derivative L; will never change sign on the
extremum branch and thus will never reach the zero value. Intensities of saddle
points however do not change monotonically for increasing scale and scale-space
saddles can be found on the saddle branch. The number of scale-space saddles on
a saddle branch is undetermined; a saddle branch of a critical curve can contain
zero, one, or multiple scale-space saddles.
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3.3.2 Pre-Segmentation

Level lines in two-dimensional images are often referred to as isophotes. Generally
these isophotes are Jordan curves, i.e. they do not intersect one another, and they
are closed (if they do not end at the boundary of the image). Isophotes can inter-
sect themselves in a saddle point. As a consequence the image is separated into
regions bounded by the isophotes through these saddle points. This separation
can be extended to an arbitrary dimension.

Kuijper has extended this idea to the scale-space case, where the regions are
separated by level surfaces through scale-space saddle points.

The causality principle (Section 2.2.1) states that no new level lines can be created
when scale is increased. This implies that level surfaces in a scale-space represen-
tation have an open end towards the original (zero scale) image. As a result all
the level surfaces in a Gaussian scale-space representation are dome shaped.

Level surfaces through scale-space saddles have two typical shapes. Kuijper de-
fines the level surface, that intersects the extremum branch of the critical curve
on which the scale-space saddle is situated, to be the critical surface, the other
part of the level surface he calls the dual surface as illustrated in Figure 3.5.

dual surface dual surface

critical surface

scale scale critical surface

image

! ' image
E; S1 Es S1 Ex Es

Figure 3.5: Schematic drawing of the critical and dual surface through a scale-space
saddle (SSS). Where the critical curve is given by the extremum (solid line) and saddle
branch (dotted line) connecting extremum FE; to saddle Si. Left: the critical curves
involved belong to the same type of extremum. Right: the critical curves involved
belong to different types of extrema.

The shape of the level surface is determined by the type of the extrema that
intersect the tops of the level surface domes connected at the scale-space saddle.
The two types of level surfaces through scale-space saddles are illustrated in Fig-
ure 3.5 and Figure 3.6. If the critical curves involved both belong to the same
type of extremum (both maxima or both minima), the resulting level surface con-
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sists of two dome-like shapes positioned next to each other. If the critical curves
involved have opposite types of extrema, the resulting level surface consists of two
dome-like shapes where one is positioned within the other.

Same type Opposite type

Figure 3.6: Visualization of the level surface through a scale-space saddle (white dot).
Left: the critical curves involved belong to the same type of extremum. Right: the
critical curves involved belong to different types of extrema. The level surface has been
made partially transparent for visualization purposes.

Kuijper defines a scale-space segment as the part of a scale-space representation
that is bounded by the critical surface.

3.3.3 Scale-Space Hierarchy

As described in the previous section the level surfaces through scale-space saddles
define segments in the image. These segments contain at least one extremum. If a
segment contains more than one extremum it will contain subsegments. This in-
dicates that the segments through the scale-space saddles induce both a hierarchy
and a segmentation of the image.

The following algorithm, using the nesting of the level surfaces through scale-space
saddles, was proposed by Kuijper to define the scale-space hierarchy. Assuming
that the critical curves and scale-space saddles have already been located, the
algorithm follows the steps of Algorithm 1.
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Algorithm 1 Hierarchy from scale-space saddles

1: For each annihilating extremum, find its level surface through the scale-space saddle
(both the critical and dual surface), if no scale-space saddle is present take the saddle
on the saddle branch at the finest scale.

2: Label to each extremum branch the dual surface it intersects, sorted by intensity.

3: Start with the remaining extremum at the coarsest scale as the root of the hierar-
chical graph.

4: Follow the extremum branch to finer scale until it intersects a dual surface.

5: Split into two branches, one branch containing the existing extremum and one con-
taining the extremum that is assigned to the critical surface that belongs to the
intersected dual surface.

6: Continue these steps until all extrema are added to the graph (Figure 3.7).

3.3.4 Remarks
Missing Segments

The major drawback of the method presented by Kuijper is that for some scales
there are no segments defined for the extrema. This means that it is not a
genuinely coarse to fine method as demonstrated in Figure 3.8.

The problem arises from the fact that the critical part of the isointensity surface
through a scale-space saddle does not continue all the way up until the annihilation
scale, but ends on the extremum branch before the catastrophe takes place. This
means that for the image at scales between the top of the scale-space segment (the
critical part of the level surface) and the annihilation scale, there does exist a blob
caused by the extremum, yet there is no segment that belongs to it. Moreover
the segment is defined for scales below the scale-space saddle but for scales above
the scale-space saddle the segment is defined by the scale-space saddle that lives
at a finer scale. Therefore this method is not truly coarse to fine.

The pre-segmentation as proposed by Kuijper is topologically not correct for these
scales. This is an undesirable situation that should be taken care of in a neat,
principled way.

Critical Curves without Scale-Space Saddles

To identify a segment with an extremum in the problematic case where a critical
curve does not contain a scale-space saddle, Kuijper proposes to use the saddle
at the lowest scale on the considered critical curve. This is quite an arbitrary
choice. Why would this be a good choice, and if it is, why not take the saddles
at the lowest scale for every critical curve and just ignore the scale-space saddles
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Figure 3.7: Schematic drawing of Kuijper’s graph-building algorithm. Start from
extremum Fj3, the path is intersected by the dual surface Di. D; belongs to critical
surface C1 and C; belongs to extremum FE;. Therefore F; is a branch of E3. Fs intersects
dual surface D2, D3 belongs to C2 and C3 belongs to extremum FE3. Therefore Fs is a
branch of F3. The graph is shown on the right.

altogether?

3.4 Hierarchical Segmentation from Attraction Areas

Because of the shortcomings of the algorithms discussed in Section 3.2 and 3.3,
a new method is presented in this chapter. This new algorithm is based on a
so called attraction area and it combines the strong points from the previously
discussed methods by Lifshitz and Pizer [83] and Kuijper [75].

By definition the topology of all the isophotes within an attraction area is the
same, i.e. they all encircle a single extremum. One could say that such isophotes
are attracted to the extremum, hence the name attraction area.

The attraction area is similar to the support region of a greylevel blob as described
by Lindeberg [87].

3.4.1 The Definition of the Attraction Area

The attraction area is defined as the largest possible area around an extremum,
bounded by an isophote, that only encircles that extremum. This implies that
this is an isophote that originates from a saddle point in the image' as shown in

INote that the attraction area of an extremum does not have to originate from a saddle that
lies on the same critical curve.
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Figure 3.8: For a range of scales there is no segment defined for the extremum. For
the scales above the scale space saddle there is a non causal segment.

Figure 3.9.

Figure 3.9: Isointensity contours around two extrema, the largest isophote that sepa-
rates the two extrema is the isophote through the saddle. Larger isophotes encircle both
extrema.

The notion of an attraction area is meant to delimit ‘meaningful’ regions con-
taining only one extremum, but is not necessarily itself ‘meaningful’ (what is and
what is not depends on a user-defined model).
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3.4.2 Attraction Areas in Scale Space

Attraction areas are defined for every scale, they change form gradually through
scale, except when they are involved in creations or annihilations. Attraction areas
tend to become smaller through scale up until the point where they annihilate.
An attraction area can, after the annihilation of its extremum, be absorbed in the
remainder of the image (the part of the image that has no attraction area), in that
case the attraction area disappears as shown in Figure 3.10a. In the other case
it will be absorbed in the attraction area of another extremum. If an attraction
area is absorbed by another attraction area after its extremum annihilated, it will
suddenly change form. The remaining attraction area will contain the area where
the just annihilated extremum was located. This is demonstrated in Figure 3.10b.
When an extremum is created the same events can happen as demonstrated for
the annihilation case, but in opposite scale direction. An extremum can be created
out of the remainder of the image as shown in Figure 3.10c, or it can be created
out of an existing attraction area. In that case the attraction area will split in
two separate attraction areas, as demonstrated in Figure 3.10d.

®

Figure 3.10: Different changes in attraction areas after an extremum is annihilated or
created. Also the critical curves are drawn. (Illustration adapted from Lindeberg [87]).

Thus catastrophe scales are the only scales at which sudden form changes occur,
as opposed to Kuijper’s counterintuitive segments.

Attraction areas do not cover the image domain. In order to obtain a full covering
as well as a natural hierarchy one will have to introduce compound attraction
areas, containing more than one extremum, consistent with the unfolding of image
structure over scale. The elementary attraction areas discussed here pertain to
the leaves or single branches of a hierarchical graph at a fixed scale, whereas the
compound attraction areas would correspond to subgraphs.
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3.4.3 Scale-Space Hierarchy

The events illustrated in Figure 3.10 imply a certain hierarchy in scale space of the
attraction areas. Every attraction area in the image can be seen as a single branch
of the graph, and the remainder (the part of the image that has no attraction area)
as the root of the graph.

From the following rules the hierarchical tree can be built:

e An attraction area is connected to another attraction area if it, after the
annihilation of its extremum, is absorbed in that attraction area.

e An attraction area is connected to another attraction area if its extremum
is created from that attraction area.

e An attraction area is connected to the root of the graph if it, after the
annihilation of its extremum, is absorbed in the remainder of the image.

e An attraction area is connected to the root of the graph if its extremum is
created from the remainder of the image.

So the entire hierarchy is defined by events occurring at creations and annihila-
tions. Due to creations followed by annihilations the graph may contain closed
loops. An example in which a creation followed by an annihilation takes place is
the dumbbell example demonstrated in Figure 3.11 and 3.10.

(O W W e

Figure 3.11: a) A schematic drawing of a dumbbell image consisting of two blobs with
a bright ‘bridge’ in between them. b) After blurring, the middle extremum splits into
two extrema. ¢) When blurred even more these two merge again.

3.4.4 The Algorithm

An algorithm to find the pre-segmentation and the scale space hierarchy is easily
made using the theory of the previous sections. Assuming that the critical curves
have already been located, the algorithm could be described by the steps explained
in Algorithm 2.
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Figure 3.12: The critical curves and attraction areas of the dumbbell example from Fig-
ure 3.11. Through scale extremum Fj» is created from the remainder of the image and
later it annihilates again, resulting in a closed loop in the hierarchical graph shown on
the right.

Algorithm 2 top-point graph construction procedure

1: For every extremum find its attraction area just before it annihilates and look at the
attraction areas after its annihilation.

2: Start from coarse scale and use the remaining extremum as the root of the graph.

3: Link extrema to the root or to each other, depending on their behavior as illustrated
in Figure 3.10.

4: Continue these steps until the finest scale is reached.

Note that this algorithm is truly coarse-to-fine, unlike Kuijper’s algorithm, which
insists on finding scale-space saddles at lower scales.

3.4.5 Results

The algorithm using attraction areas for finding the multiscale hierarchy has been
implemented in Mathematica™. The results for a simple test image are shown
in Figure 3.13.
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Figure 3.13: a) The input image. b) The segments (attraction areas) at fine scale. The
extrema are numbered. c) The hierarchical graph represented by linking the extrema
paths. d) The resulting hierarchical graph.

3.4.6 Remarks

The attraction areas method does not have the problems that the previously
discussed methods (Section 3.2 and 3.3) had. The attraction areas for instance
exist up until the extrema they belong to annihilate. This means that the algo-
rithm is genuinely coarse-to-fine. This in contrast to the segments assigned to the
scale-space saddles in Kuijper’s approach which disappeared before reaching the
annihilation scale.

The algorithm can be implemented more easily and faster than the method pro-
posed by Kuijper, because the attraction areas don’t have to be calculated for
every scale, but only twice per annihilation (for a scale before and after the anni-
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hilation scale).

3.5 Other Hierarchical Segmentation Methods

Next to the afore mentioned methods, other algorithms exist that extract a multi-
scale hierarchical segmentation from the scale-space representation of an image.
The most popular one being the watershed segmentation [132], a multi-scale wa-
tershed algorithm using the gradient magnitude to define the watersheds is defined
by Fogh Olsen and Nielsen in [108]. This multi-scale watershed method gener-
ates a hierarchical segmentation and in [106] Fogh Olsen summarizes the possible
transitions generically occurring in this hierarchical tree representation. The wa-
tershed segmentation algorithm is truly coarse-to-fine.

Somchaipeng et al. [126, 127] have recently introduced yet another method for
generating a multi-scale hierarchy. This method uses energy maps to define a
linking scheme between top-points in scale space. The method however is very
slow and the complexity of the algorithm is exponential with the number of critical
points. This makes the algorithm unusable for images containing more than 7
critical points. In general most images contain thousands of critical points. This
means that in its current form Somchaipeng’s method is not applicable.

3.6 Using the Hierarchical Representation for Matching

Apart from image segmentation the previously described methods might be used
for image matching. A feasibility study on matching images using the hierarchical
representations of the previously described methods has been conducted. To
match hierarchical representations, a cost function has to be created that describes
the cost of transforming one hierarchical representation into another one. The
lower the cost, the more alike two representations are and thus the more alike the
two images are that are represented by the hierarchical representations.

Problems that arise in matching the hierarchical representations of images are
plenty. The biggest one being the sensitivity of the representation to change in
the image, like noise, different lighting and transformations. A small perturbation
of the image can already result in a cascade of changes in the hierarchical repre-
sentation of the image. These changes have to be modeled and a cost function
used for matching the representations has to be created. This cost function must
be able to handle these differences by assigning a low cost to changes caused by
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small perturbations of the image. On the other hand this cost function has to
assign high costs when something is structurally different in the image. The task
of creating such a cost function seems to be infeasible as it is unpredictable what
cascade of changes occurs when the image is perturbed.

By a thorough removal of unstable nodes from the hierarchical representation it
might be possible to obtain a certain robustness to small perturbations. However
more rigorous image changes like occlusion, re-lighting, contrast change and non-
scale-Euclidean transformations also have an unpredictable and far going impact
on the hierarchical representation.

These characteristics make it unfeasible to use the hierarchical representations
presented in this chapter for image matching.

3.7 Conclusion

A number of methods for generating a hierarchical graph embodying the sin-
gularities of the deep structure of an image have been discussed. The method
of Lifshitz and Pizer [83] has problems assigning segments to single extrema in
a topologically sound way. It appears that Lifshitz and Pizer have missed the
fact that the topology of the level surfaces through extrema on the extremum
path changes significantly when the intensity of a connected scale-space saddle is
passed. Also using the annihilation scale of a critical curve as a measure of impor-
tance of the segment assigned to the path is not correct. Unstable critical points
in flat areas in the image can go up to high scales. On the other side important,
but thin structures are blurred away at low scales, and thus are assigned a very
low importance.

The method suggested by Kuijper [75] yields a topology based hierarchy, but is
difficult to implement, not strictly coarse-to-fine and conceptually questionable.
The segmentation resulting from Kuijper’s algorithm is not complete, there are
scales at which extrema are apparent in the image, but have no segments assigned
to them.

To overcome the shortcomings of the two existing methods, a new method was
suggested. This new method uses attraction areas to define segments in the image
at different scales and to find a scale-space hierarchy. The proposed method has
none of the shortcomings of the discussed existing methods. The attraction areas
exist up until the extrema they belong to annihilate, in contrast to the segments
assigned to scale-space saddles that disappear before reaching the annihilation
scale. It however remains to be seen wether the new algorithm is free of other
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shortcomings.

Model knowledge has to be implemented in the hierarchical graphs eighter de-
terministically or probabilistically, to make the segmentation more usable. Much
still has to be investigated on this matter.

