

Comparison Between Five Stochastic Global Search Algorithms for

Optimizing Thermoelectric Generator Designs

Mathieu Allyson-Cyra and Louis Gosselina*

aDepartment of Mechanical Engineering, Université Laval, Québec, Canada

*Corresponding author: louis.gosselin@gmc.ulaval.ca; Tel.: +1-418-656-7829

Article accepté pour publication dans : Numerical Heat Transfer, Part A:

Applications, Volume 76, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CorpusUL

https://core.ac.uk/display/442662277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Comparison Between Five Stochastic Global Search Algorithms for

Optimizing Thermoelectric Generator Designs

In this work, the best settings of five heuristics are determined for solving a

mixed-integer non-linear multi-objective optimization problem. The algorithms

treated in the paper are: ant colony optimization, genetic algorithm, particle

swarm optimization, differential evolution and teaching-learning basic algorithm.

The optimization problem consists in optimizing the design of a thermoelectric

device, based on a model available in literature. Results showed that the inner

settings can have different effects on the algorithm performance criteria

depending on the algorithm. A formulation based on the weighted sum method is

introduced for solving the multi-objective optimization problem with optimal

settings. It was found that the five heuristic algorithms have comparable

performances. Differential evolution generated the highest number of non-

dominated solutions in comparison with the other algorithms.

Nomenclature

1 2 3, ,a a a Divisions of the solution space

totalA Heat collector surface of exchange [m2]

c Cell index, Eq. (5)

1c Personal learning coefficient (PSO)

2c Global learning coefficient (PSO)

C Averaged Euclidian distance from Pareto front, Eq. (3)

nC Maximal value of C obtained by the worst algorithm

CR Crossover rate (GA)

id Smallest normalized Euclidian distance of point i , Eq. (2)

ijkD Density function

()kf i Function values of the objective k of point i

min max,k kf f Minimal and maximal function values of the objective k

F Objective function

F Total number of points on the Pareto front for a chosen algorithm

F Three dimensional feasible domain

bestG Best score of the swarm (PSO)

H Entropy

nH Normalized entropy

Ite Number of iterations to reach 98% of the maximal objective function

k Number of ants in a colony (RACO)

N Total number of solutions, Eq. (5)

totaln Number of thermoelectric modules

pCR Crossover probability (DE)

Pop Population

bestP Best personal score (PSO)

*P Pareto front

netP Net electric power output [W]

q Intensification factor (ACOR)

r Euclidian distance between the solution and a specified cell

s Solution index, Eq. (5)

1 2 3, ,s s s Weight ratio coefficients of each objective

inertiaw Inertia weight (PSO)

dampw Inertia weight damping (PSO)

Greek symbols

 Scaling factor (DE)

 Pheromone evaporation rate (ACOR)

ijk Normalized density function

 Standard deviation

 Influence function

()s s cr → Influence function between solution s and cell c, Eq. (5)

Acronyms

ACO Ant colony optimization

MVACO Ant colony optimization (mixed-variable problem)

RACO Ant colony optimization (continuous domain)

DE Differential evolution

EA Evolutionary algorithm

PDF Probability density function

GA Genetic algorithm

PSO Particle swarm optimization

RSD Relative standard deviation

SI Swarm intelligence

TEG Thermoelectric generator

TLBO Teaching-learning basic optimization

1. Introduction

Modern engineering design problems are complex problems that can become quite

large. They typically involve discrete and continuous variables, as well as non-

differentiable and non-linear functions. As a result, these optimization problems are

often difficult to solve, in particular with “traditional” optimization techniques.

Stochastic global search algorithms are a class of derivative-free optimization methods

that are an appealing option for solving these problems [1, 2]. This family of algorithms

uses stochastic and direct-search methods to find good approximate solutions to

complex problems with little to no prior knowledge of the optimization problem. These

algorithms are often referred to as heuristics and can be classed into evolutionary

algorithms (EAs), such as genetic algorithm (GA) and differential evolution (DE), or

swarm intelligence (SI), like particle swarm optimization (PSO). Due to their inherent

stochastic features, these algorithms can lead to different solutions to the same problem

each time they are used and thus the optimality is not guaranteed. Nonetheless, these

algorithms can converge faster than other methods and can find nearly optimal solutions

efficiently when used correctly [3].

The convergence mechanism of heuristic algorithms can be adapted through two

main forces during the search for the global minima: diversification and intensification.

Diversification is a term used to describe the exploration of the overall design space,

whereas the intensification characterizes the local search of a specific portion of the

design space. Both forces are contradictory and complementary, and must be balanced

to reach nearly optimal solutions efficiently [4]. For the vast majority of existing

heuristics, algorithm settings must be tuned prior to the optimization [5–7]. These

parameters directly influence the convergence mechanisms and can be problem

dependant. Setting the algorithm parameters for complex nonlinear mixed-variable

problems becomes a crucial part of the optimization process for most of the heuristic

algorithms. Various methods exist to determine optimal settings. Most of these methods

are considered as an offline tuning which consists in determining the best algorithm

parameters before actually using the algorithm for solving a specific optimization

problem [8]. Alternatives also transform the offline tuning problems into a continuous

optimization problem to be used with continuous optimization techniques [9].

With appropriate settings, heuristics can solve various types of problems. The

algorithms presented in this paper were initially developed for solving continuous

single-objective problems. Nonetheless, these algorithms can also be used to solve

multi-objective optimization problems. According to the literature, one of the most

common methods is the weighted summation approach which has been intensively

studied [10]. This approach is a general scalarization method combining all the

objective functions into a single function, where the objectives are summed with

weighted parameters. Under some limitations, this approach can be used with single-

objective heuristics to solve mixed-integer, non-linear, multi-objective optimization

problems. However, the weighted sum method has some drawbacks that can lead to

inefficient Pareto front representation [11]. Few performance comparisons have been

found in the literature between different stochastic global search algorithms with this

method.

When confronted to a complex optimization problem, the selection of a proper

heuristic algorithm in terms of optimality of the solutions and acceptability of the

computational time is not straightforward, and comparison algorithms can be quite

tedious [12]. In addition, the settings suggested for various heuristics in theory or

abstract models are not necessarily representative of real-life models [8]. There is thus a

need to develop more knowledge on the selection of an appropriate heuristic algorithm

for complex real-life optimization problems with multiple local minima objectives and a

high number of variables.

In this paper, five different population-based stochastic heuristic algorithms are

compared for the optimization of the design of a thermoelectric device, which is a

mixed-integer nonlinear constrained problem (Ref. [14]). First, the impact of the

algorithm internal parameter settings on the convergence speed, repeatability, and

capacity to reach optimal solutions is investigated. Then, a multi-objective optimization

problem with a weighted sum method is solved using the best setting identified in the

previous section. Convergence and diversity metrics are used to compare the

performance of the population-based heuristics.

2. Heuristic algorithms

This section presents the five selected population-based heuristic algorithms to be

compared. The problem solved in this study is described below, in Section 3, and

consists in optimizing a thermoelectric generator design. This reveals to be a multi-

objective nonlinear optimization problem with both continuous and discrete variables.

The main features of each algorithm are summarized in the sub-sections below.

References are provided for readers interested to learn more about the details of each

heuristic. The algorithms have been implemented in Matlab.

It should be noted that the algorithm presented here were originally created for

continuous optimization problems. Since the test case is a mixed-variable optimization

problem, the discrete variables must undergo a specific treatment. Since all the discrete

variables of the thermoelectric problem are categorical variables, there is no intrinsic

ordering. Therefore, the integer variables are considered as continuous variables and

then rounded to their nearest valid indices before evaluating the objective function.

2.1 Genetic algorithm (GA)

Genetic algorithms are one of the most popular EAs that use the concept of natural

selection to create offspring. A first version of the algorithm has been introduced in Ref.

[15]. The bio-inspired concepts of selection, crossover, and mutation are used to

produce better offspring for the next generation (i.e. better solutions).

