2,453 research outputs found

    Lost in optimisation of water distribution systems? A literature review of system operation

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Optimisation of the operation of water distribution systems has been an active research field for almost half a century. It has focused mainly on optimal pump operation to minimise pumping costs and optimal water quality management to ensure that standards at customer nodes are met. This paper provides a systematic review by bringing together over two hundred publications from the past three decades, which are relevant to operational optimisation of water distribution systems, particularly optimal pump operation, valve control and system operation for water quality purposes of both urban drinking and regional multiquality water distribution systems. Uniquely, it also contains substantial and thorough information for over one hundred publications in a tabular form, which lists optimisation models inclusive of objectives, constraints, decision variables, solution methodologies used and other details. Research challenges in terms of simulation models, optimisation model formulation, selection of optimisation method and postprocessing needs have also been identified

    Multi-criteria analysis applied to multi-objective optimal pump scheduling in water systems

    Get PDF
    This work presents a multi-criteria-based approach to automatically select specific non-dominated solutions from a Pareto front previously obtained using multi-objective optimization to find optimal solutions for pump control in a water supply system. Optimal operation of pumps in these utilities is paramount to enable water companies to achieve energy efficiency in their systems. The Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (FTOPSIS) is used to rank the Pareto solutions found by the Non-Dominated Sorting Genetic Algorithm (NSGA-II) employed to solve the multi-objective problem. Various scenarios are evaluated under leakage uncertainty conditions, resulting in fuzzy solutions for the Pareto front. This paper shows the suitability of the approach for quasi real-world problems. In our case-study, the obtained solutions for scenarios including leakage represent the best trade-off among the optimal solutions, under some considered criteria, namely, operational cost, operational lack of service, pressure uniformity and network resilience. Potential future developments could include the use of clustering alternatives to evaluate the goodness of each solution under the considered evaluation criteria

    Pump Scheduling for Optimised Energy Cost and Water Quality in Water Distribution Networks

    Get PDF
    Delivering water to customers in sufficient quantity and quality and at low cost is the main driver for many water utilities around the world. One way of working toward this goal is to optimize the operation of a water distribution system. This means scheduling the operation of pumps in a way that results in minimal cost of energy used. It is not an easy process due to nonlinearity of hydraulic system response to different schedules and complexity of water networks in general. This thesis reviewed over 250 papers about pump scheduling published in the last 5 decades. The review revealed that, despite a lot of good work done in the past, the existing pump scheduling methods have several drawbacks revolving mainly around the ability to find globally optimal pump schedules and in a computationally efficient manner whilst dealing with water quality and other complexities of large pipe networks. A new pump scheduling method, entitled iterative Extended Lexicographic Goal Programming (iELGP) method, is developed and presented in this thesis with aim to overcome above drawbacks. The pump scheduling problem is formulated and solved as an optimisation problem with objectives being the electricity cost and the water age (used as a surrogate for water quality). The developed pump scheduling method is general and can be applied to any water distribution network configuration. Moreover, the new method can optimize the operation of fixed and variable speed pumps. The new method was tested on three different case studies. Each case study has different topography, demand patterns, number of pumps and number of tanks. The objective in the first and second case studies is to minimise energy cost only, whereas in the third case study, energy cost and water age are minimized simultaneously. The results obtained by using the new method are compared with results obtained from other pump scheduling methods that were applied to the same case studies. The results obtained demonstrate that the iELGP method is capable of determining optimal, low cost pump schedules whilst trading-off energy costs and water quality. The optimal schedules can be generated in a computationally very efficient manner. Given this, the iELGP method has potential to be applied in real-time scheduling of pumps in larger water distribution networks and without the need to simplify the respective hydraulic models or replace these with surrogate models

    Analysis of diverse optimisation algorithms for pump scheduling in water supply systems