Using the hierarchical representations presented in this chapter for image match-
ing seems to be unfeasible as the representations are highly sensitive to small
perturbations in the image, occlusion, re-lighting, contrast change and non-scale-
Euclidean transformations. A small change in the image can result in a cascade of
changes in the hierarchical representation. Creating a cost function for matching
the representation, that can sensibly take into account these induced changes,
appears to be impossible. In the following chapters more robust image represen-
tations and matching algorithms, based on the deep structure of images, will be
discussed.
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4.1 Introduction

Previous research has shown that top-points (singular points in the scale-space
representation of generic images) have proven to be valuable sparse image descrip-
tors that can be used for image reconstruction [57, 104], image matching [58, 111]
and are potentially useful for motion extraction [32, 48]. In previous work, im-
ages were compared using a point matching scheme which took into account the
positions, scales, and differential properties of corresponding top-points [58, 57].
The underlying matching framework was based on the Earth Mover’s Distance, a
powerful, many-to-many point matching framework. However, treating the points
as an unstructured collection ignores the neighborhood structure that may exist
within a given scale or across scales. Grouping certain top-points together ex-
plicitly encodes the neighborhood structure of a point, effectively enriching the
information encoded at a point, information that can be exploited during both
indexing [122] and matching [123].

In this paper, an unstructured set of top-points is taken and a neighborhood
structure is imposed on them. Inspired by the methods described in the previous
chapter, the scale-space structure of a set of top-points is encoded in a directed
acyclic graph (DAG). Specifically, the position-based grouping of the top-points
provided by a Delaunay triangulation is combined with the scale-space ordering
of the top-points to yield a directed acyclic graph. This new representation allows
for the utilization of powerful graph matching algorithms to compare images rep-
resented in terms of top-point configurations, rather than using point matching
algorithms to compare sets of isolated top-points. The matching algorithm draws
on recent work in many-to-many graph matching [61, 15, 16], which reduces the
matching problem to that of computing a distribution-based distance measure
between embeddings of labeled graphs.

The new construction is described by first introducing top-points as anchor points
for the representation. Next, a measure for the stability of these top-points is in-
troduced that will be used to prune unstable top-points. Section 4.4 describes the
construction of the DAG through a Delaunay triangulation scheme. Section 4.5
proposes a scale-space distance measure. Section 4.6 reviews the many-to-many
DAG matching algorithm, which will be used to evaluate the construction. Sec-
tion 4.7 describes the experiments conducted on the new graph construction. The
first experiment examines the stability of the construction under Gaussian noise
of increasing magnitude applied to the original images. The second experiment
examines the invariance of the graph structure to within-class image deformation,
which may include minor displacements of points both within and across scales.
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4.2 Top-Points as Anchor Points

As explained in Section 2.4, top-points are points at which creation and annihila-
tion events take place. A top-point is a critical point at which the determinant of
the Hessian (i.e. the matrix of second order derivatives) degenerates (as discussed
in Section 2.4.1):

{ VL=0 (41)

det(H) = 0.

One way to obtain these top-points is by means of zero-crossings in scale space.
This involves derivatives up to second order and yields sub-pixel results. Other,
more elaborate methods, can be used to find or refine the top-point positions. For
details, the reader is referred to Section 2.4.3. In Figure 4.1, the critical paths
and their top-points are shown for a picture of a face.

Figure 4.1: Critical paths and top-points of a face.
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4.3 Stability by Structure

It is obvious that the positions of extrema at very fine scales are sensitive to
noise. This, in most cases, is not a problem. Most of these extrema are blurred
away at fine scales and won’t affect the matching scheme at slightly coarser scales.
However, problems do arise in areas in the image that consist of almost constant
intensity. One can imagine that the positions of the extrema (and as a result the
critical paths and top-points) are very sensitive to small perturbations in these
areas. These unstable critical paths and top-points can continue up to high scales
since there is no structure in the vicinity to interact with. This is why merely the
scale of an anchor point in scale-space cannot be a good measure of importance
or stability as often seen in literature. To account for these unstable top-points,
a measure of stability is needed, so that unstable points can either be given a low
weight in the matching scheme, or they can be disregarded completely.

A top-point is more stable in an area with a lot of structure. The amount of
structure contained in a spatial area around a top-point can be quantified by the
total (quadratic) variation (TV) norm over that area:
det 07 Jo [ Vu(x)[[*dV
Jodv

The TV-norm is calculated over a circular area 2 with radius Ao around a top-
point at position (x., t.).

TV(Q)

(4.2)

Q:x —x|* < N2 (4.3)
Note that the size of the circle depends on the scale o = /2t and on the dimen-

sionless scaling factor A, Figure 4.2.

To get rid of the arbitrary parameter A, consider a critical point u ( from here on
u(Xe, te) will be denoted as v and Einstein summation convention will be used for
simplicity). A spatial first-order Taylor series for the gradient w;(x) yields:

ui(x, t) = Ugy (X — Xc)j. (44)

Note that at a critical point the first order derivatives are zero. This result can
be used in the denominator of the TV-norm expression (4.2), yielding

o? / ui (X, t)u;(x,6)dV = O'Q’U,ij’u,ik/ (x — x.) (x — x.)Fdx.  (4.5)
Q [[x—xc]|2<A202

The r.h.s. of Equation (4.5) can be converted to polar coordinates using

1 _ 1

r =2x,+rcos¢
2 _ 2 :

x° =xi+rsing.
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Ao

Figure 4.2: Integration area around critical point x..

In polar coordinates Equation (4.5) can be written as

Ao 2w 2 .
2 3 [ cos” ¢ cos ¢ sin ¢
o2, /O /O , (COS e o )jkdrdqﬁ- (4.7)
Which simplifies to

Ao Ao
1
U2uij“ij ( g ?r ) / ridr = 7702%’]‘%']‘ {Zrﬂ = %)\406trace(H2). (4.8)
jk J0 0

The numerator of the TV-norm Equation (4.4) is defined by the area £ which

equals
/ dQ = wA\%o?. (4.9)
llzl|2<A202

The TV-norm (4.2) with substitution of Equations (4.8, 4.9) thus becomes:

2 OIVul|2dv 1
TV(\) = "fﬂf% = Vot trace(H?) + (ho.t.), (4.10)
Q

where h.o.t. stands for terms of O(A\?) and higher. From this the differential
TV-norm can be defined by the following limiting procedure:
t0 % lim 4TV () = ottrace(H?). (4.11)
A—0 A2
The proportionality factor 4 is irrelevant for our purposes and introduced merely
for convenience. The normalization factor 1/A? is needed prior to evaluation of the
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limit since TV (A\) = O(A\?). Equation (4.11) has been referred to by Koenderink as
deviation from flatness, which can indeed be seen to be the differential counterpart
of Equation (4.2). It is now possible to calculate a stability measure for a top-
point locally by using only its second order derivatives. This stability measure
can be used to weigh the importance of top-points in the matching scheme, or
to remove any unstable top-points by thresholding them on their stability value.
The latter is demonstrated in Figure 4.3.

(a) Stable paths

Figure 4.3: Spatial projection of critical paths of an MR brain scan image. The paths
are filtered by thresholding the stability measure (Equation (4.11)) of their top-points.
Most instabilities occur in flat regions, as expected.

4.4 Construction of the Graph

The goal of the proposed graph construction is two-fold. First, it has to encode
the neighborhood structure of a set of points, explicitly relating nearby points
to each other in a way that is invariant to minor perturbations in point loca-
tion. Moreover, when local neighborhood structure does indeed change, it is
essential that such changes will not affect the encoded structure elsewhere in the
graph (image). The Delaunay triangulation imposes a position-based neighbor-
hood structure with exactly these properties [113]. It represents a triangulation
of the points which is equivalent to the nerve of the cells in a Voronoi tessellation,
i.e. that triangulation of the convex hull of the points in the diagram in which
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every circumcircle of a triangle is an empty circle [105], Figure 4.4.

N ¢

correct wrong correct

Figure 4.4: The Delaunay triangulation has the property that the circumcircle of every
triangle does not contain any points of the triangulation.

Examples of a Delaunay triangulation and a Voronoi diagram are given in Fig-
ure 4.5. The edge set of the resulting graph will be based on the edges of the
triangulation.

The second goal is to capture the scale-space ordering of the points to yield a
directed acyclic graph, with coarser scale top-points directed to nearby finer scale
top-points.

Delaunay triangulatrion Voronoi diagram Delaunay and Voronoi

Figure 4.5: The Delaunay triangulation and Voronoi diagram of a small pointset.

The first step in constructing graph G is the detection of top-points and critical
paths as explained in Section 2.4.3. The root of G, denoted as vy, will correspond
to the single critical path that continues up to infinity; note that the top-point as-
sociated with this critical path lies at infinite scale 0., and in the center of gravity
of the image [91]. All other nodes in G, denoted as vs, ..., v,, correspond to the
detected top-points and their corresponding critical paths. v, ..., v, are ordered
in decreasing order of the scale at which they are detected, e.g., vo is detected at
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a coarser scale than v, for n > 2. As the Delaunay triangulation of the points
is built, the DAG is simultaneously constructed. Beginning with the root, v1, it
gives a singleton point in the Delaunay triangulation, and a corresponding single
node in G. Next, at the scale corresponding to vy, v1’s position is projected down
to vo’s level, and the ‘triangulation’ is recomputed. In this case, the ‘triangula-
tion’ yields an edge between v; and vs. Each new edge in the triangulation yields
a new edge in GG, directed from coarser top-points to finer top-points; in this case,
a directed edge in G is added from v; to vy. This process is continued with each
new top-point, first projecting all previous top-points to the new point’s level,
recomputing the triangulation, and using the triangulation to define new directed
edges in G. A summary of this procedure is presented in Algorithm 3.

The construction is illustrated for a simple image in Figure 4.6. In the top two
frames in the left figure, the transition in the triangulation from vy (point 2)
to vs (point 3) is shown; the root is annotated as point 1. In the upper right
frame, the triangulation consists of three edges; correspondingly, G has three
edges: (1,2),(1,3),(2,3), where (z,y) denotes an edge directed from node x to
node y. In the lower left figure, point 4 is added to the triangulation, and the
triangulation recomputed; correspondingly, edges (1,4), (2,4), (3,4) are added to
G (note that (1,2) is no longer in the triangulation, but remains in G). Finally,
in the lower right frame, point 5 is added, and the triangulation recomputed. The
new edges in the triangulation yield new edges in G: (2,5),(4,5),(1,5). The right
side of Figure 4.6 illustrates the resulting graph (note that the directions of the
edges are not shown). Figure 4.7 is the result of applying this construction to the
face of Figure 4.1.

Algorithm 3 top-point graph construction procedure

Detect the critical paths.
Extract the top-points from the critical paths.
Label the extremum path continuing up to infinity as v;.
Label the rest of the nodes (critical paths, together with their top-points) according
to the scale of their top-points from high scale to low as v, ..., Un.
For 1 = 2 to n evaluate node v;:
Trace the critical paths down to the scale of the considered node v;.
Calculate the 2D Delaunay triangulation of all the extrema at that scale.
All connections to v; in the triangulation are stored as directed edges in G.

4.5 Distance Measure in Scale Space

The distance between two points in scale space cannot simply be measured by the
FEuclidean distance. The scale-space representation of an N-dimensional image is
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Figure 4.6: The DAG obtained from applying Algorithm 3 to the critical paths and
top-points of the face in Figure 4.1.

not a simple Euclidean (N + 1)-dimensional space.

To handle this, Eberly [20] proposed a metric that depends on a parameter p > 0,
weighing the relative importance of spatial and scale measurements. The metric

is defined by:
N
dx? 1 do?
ds® = L 4.12

in which x; represent the spatial positions of a point in scale space and o repre-
sents the scale of the point. For simplicity only two-dimensional images will be
considered.

In order to define a distance S between two points (z1,y1,01) and (z2,y2,02),
a geodesic connecting these points has to be found. By following van Wijk et
al. [135] the distance S between two arbitrary points can be written as:

S=(ra—m1)/p

ri=In(/bZ2+1-0;), i=1,....,N

2 2 i,2p2
o5 —o7 — (—1)'p*R
=1,...,N 4.13
2<JipR ’ ’ ’ ( )

bi =

For two points exactly above each other (z1,y1) = (z2,¥2), S = |In(o2/01)|/p-
This metric can be used to measure distances between the vertices in the proposed
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Figure 4.7: Visualization of the DAG construction algorithm. Left: the Delaunay
triangulations at the scales of the nodes. Right: the resulting DAG (edge directions not
shown).

directed acyclic graph . However the introduced tunable parameter p(> 0), has to
be found experimentally (we use p = 0.7 as it was found to be the best performing
parameter in a set of experiments).

4.6 Overview of the Matching Algorithm

The matching algorithm is based on the metric-tree representation of labeled
graphs and their low-distortion embeddings into normed vector spaces via spher-
ical coding [15, 16, 17, 61]. The advantage of this embedding technique is that
it prescribes a single vector space into which both graphs are embedded. This
two-step transformation reduces the many-to-many matching problem to that of
computing a distribution-based distance measure between two such embeddings.
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To compute the distance between two sets of weighted vectors, a variation of
Earth Mover’s Distance under transformation sets is used. For two given graphs,
the algorithm provides an overall similarity (distance) measure.

4.6.1 Metric Embedding of a Graph

The problem of many-to-many graph matching has often been studied in the con-
text of edit-distance [90, 121], where one graph is transformed into the other by
a minimal set of re-labelings, additions, deletions, merges and splits of nodes and
edges. The edit-distance however has a number of drawbacks. 1) it is compu-
tationally expensive especially for graphs (polynomial time algorithms are only
available for trees); 2) the current tree-edit distance algorithms do not incorporate
edge weights; and 3) a meaningful cost of an edit operation is hard to obtain.

For the matching of the directed acyclic graphs proposed here a metric embedding
is used. Consider a mapping f : A — B, where A is a set of points in the original
metric space, with distance function D(.,.) and B is a set of points in the (host)
d-dimensional k-normed space ||.||. For any pair p,q € A it is given that

“D(p.0) < 1) - f()l| < Do, ) (114)

for a certain parameter ¢, known as the distortion. From Equation (4.14) it is
obvious that the closer c is to 1, the better the target set of points B mimics the
original set A.

The embedding of (A, D) in a k-normed space (B, ||.||x) simplifies problems defined
over difficult metric spaces to problems over easier normed spaces. The embedding
of the directed acyclic graph, resulting from Algorithm 3 on page 56, is described
in detail in [15, 16, 17, 61]. In short, the n x n distance matrix D, defined as the
shortest-path distance metric for the directed acyclic graph, is approximated by a
tree metric 7. This approximation or fitting problem is known as the numerical
tazonomy problem. The resulting metric tree 7 will in turn be encoded into a
Euclidean space of fixed dimensions by means of spherical coding [16, 17]. The
dimension of the target space has a direct effect on the quality of the embedding.
Specifically, as the dimensionality of the target space increases, the quality of
the embedding will improve. Still, there exists an asymptotic bound beyond
which increasing the dimensionality will no longer improve the quality of the
embedding [17] (see Figure 4.8).
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Figure 4.8: Trade-off between distortion and dimension. Increasing the dimensionality
of the embedding space will reduce the the distortion. However, this trend does not
continue indefinitely to produce isometric embeddings (image adopted from [17]).

4.6.2 Many-to-Many Distribution Based Matching

By embedding the directed acyclic graphs into a normed space, the problem of
many-to-many matching of graphs has been reduced to the problem of many-to-
many matching of weighted distributions of points in a normed space.

Given a pair of weighted distributions in the same normed space, the Earth
Mover’s Distance (EMD) [12, 116, 58, 15] framework is then applied to find an
optimal match between the distributions. The EMD transforms a given distance
measure between single features (the ground distance) to a distance measure for
distributions of features. The main advantage of the EMD is the fact that it can
handle many distances and allows partial matches in a natural way. This property
allows the EMD to deal with unequal clusters and noisy data sets.