According to literature, GAs have been highly studied and applied to many

fields such as heat transfer problems [16], HVAC systems [17], porous medium

combustion [18], flow-shop scheduling [5], and thermoelectricity [19]. The algorithm

has also been adapted to tackle mixed-discrete optimization problems [20, 21] and

multi-objective optimization [22].

The selection is the first step and it consists in selecting promising parents for

the generation of offspring. Several methods can be used to select the individuals in the

population. In this paper, three selection methods are retained: uniform selection,

roulette selection, and tournament selection. The first selects a parent with a normal

distribution based on the value of its solution and the number of parents. The roulette

selection method simulates a roulette wheel in which every individual is present with

the area proportional to its solution value. The tournament method chooses a group of 4

individuals randomly in the population and then selects the best ones to become a

parent.

A crossover is then performed between two parents to generate new offspring.

The crossover ratio (CR) is used to determine the number of individuals in the

population that will become the parents (and the number of offspring). The method used

to make a crossover child can also be adapted. In this paper, three crossover methods

are retained: scattered, single point, and double points. Each of these methods provide a

different way to determine from which parent the child will inherit each design variable.

The scattered method creates a random binary vector equal to the number of variables

and then gives one of the parent variable to the child depending on the value of the

binary vector. The single point method selects randomly a value between 1 and the

maximal number of variables. The child receives all the variable values of the first

parent before this point and the rest comes from the second parent. The double point

method is similar but two points are randomly selected. The first parent gives the

variable values between the two points to the child and the rest is passed from the

second parent

The last step is the mutation. The mutation replaces randomly some variable

values in some individuals of the population. With the GA used here (from the Matlab

OptimizationToolbox, Release 2016b), the number of individuals experiencing

mutations is fixed to the remaining fraction of individuals that has not been subject to

the crossover (1 CR−). An adaptable feasible method is used here for the mutation in

order to satisfy variable bounds. The pseudocode of the algorithm can be summarized

as:

Step 1. State variable bounds, algorithm parameters and termination criterion.

Step 2. Initialize the population, the crossover fraction CR and the selection and

crossover methods.

Step 3. Select individuals to become parents.

Step 4. Perform the crossover on the parents to generate Pop×CR children.

Step 5. Perform the mutation on Pop×(1−CR) individuals.

Step 6. Re-form a population combining mutants, children and initial individuals

and then eliminate the worst individuals.

Step 7. Repeat steps 3 to 6 until the stopping criterion is met.

2.2 Particle Swarm Optimization (PSO)

PSO is a bio-inspired heuristic mimicking the behavior of bird flocks or fish schooling

[23]. The algorithm has been developed for solving continuous nonlinear problems.

Nonetheless, the algorithm can be adapted to solve mixed problems by converting

discrete variables into continuous values as explained in Ref. [24]. PSOs have been

successfully used in many real-world applications like heat exchangers [25, 26],

thermoelectricity [27, 28], inverse heat transfer problems [29, 30], mechanical designs

[31], and geothermal power plants [32]. Improvements to the algorithm have been

developed for multi-objective optimization [33], easier parameter tuning [34], better

search efficiency [35], or to handle local minima more efficiently [36].

The algorithm explores the design space, searching for the optimal solution by

changing the trajectories of each “particle” of the swarm. Each particle is a member of

the population and a solution vector of the optimization problem. Each individual

particle moves in the multidimensional space toward the optimal solution by modifying

its position using the information of its best personal score (BestP) and the best score of

the entire swarm (BestG).

The velocity of each particle is modified using three elements that can be

adapted with different parameters. The first element is the velocity of the previous

iteration. The parameter inertiaw is the inertia weight affected to the velocity to control

the exploration factor of each particle and minimize the risk of the algorithm getting

trapped into a local minimum. The second and third elements use the information of

BestP and BestG to change the direction of the particle. The personal learning coefficient

1c and the global learning coefficient 2c are used to control the intensification of the

search. In addition, w can be damped at each iteration with the parameter dampw to

gradually reduce the inertia weight inertiaw and increase the intensification of the search

when the swarm is close to the global minima. The last parameter is the velocity

limitation. Without control over the minimal and maximal value of the velocity, the

swarm could “explode” with very high velocity, moving the particles outside the limits

of the design space. The pseudocode of the algorithm can be summarized as:

Step 1. State variables bounds, velocity limits, algorithm parameters and

termination criterion.

Step 2. Initialize the population and the algorithm parameters.

Step 3. Evaluate the objective function of each particle. BestP and
BestG can be

changed if they are better than their actual values.

Step 4. Modify each particle position. inertiaw can be damped at this step if a

damping parameter is defined.

Step 5. Repeat steps 3 and 4 until the stop criterion is met.

2.3 Ant Colony Optimization for continuous variables (ACOR)

ACO is an algorithm inspired from the behavior of ants foraging. The algorithm was

initially developed to solve discrete problems [37, 38]. One particularity of the

algorithm is how it recreates the movement of ants from the nest to the foraging area

and vice-versa following the shortest path. The ants are solutions that follow one of the

paths that are potential solutions in the solution space. When an ant follows a specific

path, it has the solution component from that particular path. When an ant moves

between the food source and the nest, it releases a pheromone trail that other ants can

smell to change their path. The pheromone trail is used to probabilistically sample the

search space (paths). The shorter the path, the stronger the concentration of the

pheromone trail, increasing the probability that ants move to that specific path. This bio-

inspired mechanism allows ants to interact with other nest mates to move through

shorter path in the design space (minimal cost). An evaporation parameter is also

included to the pheromone trail in order to control the premature convergence to a path

that might not be the global minimum. At each iteration, the concentration of the

pheromone trail is lowered to reduce the attraction of the other ants and increase the

exploration of the design space by other ants.

ACOs have been widely used in many fields of application. To name a few,

ACOs has been successfully applied to heat transfer problems [39, 40],

thermoelectricity applications [41] and water distribution systems [6]. ACO has also

been combined with other heuristic algorithms such as PSO to solve inverse heat

transfer problems [42, 43] for higher effectiveness and overall robustness. Variations of

the algorithm exist to solve other kinds of problems. ACOR is a variant for continuous

domain [44] and ACOMV is a variant for mixed-variable problems [45]. For the mixed-

variable problem of the present test case, ACOR was used with a treatment of the

discrete variables similar to that in ACOMV, where discrete variables are treated as

categorical variables, similarly to Ref. [46].

The main idea behind ACO is the pheromone trail used for incremental

construction of solutions. A finite set of possible paths exist and a probability is given

from best to worst to each of them depending on the pheromone value. However, with

continuous variables, the concept of pheromone is different. Instead of a discrete

probability distribution, a weight is given to each solution in the population rated from

best to worst with a probability density function (PDF). The weight determines the

attractiveness of a solution during the construction process and a probability for an ant

to choose this solution is set based on the weight value. The algorithm parameter q is

the intensification factor used in evaluating the weight. A small value of q increases the

weight for the best-ranked solutions while a high value of q makes the weight more

uniform among the ranked-solutions. Then, the probability to select the solution is

calculated for each solution based on the weight and their rank.

In the first step, k ants (potential solutions) are randomly generated. In a second

step, the algorithm starts the construction of new solutions variable by variable by

generating Gaussian random variables. The number of new solutions created can be

adapted. In this paper, the sample used to construct new solutions is fixed to half the

population. For each variable of each solution, a standard deviation is calculated

including the deviation-distance ratio that works in a way similar to the pheromone

evaporation rate in ACO. affects the long term memory by reducing the search for

already explored points. Therefore, the convergence rate is often lower with a higher

value of . Variable by variable, the algorithm select a solution with a roulette wheel

selection scaled with the probability. Then, a Gaussian random variable is generated

from the standard deviation and the value of the variable from the selected solution. The

pseudocode can be summarized by the following steps:

Step 1. State variable bounds, algorithm parameters and termination criterion.

