12,921 research outputs found

    Comparison of DE and PSO for Generator Maintenance Scheduling

    Get PDF
    This paper presents a comparison of a differential evolution (DE) algorithm and a modified discrete particle swarm optimization (MDPSO) algorithm for generating optimal preventive maintenance schedules for economical and reliable operation of a power system, while satisfying system load demand and crew constraints. The DE, an evolutionary technique and an optimization algorithm utilizes the differential information to guide its further search, and can handle mixed integer discrete continuous optimization problems. Discrete particle swarm optimization (DPSO) is known to effectively solve large scale multi-objective optimization problems and has been widely applied in power systems. Both the DE and MDPSO are applied to solve a multi-objective generator maintenance scheduling (GMS) optimization problem. The two algorithms generate feasible and optimal solutions and overcome the limitations of the conventional methods including extensive computational effort, which increases exponentially as the size of the problem increases. The proposed methods are tested, validated and compared on the Nigerian power system

    Hybrid method for achieving Pareto front on economic emission dispatch

    Get PDF
    In this paper hybrid method, Modified Nondominated Sorted Genetic Algorithm (MNSGA-II) and Modified Population Variant Differential Evolution(MPVDE) have been placed in effect in achieving the best optimal solution of Multiobjective economic emission load dispatch optimization problem. In this technique latter, one is used to enforce the assigned percent of the population and the remaining with the former one. To overcome the premature convergence in an optimization problem diversity preserving operator is employed, from the tradeoff curve the best optimal solution is predicted using fuzzy set theory. This methodology validated on IEEE 30 bus test system with six generators, IEEE 118 bus test system with fourteen generators and with a forty generators test system. The solutions are dissimilitude with the existing metaheuristic methods like Strength Pareto Evolutionary Algorithm-II, Multiobjective differential evolution, Multi-objective Particle Swarm optimization, Fuzzy clustering particle swarm optimization, Nondominated sorting genetic algorithm-II

    Multi-Objective Optimization of Planetary Gearbox with Adaptive Hybrid Particle Swarm Differential Evolution Algorithm

    Get PDF
    This paper considers the problem of constrained multi-objective non-linear optimization of planetary gearbox based on hybrid metaheuristic algorithm. Optimal design of planetary gear trains requires simultaneous minimization of multiple conflicting objectives, such as gearbox volume, center distance, contact ratio, power loss, etc. In this regard, the theoretical formulation and numerical procedure for the calculation of the planetary gearbox power efficiency has been developed. To successfully solve the stated constrained multi-objective optimization problem, in this paper a hybrid algorithm between particle swarm optimization and differential evolution algorithms has been proposed and applied to considered problem. Here, the mutation operators from the differential evolution algorithm have been incorporated into the velocity update equation of the particle swarm optimization algorithm, with the adaptive population spacing parameter employed to select the appropriate mutation operator for the current optimization condition. It has been shown that the proposed algorithm successfully obtains the solutions of the non-convex Pareto set, and reveals key insights in reducing the weight, improving efficiency and preventing premature failure of gears. Compared to other well-known algorithms, the numerical simulation results indicate that the proposed algorithm shows improved optimization performance in terms of the quality of the obtained Pareto solutions

    Multi-Objective Optimization of Planetary Gearbox with Adaptive Hybrid Particle Swarm Differential Evolution Algorithm

    Get PDF
    This paper considers the problem of constrained multi-objective non-linear optimization of planetary gearbox based on hybrid metaheuristic algorithm. Optimal design of planetary gear trains requires simultaneous minimization of multiple conflicting objectives, such as gearbox volume, center distance, contact ratio, power loss, etc. In this regard, the theoretical formulation and numerical procedure for the calculation of the planetary gearbox power efficiency has been developed. To successfully solve the stated constrained multi-objective optimization problem, in this paper a hybrid algorithm between particle swarm optimization and differential evolution algorithms has been proposed and applied to considered problem. Here, the mutation operators from the differential evolution algorithm have been incorporated into the velocity update equation of the particle swarm optimization algorithm, with the adaptive population spacing parameter employed to select the appropriate mutation operator for the current optimization condition. It has been shown that the proposed algorithm successfully obtains the solutions of the non-convex Pareto set, and reveals key insights in reducing the weight, improving efficiency and preventing premature failure of gears. Compared to other well-known algorithms, the numerical simulation results indicate that the proposed algorithm shows improved optimization performance in terms of the quality of the obtained Pareto solutions

    Improving the multi-objective evolutionary optimization algorithm for hydropower reservoir operations in the California Oroville-Thermalito complex

    Get PDF
    This study demonstrates the application of an improved Evolutionary optimization Algorithm (EA), titled Multi-Objective Complex Evolution Global Optimization Method with Principal Component Analysis and Crowding Distance Operator (MOSPD), for the hydropower reservoir operation of the Oroville-Thermalito Complex (OTC) - a crucial head-water resource for the California State Water Project (SWP). In the OTC's water-hydropower joint management study, the nonlinearity of hydropower generation and the reservoir's water elevation-storage relationship are explicitly formulated by polynomial function in order to closely match realistic situations and reduce linearization approximation errors. Comparison among different curve-fitting methods is conducted to understand the impact of the simplification of reservoir topography. In the optimization algorithm development, techniques of crowding distance and principal component analysis are implemented to improve the diversity and convergence of the optimal solutions towards and along the Pareto optimal set in the objective space. A comparative evaluation among the new algorithm MOSPD, the original Multi-Objective Complex Evolution Global Optimization Method (MOCOM), the Multi-Objective Differential Evolution method (MODE), the Multi-Objective Genetic Algorithm (MOGA), the Multi-Objective Simulated Annealing approach (MOSA), and the Multi-Objective Particle Swarm Optimization scheme (MOPSO) is conducted using the benchmark functions. The results show that best the MOSPD algorithm demonstrated the best and most consistent performance when compared with other algorithms on the test problems. The newly developed algorithm (MOSPD) is further applied to the OTC reservoir releasing problem during the snow melting season in 1998 (wet year), 2000 (normal year) and 2001 (dry year), in which the more spreading and converged non-dominated solutions of MOSPD provide decision makers with better operational alternatives for effectively and efficiently managing the OTC reservoirs in response to the different climates, especially drought, which has become more and more severe and frequent in California

    Comparison between five stochastic global search algorithms for optimizing thermoelectric generator designs

    Get PDF
    In this study, the best settings of five heuristics are determined for solving a mixed-integer non-linear multi-objective optimization problem. The algorithms treated in the article are: ant colony optimization, genetic algorithm, particle swarm optimization, differential evolution, and teaching-learning basic algorithm. The optimization problem consists in optimizing the design of a thermoelectric device, based on a model available in literature. Results showed that the inner settings can have different effects on the algorithm performance criteria depending on the algorithm. A formulation based on the weighted sum method is introduced for solving the multiobjective optimization problem with optimal settings. It was found that the five heuristic algorithms have comparable performances. Differential evolution generated the highest number of non-dominated solutions in comparison with the other algorithms
    corecore