The computation of the EMD is derived from the well-known transportation prob-
lem [1], also known as the Monge-Kantorovich problem [114], in which the optimal
value determines the minimum amount of ‘work’ required to transform one dis-
tribution into the other. This resembles the minimal amount of energy needed to
transport piles of earth from one site to fill up a set holes on another site, hence
the name ‘earth mover’s distance’ (Figure 4.9).
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Formally, let P = {(p1,wp,);- -, (DPm,Wp,,)} be the first distribution with m
points, and let Q = {(q1,wq,),-- -, (qn,wy, )} be the second distribution with
n points. Let D = d;; be the ground distance matrix, where d;; represents the
ground distance between points p; and g;. The objective is to find a flow matrix
F', describing the flow between points p; and ¢; that minimizes the overall work:

BMID(P Q) = S s (w.15)
i=1 2uj=1Jij

subject to the following list of constraints:

fij >0, 1<i<m, 1<j<n, (4.16)
> fiy Swp, 1<i<m, (4.17)
j=1

Zfijgw%v 1<j<n, (4.18)
=1

DD fiy=min | 3wy, wy, | (4.19)
i=1 j=1 i=1 j=1

Constraint (4.16) allows moving mass from P to ) and not vice versa. Constraint
(4.17) limits the amount of mass that can be sent by the clusters in P to their
weights. Constraint (4.18) limits the clusters in @ to receive no more mass than
their weights; and constraint (4.19) forces to move the maximum amount of mass
possible.

The optimal value of the objective function, EMD(P, @), defines the Earth Mover’s
Distance between the two distributions.

The standard EMD formulation assumes that the two distributions have been
aligned. However a translated and rotated version of a graph embedding is also
a graph embedding. To accommodate pairs of distributions that are not rigidly
embedded, Cohen and Guibas [12] extended the definition of the EMD, to allow
one of the sets to undergo a transformation. Their iterative process called ’an
optimal flow and an optimal transformation’ achieves a local minimum of the
objective function. More details on the computation of the optimal transformation
can be found in [15, 61].
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Figure 4.9: Illustration of the earth movers distance algorithm.

4.7 Experiments

To evaluate the robustness of the construction, the sensitivity of the construc-
tion to two types of perturbations is explored. The first is the sensitivity of the
construction to noise in the image, while the second is within-class deformation.
Experiments are conducted using a subset of the Olivetti Research Laboratory
face database. The database consists of faces of 20 people with 10 faces per per-
son, for a total of 200 images; each image in the database is 112 x 92 pixels. The
face images are in frontal view and differ by various factors such as gender, facial
expression, hair style, and presence or absence of glasses. A representative view of
each face is shown in Figure 4.11. Invariance of a graph to noise or within-class de-
formation requires a measure of graph distance, so that the distance between the
original and perturbed graphs can be computed. For the experiments reported
here, this distance is computed using the many-to-many graph matching algo-
rithm explained in Section 4.6.1. Note that the developed algorithm is a general
algorithm and is in no way specifically designed for face recognition. Therefore
it has not been compared to state-of-the-art face recognition algorithms. These
experiments are presented only as a proof of concept.

4.7.1 Graph Stability under Additive Noise

To test the robustness of the graph construction, the stability of the graphs is
examined under additive Gaussian noise at different signal levels applied to the
original face images. For this experiment, the database consists of the original
200 unperturbed images, while the query set consists of noise-perturbed versions
of the database images. Specifically, for each of the 200 images in the database, a
set of query image was created by adding 1%, 2%, 4%, 8%, and 16% of Gaussian
noise. Next, the similarity between each query (perturbed database image) and
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Figure 4.10: For a given face, first its DAG is created according to Section 4.4 (Create
DAG). After this each vertex of the DAG is embedded into a vector space of prescribed
dimensionality using a deterministic spherical coding (Embed DAG). Finally, the dis-
tance between the two distributions is calculated by the modified Earth Mover’s Distance
under transformation.

each image in the database was computed. The trial is scored as correct if its
distance to the face from which it was perturbed is minimal across all database
images. This amounts to 40,000 similarity measurements for each noise level, for
a total of 200,000 similarity measurements. The results show that the recognition
rate decreases down to 96.5%, 93%, 87%, 83.5%, and 74% for 1%, 2%, 4%, 8%, and
16% of Gaussian noise, respectively. These results indicate a graceful degradation
of graph structure with increasing noise.

4.7.2 Graph Stability under Within-Class Variation

To test the stability of the graph construction to within-class variation (e.g., dif-
ferent views of the same face), first the faces in the database are grouped by
individual; these will represent our categories. Next, the first image (face) from
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each group is removed (the query) and compared to all remaining database im-
ages. The image is then put back in the database, and the procedure is repeated
with the second image from each group, etc., until all 10 face images of each of the
20 individuals have been used as a query. If the graph representation is invariant
to within-class deformation, resulting from different viewpoints, illumination con-
ditions, presence/absence of glasses, etc., then a query from one individual should
match closest to another image from the same individual, rather than an image
from another individual. The results are summarized in Table 1 of Figure 4.12.

The magnitudes of the distances are denoted by shades of gray, with black and
white representing the smallest and largest distances, respectively. Due to sym-
metry, only the lower half of distance matrix is presented. Intra-object distances,
shown along the main diagonal, are very close to zero.

To better understand the differences in the recognition rates for different people,
a subset of the matching results was randomly selected among three people in
the database, as shown in Table 2, Figure 4.12. Here, the (7, j)-th entry shows
the actual distance between face i and face j. It is important to note that the
distance between two faces of the same person is smaller than that of different
people, as is the case for all query faces. In the experiments, one of the objectives
was to see how various factors, such as the presence or absence of glasses, affects
the matching results for a single person. Accordingly, a set of images was taken
from the database of one person, and the distances have been calculated for
each image in this set. The results show that images with the same factors (e.g.
wearing glasses or not wearing glasses) are more similar to each other than to
others. Table 3 of Figure 4.12 presents a subset of the results. As can be seen
from the table, images of the same person with glasses (images 1 and 4) are more
similar than those of the same person with and without glasses (images 2 and 3).
Still, in terms of categorical matching, the closest face always belongs to the same
person. Although these results are encouraging, further evaluation on a larger
database needs to be investigated to be more conclusive.

4.8 Conclusions

Imposing neighborhood structure on a set of points yields a graph, for which
powerful indexing and matching algorithms exist. In this chapter, a method for
imposing neighborhood structure on a set of scale-space top-points was presented.
Drawing on the Delaunay triangulation of a set of points, a graph was constructed
whose edges are directed from top points at coarser scales to nearby top-points
at finer scales. The resulting construction is stable to noise, and within-class
variability, as reflected in a set of directed acyclic graph matching experiments.
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The results clearly indicate that the graph perturbation due to within-class de-
formation, including facial expression changes, illumination change, and the pres-
ence/absence of glasses is small compared to the graph distance between different
classes.

The experiments are however conducted on a database of images which contains
little real life object pose variations. The graph construction has to be tested, and
made robust against, non-scale Euclidean transformations like affine or projective
transformations. More research has also to be done on the effect occlusion and re-
lighting (brightness, contrast and lighting changes) have on the graph construction
and thus on the matching results.
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Figure 4.11: The Olivetti Research Laboratories face database.
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Figure 4.12: Distances in the figure are denoted by numbers and by gray values. The
darker the lower the distance. Table 1: Matching results of 20 people. The rows repre-
sent the queries and the columns represent the database faces (query and database sets
are non-intersecting). Each row represents the matching results for the set of 10 query
faces corresponding to a single individual matched against the entire database. The
intensity of the table entries indicates matching results, with black representing max-
imum similarity between two faces and white representing minimum similarity. Table
2: Subset of the matching results with the pairwise distances shown. Table 3: Effect of
presence or absence of glasses in the matching for the same person. The results clearly
indicate that the graph perturbation due to within-class deformation, including facial
expression changes, illumination change, and the presence/absence of glasses is small
compared to the graph distance between different classes.
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Interest Points for Image Matching
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70 5.1 Introduction

5.1 Introduction

In most image matching, tracking and recognition applications, a set of local
features of an image are computed. These features contain local information
of the image. Information that preferably does not change when the considered
image or object is transformed, corrupted by noise or slightly re-lighted (meaning a
difference in brightness, contrast and/or overall lighting conditions). To calculate
such a set of characteristic features, a set of characteristic points in the image is
needed. These characteristic points are called interest points.

These interest points should be as invariant as possible under changes of the image
or object in the image. In the case of object retrieval for example, the object to
be retrieved could be rotated, scaled, exposed to different lighting conditions or
affected by some noise. In the case of group transformations, the set of interest
points in the scene image should be transformed in the same way as the object
is transformed in the scene. Noise and re-lighting should change the locations of
the interest points as little as possible.

There exist many different interest-point detectors. Schmid et al. [119] give an
extensive overview of different types of detectors and test their so-called repeata-
bility. In this chapter three interest-point detectors are reviewed: the Harris
detector, which scores best in the comparison of Schmid et al.; the SIFT interest-
point detector by Lowe [92, 94], probably the most widely used feature detector
algorithm in image matching and object retrieval nowadays; and new interest
points based catastrophe theory, the top-points.

5.2 Harris Detector

In 1988 Harris & Stephens [40] introduced an interest-point detector which is still
very popular in image matching, tracking and recognition applications. Their
approach is based on the second moment matrix.

The non linear and dimensionless second moment matrix is often used for feature
detection or description of local image structures. This matrix is defined by

L3(x,0p) LiLy(x,0p)

2
= 5.1
ux,01,0p) = opg(or) * L,L,(x,0p) Li(x,oD) (5.1)

for two-dimensional signals/images.

The second moment matrix u(x,oy,0p) describes the gradient distribution in a
local neighborhood of a point. The gradient derivatives are determined by a local
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scale op, referred to as the derivation scale. The derivatives are averaged in the
neighborhood of the point by smoothing with a Gaussian window of size oy, the
integration scale. If both eigenvalues of the second moment matrix, «, 3, are
small the windowed image region is of approximately constant intensity. If one
eigenvalue is large and the other is small, the local image patch is ridge or edge
shaped. If both eigenvalues are large, this indicates a corner in the local image
patch. Harris & Stephens [40] use this property to extract points for which both
eigenvalues are significant. They consider a measure they call the corner response

defined as:

R(x,07,0p) = det(u(x,07,0p)) — ytrace*(u(x, o1, 0p)). (5.2)

where ~ is a tunable parameter. Harris and Stephens use trace(u(x,or,0p)) and
det(u(x,07,0p)) to avoid the explicit eigenvalue decomposition of the second
moment matrix u(x,oy,0p). Since

trace(u(x,07,0p)) = a+
det(u(x,01,0p)) = ap. (5.3)

The corner response R is positive in corner regions, negative in edge regions and
small in flat regions. The well known and widely used interest-point detector,
named the Harris detector [40] is based on the maxima of this corner response.
The effect of the corner response operation and the Harris detector are shown in
Figure 5.1.
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Mathematica™ Implementation
The following module calculates the values of the second moment matrix (Eq&
tion (5.1)) for each image pixel (ie. a list {L2, Ly Ly, L2} is returned).
secondmomentmatrix[image_, 61_, 6D_]:=Module[{},

tl = %oI%tD = %O'D2;

Lx = GaussianDerivative[{tD, 1}, {tD, 0}][image];

Ly = GaussianDerivative[{tD, 0}, {tD, 1}][image];

windowedLxLx = GaussianDerivative[{tI, 0}, {tI,0}] [Lx?] ;

windowedLyLy = GaussianDerivative[{tI, 0}, {tI,0}] [Ly?] ;

windowedLxLy = GaussianDerivative[{tI, 0}, {tI, 0}][LxLy];

Map|Partition[#, 2]&, 612 * Transpose[{windowedLxLx, windowedLxLy,

windowedLxLy, windowedLyLy}, {3, 1, 2}], {2}]];

A set of parameters has to be defined. Note that the image size is 500 x 376 pixels.
ol=3; oD=0.706I; -~ =0.06;
The second moment matrix is calculated by
1 = secondmomentmatrix[image, o1, 6DJ;
The determinant and trace of the second moment matrix can be calculated
detp = Map(Det[#]&, p, {2}];
tracey = Map(Tr(#]&, u, {2}];
Finally the corner response R (Equation (5.2)) can be calculated

Q: detp — v tracep?; /

5.2.1 Harris-Laplace Detector

The original Harris interest-point detector operates at a single image scale. Miko-
lajczyk and Schmid [98] proposed an extension to the Harris detector to make it
scale invariant. They named their new approach the Harris-Laplace detector.

Their approach consist of two steps: a multi-scale point detection and an iterative
selection of scale and location. In the first step a scale-space representation is built
for the corner response function (Equation (5.2)) for pre-selected scales o, =
&"og, where & is the scale factor between successive levels (set to 1.4 according to
[89, 92]). At each level of the representation the interest points, detected as the
local maxima of the corner response, are extracted with an experimentally chosen
value of v = 0.06. A threshold is used to reject the maxima with a small corner
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Figure 5.1: Illustration of the corner response of an image as defined in Equation (5.2)
and calculated as demonstrated in the Mathematica implementation box. The corre-
sponding maxima of the corner response, known as the Harris points, are plotted on the
right.

response, as they are less stable under variations in imaging conditions. Since
the second moment matrix p(x, oy, op) depends on two scales, the derivation and
integration scale, Mikolajczyk and Schmid propose to calculate it using

Of = 0p

Op = S0, (5.4)

where s is set to 0.7. In the second step they use an iterative algorithm that
simultaneously detects the location and scale of interest points. This algorithm
uses extrema of the absolute value of the scalenormalized Laplacian-of-Gaussian
(LoG) to select the scale of the interest points. The LoG is defined as:

LoG(x,0,) = 02V?L, (5.5)

Where L is short for L(x,0,) = g(x,0,) * [(x), the image I at scale o,. Points
for which the LoG response attains no extremum and for which the response is
below a threshold are rejected. For an initial point x with scale o, the iteration
steps are described in Algorithm 4. Their approach results in a set of interest
points in scale space that are spatial maxima of the corner response and extrema
in scale of the Laplacian-of-Gaussian function. A typical set of Harris-Laplace
points of an image is shown in Figure 5.2.
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Algorithm 4 Harris-Laplace detector

(%) otherwise reject

1: Find the local extremum over scale of the LoG for point x
the point. The investigated range of scales is limited to oft! = tol®) with
te[0.7,...,14].

2: Detect the spatial location x
x® for the selected okt

3: Goto Step 1 if ot £ oF or xF+1D) £ x(*)

(k+1) of a maximum of the Harris measure nearest to

5.2.2 Stability

The only measure of stability that is used for the original Harris detector is the
value of the corner response function (Equation (5.2)). The higher this value the
more the point is said to be ‘stable’ against variations in the image. For this
reason a threshold is set on the corner response function to filter out unstable
Harris points [40]. For the Harris-Laplace detector the value of the Laplacian-of-
Gaussian (Equation (5.5)) is also taken as a measure of stability for the interest
points in scale space. In this case a second threshold is used to filter out interest
points with a low Laplacian-of-Gaussian response [98, 100].

5.2.3 Remarks

The Harris detector is still very popular in methods that require interest points
(like matching, tracking, motion estimation, etc.), but do not require scale in-
variance. If scale invariance is required the Harris-Laplace approach might be
considered. According to Mikolajczyk and Schmid, the Harris-Laplace approach
provides a compact and representative set of interest points in scale space, which is
competitive with state-of-the-art detectors [98, 100]. However the approach con-
tains a great number of tunable parameters, thresholds and assumptions. Tunable
parameters as vy of the corner response Equation (5.2) and s to relate op to oy
in Equation (5.4) have to be set experimentally. Thresholds to ignore ‘instable’
interest points, set for the corner response and the Laplacian-of-Gaussian, are
chosen from experience. The scale step £ for constructing the initial scale-space
representation and t for the iterative approach, are also chosen from experience
or duplicated from documented values from others. After setting these parame-
ters to ‘appropriate’ values the algorithm appears to perform well. Defining these
parameters however can be a tedious and exhaustive task which has to be done
separately for each application that is going to use the Harris-Laplace detector.
The type of images used, as well as the rendering details, can affect settings as
well.
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Figure 5.2: A set of Harris-Laplace points for a magazine cover image.

5.3 SIFT interest-point detector

The Scale Invariant Feature Transform (SIFT) proposed by Lowe [92, 94] is an
algorithm to transform image data into scale-invariant coordinates relative to
local features. The SIFT is nowadays perhaps the most frequently used image
descriptor due to its stability and calculation speed. In this section the interest
points used for the SIFT are discussed.