Step 2. Initialize the population.

Step 3. Calculate the Gaussian functions w and the probability associate to each

solution rank.

Step 4. Construct solutions (new solutions). For each individual variable, select

the Gaussian kernel function with the probability to select each Gaussian

function w. Then, generate random Gaussian variable.

Step 5. Update the population by eliminating the worst solutions.

Step 6. Repeat steps 3 to 5 until the stop criterion is met.

2.4 Teaching-Learning Basic Algorithm (TLBO)

TLBO is inspired by the apprenticeship of a teacher with learners by exchanging

information to reach global minima [47–49]. Similarly to other heuristic algorithms,

TLBO is a population-based algorithm where each individual of the population is a

learner and the teacher is the best individual in the population. However, one

particularity of this algorithm is that it has no internal parameters to fix, which makes it

easy to adapt to any optimization problem. However, since the algorithm is developed

to solve non-constrained nonlinear continuous problems, its capability to solve mixed-

integer non-linear problems is not clear.

TLBOs have been used to solve many kind of optimization problems, such as

heat exchanger optimizations [50], thermoelectric cooler [51], and heat pipes [52]. The

algorithm can be used to solve multi-objective optimization problems [53].

The algorithm has two distinct phases. The first phase is the teaching phase where the

best learner (i.e., the selected teacher) tries to provide knowledge to the other learners to

improve the overall mean score of the class. In the second phase, the learners interact

with each other to improve their best score. The best learner among the two teaches his

knowledge to the other one. This is done by adding to the worst learner a fraction of the

difference in the solution vector between the two learners. This fraction is randomly

generated for each interaction between two learners [47]. The intensity of this exchange

could be increased, but here, the ratio of exchange is chosen randomly for each variable

of the solution. It should be noted that for both phases, the objective function is

evaluated for the entire population. Therefore, the algorithm required twice the number

of objective function evaluations as the algorithm presented in this paper. Finally, the

best solution (learner) is updated to become the teacher for the next iteration. The

pseudocode can be summarized as:

Step 1. State variable bounds, algorithm parameters and termination criterion.

Step 2. Initialize the population.

Step 3. Calculate the population mean and identifying the best solution to

become the teacher.

Step 4. Teaching phase: modifying solutions with the best solution (i.e., the

teacher). Update the best solution if one of the learners is better.

Step 5. Learning phase: a learner is compared to another one randomly where

the better solution is used to modify the other learner. Update the best solution if

one of the learners is better.

Step 6. Repeat steps 3 to 5 until the stop criterion is met.

2.5 Differential Evolution (DE)

DE is an algorithm with an approach similar to that of GAs (i.e., mutation, crossover,

selection). The algorithm has been introduced by Ref. [54] to solve nonlinear

continuous problems.

According to the literature review, DEs have been less studied than other

heuristics. Nonetheless, authors have used DE in some applications such as optimal

shell-and-tube heat exchangers [55], heat exchanger network synthesis [56], and other

various engineering problems [57, 58]. Variations of DEs also exist to solve multi-

objective optimization problems [59].

At each generation, the algorithm selects randomly a target vector and two other

solution vectors from the population pool and performs a mutation using a scaling factor

 . This factor affects how different the mutant vector will be from the target vector.

Afterwards, a crossover is done between the target vector and the mutant vector to

obtain the trial vector with a crossover probability pCR . The crossover is performed on

each variable of the vector. Higher pCR increases the probability that the trial vector

will have variable values from the mutant vector. The best solution between the trial

vector and the target vector is the solution retained. The pseudocode can be summarized

by:

Step 1. State variable bounds, algorithm parameters and termination criterion.

Step 2. Initialize the population.

Step 3. Perform the mutation with three randomly selected vectors.

Step 4. Perform the crossover between the mutant vector and the trial vector.

Step 5. Select the best solution between the trial vector and the target vector.

Retain the best one in the population for the next generation.

Step 6. Repeat Steps 3 to 5 until the stop criterion is met.

3. Test case: Thermoelectric generator design optimization

As mentioned above, the five selected algorithms have been analysed on a series of

continuous problems. However, few comparison exercises were found, and in

particular, the capability of these algorithms to solve non-linear mixed variable

problems is not well documented. The optimization problem described in the present

section has been used for that purpose. It consists in optimizing the design of a

thermoelectric generator system developed for heat recovery applications, see Ref. [14].

Thermoelectric generators (TEGs) are devices capable of directly converting

heat into electricity by using the Seebeck effet. Featuring no mobile parts or working

fluids, highly durable TEGs are attracting more and more attention for heat recovery

applications. However, the high cost and low efficiency of actual thermoelectric

materials is the main limitation for commercial use. The thermoelectric generator model

used in this paper is based on the one developed in Ref. [14], and therefore is not

repeated here. The heat source has constrained temperature and heat flux distributions

over its surface. In order to achieve a significant temperature difference through the

thermoelectric modules, a cooling system is installed on the cold side of the TEG. Fig. 1

shows a schematic view of the system. [Figure 1 near here]

3.1. Objective functions

The objective of this design optimization is to maximize the electric power output while

minimizing the cost of system. The cost of the TEG system is related to the number of

thermoelectric modules and the total surface of exchange of the cooling system. Thus, a

total of three objectives should be simultaneously optimized. A weighted sum method is

used here since most of the algorithms presented were primarily developed for single-

objective problem. Therefore, the objective function is:

 () () ()1 2 3net total totalF s P s n s A= − + + (1)

where the coefficients is are the weight ratio of each objective i , netP is the net power

obtained from the difference between the electric power output and the pumping power

for the cooling system, totaln is the total number of modules of the TEG, and totalA is the

total surface of exchange of the heat exchanger (cooling system). In order to obtain the

equivalent of a Pareto front corresponding to all three objectives, multiple combinations

of weight ratios are tested with each algorithm. Every combination of weight ratio

varying from [0:0.2:1] is tested for a total of 216 solutions for each run. Afterwards, a

non-dominated sorting is performed on the solution set to eliminate the dominated

solutions. It should be noted that the weighted summation approach is unable to

generate solution of non-convex portion of a Pareto optimal front [11]. [Figure 2 near

here] [Table 1 near here]

3.2. Model description

In this paper, the fixed hot-side heat flux and temperature distribution shown in Fig. 2

was used to test the algorithms. The surface is divided into a 12 × 12 grid for a total of

144 cells of equal dimensions. The list of 165 variables (both discrete and continuous)

of the model is presented in Table 1.

4. Analysis of the effect of heuristic algorithm parameters on performance

The “best” algorithm settings can be different from a problem to another and can affect

the comparison exercise proposed here. Different techniques have been proposed to

fine-tune the parameters of evolutionary algorithms (e.g., [60] and [61]), but for the type

of problems addressed here, only scarce information or rules of thumb were found in

literature to select the optimal algorithm parameters. Therefore, it was decided to

investigate and document the effect of these parameters on the performance of the

algorithms. A specific case was used for this purpose, with weight ratio values

 1 2 3, ,s s s of 1,0,0 . In other words, this corresponds to the problem of maximizing

the net power output only. Note that a preliminary analysis (not shown here) has

verified that a change in the weights did not affect significantly the main findings of this

section (i.e., which algorithm parameters work better). The stopping criterion is when

the number of iterations reaches 100. The number of individuals in the population is set

to 2000. The initial population is different for each run and is generated using a Latin

hypercube sampling (LHS) rather than creating a uniformly distributed random

population. It was demonstrated that the initial population generated from LHS is more

uniform across the design space which leads to faster convergence speed and higher

diversity of optimal solutions [62]. Table 2 presents the list of parameters tested and

their values. One should note that every possible parameter combination of Table 1 has

been tested. To verify the repeatability, a total of 5 runs are done with each algorithm

for each parameter combination. [Table 2 near here]

4.1. Impact of algorithm parameters on convergence rate, repeatability and

optimal solutions

The combination of algorithm parameters can either increase the exploration of the

search space or increase the intensification of the search around local or global minima.