    Get PDF
    Nowadays, the major expenses with water supply systems (WSS) correspond to energy consumption. The number of scientific works dealing with operational optimisation in WSS has been increasing over the past years, demonstrating significant reductions on energy costs and consumption. Pump stations usually represent the major portion of total energy costs in WSS. Consequently, in this work, it is pretended to give a contribution for energy efficiency improvement in pump stations. Generally, in WSS, the pumps are switched on when the reservoirs, responsible for supplying certain populations, reach their minimum levels. These pumps are only switched off when the reservoirs reach their maximum levels. The introduction of an operational pump pattern adapted to the energy tariff variation and the consumption patterns of the populations can optimise pump stations operations, minimising energy costs significantly. However, the process of finding the best pattern can present difficulties due to the complexity of some WSS (multiple pumps, multiple reservoirs, nonlinear behaviour of the systems, etc). In this work, an interface was developed with the aim of applying different optimisation algorithms for pump scheduling in WSS. The interface makes an automatic connection between a hydraulic simulator (EPANET 2.0) and the different optimisation algorithms selected, providing, after multiple iterations and evaluations, an optimal pump pattern for a certain water supply network represented. Two different examples of water supply networks are introduced in this study in order to validate the developed methodology. For both WSS, classic and meta-heuristic optimisation algorithms are tested and analysed.publishe

    Energy Optimization Using a Pump Scheduling Tool in Water Distribution Systems

    Get PDF
    Water distribution management system is a costly practice and with the growth of population, the needs for creating more cost-effective solutions are vital. This paper presents a tool for optimization of pump operation in water systems. The pump scheduling tool (PST) is a fully dynamic tool that can handle four different types of fixed speed pump schedule representations (on and off, time control, time-length control, and simple control [water levels in tanks]). The PST has been developed using Visual Basic programming language and has a linkage between the EPANET hydraulic solver with the GANetXL optimization algorithm. It has a user-friendly interface which allows the simulation of water systems based on (1) a hydraulic model (EPANET) input file, (2) an interactive interface which can be modified by the user, and (3) a pump operation schedule generated by the optimization algorithm. It also has the interface of dynamic results which automatically visualizes generated solutions. The capabilities of the PST have been demonstrated by application to two real case studies, Anytown water distribution system (WDS) and Richmond WDS as a real one in the United Kingdom. The results show that PST is able to generate high-quality practical solutions

    jHawanet: an open-source project for the implementation and assessment of multi-objective evolutionary algorithms on water distribution networks

    Full text link
    [EN] Efficient design and management of water distribution networks is critical for conservation of water resources and minimization of both energy requirements and maintenance costs. Several computational routines have been proposed for the optimization of operational parameters that govern such networks. In particular, multi-objective evolutionary algorithms have proven to be useful both properly describing a network and optimizing its performance. Despite these computational advances, practical implementation of multi-objective optimization algorithms for water networks is an abstruse subject for researchers and engineers, particularly since efficient coupling between multi-objective algorithms and the hydraulic network model is required. Further, even if the coupling is successfully implemented, selecting the proper set of multi-objective algorithms for a given network, and addressing the quality of the obtained results (i.e., the approximate Pareto frontier) introduces additional complexities that further hinder the practical application of these algorithms. Here, we present an open-source project that couples the EPANET hydraulic network model with the jMetal framework for multi-objective optimization, allowing flexible implementation and comparison of different metaheuristic optimization algorithms through statistical quality assessment. Advantages of this project are discussed by comparing the performance of different multi-objective algorithms (i.e., NSGA-II, SPEA2, SMPSO) on case study water pump networks available in the literatureThis research and the APC were funded by the Comision Nacional de Investigacion Cientifica y Tecnologica (Conicyt), grant number 1180660Gutierrez-Bahamondes, JH.; Salgueiro, Y.; Silva-Rubio, SA.; Alsina, MA.; Mora-Melia, D.; Fuertes-Miquel, VS. (2019). jHawanet: an open-source project for the implementation and assessment of multi-objective evolutionary algorithms on water distribution networks. Water. 11(10):1-17. https://doi.org/10.3390/w111020181171110Wang, Y., Hua, Z., & Wang, L. (2018). Parameter Estimation of Water Quality Models Using an Improved Multi-Objective Particle Swarm Optimization. Water, 10(1), 32. doi:10.3390/w10010032Letting, L., Hamam, Y., & Abu-Mahfouz, A. (2017). Estimation of Water Demand in Water Distribution Systems Using Particle Swarm Optimization. Water, 9(8), 593. doi:10.3390/w9080593Ngamalieu-Nengoue, U. A., Martínez-Solano, F. J., Iglesias-Rey, P. L., & Mora-Meliá, D. (2019). Multi-Objective Optimization for Urban Drainage or Sewer Networks Rehabilitation through Pipes Substitution and Storage Tanks Installation. Water, 11(5), 935. doi:10.3390/w11050935Morley, M. ., Atkinson, R. ., Savić, D. ., & Walters, G. . (2001). GAnet: genetic algorithm platform for pipe network optimisation. Advances in Engineering Software, 32(6), 467-475. doi:10.1016/s0965-9978(00)00107-1Van Thienen, P., & Vertommen, I. (2015). Gondwana: A Generic Optimization Tool for Drinking Water Distribution Systems Design and Operation. Procedia Engineering, 119, 1212-1220. doi:10.1016/j.proeng.2015.08.978Mala-Jetmarova, H., Sultanova, N., & Savic, D. (2017). Lost in optimisation of water distribution systems? A literature review of system operation. Environmental Modelling & Software, 93, 209-254. doi:10.1016/j.envsoft.2017.02.009Durillo, J. J., & Nebro, A. J. (2011). jMetal: A Java framework for multi-objective optimization. Advances in Engineering Software, 42(10), 760-771. doi:10.1016/j.advengsoft.2011.05.014Ravber, M., Mernik, M., & Črepinšek, M. (2017). The impact of Quality Indicators on the rating of Multi-objective Evolutionary Algorithms. Applied Soft Computing, 55, 265-275. doi:10.1016/j.asoc.2017.01.03