The location of scale-space extrema of the scale-normalized Laplacian-of-Gaussian
(Equation (5.5)), as studied by Lindeberg [87] have shown to be useful interest
points [95]. Lowe uses the Difference-of-Gaussian (DoG) function to approxi-
mate the scale-normalized Laplacian-of-Gaussian (Equation (5.5)). The DoG can
be calculated as the difference of two nearby scales separated by a constant mul-
tiplicative factor k:

DoG(x,0) = L(x, ko) — L(x,0). (5.6)

The approximation is used simply for its calculation speed. Apart from this
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approximation a pyramid like approach (Section 2.3) is used to further speed up
the interest point detection process. The interest points defined as local extrema
of the scale-space representation of the DoG function are detected by simply
comparing a pixel to its 26 neighbors in the representation (Figure 5.3). If all
neighbors have a value lower or higher than the central pixel, this pixel is marked
as an interest point.

T scale

\

vy

Figure 5.3: Extrema in the scale-space representation of the Difference-of-Gaussian
images are detected by comparing a pixel (marked with x) to its 26 neighbors in a 3 x 3
pixel region at the current and adjacent scales (marked with gray).

A typical set of SIFT interest points of an image is shown in Figure 5.4.

5.3.1 Detection versus Localization

The initial implementation of Lowe’s approach [92] simply located the interest
points at the location and scale of the detected extrema as previously explained.
However in Brown and Lowe [10] a method for refining the discrete location of the
interest points is proposed. Brown and Lowe use the same method as described
in Section 2.4.4; they use a Taylor expansion (up to quadratic terms) of the
Difference-of-Gaussian function DoG(x, ), shifted so that the origin is at the
sample point:

DoG(x + %) = DoG(x) + VDoG(x) - X (5.7)

Brown suggests that the derivatives of DoG are approximated by using differences
of neighboring sample points.
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Figure 5.4: A set of SIFT interest points for a magazine cover image.

5.3.2 Stability

Without further information interest points for which |DoG(x)| is less than 0.03
are discarded in Lowe’s algorithm [94]. The value of |DoG(x)| approximates the
absolute value | Ly, + Ly, | which in some sense describes the second order structure
in a point. A threshold on this value will discard interest points in regions with
low contrast.

Next to rejecting interest points with low contrast the SIFT algorithm also re-
jects interest points on edges. The DoG response along edges is strong, even if
the location of an interest point along the edge is poorly determined and thus
unstable to small perturbations. Such an interest point will have a large principle
curvature across the edge, but a small one perpendicular to the edge. The princi-
ple curvatures of the DoG response can be computed from the Hessian matrix H,
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computed at the scale of the interest point:

DoGgz DoGyy

H= DoGgy DoGy,y

(5.8)

Where the derivatives in Lowe’s algorithm are again estimated by taking the
differences of neighboring sample points. The eigenvalues of H are proportional
to the principle curvatures of DoG. By using the rules of Equation (5.3) it can
be avoided to calculate the eigenvalues directly. Let a be the eigenvalue with
the largest magnitude and 3 be the smallest one. Let r be the ratio between the
largest and the smallest eigenvalue r = /3. Then,

trace(H) (a+p6)>  (rB+0)?  (r+1)?
det(H) - aﬁ - 7“52 - r ) (59)

which depends only on the ratio of the eigenvalues rather than their individual
values. The quantity (r + 1)2/r is at a minimum when the two eigenvalues are
equal and it increases with . Therefore to check if the ratio of principle curvatures
is below some threshold ¢ = «;/f; it suffices to check

trace(H)  (t+1)2
det(H) ¢

(5.10)

5.3.3 Remarks

The SIFT interest-point detector is currently the most commonly used scale-
invariant interest-point detector. Not only due to its fast calculation speed and
the availability of libraries and source code of the software, but also due to its
excellent performance. In detailed experimental comparisons [95] it was found
that the extrema of the scale-normalized LoG (Equation (5.5)) produce the most
stable interest points compared to a range of other possible image functions, such
as the gradient, Hessian and Harris-Laplace detector. The detector by Lowe,
based on the DoG function, yields approximately the same results as the LoG
detector.

It is surprising that simply taking the differences of neighboring sample points
suffices for taking derivatives up to even third order. One would expect that this
would lead to accuracy problems in the derivatives.

Due to its popularity and performance, the SIFT interest-point detector is the
best algorithm to compare our own interest-point detector with.
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5.4 Top-Points

Top-points are based on scale space and catastrophe theory (Section 2.4.1), and
are invariant under gray value scaling and offset as well as scale-Euclidean trans-
formations. The noise behavior of top-points can be described in closed-form,
which enables the accurate prediction of the stability of the points [47, 6]. It is
possible to retrieve the exact location of a top-point from any coarse estimation
through a closed-form vector equation which only depends on local derivatives in
the estimated point [33]. All these properties make top-points highly suitable as
interest points for invariant matching schemes.

Top-points can for instance can be found from the original image, but any scalar
differential entity, e.g. the Laplacian can be used as input for the top-point de-
tection algorithm. The input for our algorithm will be referred to as u(x).

A top-point is a critical point in the scale-space representation of the input u(x),
for which the determinant of the Hessian becomes zero. A top-point of a two-
dimensional input function is thus defined as a point for which

Uy = 0,
Uy = 0, (5.11)
UgzUyy — uiy = 0.

A typical set of top-points of an image is shown in Figure 5.5.

Note that the extrema of the normalized Laplacean scale space as introduced by
Lindeberg [86], and used by Lowe [94] in his SIFT interest-point detector (Section
5.3), lie on the critical paths of the Laplacean image. Multiple of such extrema
may exist on the extremum branch of a critical path, whereas there is only one
top-point per annihilating extremum/saddle pair, Figure 5.6.

5.4.1 Detection versus Localization

Critical paths are detected by following critical points through scale. Top-points
are found as points on the critical paths with horizontal tangents. A number of
detection algorithms have been discussed in Section 2.4.3.

This method for finding critical points operates at pixel precision. For a criti-
cal point x. the detector obtains an approximate location x,. Recall from Sec-
tion 2.4.4 that the sub-pixel location x. of a critical point can be found such that
(5.11) holds to any desired precision. Florack and Kuiper [33] have shown that it
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Figure 5.5: A set of top-points for a magazine cover image.

is possible to calculate a vector pointing to the location of a non-Morse critical
point from a point sufficiently close by. If (24,¥a,ts) denotes the approximate
location of a top-point it is possible to find the true location of the top-point
Xe = (Ta + &, Ya +1,ta +7) by:

¢ -1 g
n|=-M [ detH ] ; (5.12)
-
where
H w
M = [ I e } , (5.13)
g=Vu, H=Vg, w=20g, z= VdetH, ¢ = d;detH, (5.14)

in which all derivatives are taken in the point (24, Yq, ta)-
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Figure 5.6: A set of critical paths with corresponding top-points (dark bullets), and
extrema of the normalized Laplacian (light bullets).

For the two dimensional image case, the matrix M can be constructed by using:

p— [ um
g= L, ] , (5.15)
H=| Yo Yoy ] , (5.16)
| Uzy Uyy
[ Ugzr + Uz yy
w = , 5.17
| Uzzy T Uyyy ] ( )
_ [ UggrUyy + UggUgyy — 2uzyuz1‘y
7 — 5.18
| UzayUyy + UzaUyyy — 2Uaylayy ( )

¢ = (Uzzza + Uzzyy) Uyy + (Uyyyy + Usayy) Uzz — 2 (Uszey + Uayyy) Uzy.  (5.19)

With this result the exact location of a top-point can be calculated from local
differential information at an estimate location of a top-point. This will also
prove useful for stability analysis in the next sections.
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5.4.2 Propagation of Errors in Scale Space

Given a set of measurements in scale space © € R™ it is possible to calculate the
propagation of errors in a function f(z) : R® — R™ if the measurements are
perturbed with additive noise N € R™.

In this section, the rules are discussed for the determination of the precision
or reliability of a compound ‘measurement’ f in terms of the precision of each
constituent x;. This subject is known as the propagation of errors [109).

Suppose that derived property f is related to measured properties x1, ..., x, by
the functional relation

f=flz1,...,zn) (5.20)

The function is assumed to be sufficiently regular.

Suppose that all x,...,x, are random and possibly correlated between each
other. In this case the propagation of the variance of f can be approximated as

(f(@1,.. @) — (&1, ey Tn ZZ i) ‘9f — T xj — Z;), (5.21)

690690
=1 j=1 v J

where all derivatives are calculated for the mean vector (Z1,...,...%,).

5.4.3 Noise Propagation for Top-Point Displacement

An analysis of how noise added to an image propagates to the location of top-
points can be made from the previously discussed theory. For the top-point dis-
placement given in Equation (5.12), the random variables (z1,...,2,) of Equa-
tion (5.21) are the derivatives of the noise term (Ng, Ny, Nyg, ..., Nyyyy) and the
computed ‘measurement’ f is a vector of displacements

[€(Nzy - Nyyyy), 1(Nay s Nyyyy), T(Nag, - - vNyyyy)]T

in scale space. This is the vector from Section 5.4.1, pointing to the exact location
of a top-point, that depends on derivatives up to forth order.

The mean vector (N1,..., N,) is zero, therefore the mean displacement is zero as
well B B B
5 f(jyl;;]Yn) 0
n|l=1nN,....,No) | =10 ]. (5.22)
T T(Nl,...,Nn) 0
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Since the actual image v is obtained by adding noise N to the fiducial image wu,
i.e. v =u+ N, for every i
fa _ 0fa
8N1- B (9’01'-

(5.23)

The following equation describes how the perturbation affects f, using Einstein
summation convention for repeated indices:

Ifa
fa(v) = falu) = dfy = Fos N (5.24)
vg v=u
The covariance matrix of the displacement vector f(Ng, ..., Nyyyy) = [€,1,7]7T,
can be calculated by:
fa fﬁ
0fa,0f5) = =—=—(N,N¢). 5.25
< f fﬁ> av’y av<< v <> ( )
The momentum Mglmmyynmny =< Nm,,m,Nn,n, > of Gaussian derivatives of

correlated noise, in case for which the spatial noise correlation distance 7 is much
smaller than scale ¢, is given by [47]

- 1 T (matmy+nz+ny)
M'rQnI,my,nI,ny ~ N2 > ( ) ( ) Qmm—i-anmy-i-nya (526)

2t) \ 4t
where
1 ifn=0
. 0 2 4 6
- 0 f n odd i
Qn ifno °g& o 113 15 (5.27)

T12(2i —1) if nis even

For simplicity 7 = 1/2 is taken, note that this is just a factor in the momentum. In
this case Gaussian derivatives of the first and the second order have the following
correlation matrix:

V%) (5.28)

C = ((N;N;))ij = (4t0)3”

_— o Ww oo
o= O OO
w o =o o

where (N1,...,N5) = (N, Ny, Npg, Ngy, Nyy). A similar matrix can be derived
up to any order by using Equation (5.26), but is not written here as it would be
too big.
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5.4.4 Stability

The stability of a top-point can now expressed by a covariance matrix of spatial
and scale displacements induced by additive noise. Since top-points are generic
entities in scale space, they cannot vanish or appear when the image is only
slightly perturbed. It is assumed that the noise variance is ‘sufficiently small’
in the sense that the induced dislocation of a top-point can be investigated by
means of a perturbative approach. It can be shown that the displacement depends
on derivatives up to fourth order evaluated at the top-point, and on the noise
variance. For more detailed formulas (and experimental verifications) the reader
is referred to [6].

The advantage of this approach is that variances of scale-space displacements
can be predicted theoretically and in analytically closed-form on the basis of
the local differential structure at a given top-point, cf. Figure 5.7 for a schematic
illustration. The ability to predict the motion of top-points under noise is valuable
when matching noisy data (e.g. one may want to disregard highly instable top-
points altogether).

A threshold on the stability could be set for example on the determinant of the
covariance matrix of the displacements or each eigenvalue of the covariance matrix
could be analyzed separately.

5.5 Experiments

5.5.1 Database

For the experiments a data set containing transformed versions of 12 different
magazine covers (Figure 5.8) is used. The covers contain a variety of objects and
text. The data set contains rotated, zoomed and noisy versions of these magazine
covers as well as images with perspective transformations. For all transformations
the ground truth is known, which enables us to verify the performance of different
algorithms on the database. Mikolajczyk’s data set used in [98, 99] is not suitable
for our purposes, as we require ground truth for genuine group transformations
not confounded with other sources of image changes, such as changes in field of
view. To our knowledge Mikolajczyk’s data set does not provide this.
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Figure 5.7: The ellipses at the top-points schematically represent the variances of the
scale-space displacement of each top-point under additive noise of known variance.

5.5.2 Repeatability

Schmid et al. [119] introduced the so-called repeatability criterion to evaluate
the stability and accuracy of interest points and interest-point detectors. The
repeatability rate for an interest-point detector on a given pair of images is com-
puted as the ratio between the number of correct point-to-point correspondences
and the minimum number of interest points detected in the images (x100%).

If the interest point in the perturbed image has moved less than a distance of
€ pixels away from the position where it would be expected when following the
transformation, the point is marked as a repeatable point (typically e = 2 pixels).

Experiments show the repeatability of top-points under image rotation (Fig-
ure 5.9) and additive Gaussian noise (Figure 5.10). Image rotation causes some
top-points to be lost or created due to the resampling of the image. In the Gaus-
sian noise experiment we demonstrate that by using the stability variances de-
scribed in Section 5.4.4 the repeatability of the top-points can be increased. The
top-points are ordered on their stability variances. From this list 100%, 50% and
30% of the most stable top-points are selected for the repeatability experiment re-
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Figure 5.8: A selection of data set images. From left to right: unchanged, rotated,
added noise, scaled, changed perspective.

spectively. The stability is calculated as the determinant of the covariance matrix
for top-point stability (Equation 5.25). From Figure 5.10 it is apparent that dis-
carding instable points increases the repeatability significantly. The repeatability
of the top-point detector is compared to that of the SIFT interest-point detector.
In Figure 5.10 can be seen that when we apply a threshold on our stability mea-
sure (the SIFT keypoints have already been thresholded on stability as explained
in Section 5.3.2) we slightly outperform the SIFT interest-point detector for the
noise case. Both algorithms perform worst for a rotation of 45 degrees. On the av-
erage taken over the entire database of 45 degree rotated images the repeatability
of the SIFT interest points is 78%. Our top-point interest-point detector showed
a repeatability rate of 85% when thresholded on stability. The high repeatability
rate of the top-points enables us to match images under any angle of rotation and
under high levels of noise.
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Figure 5.9: The repeatability rate of the top-points for different angles of rotation for
different e.
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Figure 5.10: The repeatability rate of the top-points and SIFT interest points for
additive Gaussian noise expressed in signal to noise ratio. By selecting 100%, 50% or
30% of the most stable points the repeatability is increased.

5.6 Summary and Conclusions

The most popular interest point detectors such as the Harris detector and the Scale
Invariant Feature Transform (SIFT) are heavily based on tunable parameters and
thresholds. These parameters vary for different images. It is unclear how most
of these parameters are affected by the image properties, the other parameters
and the algorithm. These parameters are in practice set by choosing the best
parameters for a training set of experiments. This means that these parameters
are valid only for images like the ones in the training set. For different types of
images the parameters have to be trained on new training sets.

To overcome the cumbersome task of tuning the parameters for the interest point
detectors, a new type of interest point, the top-point, has been introduced. These
top-points are highly invariant interest points, suitable for image matching. Top-
points are versatile as they can be calculated for every generic function of the
image.

From their definition, it is apparent that top-points are invariant under gray value
scaling and offset. Next to this the top-points are also invariant to scale-Euclidean
transformations (rotation, scaling, translation).

The top-points however are in theory not invariant to affine or projective trans-
formations just like the interest-point detectors mentioned earlier, but in practice
they show to be fairly robust to small affine or projective transformations. The
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behavior of all before mentioned interest points under large affine or projective
transformations however is unpredictable.

The sensitivity of top-points to additive noise can be predicted analytically, which
is useful when matching noisy images. Top-point localization does not have to
be very accurate, since it is possible to refine its position using local differential
image structure. This enables fast detection, without losing the exact location of
the top-point.