For a given problem, a trade-off must be made between different algorithm parameters

to reach a global minimum in less iterations. However, the effect of those algorithm

parameters on the performance (i.e. convergence rate, repeatability and achievement of

global minima) is not always clear. For example, some algorithms can reach optimal

performance with a wide range of algorithm parameters combinations making them

easier to use, such as PSO [32]. One might thus be interested in determining the effect

of those algorithm parameters on the algorithm performance. Therefore, this section

features an analysis of the effect of algorithm parameters of GA, PSO, ACOR and DE.

One should remember that TLBO does not have internal parameters to choose.

In this section, the algorithm parameters from Table 2 are tested and compared

for each algorithm. For every possible combination of algorithm parameters, the

performance of an algorithm was assessed by calculating:

(1) The best solution obtained among the 5 optimization runs;

(2) The coefficient of variation or relative standard deviation (RSD), which is the

ratio of the standard deviation over the mean for the 5 optimization runs. A low

RSD value indicates a better repeatability;

(3) The number of iterations required to reach 98% of the maximal objective

function (Ite). The average Ite among the five runs is calculated.

These metrics are reported in Figs. 3 to 5 as a function of the algorithm parameters.

In Fig. 3, one can see the impact of the crossover ratio CR and the selection

method on the performance of the GA. The crossover method has been fixed to the

scattered function. In Fig. 3a, a crossover ratio of 0 (i.e., mutation ratio of 1) provides

poor solutions with either of the selection methods. In addition, high mutation reduces

considerably the convergence speed and the reliability. It can be seen from Figs. 2b and

2c that the number of iterations required and the RSD tend to be higher with CR below

0.6. With CR over 0.6, each selection method is able to reach satisfying solutions with

less iterations and with a better reliability. Nonetheless, for a better reliability, the

tournament selection method should be used since the RSD is the lowest as presented in

Fig 2b (~0.015). Therefore, proper parameters for the test case could be CR between

0.6 to 1.0 while using the tournament selection method and the scattered crossover

method. [Figure 3 near here]

In Fig. 4, the effect of the personal and global learning coefficient (
1c and

2c) of

PSO on the performance is presented. The inertia weight inertiaw and inertia damping

dampw have been fixed to 1 and 0.99 respectively based on Ref. [7]. One should note

that, reducing dampw resulted in premature convergence of the algorithm while

removing the damping resulted in too much exploration leading to much lower

convergence speed. In Fig. 4a, the results show that the value given to 1c and 2c has no

significant impact on the solution obtained. Increasing the intensification of the search

(i.e. by increasing 1c and 2c) seems to have no effect on the performance. However,

having 2c = 0 is not an appropriate choice because the algorithm does not converge as

shown in Fig. 4a. Furthermore, the impact of 1c is negligible for this test case. From

Fig. 4b, PSO seems to have an overall good reliability since the RSD is relatively low

(~0.01). As for the convergence speed, the results from Fig. 4c show that higher values

of
1c and

2c increase the number of iterations required to reach the final solution. With

a higher weight given to personal and global learning, some individuals in the

population are more easily attracted toward local minima. Hence, the local minima

obstructs the swarm in the search of the global minima, resulting in lower convergence

speed. Therefore, with inertiaw =1 and dampw =0.99, appropriate
1c and

2c values could be

between 0.4 and 1.4 for this test case. [Figure 4 near here]

In Fig. 5, the effect of the intensification factor q and the deviation-distance

ratio of ACOR on the performance is presented. In Figs. 4a and 4c, the results show

that a high value of reduces the capacity of the algorithm to reach good solutions as

well as the convergence speed. Consequently, lower values (between 0.3 and 0.6)

appear to be the best choice. In Fig. 5a, with between 0.3 and 0.6, q can cover a

wide range without affecting the capacity of the algorithm to reach good solutions.

However, q has a direct impact on the convergence speed of the algorithm. In Fig. 5c, it

can be seen that lower values of q (i.e., increasing the weight for high-ranked solutions)

reduce the total number of iterations required for the algorithm to converge. Thus, good

parameters combination could be ~ 0.4 and q below 0.01 for fast convergence and

good capacity to reach satisfying solutions. In Fig. 5b, RSD is globally higher with

every parameter combinations and no tendency can be observed, which suggests that

reliability provided by ACOR is generally low for this test case. [Figure 5 near here]

In Fig. 6, the effect of the crossover probability pCR and scaling factor of

DE on the performance are presented. Fig. 6a shows that higher pCR leads to better

solutions. In addition, having lower also improves the solutions. Nonetheless, the

effect of is less present with high pCR . One should note that a pCR value of 1

makes all trial vectors mutant which prevents the algorithm from converging correctly.

In Fig. 6b, the RSD is relatively low and constant, which reveals that the algorithm has

a good reliability overall. The convergence speed in Fig. 6c shows that high pCR and

low reduce the number of iterations required to reach convergence. In the end,

proper parameters for DE for this test case are approximatively pCR ~ 0.8 and ~

0.01. [Figure 6 near here]

To better compare the different algorithms, the resulting net power output versus

the RSD is reported in Fig. 7 for every combination of algorithm parameters tested for

GA, PSO, ACOR and DE. The power output versus the required number of iterations

(average over the 5 runs with the same settings) is also shown in this figure. Each point

in Fig. 7 represents a single combination of parameters.

In Fig. 7a, it can be seen that DE (in blue) has to lowest RSD values and setting

different algorithm parameters mostly affect the best solution obtained. On the other

hand, PSO (in green) has higher RSD values as well as higher netP globally with most

of the algorithm parameters tested. Nonetheless, the maximal net power achieved does

not change significantly with the PSO settings. ACOR (in red) appears as a

“compromise” between PSO and DE. In Fig. 7a, it can be seen that ACOR has most of

its points (in red) clustered between DE (in blue) and PSO (in green) for the RSD value.

In addition, most of the cluster of points is located close to higher power output values.

Therefore, results from Fig. 7a suggest that ACOR has both higher repeatability and

better capacity to reach good solutions with multiple algorithm parameter combinations.

In contrast, GA (in black) has a more spread out cluster and most of its points reach

lower net power output as well as higher RSD .

In Fig. 7b, the net power output versus Ite is shown for each combination of

algorithm parameters. It can be seen that DE (in blue) has the slowest convergence rate

with most of its parameter combinations. In general, both GA and PSO required around

25 to 50 iterations to reach nearly optimal solutions. Similarly to their RSD , changing

the algorithm parameters for these algorithms has a significant impact on the

convergence speed but they still remain faster than DE. As for ACOR, Fig. 7b reveals

that the choice of algorithm parameters has an important impact on the convergence

speed. In fact, the required number of iterations for ACOR varies from 5 to 95. In

addition, it can be seen that the points with the lowest or the highest required number of

iterations lead to less net power output. Therefore, the convergence rate and level of

optimality are highly affected by the ACOR setting. [Figure 7 near here]

4.2. Algorithm performance comparison with proper algorithm parameters

Based on the previous figures, a set of algorithm parameters has been chosen for each

algorithm. These choices offered a satisfying trade-off between the capability to achieve

nearly optimal solutions, as well as good reliability and convergence rate. The selected

algorithm parameters, the maximal objective function value, and the RSD of each

algorithm are reported in Table 3. The convergence of GA, PSO, ACOR, DE and TLBO

with the algorithm parameters from Table 3 is reported in Fig. 8. The solid lines are the

average solution of all five runs at each iteration, while the gray areas are the range

between the best and worst solutions among the five runs. The size of the gray area is

directly related to the RSD . [Table 3 near here]

It can be seen in Fig. 8 that the convergence of both DE and TLBO is slower.

Furthermore, DE even seems not to have fully converged even after 100 iterations.