    Demand response within the energy-for-water-nexus - A review. ESRI WP637, October 2019

    Get PDF
    A promising tool to achieve more flexibility within power systems is demand re-sponse (DR). End-users in many strands of industry have been subject to research up to now regarding the opportunities for implementing DR programmes. One sector that has received little attention from the literature so far, is wastewater treatment. However, case studies indicate that the potential for wastewater treatment plants to provide DR services might be significant. This review presents and categorises recent modelling approaches for industrial demand response as well as for the wastewater treatment plant operation. Furthermore, the main sources of flexibility from wastewater treatment plants are presented: a potential for variable electricity use in aeration, the time-shifting operation of pumps, the exploitation of built-in redundan-cy in the system and flexibility in the sludge processing. Although case studies con-note the potential for DR from individual WWTPs, no study acknowledges the en-dogeneity of energy prices which arises from a large-scale utilisation of DR. There-fore, an integrated energy systems approach is required to quantify system and market effects effectively

    Analysis of the effect of parameter variation on a dynamic cost function for distributed energy resources : a DER-CAM case study

    Get PDF
    Abstract: This paper investigates the effect of selected strategies of distributed energy resources (DER) on an energy cost function, which optimizes the allocation of distributed energy resources for a mid-rise apartment building. This is achieved by comparison of parameter optimization results for both a high- and low-level optimizer respectively. The optimization process is carried out using the following approach: (1) a two-objective function is constructed with one objective function similar to that of the high-level optimizer (DER-CAM); (2) an evolutionary algorithm (EA) with modified selection capability is used to optimize the two-objective function problem in (1) for 4 selected cases of DER utilization previously optimized in DER-CAM. (3) the optimization results of the low-level optimizer are compared with the outcome of DER-CAM optimization for the 4 selected cases. This is done to establish the capability of DER-CAM as an effective tool for optimal distributed energy resource allocation. Results obtained demonstrate the effect of load shifting and solar photovoltaic (PV) panels with power exporting capability on the optimization of the cost function. The Pareto-based MOEA approach has also proved to be effective in observing the interactions between objective function parameters. Mean inverted generational distance (MIGD) values obtained over 10 runs for each of the 4 cases considered show that a DER combination of PV panel, battery storage, heat pump and load shifting outperforms the other strategies in 70% of the total simulation runs
    corecore