The repeatability of the top-points has proven to be better than the widely used
SIFT interest points in a set of experiments. In the next chapter more comparisons
will be made with regard to the SIFT performance.



Things should be as simple as possible, but not simpler.

Albert Einstein (1879-1955)

Neighborhood Descriptors for Image Matching

This chapter is partly based on:

B. Platel, E.G. Balmachnova, L.M.J. Florack, and B.M. ter Haar
Romeny, Top-Points as Interest Points for Image Matching. In Eu-
ropean Conference on Computer Vision (ECCV), pages 418-429, 2006
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6.1 Introduction

For image matching purposes a set of points of interest, as discussed in the previ-
ous chapter, is insufficient by itself. Distinct information has to be added to these
points. This extra information assigned to each interest point is referred to as a
descriptor.

Local photometric descriptors computed for interest regions have proven to be
particularly useful in applications as wide baseline matching [118; 138, 131], object
recognition [7, 92, 115, 17], texture recognition [79, 80], image retrieval [58, 111],
robot localization [120], video data mining [125], building panorama’s [11] and
object class recognition [21, 96].

In this chapter the Scale Invariant Feature Transform (SIFT) descriptor will be
discussed and compared to the more mathematically founded differential invariant
descriptor. Many more local descriptors exist, for an extensive overview and
evaluation of local descriptor, the interested reader is referred to Mikolajczyk and
Schmid [99].

In a set of experiments the performance of top-points together with the differential
invariant descriptors are demonstrated and compared to the performance of the
SIFT algorithm.

6.2 SIFT Descriptor

The most popular and widely used algorithm for the extraction of interest points
and local descriptors is the Scale Invariant Feature Transform (SIFT) by Lowe [92,
94]. Lowe’s algorithm not only finds the interest points discussed in Section 5.3,
but also computes a local descriptor for each interest point. This descriptor will
be discussed here in detail. In short, Lowe’s algorithm measures local gradients
in a region around each interest point. These gradients are transformed into a
representation that is robust to significant levels of local shape distortion and
change in illumination.

6.2.1 Descriptor Orientation

To make a descriptor rotation invariant it has to be aligned with a certain ori-
entation obtained in the interest point. At the location of an interest point a
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distinctive orientation can be calculated, e.g. by calculating the gradient angle
0(z,y) = tan~*(L,/Ly). (6.1)

For which the derivatives L, and L, are calculated at the scale and location of
the interest point. Lowe proposes ‘a more stable method’ for defining one or
multiple orientations to an interest point. He forms an orientation histogram
from the gradient orientations of sample points in a square region around the
interest point (as illustrated in Figure 6.1). The size of the square region in which
the gradient orientations are calculated is dependent on the scale of the interest
point. The orientation histogram has 36 bins covering the 360 degree range of
orientations. Every sample that is added to the histogram is weighted by its

gradient magnitude
m(x,y) = /L2 + L2 (6.2)

and by a Gaussian-weighted circular window with a standard deviation that is
1.5 times the scale of the interest point (Figure 6.1). Peaks in this orientation
histogram correspond to dominant directions of local gradients (Figure 6.2). The
highest peak in the histogram is detected and for any other peak that is within
80% of the highest peak, a new interest point with that orientation is created.
Therefore, for locations with multiple peaks of similar magnitude, multiple in-
terest points will be created at the same location and scale, but with different
orientations. According to Lowe about 15% of the interest points are assigned
multiple orientations and these extra orientations are said to contribute signifi-
cantly to the stability of the matching algorithm. The location of the histogram
peaks are found with more precision by interpolation of the histogram.
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Figure 6.1: In a region around the interest point (center dot) gradient orientations are
computed and weighted with their gradient magnitude and a Gaussian window.
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Figure 6.2: The gradient orientation histogram for the interest point of Figure 6.1.

6.2.2 Descriptor Representation

Figure 6.3 illustrates the computation of the interest point descriptor. First the
gradient orientations and magnitudes are sampled in a region around the interest
point (Figure 6.3a). This region is oriented in the direction of the angle calculated
in the previous section. The gradient angles in the region are made rotation
invariant by subtracting the interest point orientation (Figure 6.3b).

The gradient magnitudes in the sample points are used as a weighting function
of the gradient angles in the region around the interest point. Then a Gaussian
weighting function with a standard deviation of 1.5 times the scale of the interest
point is applied in the same manner as in Figure 6.1. The purpose of this Gaussian
window according to Lowe is to avoid sudden changes in the descriptor with small
changes in the position of the window, and to give less emphasis to gradients that
are far away from the center of the descriptor (Figure 6.3c).

The weighted gradient angles are accumulated into orientation histograms, sum-
marizing the contents over 4 x 4 subregions. The orientation histograms have eight
orientation bins (Figure 6.3d). To avoid boundary affects in which the descriptor
abruptly changes as a sample shifts smoothly from being within one histogram to
another, Lowe uses interpolation over the samples.
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Figure 6.3: a) In an oriented region around the interest point, gradient orientations
are computed. b) The gradient angles in the region are made rotation invariant by
subtracting the interest point orientation. c¢) The gradient magnitudes and a Gaussian
window are used as weights for the gradient angles. d) The weighted gradient angles
are accumulated into orientation histograms, summarizing the contents over 4 x 4 sub-
regions. The figure shows eight directions for each histogram with the length of a line
corresponding to the weight of each histogram entry. Note that this figure shows a 2 x 2
descriptor array computed for an 8 x 8 set of samples. In Lowe’s article 4 x 4 descriptors
are calculated from a 16 x 16 sample array.

The interest point descriptor is formed from a vector containing the values of all
the orientation histogram entries, corresponding to the lengths of the lines in the
histograms of Figure 6.3d. The figure shows a 2x 2 array of orientation histograms,
whereas in Lowe’s article [92] he shows that a 4 x 4 array of histograms with 8
orientation bins each, achieves the best results for matching purposes. Therefore
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the SIFT interest point descriptor is a 4 x 4 x 8 = 128 element feature vector.

This 128 element feature vector is modified to reduce the effects of illumination
change. First the vector is normalized to unit length. A change in image contrast
in which each pixel value is multiplied by a constant will multiply gradients by
the same constant, so this contrast change will be cancelled by the vector nor-
malization. A brightness change in which a constant is added to each image pixel
will not affect the gradient values as they are computed as derivatives (or pixel
differences in Lowe’s case).

To avoid problems with camera saturation or other large changes in relative mag-
nitudes for some gradients, the influence of large gradient magnitudes are reduced
by thresholding the values in the unit feature vector. Values larger than 0.2 are
chopped to 0.2 after which the vector is renormalized. The value of 0.2 was
determined experimentally [94].

6.2.3 Adaptations of the SIFT Algorithm

Ke and Sukthankar [59] ‘improved’ the SIFT descriptor by applying Principle
Component Analysis (PCA) to the normalized gradient patch. They named their
descriptor PCA-SIF'T and demonstrate in a small set of experiments that their
descriptor is more distinctive, more compact (36 features instead of 128) and
more robust to image deformations than the standard SIFT descriptor. Their
method has to be trained however for a specific type of images. Mikolajczyk and
Schmid [99] introduced the Gradient Location-Orientation Histogram (GLOH),
another adaptation of the SIFT descriptor. They compute the SIFT descriptor
on a log-polar grid with three bins in radial direction (the radius set to 6, 11, 15)
and 8 in angular direction, resulting in 17 bins. The center bin is not divided
in angular regions. The gradient orientations are quantized in 16 bins, yielding
a 272 bin histogram. The size of this descriptor is reduced with PCA. For their
method, a training set is used to estimate the covariance matrix for the PCA. In
their article they show superior performance of their GLOH descriptor over the
SIFT and PCA-SIFT descriptor.

6.2.4 Distance Measure

The dissimilarity between the SIFT, PCA-SIFT and GLOH descriptors is calcu-
lated by using the Euclidean distance on the feature vectors, as suggested by the
authors [94, 59, 99].
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6.2.5 Remarks

In 2003 the SIFT descriptor was found to be the best performing descriptor com-
pared to steerable filters, differential invariants, moment invariants and cross-
correlation for different types of interest points, in an article by Mikolajczyk and
Schmid [97]. Lowe has a US patent on his method at the University of British
Columbia [93]. The popularity of the SIFT algorithm is not only due to its perfor-
mance and speed, but also the availability of implementations in many program-
ming languages has lead to its wide spread acceptation. The newer descriptors
like PCA-SIFT and GLOH seem to be able to improve the performance of the
original descriptor, but still use the same machinery.

Even though the SIF'T descriptor has been found to be robust and very distinctive,
it contains many assumptions and experimentally set thresholds and values. The
amount of samples, histograms and histogram bins are experimentally defined.
The Gaussian weighting function is arbitrarily set to 1.5 times the scale of the
interest point. Thresholds and cut off values for the histograms are experimentally
set and all the derivatives are found by simply taking pixel differences of sample
values in Lowe’s pyramid-like approximation of the scale-space representation of
the image (Section 2.3).

6.3 Differential Invariant Descriptors

To avoid the large number of ‘ad hoc’ parameters set in popular descriptors, a
more fundamental approach is taken in this section. By using well defined image
derivatives at the location of an interest point an approximation is made of the
point’s neighborhood.

The properties of local derivatives (local jet) were investigated by Koenderink and
van Doorn [68]. Florack et al. [27, 28, 29, 30] derived differential invariants, which
combine components of the local jet to obtain rotation invariance.

The simple and mathematically nice nature makes the differential invariants the
preferred choice of interest point descriptors. Since the mathematics behind them
is well known it will be possible to calculate a sensible distance between the
descriptors.

The performance of the differential invariants was the worst among many other
local descriptors in Mikolajczyk and Schmid’s performance evaluation paper [99].
We conjecture that Mikolajczyk and Schmid’s implementation and definition of
the differential invariants, together with an experimentally defined distance mea-
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sure might have lead to their bad evaluation results. In Section 6.4.3 it is shown
that for similar experiments as the ones Mikolajczyk and Schmid used, but incor-
porating a new dissimilarity measure, the differential invariants out perform the
SIFT descriptors.

6.3.1 Descriptor Representation

As interest point descriptor, irreducible differential invariants up to third order
will be used, as thoroughly described by Florack [28, 29]. The differential invari-
ants are invariant to rigid transformations. By suitable scaling and normalization,
invariance to spatial zooming and intensity scaling is obtained as well, but the re-
sulting system has the property that most low order invariants vanish identically
at the top-points of the original (zeroth order) image, and thus do not qualify as
distinctive features. Thus when considering top-points of the original image other
distinctive features will have to be used. In Chapter 4 the embedding of a graph
connecting top-points is used as a descriptor. This proved to be a suitable way
of describing the global relationship between top-points of the original image. In
this chapter the Laplacian of the input function is used as input for our top-point
detector. This results in a detector that is focussed on blob-like structures, like
the Laplacian-of-Gaussian interest point detectors used in the SIFT descriptor.
For top-points of the Laplacean image the following set of equations holds:

Oz Au = Ugze + Uzyy = 0,

OyAu = Uggy + Uyyy = 0,

det H(Au) = (Uswws + Usayy) (Uzzyy + Uyyyy) — (Uazzy + “zyyy)2 = 0.
(6.3)

Where u(x,0) represents the original image. For this case the non-trivial, scaled
and normalized differential invariants up to third order are collected into the
column vector given by (6.4), again using summation convention:

o\/Uitii/u
o/ Uiy
o2uijug [ ukug
Juiuijuj/(ukuk)g/Q
o2 ugjpuiugug/ (uug)?
02Ukt | (Ut )

Where ¢ is the Levi-Civita or permutation tensor defined as
0, if any two labels are the same

ghiz-in — 1, ifiy,d0,...,4x is an even permutation of 1,2,3 (6.5)
—1, if 4y,49,...,in is an odd permutation of 1,2, 3.
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Note that the derivatives are extracted from the original, zeroth order image, but
evaluated at the location of the top-points of the image Laplacian. This is, in
particular, why the gradient magnitude in the denominator poses no difficulties,
as it is generically nonzero at a top-point of the image Laplacian.

The resulting differential feature vector guarantees manifest invariance under the
scale-Euclidean spatial transformation group, and under linear gray value rescal-
ings.

The normalization proposed in (6.4) may cause instabilities if close to a ‘non-
generic’ point where Vu ~ 0 (in addition to Equation (6.3)). This however will
most likely occur in ‘unstable’ top-points, since the lack of differential structure
indicates a flat area around the interest point. This implies that these top-points
anyway do not contribute to the matching, as they will be discarded based on
their lack of stability.

6.3.2 Dissimilarity Measure in the Descriptor Space

To compare features of different interest points, a distance or dissimilarity measure
is needed. The most often used measures in literature are the FEuclidean and
Mahalanobis distance. If xo and x are two points from the same distribution
which has covariance matrix X, then the Mahalanobis distance is given by

d(xg,%x) = \/(xfxo)Tzfl(xfx()) (6.6)

and is equal to the Euclidean distance if the covariance matrix X is the identity
matrix. The advantage of the Mahalanobis distance is that it can be used to
measure distances in non-Euclidean spaces. The drawbacks however are that the
covariance matrix has to be derived by using a large training set of images, and
that the covariance matrix is the same for every measurement.

By using the perturbative approach from Section 5.4.2 and using the set of dif-
ferential invariants, a covariance matrix can be calculated for each interest point
descriptor separately as follows. Given a set of measurements in scale space
u € R™ the propagation of errors in a function f : R™ — R™ can be calculated,
if the measurements are perturbed with noise N, v = u + N € R". The follow-
ing equation describes how the perturbation affects f, using Einstein summation
convention for repeated indices:

fa(v) = fa(u) = dfs = % ) N (6.7)

u

The covariance matrix of f can be expressed as:
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9fa 0fs
< O0fodfg >= =——=—= < N,N¢ > 6.8
f fﬁ av’y 8v< v4V¢ ( )
Where the invariants are used for functions f, and the set up to third order
derivatives as vg.

The noise matrix < N, N, > is given in Section 5.4.3 Equation (5.26).

This makes it possible to use the Mahalanobis distance (6.6) to calculate the
dissimilarity between two feature vectors using the covariance matrix 3y, derived
specifically for the descriptor ko, where d(ko, k) close to zero means very similar,
and d(ko, k) > 0 very dissimilar. Note that this makes the dissimilarity measure
asymmetric: d(ko,k) # d(k, ko). This however does not pose problems since we
are only matching unidirectionally, viz. object to scene.

6.3.3 Remarks

The differential invariants up to third order give a six valued descriptor vector.
Compared to the 128 valued descriptor of the SIFT algorithm this is a very small
amount. The algorithm uses Gaussian derivatives, no window functions and the
dissimilarity measure is derived from the behavior of the differential invariants
under noise.

6.4 Experiments

6.4.1 Receiver Operator Characteristics

For the performance evaluation of the dissimilarity measure a similar criterion
as the one used in [99] is used. This criterion is based on Receiver Operating
Characteristics (ROC) of True Positive Rate (TPR) versus False Positive Rate
(FPR). Two points are said to be similar if the distance between their feature
vectors is below a threshold ¢. The value of ¢ is varied to obtain the ROC curves.

Given two images representing the same object the TPR is the number of correctly
matched points with respect to the number of possible matches.

TPR — #correct matches

6.9
#possible matches (6.9)

A possible match is a match for which the dissimilarity or distance between the
descriptors is below a threshold ¢. The condition for calling a match correct is
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the same as in Section 5.5.2; if the interest point in the perturbed image has
moved less than a distance of € pixels away from the position where it would be
expected when following the transformation, the point is marked as a repeatable
point (typically € = 2 pixels).

The FPR as defined in [99] is calculated as:

#incorrect matches

FPR =
(#object points)(#scene points)

(6.10)

where the object is the original image and the scene a transformed version of the
original image (e.g. Figure 6.4).