Nonetheless, DE has a smaller “gray area” revealing its low RSD value. Moreover, DE

was able to achieve the best solution of all (i.e., a net power of 12,004 W). Even if

TLBO required no algorithm parameters to set, it has to perform twice the number of

objective function evaluations, making it more time-consuming. Globally, it can be

concluded that for the present problem, DE is highly reliable and reaches good solutions

but converges slowly. On the contrary, TLBO has slow convergence and lower

capability to reach nearly optimal solutions. [Figure 8 near here]

The low rate of convergence of DE and TLBO can be compensated with GA,

PSO and ACOR. However, the gray area of PSO in Fig. 8 is important, meaning that

different runs might be required and that it is likely that the solution of a run will not be

the global minima. Regardless, a wide range of coefficients
1c and

2c can be selected to

reach similar solutions as shown previously in Fig. 7. With a similar value of the

maximized objective function netP as that provided by PSO, GA required less iterations

and had a better repeatability as presented in Fig. 8. Overall, the algorithm that reaches

the best solution is DE, the algorithm that has the fastest convergence speed is ACOR,

the algorithm that as the best reliability is DE and TLBO. Other studies on DE

compared to other population-based heuristics support this conclusion [7, 63, 64].

The conclusions on the performance of all five algorithms are summed up in

Figure 9. Based on the results presented above, the algorithms have been ranked based

on the different investigated criteria for the present optimization problem. The further

an algorithm sits on a given axis, the better it is. The “robustness to parameter variation”

is an added criterion that evaluates how sensitive an algorithm is to changes of its

internal settings. This “qualitative” criterion is assessed from the objective function

RSD from all the algorithm parameter combinations. Fig. 9 expresses that PSO is the

only algorithm where changing the algorithm parameters has little to no impact on the

solution reached. [Figure 9 near here]

5. Impact of heuristics on sets of non-dominated solutions

The multi-objective optimization problem introduced above is solved with the five

heuristics compared here using the algorithm parameters found in Table 3. As

mentioned before, the weighted sum method is used to build a single objective function

combining the original three objectives, see Eq. (1). Optimizations are done for every

combination of weights is between [0:0.2:1] for a total of 216 optimization problems

for each algorithm. The same number of individuals and maximal number of iterations

as above is used in this section. Once again, five different runs are done for each

algorithm for a total of 5400 optimization runs. This section compares the sets of

solutions that are obtained as a function of the optimization algorithms.

5.1. Creation of Pareto front

With the total of 5400 solutions obtained, it is possible to create the equivalent of a

Pareto front. A non-dominated sorting is performed on the 5400 points to keep only the

non-dominated points (1077 points in this case) which were then reported in Fig. 10.

This represents a good estimation of the Pareto front for this problem. In fact, Fig. 10

was compared to the multi-objective optimization solutions for the same thermoelectric

model reported in Ref. [14]. Both sets of non-dominated points were found to have

nearly identical hyperspace surfaces over the solution space. This demonstrates the

validity of the weighted sum method used for this test case. [Figure 10 near here]

The Pareto front P* from Fig. 10 is obtained by selecting non-dominated points

from the solutions provided by all the algorithms. It is interesting to find out which

points from P* originate from which algorithm along with their location over the Pareto

front. In Fig. 11, the solutions are represented on the Pareto front as a function of the

algorithm from which they originate. In addition, the percentage of points on P*

provided by each algorithm is reported in Table 4. These percentages were calculated to

determine which algorithms were able to find the best solutions with the weighted

summation approach. It was found that all heuristics were able to provide non-

dominated solutions, with DE providing the most (32%) and PSO, the least (10%).

[Figure 11 near here]

5.2. Metric for convergence

To evaluate the performance of each algorithm, an approach similar to the metric for

convergence of Ref. [65] is used. The convergence metric typically evaluates the

convergence at each generation of a given set of points to a reference set which is the

allegedly “true” Pareto front (Fig. 10 or P* in this case). With the weighted sum

method, each optimization (i.e., each point on the Pareto front) is independent and thus,

a “classic” convergence analysis does not provide any useful information on the

convergence speed. Instead, only the final front of each algorithm was compared to the

true Pareto front.

The set of points from Fig. 10 forms a reference set *P . For each point i of

each run of each algorithm, the smallest normalized Euclidian distance
id from *P is

calculated with:

() ()

2
*

max min1
1

min
P M

k k

i
j

k k k

f i f j
d

f f=
=

−
=

−
 (2)

where ()kf i are the function values of the objective k of point i from the algorithm

studied, ()kf j are the function values of the objective k of point j from *P ,
min

kf and

max

kf are the minimal and maximal function values of objective k from the set *P . The

averaged distance is the retained value for each of the five optimizations for each

algorithm:

 1

F

i

i

d

C
F

==

 (3)

where F is the total number of points on the front for the chosen algorithm. The lower

the value of C , the closer the algorithm to the Pareto front of Fig. 10. Since 5 runs are

performed for each algorithm, a total of 25 metric values C are calculated. Then, to

keep the metric values between 0 and 1, the metric values C are normalized by the

maximal value obtained from the worst algorithm (nC). Therefore, the worst algorithm

has a score of 1 while the others are below.

5.3. Metric of diversity

The weighted sum method does not guarantee the diversity in solutions over the Pareto

front. Even with a proper method for generating weight ratios, the distribution of

solutions over P* might vary from one algorithm to another. This can be seen from Fig.

11, where TLBO points (in pink) are all clustered in one area and DE points (in blue)

are more evenly distributed across the Pareto front. Another metric can be used to

evaluate the diversity of the non-dominated solutions originating from each algorithm

on the front in Fig. 10. In other words, this metric estimates how well each algorithm

can generate good solutions all along P* with a weighted sum method. The metric of

diversity is based on a similar approach of Ref. [66]. The concept of Shannon’s entropy

(or information theory) is applied to measure how a set of points is spread across a

feasible region. A set of solutions with higher entropy means that the solutions have a

better coverage of the solution space.

First, the three dimensional feasible domain denoted by F is normalized and

then subdivided into a grid of 1 2 3a a a cells. The subdivision is determined so that the

decision-maker is indifferent to solutions within the same cell. The feasible domain is

delimited by the extreme solutions from the approximate Pareto front from Fig. 10. For

a given cell, an influence function to each solution is defined. The influence

function is a decreasing function of the distance between the specific cell and that

solution. In this paper, is defined as a normal distribution by the Gaussian function

given as follow:

()

2

0.51

2

r

e

−

 = (4)

where r is the Euclidian distance between the solution and the specified cell and is

the standard deviation that affect the influence of far solutions on the specific cell. As a

general rule, is selected subjectively so that solutions at the boundaries from the

center of the mesh has no influence (near zero value of).

Then, for each cell, a density function is defined as a collection of the influence

functions of all the solution points. The density function ijkD to a specific cell c in the

three dimensional solution space is given as:

 () ()
1

N

ijk s s c

s

D c r →

=

= (5)

where N is the total number of solutions and ()s s cr → is the influence function

evaluated from the Euclidian distance between the solution s and the cell c .

Afterwards, the density functions for each cells is turned into a normalized

density function:

31 2

1 2 3

1 2 31 1 1

ijk

ijk aa a

k k k

k k k

D

D

= = =

=

. (6)

At last, the entropy H is defined as follow:

 ()
31 2

1 2 3 1 2 3

1 2 31 1 1

ln
aa a

k k k k k k

k k k

H
= = =

= − (7)

where ()
1 2 3 1 2 3

lnk k k k k k is assumed zero when
1 2 3

0k k k = . Then, to keep the metric

values between 0 and 1, H is normalized by the maximal value obtained from the best

algorithm (nH). One should note that, any solution within a single cell is considered the

same. Therefore the division of the feasible area is performed in order to keep the

number of solutions within a cell to a minimal while reducing the computational time.

Here, the solution space is subdivided into 20 20 20 cells. A value of of 0.01 is

selected in this test case.

