104 research outputs found

    Experimental Evaluation of Meta-Heuristics for Multi-Objective Capacitated Multiple Allocation Hub Location Problem

    Get PDF
    Multi-objective capacitated multiple allocation hub location problem (MOCMAHLP) is a variation of classic hub location problem, which deals with network design, considering both the number and the location of the hubs and the connections between hubs and spokes, as well as routing of flow on the network. In this study, we offer two meta-heuristic approaches based on the non-dominated sorting genetic algorithm (NSGA-II) and archived multi-objective simulated annealing method (AMOSA) to solve MOCMAHLP. We attuned AMOSA based approach to obtain feasible solutions for the problem and developed five different neighborhood operators in this approach. Moreover, for NSGA-II based approach, we developed two novel problem-specific mutation operators. To statistically analyze the behavior of both algorithms, we conducted experiments on two well-known data sets, namely Turkish and Australian Post (AP). Hypervolume indicator is used as the performance metric to measure the effectiveness of both approaches on the given data sets. In the experimental study, thorough tests are conducted to fine-tune the proposed mutation types for NSGA-II and proposed neighborhood operators for AMOSA. Fine-tuning tests reveal that for NSGA-II, mutation probability does not have a real effect on Turkish data set, whereas lower mutation probabilities are slightly better for AP data set. Moreover, among the AMOSA based neighborhood operators, the one which adds/removes a specific number of links according to temperature (NS-5) performs better than the others for both data sets. After analyzing different operators for both algorithms, a comparison between our NSGA-II based and AMOSA based approaches is performed with the best settings. As a result, we conclude that both of our algorithms are able to find feasible solutions of the problem. Moreover, NSGA-II performs better for larger, whereas AMOSA performs better for smaller size networks

    A New Model for The Multi-Objective Multiple Allocation Hub Network Design and Routing Problem

    Get PDF
    In this paper, we propose a new model for the multi-objective multiple allocation hub network design and routing problem which contains determining the location of hubs, the design of hub network, and the routing of commodities between source-destination pairs in the given network. The selected hubs are not assumed to be fully connected, and each node and arc in the network has capacity constraints. The multiple objectives of the problem are the minimization of total xed and transportation costs and the minimization of the maximum travel time required for routing. We propose a mathematical formulation for the multiobjective problem and present a meta-heuristic solution based on a well-known multi-objective evolutionary algorithm. Using the proposed formulation, we are able to nd the optimal solution for small networks of ve nodes and seven nodes. To evaluate the performance of our heuristic approach on real data, the computational experiments are conducted on Turkish postal system data set. The results demonstrate that our heuristic approach can nd feasible solutions to the problem in reasonable execution time, which is less than 10 min

    A queuing location-allocation model for a capacitated health care system

    Get PDF
    International audienceThe aim of the present paper is to propose a location-allocation model for a capacitated health care system. This paper develops a discrete modeling framework to determine the optimal number of facilities among candidates and optimal allocations of the existing customers to operating health centers in a coverage distance. In doing so, the total sum of customer and operating facility costs is minimized. Our goal is to create a model that is more practical in the real world. Therefore, setup costs of hospitals are based on the costs of customers, xed costs of establishing health centers, and costs based on the available resources in each level of hospitals. In this paper, the idea of hierarchical structure has been used. There are two levels of service in hospitals, including low and high levels, and sections at diierent levels that provide diierent types of services. The patients refer to diierent sections of the hospital according to their requirements. To solve the model, two meta-heuristic algorithms, including genetic and simulated annealing algorithms and their combination, are proposed. To evaluate the performance of the three algorithms, some numerical examples are produced and analyzed using the statistical test in order to determine which algorithm works better

    Uncertain Multi-Criteria Optimization Problems

    Get PDF
    Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems

    Multi-Objective and Multi-Attribute Optimisation for Sustainable Development Decision Aiding

    Get PDF
    Optimization is considered as a decision-making process for getting the most out of available resources for the best attainable results. Many real-world problems are multi-objective or multi-attribute problems that naturally involve several competing objectives that need to be optimized simultaneously, while respecting some constraints or involving selection among feasible discrete alternatives. In this Reprint of the Special Issue, 19 research papers co-authored by 88 researchers from 14 different countries explore aspects of multi-objective or multi-attribute modeling and optimization in crisp or uncertain environments by suggesting multiple-attribute decision-making (MADM) and multi-objective decision-making (MODM) approaches. The papers elaborate upon the approaches of state-of-the-art case studies in selected areas of applications related to sustainable development decision aiding in engineering and management, including construction, transportation, infrastructure development, production, and organization management

    Discrete Event Simulations

    Get PDF
    Considered by many authors as a technique for modelling stochastic, dynamic and discretely evolving systems, this technique has gained widespread acceptance among the practitioners who want to represent and improve complex systems. Since DES is a technique applied in incredibly different areas, this book reflects many different points of view about DES, thus, all authors describe how it is understood and applied within their context of work, providing an extensive understanding of what DES is. It can be said that the name of the book itself reflects the plurality that these points of view represent. The book embraces a number of topics covering theory, methods and applications to a wide range of sectors and problem areas that have been categorised into five groups. As well as the previously explained variety of points of view concerning DES, there is one additional thing to remark about this book: its richness when talking about actual data or actual data based analysis. When most academic areas are lacking application cases, roughly the half part of the chapters included in this book deal with actual problems or at least are based on actual data. Thus, the editor firmly believes that this book will be interesting for both beginners and practitioners in the area of DES
    corecore