Figure 6.4: Examples of the transformations used in the experiments, from left to right:
the original image, 45 degree rotated, added Gaussian noise, perspectively transformed

6.4.2 Performance of the Dissimilarity Measure

To evaluate the performance of the dissimilarity measure defined in Section 6.3.2,
ROC curves have been generated for a set of experiments. For comparison ROC
curves for the Mahalanobis and Euclidean distance measures are plotted. The
covariance matrix for the Mahalanobis distance was obtained by training on the
data set itself, so that it may be regarded ‘optimal’ in the sense that no better
results are likely to be obtained in practice when using a different training set.
In Figure 6.5 the mean ROC curves for three experiments are shown (the ROC
curves are averaged over the 12 magazine cover experiments). In experiment a.
the images in the database are matched to a 50% scaled down version of the
same images. In experiment b. the images in the database are matched to noisy
versions of the same images. In experiment c. the images in the database are
matched to the 45 degree rotated versions of the same images (e.g. Figure 6.4).
In all the experiments it is obvious that the new dissimilarity measure greatly
improves the performance of the matching algorithm.
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6.4.3 Performance of the Descriptors

To evaluate the performance of the differential invariant descriptors defined in
Section 6.3 ROC curves have been calculated for a similar set of experiments. For
comparison ROC curves of the SIFT algorithm are plotted, these are generated by
using the authors own publicly available program. The SIFT descriptor consist of
a 128 feature long vector containing information about the gradient angles in the
neighborhood of the interest points. The experiments in Figure 6.6 show superior
performance of the differential invariant descriptor over the SIFT descriptor. The
difference becomes even more evident if only stable top-points are used as interest
points. Note that the used SIFT algorithm automatically filters unstable interest
points as described in Section 5.3.2.

In a different set of experiments the performance of both algorithms has been
tested under perspective change. For small perspective changes the differential
invariants in the top-points perform slightly better than the SIFT algorithm.
However this performance decreases for larger perspective changes. The SIFT
detector outperforms the differential invariants in this case. This is probably due
to the higher order information used in the differential invariants which is more
affected by perspective or affine changes than the first order information used in
the SIFT descriptor.

6.5 Summary and Conclusions

As descriptors for our interest points we use a feature vector consisting of only
six normalized and scaled differential invariants.

A dissimilarity measure was derived based on the noise behavior of the differen-
tial invariant features. This measure significantly increases performance over the
popular Mahalanobis and Euclidean distance measures.

For scale-Euclidean transformations as well as additive Gaussian noise our algo-
rithm (6 features in vector) has proven to outperform the SIFT (128 features
in vector) approach. However for large perspective changes the SIFT algorithm
performs better probably due to the lower order derivatives used for the feature
vector.
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Figure 6.5: a. mean ROC curve for 50% scaling. b. mean ROC curve for 5% additive
Gaussian noise. c. mean ROC curve for 45 degree rotation.
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Figure 6.6: a. ROC curve for 45 degree rotation. b. ROC curve for 5% additive
Gaussian noise.
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Science is facts; just as houses are made of stones, so is sci-
ence made of facts; but a pile of stones is not a house and a

collection of facts is not necessarily science.

Henri Poincaré (1854-1912)

Object Location and Pose Retrieval
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7.1 Introduction

In this chapter the previously discussed interest points (Chapter 5) and detectors
(Chapter 6) are used for the task of ‘object location and pose retrieval’. The
task is to obtain the location and pose of an object contained in a scene image
(Figure 7.1). This is done by matching the interest points and descriptors of an
image of the query object to the interest points and descriptors of an image of a
scene.

Scene

Figure 7.1: The transformation the object in the scene has undergone with respect to
the query object is denoted as ‘trans.’. The task of an ‘object location and pose retrieval’
algorithm is to find this transformation.

The complete algorithm is summarized a flowchart (Figure 7.2) and it will be
explained step by step in this chapter.

7.2 Matching Features

For both the query object image and the scene image the interest points to-
gether with their descriptors are calculated. In each feature, the location of
the interest point (x,y,o), the gradient angle at the location of the interest
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Figure 7.2: Flowchart describing the complete ‘object location and pose retrieval’
algorithm.

point 6(z,y,0) = tan~'(L,/L,), and the descriptor information (fi, f2,..., fn)
is stored as illustrated in Figure 7.3. Note that 6 is well defined for interest points
where VL # 0. For interest points where VL = 0 another intrinsic angle could
be used, e.g. the orientation of annihilation, but this occurs so rarely in stable
interest points that it can therefore be ignored.

To retrieve the location of the object in the scene, the features of the query object
image have to be matched to the features of the scene image. This is done by ex-
haustively calculating the dissimilarity or distance between all object features and
all scene features. For the SIFT, PCA-SIFT and GLOH descriptors (Section 6.2),
the distance between descriptors is calculated by simply taking the Euclidean
distance between each object descriptor (f3, f%,- .., f2,) and each scene descrip-
tor (f#, fias ..., fi,). For our differential invariant descriptor (Section 6.3) the
dissimilarity measure

d(f°,£°) = /(f — o) TR (= — fo) (7.1)
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Figure 7.3: The interest points (positions on the critical paths) and features, detected
for a query image and a scene image containing the object.

is used as described in Section 6.3.2. Recall that the covariance matrix ¥ in (7.1)
is calculated analytically for each descriptor by considering the propagation of
noise in the differential invariants [9, 5].

By setting a threshold on the dissimilarity, a set of matches between object and
scene features can be found. Note that since a threshold is set on the dissimilarity
measure, the feature match is not necessarily one to one, but can also be one to
none or one to many.

Another possible way of finding matches is to consider all the possible matches to
avoid having to set an arbitrary threshold. The drawback of this is that the num-
ber of matches to be considered is very large. Images generally contain thousands
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of features, which means that there would be millions of matches to consider. To
avoid this large amount of data, the n best (most similar) matching scene features
are considered per object feature. If the number of times the object is expected
in the scene is known, n can be set accordingly. Otherwise an upper bound has
to be set on the amount of times an object is expected in a scene. The number of
times the object is contained in the scene can then later be estimated as explained
in Section 7.4.1. Figure 7.4 illustrates the 100 ‘best’ matches for a simple object
retrieval task.

Figure 7.4: The 100 matches with shorted distances for a simple object retrieval task.
The features of the query object on the left match to the features of two identical objects
in the scene on the right.

7.3 Obtaining Pose Coordinates

Every object feature that has been matched to a scene feature is stored as a pair.
For simplicity let’s assume feature f© matches to scene feature f5. Then both
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features combined form the following feature pair

X X
y° y°
o° o’
0° 0° (7.2)
17 i
Ll L

Note that in the coordinates (x°,y°,0°,0°) and (z°,y*, 0%, 6°) refer to different
bases in the object and scene respectively. The pose of an object in a scene can be
described by a transformation. At this stage one single point match is considered
and a scale-Euclidean transformation is retrieved. This means that such a point
match describes a translation (Az, Ay), a scaling A and a rotation Af.

From the information contained in the pair of matched features (7.2) the pose
coordinates (Ax, Ay, A, Af) can be extracted in three steps. In step 1 the scaling
factor X is obtained as A = 0°/0°. In step 2 the rotation A6 is found by taking
the difference between the gradient angles #° and 6°. In step 3 the translation
(Az, Ay) is obtained such that correspondence in spatial position is obtained, i.e.

(2%, 4%) = (A(z° cos A — y°sin Af) — Az, A(z° sin Af + y° cos Af) — Ay). (7.3)

Note that the first two steps commute and can be combined, but the third step
does not commute with the previous steps and must therefore be carried out after
steps one and two.

The result is a set of coordinates (Az, Ay, A, Af) for each object-scene feature
pair. These coordinates describe points in a 4-dimensional space. This space
will be referred to as the pose space, as points in this space contain information
on the pose of the object in the scene. Note however that these 4 parameters
only approximate the full pose for a 3D object and also do not account for any
non-rigid transformations.

Each point in pose space is weighted with a weight that is dependent on the
distance between the matched features that made this point. Assume point x
in pose space originated from features f° and f®, then it’s weight is defined as
wy = 1/d(f°,£%) where d(f°,f®) is defined in Equation (7.1). It is assumed
that the distance between stable features d(f°, f3) is never exactly zero. In this
way weak point correspondences will have less influence on the inferred global
correspondence as will be discussed in the next section.
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7.4 Clustering in Pose Space

As explained in the previous section, each matching object-scene feature pair
yields a point in pose space which contains information about the transformation
an object in the scene has undergone with respect to the image of the query object.
Due to noise, re-lighting, transformations other than scale-Euclidean and miss-
matches, these points are not nicely centered but are spread out in pose space.
This typically results in one or more clusters in this 4-dimensional space around
the locations that describe the pose of the object in the scene. The number of
clusters depends on the number of times an object appears in the scene. Since
the data is clustered in pose space, an algorithm has to be used to identify these
clusters.

In the case of the SIFT algorithm, Lowe [92, 94] uses a Hough transform [43, 4] to
identify possible clusters in pose space. In his algorithm the pose-space is divided
into very broad bins. The orientation bin is 30 degrees wide, the scale bins have
width of factor 2 and the location bins have a width of 0.25 times the training
image dimension. The Hough transform is used to identify clusters with at least 3
entries in a bin. This gives many false responses and needs careful post-processing
of the results to eliminate false poses.

Therefore a different method for clustering in pose space is proposed. This method
is more sophisticated and less prone to give false responses. The method presented
in this chapter uses the Ezpectation Mazimization (EM) algorithm [18] to find the
clusters.

7.4.1 Identifying the Number of Clusters

Knowing the number of clusters is necessary for the initialization of the proposed
clustering algorithms. For some applications the number of object matches in the
scene will be known beforehand, but for many other applications the number of
times the query object appears in the scene is unknown.

A method for finding the number of clusters is introduced here. In Section 7.3
it was mentioned that by setting an upper bound n on the number of times an
object is expected in a scene, an arbitrary threshold on the dissimilarity measure
could be avoided. This implies that for each object feature, the n best (most
similar) matches are found and stored together with their weight. Thus for all N
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object features the following data is stored:

ObjeCt feature 1 {(‘T%a ’LU;I )a (‘T%a ’LU;Z), ’ (:Cna ’LU;” )}
object feature 2 {(2%,w2 ), (23,w2)), , (22, wgn)

(7.4)
object feature N {(z,wl), (22, wl), ..., (z, wl)}

Where z is the pose space point (Ax, Ay, A, Af) and w, is the weight of the point
and where x1, ..., 2, are sorted such that (w;, > wy, > ... > wy,).

The algorithm for finding the number of clusters uses the data as described in
Algorithm 5.

Algorithm 5 Find number of clusters

Take the p highest first weights wg, .

Calculate Y%, wfcl and store the result

Take the p highest first plus second weights wz, + Wz,
Calculate % > wfvl + w;2 and store the result ro

Take the p highest weights >°7_ | wa,

Calculate % LD D w?  and store the result 7,
=1ZLaj= J
Calculate ¢; =7, —rig1 fori=1,...,n—1

Now find argmax;(¢;), the solution corresponds to the number of clusters.

7.4.2 Expectation Maximization

The EM algorithm is an algorithm for finding maximum likelihood estimates of
parameters in probabilistic models, where the model depends on so-called unob-
served latent variables. EM iteratively alternates between performing an expec-
tation (E) step, which computes the expected value of the latent variables, and a
maximization (M) step, which computes the maximum likelihood estimates of the
parameters given the data and setting the latent variables to their expectation.

The assumption is made that the clusters in pose space together with the outliers
can be modeled as samples drawn from a mixture of Gaussian distributions, a so
called Gaussian Mizture Model (GMM), combined with a constant distribution to
model outliers. Let C = {cy,..., ¢} be the set of Gaussian mixture labels, where
k is the number of mixture components and let b denote the uniform distribution
that models the outliers. The mixture model is a parametric family of functions
that is completely described by the parameter vector ®. The goal is to estimate



7.4 Clustering in Pose Space 113

the parameter vectors @ for which the posterior probability distribution P(®|X)
is maximized. In the case of clustering in pose space X = {z; € RY;t =1,...,T},
where each x; represents a point in pose space which is weighted with a weight
w, as explained in Section 7.3.

According to Bayes rule the probability of the parameter vector for the mixtures
@ given the found pose space samples X can be expressed as
P(X|®)P(®)
PX)

The estimation of parameters is independent of the evidence probability P(X),
since it is the same for all parameters. The a postiory estimation needs knowledge
about the a priori distribution P(®) of the parameters. Since no assumptions can
be made about the a priori distribution of the parameters, it is assumed that all
parameters occur with the same likelihood. In this case the optimization reduces
to the maximization of the likelihood of P(X|®). The maximum likelihood (ML)
estimation of the parameters is: ® = argmaxg P(X|®).

P(®|X) = (7.5)

For the exact derivation of the expectation maximization algorithm the reader
is referred to e.g. [18, 41, 136], for the case considered here the algorithm works
as follows. First the algorithm has to be initialized with an initial guess per
mixture. Each Gaussian mixture is defined by its weight w,, its location p, and
its covariance matrix that defines its shape ¥.. So for each Gaussian mixture:

We
.= p. |. (7.6)
=,
and for the uniform distribution modeling the outliers only a weight is set ®; = wy,.
In the Expectation step a membership function h,. for all x € X and ¢ € C is
calculated which defines the membership of a sample x to a mixture c.
For the Gaussian mixtures
P(x|c,®0))P(x|®))
P(x)
e Ae—u?)T(E0) x—pl?)
472/ det(Egj)) (7 8)
ng) e%(x—uﬁj))T(Eﬁj))*l(X—ug)) o .

k
2ie=1 4x2/det(=9))

and for the uniform distribution modeling the outliers
P(x|b, ) P(x|®))
P(x)
wp

= . —— : : 7.10
S el )T EO) end) 4y, o

=1 4r24/det (=)

hzc =

hmb =
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After calculating the membership functions hy. and hgp new parameters ®+1)
are calculated in the Maximization step as follows:

. 1
) = ——— h (7.11)
UJC wa xrc .
ZXEX We XGZ)(
G+ _ 1
wy = = Wy P (7.12)
ZXGX We xezx
1 Zz wzhzc X
ugj-i-l) = ﬁ (7.13)
xeX Wxltzc
2(]+1) — ZXEX wmhmc(x - IJ’C)(X - I‘I’(,)T (7 14)
‘ > oxex Wehae '

The E and M step are iterated until convergence of the log-likelihood is reached.
The log-likelihood gives a measure on the fit of the data to the proposed mixture
model.

L(X, h|®) =
k
Z (Z (hmc log(wﬁ) - %(X — ) (Be) T (x — Mc)> + hab log(wb)>

(7.15)

The EM algorithm maximizes the log-likelihood each iteration. After a number
of iterations the log-likelihood does not change anymore and the EM algorithm
has converged to a local ‘best fit’.

Since the EM algorithm converges to a local maximum of the log-likelihood func-
tion, it is dependent on a ‘good’ initialization of the parameters ®. Especially
the mean of the Gaussian mixtures p, has to be initialized accurately. The EM
algorithm is run for a number of initializations of the parameters ® and the re-
sult that yields the highest log-likelihood is chosen as the best model for our pose
data. The initial guess of the location of the mixtures will be found by means of
a simple and fast k-medians clustering algorithm as explained in Section 7.4.4.

7.4.3 Normalizing the Pose Space

To be able to identify clusters without having to adjust parameters for every
image size the pose space is normalized. The angle dimensions are bounded by

(—m < Af < ).

The maximum and minimum scaling factor A have to be set manually. These
parameters depend on the application in which the matching algorithm is used.
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For the purposes in this chapter the maximum and minimum scaling factors are
set as
(0.2 <A <5).

This means that matches can be found for objects in the scene that range in
scale from 5 times smaller to 5 times larger than the query object. The spatial
dimension Az is bounded by

(—AmazV xdim? + ydim2 < Az < zdims + Apaz/xdim2 4+ ydim?2)

and Ay by

(—Amaz VvV xdim?2 + ydim2 < Ay < ydimg + Amaz v/ dim2 + ydim?2)

as illustrated in Figure 7.5, where (xdim,,ydim,) and (xdimg,ydims) are the
object and scene dimensions respectively.