5.4. Assessment of heuristics based on convergence and diversity metrics

One can see from Fig. 11 that all the algorithms are present on the Pareto front P* in the

sense that all algorithms were able to generate non-dominated solutions. However, the

number and distribution of the non-dominated points of each algorithm on P* is

different. The metrics presented are quantitative tools that provide useful information on

the performance of each heuristic algorithm analysed in this paper. For each algorithm,

the normalized mean values C calculated from nC and the normalized entropy nH are

reported in Table 4. From Table 4, the value of the relative mean convergence metric

 of each algorithm is roughly similar (values over 0.9), which shows that the front

achieved with each heuristic has a similar distance from the allegedly "true" Pareto

front. Nonetheless, TLBO stands out from the other algorithms with of 0.84, which

indicates that it is closer to the Pareto front of Fig. 10. However, from Fig. 11, it is

visible that the best solutions provided by TLBO are clustered in the lower left corner of

the Pareto front, whereas all the other algorithms cover more of the Pareto front.

Therefore, from the metric C alone, even if some algorithms like TLBO could appear

to be a better choice to reach optimal solutions, the algorithm might not provide the best

solutions over the entire solution domain. In contrast, it can be seen from Table 4 that

other algorithms, such as DE and ACOR, have a higher value of C , but are more

spread out over the solution domain. [Table 4 near here]

The normalized entropy value nH also supports this statement. In fact, the

normalized metric value nH of TLBO (0.77) is the lowest while DE and ACOR have the

C

C

highest values (1.00 and 0.98 respectively). In addition, both DE and ACOR have

generated more points on the set P* with 32.7% and 21.3% respectively.

In sum, with the results shown in Table 4, it can be concluded that the five

algorithms compared in this work were “functional” and did not yield completely

different levels of performance for the test case problem. That being said, DE

outperforms the other algorithms in terms of reliability, capacity to reach optimality,

and diversity of solutions using the weighted sum method for the multi-objective

optimization. However, it has been demonstrated that DE has a slow convergence speed

and relatively high setting sensibility on reaching near-optimal solution in comparison

to the other algorithms. ACOR and GA have faster convergence speed, good capacity to

reach optimality and good diversity. However, the algorithm parameters of ACOR are

difficult to tune. For easier tuning and adjustments, other algorithm like PSO and TLBO

are appealing options. PSO has a fast convergence speed but poor reliability, while

TLBO has slow convergence speed but high reliability. However, both algorithms have

lower quality and diversity of near-optimal solutions when used with a weighted sum

method.

6. Conclusion

The performance of five stochastic global search algorithms with weighted sum

approach to solve a multi-objective optimization problem are compared. A nonlinear

mixed-variable constrained optimization test case is considered, which consisted in

optimizing the design of a thermoelectric device. This comparative analysis is

conducted to highlight the forces and weaknesses of each algorithm and help in

algorithm selection. The algorithms compared in this paper are: GA, PSO, ACOR,

TLBO and DE.

As a first step, the parameters of each algorithm influencing the intensification

and diversification mechanisms have been analyzed to assess their impact on: the

capacity to reach optimal solutions, the convergence speed, and on the reliability. TLBO

has been removed from this first analysis since the algorithm does not have any specific

parameter to fine-tune. From this analysis, it can be concluded that the choice of proper

parameters for a specific problem can be influential, although some algorithms are more

sensitive to the values of these settings than others. For ACOR and DE, the solution

reached is highly influenced by the choice of parameter values, whereas little effect has

been observed on GA and PSO.

As a second step, the weighted sum method is used to solve the multi-objective

optimization test case with proper settings. An approximation of the "true" Pareto front

is obtained by performing a non-dominated sorting on the set of solutions obtained from

every weight ratio combination with all five algorithms. Then, each algorithm is

compared using convergence and diversity metrics. In general, all the algorithms are

relatively close to the true Pareto front and yield comparable performances.

Nonetheless, it has been observed that DE produced more solutions on the Pareto front

as well as a highest level of diversity, followed by ACOR.

The results of this paper provide a useful insight on the selection of heuristic

algorithms and their specific settings for similar complex design optimization problems.

Future work could investigate other heuristics (e.g., firefly algorithm [67], etc.) and

perform this comparison with other types of problems.

Acknowledgements

The authors’ work is supported by the Natural Sciences and Engineering Research

Council of Canada (NSERC).

References

[1] L. T. Biegler et I. E. Grossmann, « Retrospective on optimization », Comput. Chem.

Eng., vol. 28, no 8, p. 1169‑1192, juill. 2004.

[2] L. Rios et N. Sahinidis, « Derivative-free optimization: a review of algorithms and

comparison of software implementations », J. Glob. Optim., vol. 56, no 3, p. 1247‑
1293, juill. 2013.

[3] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, et A. Mahajan, « Mixed-

integer nonlinear optimization*† », Acta Numer., vol. 22, p. 1‑131, mai 2013.

[4] C. Blum et A. Roli, « Metaheuristics in combinatorial optimization: Overview and

conceptual comparison », ACM Comput. Surv. CSUR, vol. 35, no 3, p. 268–308,

2003.

[5] C. Oguz et M. F. Ercan, « A Genetic Algorithm for Hybrid Flow-shop Scheduling

with Multiprocessor Tasks », J. Sched., vol. 8, no 4, p. 323‑351, 2005.

[6] A. C. Zecchin, A. R. Simpson, H. R. Maier, et J. B. Nixon, « Parametric study for

an ant algorithm applied to water distribution system optimization », IEEE Trans.

Evol. Comput., vol. 9, no 2, p. 175‑191, avr. 2005.

[7] S. Paterlini et T. Krink, « Differential evolution and particle swarm optimisation in

partitional clustering », Comput. Stat. Data Anal., vol. 50, no 5, p. 1220‑1247, mars

2006.

Birattari M (2009) Tuning Metaheuristics: A Machine Learning Perspective, Springer-

Verlag, Berlin, Heidelberg

[9] Z. Yuan, M. A. Montes de Oca, M. Birattari, et T. Stützle, « Continuous

optimization algorithms for tuning real and integer parameters of swarm intelligence

algorithms », Swarm Intell., vol. 6, no 1, p. 49‑75, mars 2012.

[10] R. T. Marler et J. S. Arora, « Survey of multi-objective optimization methods for

engineering », Struct. Multidiscip. Optim., vol. 26, no 6, p. 369‑395, avr. 2004.

[11] I. Das et J. E. Dennis, « A closer look at drawbacks of minimizing weighted sums

of objectives for Pareto set generation in multicriteria optimization problems »,

Struct. Optim., vol. 14, no 1, p. 63‑69, août 1997.

[12] V. Beiranvand, W. Hare, et Y. Lucet, « Best practices for comparing optimization

algorithms », Optim. Eng., vol. 18, no 4, p. 815‑848, déc. 2017.

[14] M. Allyson-Cyr, « Optimisation sous contrainte d’un générateur thermoélectrique

pour la récupération de chaleur par différents algorithmes heuristiques », Mémoire,

Université Laval, Québec, Canada, 2018.

[15] J. H. Holland, Adaptation in natural and artificial systems : an introductory analysis

with applications to biology, control, and artificial intelligence, 1st MIT Press ed.

Cambridge, Mass: MIT Press, 1992.

[16] L. Gosselin, M. Tye-Gingras, et F. Mathieu-Potvin, « Review of utilization of

genetic algorithms in heat transfer problems », Int. J. Heat Mass Transf., vol. 52, no

9–10, p. 2169‑2188, avr. 2009.

[17] W. Huang et H. N. Lam, « Using genetic algorithms to optimize controller

parameters for HVAC systems », Energy Build., vol. 26, no 3, p. 277‑282, janv.

1997.

[18] V. K. Mishra, S. C. Mishra, et D. N. Basu, « Simultaneous estimation of parameters

in analyzing porous medium combustion—assessment of seven optimization

tools », Numer. Heat Transf. Part Appl., vol. 71, no 6, p. 666‑676, mars 2017.