With these boundaries the pose space is normalized. All pose coordinates for
which A > M\,02 and A < A4 are removed from the point set. All other coordi-
nates are normalized such that Az, Ay, A and Af € [0,1]. The advantage of this
is that the initialization for the covariance of the Gaussian mixtures modeling the
clusters, and the weight of the uniform distribution modeling the outliers, can be
set regardless of the dimensions of the object and scene images.

7.4.4 Weighted k-Medians Clustering

To make an estimation of the initial means p, for the Gaussian mixture model
used in the expectation maximization algorithm, a weighted k-medians clustering
approach is used. The k-medians algorithm is similar to the well known k-means
algorithm, but is less sensitive to outliers.

The k-medians algorithm is randomly initialized with k initial cluster centroids,
where k is the number of clusters. Every weighted pose space point is assigned to
the cluster whose centroid is closest to that point (measured with the Euclidean
distance). This gives k sets of weighted points.

For these point sets new centroids are calculated by taking the weighted median
(Figure 7.6) for each set of sample points. The pose space points are now assigned
to the closest new centroid and these two steps are alternated until there is no
change in the assignment of the pose space points. The resulting medians are used
as initial values for the means p, of the Gaussian mixtures in the EM algorithm.
Since the weighted k-medians are found with random initialization the results may
vary. This is why the EM algorithm is run for a number of different initializations
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Figure 7.5: The spatial boundaries in pose space are (—Amazy/zdim2 + ydim?2 <

Az < zdims + Amaz v/ 2dim? + ydim2) and (—Amazv/2dim? + ydim2 < Ay < ydims +
Amaz v/ xdim?2 + ydim2). These are the farthest possible translations given by a match,
as illustrated. Where Amqr is the maximum scaling factor considered and where
(zdimo, ydim,) and (xdims,ydims) are respectively the object and scene dimensions.

of the k-medians algorithm and the result with the best log-likelihood is chosen.
This is illustrated in the bottom of the flowchart (Figure 7.2).

The expectation maximization algorithm returns the location g, for each cluster,
the covariance matrix X, and the weight of the cluster w.. At this stage clusters
with a very low weight could be discarded by setting a threshold on the cluster
weight.
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Figure 7.6: The weighted median is calculated as follows. The coordinates Az, Ay, A
and A0 are treated separately. The coordinates are then sorted on their values and the
weights w, are taken into account. The median is the value where half of the weight is
on the lower side and half of the weight is on the higher side.

7.5 Retrieving the Pose

The final step in the object retrieval algorithm is to extract the pose of the object
in the scene from the found clusters. If the only transformation the object has
undergone in the scene is a scale-Euclidean transformation, then the cluster cen-
ters p, are enough to describe this transformation as they contain the translation,
scaling and rotation of the object in the scene (Az, Ay, A\, Af) (Figure 7.7).

However in most applications the object can undergo different types of transfor-
mations. In this section affine transformations and perspective changes of planar
objects will be considered as possible transformations. Transformations that oc-
cur due to 3-dimensional rotations of non-planar objects are not considered, but
they can up to some extent be modeled by affine or perspective transformations.

Noise and transformations other than scale-Euclidean transformations cause the
clusters to be more spread out. The EM algorithm finds these clusters as Gaus-
sians located at p, and with a covariance matrix .. How spread out the clus-
ter is is described by its covariance matrix. By using the Mahalanobis distance

dx,p,.) = \/(x — )T (x — p,) points are selected that have a distance
smaller than a threshold to the cluster center. From these cluster points not
the pose coordinates themselves are taken, but the object feature information
(Zoy Yoy 00, 80) and the scene feature information (zs,ys, 0s,6s) which were used
to construct the pose coordinates (Ax, Ay, A, Af) (Equation 7.3). With this infor-
mation it will be possible to retrieve a pose of the object that is more sophisticated
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Figure 7.7: The found cluster centers p1 and p2 in pose space describe the loca-
tion and pose of the query object in the scene image. Where (Az1,Ayi, A1, Ab1) =
(31,175,0.66,5°) and (Azgz, Aya, A2, Af2) = (255,310,0.40,—85°). The circles in the
image represent the matched features. The size of the circles represents the scale of the
interest points.

than simply the rotation, scaling and translation. It is for example possible to
retrieve the affine transformation of an object as follows.

The affine transformation of an object point (z°,y°) to an image point (z*,y*)

can be written as:
S o
=l e L (19
Yy ms Mg Yy ty

where the object translation is (¢, t,) and the affine rotation, scale and stretch are
represented by the m; parameters. Since the goal is to solve for the transformation
parameters, Equation (7.16) is rewritten to gather the unknowns into a column
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vector:
my
z2 y° 0 0 1 0 mo 5
0 0 =z¢ y° 0 1 mz | _ | gy (7.17)
may ’
12
y

This equation shows a single match, but any number of matched pairs can be
added, where each matched pair contributes two extra rows to the first and last
matrix. At least three matched pairs are needed to provide a solution.

This linear system can be written as Ap = b and the least-squares solution for
the parameters p = [m1, ma, M3, Ma, ty, ty] T can be determined by solving

p=[ATA] "ATb. (7.18)

Equation (7.18) minimizes the sum of squares of the distances from the projected
object locations to the corresponding scene locations.

For perspective changes of planar objects a similar linear system can be written
as

S,,0

1 v 0 0 0 —x°2° —2°y
0 0 0 1 z¢ y° —y’z° —y°y° my ys

By using Equation (7.18) the least-squares solution for the unknown parameters
p = [m1, ma, m3, my, ms, mg, m7,mg] T can be found. A minimum of four point
matches is needed to find a solution.

7.6 Retrieval examples

In this section some retrieval examples are show. A set of magazine covers is used
as objects for the retrieval task. The images of the query objects are grayscale
images of 376 x 500 pixels (Figure 7.8). For the retrieval task three different scene
images are used (Figure 7.9), the first image is a synthetic image, the other two
images are real photographs of the magazine covers put on a desk.



120 7.6 Retrieval examples

'340-HP CHARGER & 500-HP VIPER GTS

Mﬂﬂlﬂ THEND

Bamiyan's 6 Q
Dllleryguddha 2

Hypnosis, Airplanes,
and Strongly Held Be)l

PMS and Menstrual
Disorder Myths

APatently Faise
J\ateat Myth

; @diumship Claims: Zﬂgftﬁé‘"
im
ta Get ::;ssg;;dvﬁra ;‘l’:tse : . 3 iSehwartz and Hyman Respnnn

Figure 7.8: The query object images are grayscale images of 376 x 500 pixels.

scene 1 scene 2 scene 3

Figure 7.9: All scene images are grayscale images. Scene 1 is a synthetic image
containing only scale-Euclidean transformations of the objects, the size is 400 x 400
pixels. Scene 2 is a real photograph of a scene containing the magazine covers, the
image size is 700 x 700 pixels. The image contains only perspective transformations.
Scene 3 also is a real photograph of a scene containing the magazine covers, the image
size is 700 x 700 pixels. The image contains magazine covers that are slightly bent over
other objects.
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Figure 7.10: Some objects retrieved from scene 2, the circles represent the interest
points on which the recovered pose is based. The size of the circle represents the scale
of the interest point. The pose is calculated using Equation (7.19).
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Figure 7.11: Some objects retrieved from scene 2 and scene 3, the circles represent the
interest points on which the recovered pose is based. The size of the circle represents
the scale of the interest point. The pose is calculated using Equation (7.19). In the first
image it is shown that the algorithm works even under big amounts of occlusion. In the
second image the magazine is matched even though large parts of the cover are bent.
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Figure 7.12: The pose of the ‘Motor Trend’ magazine cover cannot be correctly cal-
culated in scene 2, by using Equation (7.19). The lack of points in the corners of the
magazine make it impossible to accurately describe the correct perspective pose of the
object. The scale-Euclidean information contained in the cluster center p. however is
still accurate as shown in the bottom figure.
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& ,

Figure 7.13: This figure illustrates the problems that occur when matching symmetric
objects. The lines show matching interest points (lines connecting identical interest
points in the images are not shown). Seven different pose space clusters are found in
this case. This is not a shortcoming of the algorithm but a logical consequence of the
symmetry of the object.

7.7 Summary and Conclusion

In this chapter an algorithm was proposed that retrieves the location and pose of
a query object contained in a scene image. The algorithm uses the interest points
and descriptors of the object image and compares them to the interest points and
descriptors of the scene image. Matches between these features yield points in
pose space. By means of clustering in this pose space and solving for perspective
transformations based on the points contained in the clusters, the pose of the
object is retrieved.

For clustering the expectation maximization algorithm is used. The pose space is
modeled as a mixture of Gaussians corresponding to the clusters and a uniform
distribution that models the outliers. The EM algorithm is used to obtain the
most likely parameters of the mixture model. The advantage of this method is
that the properties of the clusters are known after running the EM algorithm. The
size, location and shape are described by the parameters found by the algorithm.
This makes it possible to accurately select points contained in the cluster and to
say something about the certainty of the cluster, e.g. a cluster with a high weight
and small size is very likely to be accurate and most relevant. From the features
contained in the pose space clusters, the affine or projective pose of an object can
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be obtained by finding the least-squares solution of a linear system.

One could attempt to solve for a smooth deformation with many parameters
estimated from the object/scene feature map. This would make it possible to
retrieve deformations like the bending of a magazine cover as illustrated in the
third image of Figure 7.9. This however requires a large amount of correctly
matched features and little false-positive matches.

The experiments show that the algorithm performs well in most cases even when
a large part of the object is occluded in the scene image. When however too
much of the object is occluded a perspective transformation can not be retrieved
accurately. In theory four matches should be enough to find a solution for the
transformation, however a number of matches sufficiently spread in the object
has to be found to make an accurate estimation of the pose. The scale-Euclidean
transformation obtained from the pose space cluster center, is often still reason-
ably accurate in this case.
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Samenvatting

In dit proefschrift ligt de nadruk op het automatisch vergelijken van digitale
beelden. De resultaten van deze studie zijn toepasbaar in verschillende beeld-
verwerkingsgebieden zoals het vergelijken van stereobeelden, objectherkenning,
textuurherkenning, videobeeldanalyse, het automatisch combineren van panora-
mafoto’s, objecttypeherkenning en het vinden van objectlocatie en pose. Door de
jaren heen is er een groot aantal algoritmes ontwikkeld voor deze taken en som-
mige van deze algoritmes werken zeer goed in een specifiek beeldverwerkingsge-
bied. Helaas is de tendens in deze methoden een steeds grotere athankelijkheid van
willekeurige parameters en drempelwaarden. Deze parameters vertegenwoordigen
vaak geen fysische grootheden waardoor het moeilijk is zinvolle waarden aan deze
parameters toe te kennen. Vaak wordt dit probleem ‘opgelost’ door uitvoerige
training waarbij alle mogelijke parameterwaarden binnen een bepaald gebied wor-
den geprobeerd. De parameters die de beste resultaten opleveren voor de train-
ingset worden gebruikt voor het uiteindelijke algoritme. Dit resulteert in algo-
ritmen die goed werken voor de beeldmodaliteit waarvoor ze getraind zijn, maar
zodra de inputbeelden teveel afwijken van de trainingset werkt het algoritme niet
meer.

Het doel van het onderzoek beschreven in dit proefschrift is het ontwikkelen van
een generieke methode voor beeldvergelijking. Deze methode dient te werken
ongeacht welk type inputbeeld wordt gebruikt. Het algoritme moet zo min mo-
gelijk parameters bevatten en de parameters die in het algoritme voorkomen
moeten een fysische betekenis hebben.

Om tot dit algoritme te komen zijn methoden, met hun oorsprong in scale-space
theorie, fysica en wiskunde, bekeken. Deze methoden vormen de bouwstenen van
een nieuw algoritme. Het nieuwe algoritme minimaliseert de hoeveelheid para-
meters en drempelwaarden. Drempelwaarden die overblijven hebben een fysische
betekenis en kunnen daarom gemakkelijk worden ingesteld voor de uit te voeren
taak.

Hoofdstuk 1 van dit proefschrift intoduceert het probleem en de relevantie ervan.
Ook wordt het Europese ‘Deep Structure, Singularities and Computer Vision’
(DSSCYV) consortium besproken waarbinnen dit promoticonderzoek heeft plaats
gevonden.

Hoofdstuk 2 behandelt de principes van scale-space theorie en de hieraan gere-
lateerde ‘deep structure of images’. Voor een algemeen beeldanalyse-algoritme
is het van essentieel belang dat het algoritme onafhankelijk is van schaal. Ob-
jecten en details in beelden zijn slechts over een bepaald schaalbereik betekenisvol.
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Omdat het niet vooraf bekend is welk schaalgebied bekeken moet worden, zullen
alle schalen als even belangrijk moeten worden beschouwd. Essentiéle operaties
zoals het vervagen en het nemen van afgeleiden van beelden op willekeurige
schalen worden besproken en voorbeelden worden gegeven. Een overzicht van
catastrofetheorie wordt gegeven voor het scale-space geval. Deze catastrofetheo-
rie bestudeert hoe kritieke punten bewegen als de schaalparameter verandert. De
analyse van kritieke punten is essentieel voor elk van de voorgestelde algoritmen
in dit proefschrift.

Hoofdstuk 3 beschrijft een aantal methoden voor het genereren van een hiérar-
chische structuur uit de ‘deep structure’ van een beeld. De methoden genereren
een generieke segmentatie die geen voorkennis nodig heeft van het beeld. Om
problemen in de bestaande algoritmes aan te pakken wordt een nieuwe methode
voorgesteld. In de projectomschrijving van het DSSCV-consortium werd veron-
dersteld dat deze hiérarchische beeldrepresentaties gebruikt zouden kunnen wor-
den voor het vergelijken van beelden. In dit hoofdstuk wordt echter een aantal
redenen gegeven waarom het vooralsnog onhaalbaar is om een dergelijke repre-
sentatie te gebruiken voor vergelijkingstaken als objectherkenning.

Hoofdstuk j stelt een nieuwe beeldrepresentatie voor die niet kampt met de pro-
blemen die de hiérarchische representaties van hoofdstuk 3 met zich mee bren-
gen. Het algoritme dat wordt voorgesteld vangt de scale-space-structuur van top-
punten, voortkomend uit catastrofetheorie, in een graaf. Deze nieuwe represen-
tatie maakt het mogelijk om krachtige graafvergelijkingsalgoritmen te gebruiken
om beelden met elkaar te vergelijken. De hiérarchische en graafgebaseerde beel-
drepresentaties gedragen zich onvoorspelbaar wanneer het beeld onderhevig is aan
ruis, belichtingsverandering of niet-Euclidische transformaties zoals affine of pro-
jectieve transformaties. Vanwege dit onvoorspelbare gedrag wordt in de volgende
hoofdstukken een ander type beeldvergelijkingsalgoritme besproken. Deze laat-
ste hoofdstukken wijden uit over een ‘interest point’ en ‘descriptor’ gebaseerde
aanpak voor objectherkenning. Dit houdt in dat kenmerkende punten worden
gevonden in beelden en dat in deze punten omgeving-beschrijvende informatie
wordt berekend. Deze methode is minder gevoelig voor ruis, belichtingsverander-
ing en niet-Euclidische transformaties en is gemakkelijker te gebruiken en aan te
passen.