[19] S. Bélanger et L. Gosselin, « Multi-objective genetic algorithm optimization of

thermoelectric heat exchanger for waste heat recovery », Int. J. Energy Res., vol. 36,

no 5, p. 632‑642, avr. 2012.

[20] S. S. Rao et Y. Xiong, « A Hybrid Genetic Algorithm for Mixed-Discrete Design

Optimization », J. Mech. Des., vol. 127, no 6, p. 1100‑1112, oct. 2004.

[21] K. Deep, K. P. Singh, M. L. Kansal, et C. Mohan, « A real coded genetic algorithm

for solving integer and mixed integer optimization problems », Appl. Math.

Comput., vol. 212, no 2, p. 505‑518, juin 2009.

[22] K. Deb, A. Pratap, S. Agarwal, et T. Meyarivan, « A fast and elitist multiobjective

genetic algorithm: NSGA-II », IEEE Trans. Evol. Comput., vol. 6, no 2, p. 182‑197,

avr. 2002.

[23] J. Kennedy et R. Eberhart, « Particle swarm optimization », in , IEEE International

Conference on Neural Networks, 1995. Proceedings, 1995, vol. 4, p. 1942‑1948

vol.4.

[24] C. Guo, J. Hu, B. Ye, et Y. Cao, « Swarm intelligence for mixed-variable design

optimization », J. Zhejiang Univ.-Sci. A, vol. 5, no 7, p. 851‑860, juill. 2004.

[25] A. P. Silva, M. A. S. S. Ravagnani, E. C. Biscaia, et J. A. Caballero, « Optimal heat

exchanger network synthesis using particle swarm optimization », Optim. Eng., vol.

11, no 3, p. 459‑470, sept. 2010.

Yousefi M, Yousefi M, Martins Ferreira RP, Darus AN (2017) A swarm intelligent

approach for multi-objective optimization of compact heat exchangers, Proc Inst

Mech Eng Part E J Process Mech Eng 231:164–171. doi:

10.1177/0954408915581995

[27] A. Ibrahim, S. Rahnamayan, M. Vargas Martin, et B. Yilbas, « Multi-objective

thermal analysis of a thermoelectric device: Influence of geometric features on

device characteristics », Energy, vol. 77, p. 305‑317, déc. 2014.

[28] D. R. O. G, L. A. L. de Almeida, et O. A. C. Vilcanqui, « Parameter identification

of thermoeletric modules using particle swarm optimization », in 2015 IEEE

International Instrumentation and Measurement Technology Conference (I2MTC)

Proceedings, 2015, p. 812‑817.

[29] Udayraj, K. Mulani, P. Talukdar, A. Das, et R. Alagirusamy, « Performance analysis

and feasibility study of ant colony optimization, particle swarm optimization and

cuckoo search algorithms for inverse heat transfer problems », Int. J. Heat Mass

Transf., vol. 89, no Supplement C, p. 359‑378, oct. 2015.

[30] A. Bangian-Tabrizi et Y. Jaluria, « A study of transient wall plume and its

application in the solution of inverse problems », Numer. Heat Transf. Part Appl.,

vol. 75, no 3, p. 149‑166, févr. 2019.

[31] S. He, E. Prempain, et Q. H. Wu, « An improved particle swarm optimizer for

mechanical design optimization problems », Eng. Optim., vol. 36, no 5, p. 585‑605,

oct. 2004.

[32] J. Clarke, L. McLay, et J. T. McLeskey, « Comparison of genetic algorithm to

particle swarm for constrained simulation-based optimization of a geothermal power

plant », Adv. Eng. Inform., vol. 28, no 1, p. 81‑90, janv. 2014.

[33] A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. A. C. Coello, F. Luna, et E. Alba,

« SMPSO: A new PSO-based metaheuristic for multi-objective optimization », in

2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-

Making(MCDM), 2009, p. 66‑73.

[34] M. Clerc et J. Kennedy, « The particle swarm - explosion, stability, and convergence

in a multidimensional complex space », IEEE Trans. Evol. Comput., vol. 6, no 1, p.

58‑73, févr. 2002.

[35] Z. H. Zhan, J. Zhang, Y. Li, et H. S. H. Chung, « Adaptive Particle Swarm

Optimization », IEEE Trans. Syst. Man Cybern. Part B Cybern., vol. 39, no 6, p.

1362‑1381, déc. 2009.

[36] R. Eberhart et J. Kennedy, « A new optimizer using particle swarm theory », in ,

Proceedings of the Sixth International Symposium on Micro Machine and Human

Science, 1995. MHS ’95, 1995, p. 39‑43.

[37] M. DORIGO, « Optimization, Learning and Natural Algorithms », PhD Thesis

Politec. Milano Italy, 1992.

[38] M. Dorigo, G. Di Caro, et L. M. Gambardella, « Ant Algorithms for Discrete

Optimization », Artif. Life, vol. 5, no 2, p. 137‑172, Spring 1999.

[39] E. Hetmaniok, D. Słota, et A. Zielonka, « Determination of the Heat Transfer

Coefficient by Using the Ant Colony Optimization Algorithm », in Parallel

Processing and Applied Mathematics, 2011, p. 470‑479.

[40] B. Zhang, H. Qi, Y.-T. Ren, S.-C. Sun, et L.-M. Ruan, « Application of homogenous

continuous Ant Colony Optimization algorithm to inverse problem of one-

dimensional coupled radiation and conduction heat transfer », Int. J. Heat Mass

Transf., vol. 66, no Supplement C, p. 507‑516, nov. 2013.

[41] I. C. Silva, F. R. do Nascimento, E. J. de Oliveira, A. L. M. Marcato, L. W. de

Oliveira, et J. A. Passos Filho, « Programming of thermoelectric generation systems

based on a heuristic composition of ant colonies », Int. J. Electr. Power Energy Syst.,

vol. 44, no 1, p. 134‑145, janv. 2013.

[42] B. Zhang, H. Qi, S.-C. Sun, L.-M. Ruan, et H.-P. Tan, « A novel hybrid ant colony

optimization and particle swarm optimization algorithm for inverse problems of

coupled radiative and conductive heat transfer », Therm. Sci., vol. 20, no 2, p. 461‑
472, 2016.

[43] H. Qi, B. Zhang, S. Gong, et L.-M. Ruan, « Simultaneous retrieval of

multiparameters in a frequency domain radiative transfer problem using an

improved pdf-based aco algorithm », Numer. Heat Transf. Part Appl., vol. 69, no 7,

p. 727‑747, avr. 2016.

[44] K. Socha et M. Dorigo, « Ant colony optimization for continuous domains », Eur.

J. Oper. Res., vol. 185, no 3, p. 1155‑1173, mars 2008.

[45] T. Liao, K. Socha, M. A. M. de Oca, T. Stützle, et M. Dorigo, « Ant Colony

Optimization for Mixed-Variable Optimization Problems », IEEE Trans. Evol.

Comput., vol. 18, no 4, p. 503‑518, août 2014.

[46] A. E. L. Rivas et L. A. G. Pareja, « Coordination of directional overcurrent relays

that uses an ant colony optimization algorithm for mixed-variable optimization

problems », 2017, p. 1‑6.

[47] R. V. Rao, V. J. Savsani, et D. P. Vakharia, « Teaching–learning-based

optimization: A novel method for constrained mechanical design optimization

problems », Comput.-Aided Des., vol. 43, no 3, p. 303‑315, mars 2011.

[48] R. V. Rao, V. J. Savsani, et D. P. Vakharia, « Teaching–Learning-Based

Optimization: An optimization method for continuous non-linear large scale

problems », Inf. Sci., vol. 183, no 1, p. 1‑15, janv. 2012.

[49] R. V. Rao, V. J. Savsani, et J. Balic, « Teaching–learning-based optimization

algorithm for unconstrained and constrained real-parameter optimization

problems », Eng. Optim., vol. 44, no 12, p. 1447‑1462, déc. 2012.