Hoofdstuk 5 beschrijft karakteristieke punten in de scale-space-representatie van
beelden, die geschikt zijn voor beeldvergelijking. Deze kenmerkende punten die-
nen zo invariant mogelijk te zijn onder veranderingen in het beeld. Wanneer de
taak bijvoorbeeld is om een object te lokaliseren in een scenebeeld, dan is het
belangrijk dat de configuratie van de karakteristieke punten van het object ook in
dezelfde configuratie voorkomt in het scenebeeld. De configuratie van de karak-
teristieke punten dient hetzelfde te blijven, zelfs als het object in het scénebeeld
is geroteerd, geschaald of onderhevig is aan andere belichting of ruis. In dit
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hoofdstuk worden de populaire Harris-, Harris-Laplace en SIFT-karakteristieke
punten besproken en vergeleken met de in dit proefschrift voorgestelde karak-
teristieke punten: de top-punten. De bestaande methoden zijn afhankelijk van
een groot aantal willekeurig te kiezen parameters en drempelwaarden. Deze pa-
rameters moeten worden gevonden middels een lang trainingstraject. Dit traject
moet iedere keer opnieuw doorlopen worden wanneer een ander type beeld wordt
beschouwd. De geintroduceerde top-punten zijn niet afhankelijk van instelbare
parameters en leveren zeer concurrerende resultaten op in de uitgevoerde experi-
menten. De lokalisatie van top-punten hoeft niet erg nauwkeurig te zijn omdat
het mogelijk is om de positie van een top-punt te verfijnen door gebruik te maken
van lokale differentiaalstructuur van het beeld. Dit maakt het mogelijk om snel
top-punten te detecteren zonder de exacte locatie te verliezen. Een ander voordeel
van de top-punten is de mogelijkheid om het gedrag van de punten onder ruis ana-
lytisch te beschrijven. Hierdoor kunnen onstabiele top-punten worden gevonden
en worden verwijderd voordat de rest van het algoritme wordt doorlopen.

Hoofdstuk 6 behandelt zogenaamde ‘descriptors’, dit zijn kenmerken die de omge-
ving van de karakteristieke punten beschrijven. Voor het beschrijven van een beeld
of voor objectherkenning is een set van karakteristieke punten niet voldoende.
Specifieke informatie moet worden toegekend aan elk punt. In dit hoofdstuk
wordt de populaire SIFT descriptor besproken en vergeleken met de meer ma-
thematisch gefundeerde differentiaalinvarianten. Deze invarianten zijn gebaseerd
op schaal-Euclidische invariante combinaties van afgeleiden. Dit betekent dat ro-
tatie, schaling en translatie geen invloed hebben op de descriptor. Deze descriptor
was veroordeeld tot slecht presterend in een overzichtsartikel, maar in dit hoofd-
stuk wordt aangetoond dat wanneer er een juiste afstandsmaat wordt gebruikt
voor de 6 waardige differentiaalinvariante descriptor, deze de 128 waarde tellende
SIFT descriptor overtreft in verschillende omstandigheden.

Hoofdstuk 7 presenteert de laatste stap in het op interest points en descriptors
gebaseerde beeldvergelijkingsalgoritme. In dit hoofdstuk wordt specifiek ingegaan
op de taak om de locatie en pose van een object te vinden uit een scenebeeld
waarin dit object voorkomt. Gegeven een beeld van een te vinden object, zal
het algoritme proberen om de locatie en de pose van het object te achterhalen
uit het scenebeeld. Om dit te doen wordt een puntenset in een 4-dimensionele
ruimte geconstrueerd. Deze puntenset wordt gegeven door de bij elkaar passende
punten, gevonden door het vergelijken van interest points en descriptors van het
objectbeeld en het scenebeeld. De set beschrijft de translatie, rotatie en schaling
die het gezochte object heeft ondergaan in het scénebeeld. In de 4-dimensionale
ruimte worden één of meerdere clusters gevonden afhankelijk van hoe vaak het
object voorkomt in de scene. Uit de gegevens die aanwezig zijn in de clusters kan
de locatie en pose van het object in de scéne worden geschat. Met een additionele
stap kan de affine of projectieve transformatie van het object worden achterhaald.






Dankwoord

Het schrijven van een proefschrift is voornamelijk een solitaire bezigheid, maar
het onderzoek en de resultaten die zijn beschreven in dit proefschrift zouden
onmogelijk zijn geweest zonder interactie met vele anderen.

Op de eerste plaats wil ik natuurlijk mijn promotor Bart ter Haar Romeny be-
danken. Zijn oneindige enthousiasme en brede interesse zijn de belangrijkste
redenen geweest waarom ik mijn mastersproject begonnen ben in de Biomedische
Beeldanalyse groep en hier ook gebleven ben om dit onderzoek te vervolgen met
een promotie.

Mijn copromotor Luc Florack is onmisbaar geweest bij de wetenschappelijke kant
van het onderzoek. Alle inhoudelijke discussies en bijeenkomsten waren uitermate
nuttig en hebben vaak geleid tot nieuwe ideeén en ontwikkelingen. Vaak ook
kwamen tekortkomingen in bestaande algoritmen aan het licht die vroegen om een
nette wiskundige aanpak. Daarnaast zijn de uitgebreide correcties en suggesties
erg welkom geweest bij het schrijven van artikelen en dit proefschrift.

Ook wil ik Frans Kanters bedanken. De vele internationale reizen die we samen
binnen het Europese project hebben gemaakt hebben zeker bijgedragen aan een
onvergetelijke tijd. Ook het door Frans ontwikkelde programma ScaleSpaceViz
is verantwoordelijk voor een groot deel van de mooie visualisaties in dit proef-
schrift waaronder de afbeelding op de omslag. Een andere collega die ik ook zeer
dankbaar ben is Evgeniya Balmashnova. Met haar wiskundig inzicht heeft ze me
meerdere malen geholpen en haar afleidingen voor de verschillende stabiliteits-
en afstandsmaten hebben bijzonder veel bijgedragen aan dit proefschrift. Ook
Remco Duits verdient een vermelding, voor zijn briljante wiskundige inzichten
en het eindeloze geduld om ze uit te leggen. Om mijn dank aan mijn overige
kamergenoten Erik Franken en Bart Janssen uit te spreken gebruik ik graag hun
eigen woord(en): “Jooooow”! Natuurlijk wil ik alle andere AiQO’s, stafleden en
studenten in de biomedische beeldverwerkingsgroep ook bedanken voor hun bij-
drage aan het wetenschappelijke klimaat en de goede sfeer, zowel op het werk als
daarbuiten.

I would also like to thank Ali Shokoufandeh for his great collaboration, hospitality
and friendship. Our joint work has lead to Chapter 4 of this thesis. I am also
greatful that he accepted the invitation to be one of my committee members. A
special thanks also goes out to Ali’s students: Fatih Demirci for his friendship and
co-work on the graph based image matching algorithms, Jeff Abrahamson for his
hospitality, and to Trip Denton and John Novatnack for their help collaboration.



144 Dankwoord

Let me also thank Sven Dickinson for helping us to form ideas for the graph
based algorithms, for fruitful discussions and for inviting me and Frans to come
to Toronto. Sven has always been willing to lend a helping hand.

Mads Nielssen also deserves a special place in this acknowledgement, for not only
has he initiated the European DSSCV project that made my PhD possible, but
he was also so kind to accept the invitation to be on my PhD committee.

Ook Klaas Nicolaij ben ik erg dankbaar. Ondanks het feit dat mijn onderzoek
buiten zijn directe onderzoeksgebied valt heeft hij de tijd genomen om mijn proef-
schrift door te lezen en heeft hij plaats willen nemen in mijn commissie.

In the last year of my studies I spent three months working at the ETH in Ziirich
in Joachim Buhmann’s Machine Learning lab. This work resulted in Chapter 7 of
this thesis. I am very greatful for the friendly support I recieved in these months
from Prof. Buhmann and his students.

Buiten de werksfeer zijn er ook mensen die ik speciaal wil bedanken. Op de
eerste plaats mijn ouders, die mij met onvoorwaardelijke liefde en wijsheid hebben
grootgebracht en mij hebben gesteund in al mijn keuzes. Mijn zus Eefke voor de
gezelligheid en het niet al te vaak vragen “Wat doe je nu eigenlijk precies?”.
Adrienne, mijn partner ben ik ook heel erg dankbaar. Naast haar liefde heeft ze
mij de mogelijkheid gegeven om mijn academische carriere voort te kunnen zetten
in Nederland door te verhuizen vanuit Ziirich.

Zonder twijfel hebben mijn vrienden ook bijgedragen aan een leuke tijd. Speci-
aal wil ik Luuk Barten noemen die een groot deel van mijn promotietijd mijn
huisgenoot was en de lekkerste gerechten klaar maakte. Ook Bart van den Oever
wil ik bedanken voor de leuke tijden en de vrijdag-frietdagen. Natuurlijk ook
veel dank aan mijn andere vrienden en alle anderen die ik vergeten ben hier te
noemen.

Mijn promotieonderzoek vond plaats binnen het DSSCV project ondersteund door
het IST Programma van de Europese Unie (IST-2001-35443).



Curriculum Vitae

Bram Platel was born on the 6th of Februari in ’s-Hertogenbosch, The Nether-
lands. He graduated from the VWO at the Jacob Roelandslyceum in Boxtel
in 1996. In the same year he started studying Mechanical Engineering at the
Technische Universiteit Eindhoven. After completing the first year foundation
course he switched to the brand new Biomedical Engineering study from which
he graduated (and received the M.Sc. degree cum laude) in 2002. His graduation
project involved research in multiscale hierarchical segmentation of images, which
was carried out within the Biomedical Image Analysis group at the Technische
Universiteit Eindhoven. This work laid the foundation of his PhD-studies which
were carried out within the Deep Structure, Singularities and Computer Vision
project funded by the European Union.






Publications

e Top-Points as Interest Points Image Matching,
B. Platel, E. Balmachnova, L.M.J. Florack and B.M. ter Haar Romeny
“9th European Conference on Computer Vision”, Graz, Austria, May 7-13,
2006.

e Using Top-Points as Interest Points For Image Matching,
B. Platel, E. Balmachnova, L.M.J. Florack and B.M. ter Haar Romeny
“1st International Workshop on Deep Structure, Singularities and Computer
Vision”, The Netherlands, June 2005.

¢ On Image Reconstruction from Multiscale Top-Points,
F.M.W. Kanters, M. Lillholm, R. Duits, B.J. Janssen, B. Platel, L.M.J.
Florack and B.M. ter Haar Romeny
“Scale Space Methods in Computer Vision. Proceedings of the 5th interna-
tional conference on Scale Space 2005”, Germany, April 2005, pp 431-442.

e Stability of Top-Points in Scale Space,
E. Balmachnova, L.M.J. Florack, B. Platel and F.M.W. Kanters
“Scale Space Methods in Computer Vision. Proceedings of the 5th interna-
tional conference on Scale Space 2005”, Germany, April 2005, pp 62-72.

e Discrete Representation of Top Points via Scale Space Tessella-
tion,
B. Platel, M. Fatih Demirci, A. Shokoufandeh, L.M.J. Florack, F.M.W.
Kanters, B.M. ter Haar Romeny, and S.J. Dickinson
“Scale Space Methods in Computer Vision. Proceedings of the 5th interna-
tional conference on Scale Space 2005”, Germany, April 2005, pp 73-84.

e Using Multiscale Top Points in Image Matching
B. Platel, F.M.W. Kanters, L.M.J. Florack and E.G. Balmachnova
“Proceedings of the 11th International Conference on Image Processing”,
Singapore, October 2004.

e Alpha Scale Space Kernels in Practice
F.M.W. Kanters, L.M.J. Florack, R. Duits, B. Platel
“7th International Conference on Pattern Recognition and Image Analysis”,
St. Petersburg, Russian Federation, 2004, pp 260-263.

e Using Multiscale Top Points in Image Matching
B. Platel, L.M.J. Florack, F.M.W. Kanters, E. Balmachnova
“Advanced School for Computing and Imaging - ASCI 2004
10th Annual Conference”, Port Zélande, The Netherlands, June, 2004, Pro-
ceedings.



148

Publications

a Scale Spaces on a Bounded Domain

R. Duits, M. Felsberg, L.M.J. Florack and B. Platel

“Scale Space Methods in Computer Vision. Proceedings of the 4th int.
conference Scale Space 2003”, Isle of Skye, UK, June 2003.

Content Based Image Retrieval using Multiscale Top Points
F.M.W. Kanters, B. Platel, L.M.J. Florack and B.M. ter Haar Romeny
“Scale Space Methods in Computer Vision. Proceedings of the 4th int.
conference Scale Space 2003, Isle of Skye, UK, June 2003, pp 33—43.

Image Reconstruction from Multiscale Critical Points

F.M.W. Kanters, L.M.J. Florack, B. Platel and B.M. ter Haar Romeny
“Scale Space Methods in Computer Vision. Proceedings of the 4th int.
conference Scale Space 2003, Isle of Skye, UK, June 2003, pp 464-478.

Multiscale Hierarchical Segmentation

B. Platel, L.M.J. Florack, F.M.W. Kanters and B.M. ter Haar Romeny
“Advanced School for Computing and Imaging - ASCI 2003

9th Annual Conference, Heijen”, The Netherlands, June 4-6, 2003, Proceed-
ings, p 161.

Validation of Tissue Modelization and Classification Techniques
in T1-Weighted MR Brain Images

M. Bach Cuadra, B. Platel, E. Solanas, T. Butz, and J.-Ph. Thiran
“Medical Image Computing and Computer-Assisted Intervention - MICCAI
2002, 5th International Conference”, Tokyo, Japan, September 25-28, 2002,
Proceedings, Part I, p 290.



	Thesis-Platel.pdf
	Colophon
	Contents
	Introduction and Summary
	Introduction
	The DSSCV Project
	Summary of this Thesis

	Scale Space & The Deep Structure of Images
	Introduction
	Linear Scale-Space Theory
	Axiomatic Foundations of Linear Scale Space
	Generating a Scale-Space Representation
	Separability
	 Scale Spaces
	Sampling the Scale Axis
	Scale-Space Derivatives

	Multi-Scale vs. Multi-Resolution
	Catastrophe Theory in Scale-Space
	Critical Points
	Critical Curves
	Detection of Critical Points and Critical Curves
	Refining the Location of Critical Points

	Conclusion

	The Hierarchical Structure of Scale-Space Images
	Introduction
	Hierarchical Segmentation from Intensity Extrema
	Extremum Paths and Extremal Regions
	Scale-Space Hierarchy
	Remarks

	Hierarchical Segmentation from Scale-Space Saddles
	Scale-Space Saddles
	Pre-Segmentation
	Scale-Space Hierarchy
	Remarks

	Hierarchical Segmentation from Attraction Areas
	The Definition of the Attraction Area
	Attraction Areas in Scale Space
	Scale-Space Hierarchy
	The Algorithm
	Results
	Remarks

	Other Hierarchical Segmentation Methods
	Using the Hierarchical Representation for Matching
	Conclusion

	Discrete Representation of Top-Points via Scale Space Tessellation
	Introduction
	Top-Points as Anchor Points
	Stability by Structure
	Construction of the Graph
	Distance Measure in Scale Space
	Overview of the Matching Algorithm
	Metric Embedding of a Graph
	Many-to-Many Distribution Based Matching

	Experiments
	Graph Stability under Additive Noise
	Graph Stability under Within-Class Variation

	Conclusions

	Interest Points for Image Matching
	Introduction
	Harris Detector
	Harris-Laplace Detector
	Stability
	Remarks

	SIFT interest-point detector
	Detection versus Localization
	Stability
	Remarks

	Top-Points
	Detection versus Localization
	Propagation of Errors in Scale Space
	Noise Propagation for Top-Point Displacement
	Stability

	Experiments
	Database
	Repeatability

	Summary and Conclusions

	Neighborhood Descriptors for Image Matching
	Introduction
	SIFT Descriptor
	Descriptor Orientation
	Descriptor Representation
	Adaptations of the SIFT Algorithm
	Distance Measure
	Remarks

	Differential Invariant Descriptors
	Descriptor Representation
	Dissimilarity Measure in the Descriptor Space
	Remarks

	Experiments
	Receiver Operator Characteristics
	Performance of the Dissimilarity Measure
	Performance of the Descriptors

	Summary and Conclusions

	Object Location and Pose Retrieval
	Introduction
	Matching Features
	Obtaining Pose Coordinates
	Clustering in Pose Space
	Identifying the Number of Clusters
	Expectation Maximization
	Normalizing the Pose Space
	Weighted k-Medians Clustering

	Retrieving the Pose
	Retrieval examples
	Summary and Conclusion

	Bibliography
	Samenvatting
	Dankwoord
	Curriculum Vitae
	Publications