[50] R. V. Rao et V. Patel, « Multi-objective optimization of heat exchangers using a

modified teaching-learning-based optimization algorithm », Appl. Math. Model.,

vol. 37, no 3, p. 1147‑1162, févr. 2013.

[51] R. Venkata Rao et V. Patel, « Multi-objective optimization of two stage

thermoelectric cooler using a modified teaching–learning-based optimization

algorithm », Eng. Appl. Artif. Intell., vol. 26, no 1, p. 430‑445, janv. 2013.

[52] R. V. Rao et K. C. More, « Optimal design of the heat pipe using TLBO (teaching–

learning-based optimization) algorithm », Energy, vol. 80, p. 535‑544, févr. 2015.

[53] F. Zou, L. Wang, X. Hei, D. Chen, et B. Wang, « Multi-objective optimization using

teaching-learning-based optimization algorithm », Eng. Appl. Artif. Intell., vol. 26,

no 4, p. 1291‑1300, avr. 2013.

[54] R. Storn et K. Price, « Differential Evolution – A Simple and Efficient Heuristic for

global Optimization over Continuous Spaces », J. Glob. Optim., vol. 11, no 4, p. 341

‑359, déc. 1997.

[55] B. V. Babu et S. A. Munawar, « Differential evolution strategies for optimal design

of shell-and-tube heat exchangers », Chem. Eng. Sci., vol. 62, no 14, p. 3720‑3739,

juill. 2007.

[56] J. Chen, G. Cui, et H. Duan, « Multipopulation differential evolution algorithm

based on the opposition-based learning for heat exchanger network synthesis »,

Numer. Heat Transf. Part Appl., vol. 72, no 2, p. 126‑140, juill. 2017.

[57] F. Neri et V. Tirronen, « Recent advances in differential evolution: a survey and

experimental analysis », Artif. Intell. Rev., vol. 33, no 1/2, p. 61‑106, févr. 2010.

[58] S. Qian, Y. Ye, Y. Liu, et G. Xu, « An improved binary differential evolution

algorithm for optimizing PWM control laws of power inverters », Optim. Eng., vol.

19, no 2, p. 271‑296, juin 2018.

[59] S. Kukkonen et J. Lampinen, « GDE3: the third evolution step of generalized

differential evolution », in 2005 IEEE Congress on Evolutionary Computation,

2005, vol. 1, p. 443-450 Vol.1.

[60] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, et T. Stützle,

« The irace package: Iterated racing for automatic algorithm configuration », Oper.

Res. Perspect., vol. 3, p. 43‑58, 2016.

[61] F. Hutter, H. H. Hoos, et K. Leyton-Brown, « Sequential Model-Based Optimization

for General Algorithm Configuration », in Learning and Intelligent Optimization,

vol. 6683, C. A. C. Coello, Éd. Berlin, Heidelberg: Springer Berlin Heidelberg,

2011, p. 507‑523.

[62] C. Preechakul et S. Kheawhom, « Modified genetic algorithm with sampling

techniques for chemical engineering optimization », J. Ind. Eng. Chem., vol. 15, no

1, p. 110‑118, janv. 2009.

[63] R. K. Ursem et P. Vadstrup, « Parameter identification of induction motors using

stochastic optimization algorithms », Appl. Soft Comput., vol. 4, no 1, p. 49‑64, févr.

2004.

[64] J. Vesterstrom et R. Thomsen, « A comparative study of differential evolution,

particle swarm optimization, and evolutionary algorithms on numerical benchmark

problems », in Proceedings of the 2004 Congress on Evolutionary Computation

(IEEE Cat. No.04TH8753), 2004, vol. 2, p. 1980-1987 Vol.2.

[65] K. Deb et S. Jain, « Running performance Metrics for evolutionary multi-objective

optimization », 2002.

[66] A. Farhang-Mehr et S. Azarm, « Diversity assessment of Pareto optimal solution

sets: an entropy approach », in Proceedings of the 2002 Congress on Evolutionary

Computation, 2002. CEC ’02, 2002, vol. 1, p. 723‑728.

[67] L. F. F. Miguel, L. F. Fadel Miguel, et R. H. Lopez, « A firefly algorithm for the

design of force and placement of friction dampers for control of man-induced

vibrations in footbridges », Optim. Eng., vol. 16, no 3, p. 633‑661, sept. 2015.

Table 1: Discrete and continuous decision variables of the TEG model (with 12 × 12

grid), based on Ref. [14]

Variables Number of variables Bound

Thermoelectric material selection 144 {1…3}

Thermoelectric electric connection grid

layout

1 {1…24}

Heat collector flow grid layout 1 {1…24}

Heat collector duct geometry 1 {1,2}

Number of fins

(for each duct)

12 {0…100}

Total electric current

[A]

1 [0.1…100]

Surface-to-length ratio of modules

[m]

3 [0.0001…0.01]

Global heat transfer coefficient U

[W/m2K]

1 [1…100]

Capacity rate of the collector C

[W/K]

1 [100…25,000]

Table 2: List and range of algorithm parameters

Algorithm Parameters Combination tested

GA

CR [0 : 0.05 : 1]

Crossover fct.

Scattered - single point -

double points

Selection fct.

uniform - roulette wheel -

Tournament

PSO

inertiaw 1

dampw [0.7 ; 0.99 ; 1]

1c [0 : 0.2 : 2]

2c [0 : 0.2 : 2]

ACO

q [0.001 : 0.001 : 0.02]

 [0.1 : 0.1 : 1]

DE

 [0.01 : 0.01 : 0.1]

pCR [0.1 : 0.1 : 1]

TLBO - -

Table 3: Best parameters for nearly optimal net power output

Alg. Best parameters

max()netP

[W]

RSD

GA

% Crossover 0.70

11,936 0.0173 Crossover fct. Tournament

Selection fct. Scattered

PSO

inertiaw 1

11,928 0.0217

dampw 0.99

1c 0.6

2c 1

ACOR

q 0.006

11,977 0.0109

 0.4

DE

 0.02

12,004 0.0091

pCR 0.8

TLBO - - 11,817 0.0083

Table 4: Normalized mean metric value C , normalized entropy
nH and percentage of

points that belongs to the approximate Pareto front *P

Algorithm C
nH % pts

GA 0.97 0.96 17.9

PSO 0.93 0.84 10.4

ACOR 0.97 0.98 21.3

DE 0.99 1.00 32.7

TLBO 0.85 0.77 17.7

Heat source

TEG

Heat collector

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Repeatability
Rate of

convergence

Capacity to reach

optimal solution

GA

ACOR

DE

PSO

Robustness to parameter

variation

TLBO

Figure 9

Figure 10

Figure 11

Figure Captions

Figure 1: Schematic view of the TEG system sandwiched between the heat source and a

heat collector.

Figure 2: Constrained temperature and heat flux distributions over the heat source

surface.

Figure 3: Impact of GA parameters on a) maximal net power, c) RSD and c) Ite .

Figure 4: Impact of PSO parameters on a) maximal net power, c) RSD and c) Ite .

Figure 5: Impact of ACOR parameters on a) maximal net power, c) RSD and c) Ite .

Figure 6: Impact of DE parameters on a) maximal net power, c) RSD and c) Ite .

Figure 7: Effect of the algorithm parameters on a) RSD and b) the required number of

iterations using GA, PSO, ACOR, and DE for all the settings tested.

Figure 8: Convergence comparison of the net power optimization with algorithm

parameters of Table 3. The lines are the mean value and the gray areas are the min-max

range.

Figure 9: Qualitative summary of the heuristic algorithm performance for the problem

tested.

Figure 10: Approximate Pareto front P* after the non-dominated sorting obtained with

the sum-weight method with all solutions from GA, PSO, ACOR, TLBO and DE.

Figure 11: Origin of the non-dominated solutions achieved by all algorithms.

