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Comparison Between Five Stochastic Global Search Algorithms for 

Optimizing Thermoelectric Generator Designs 

In this work, the best settings of five heuristics are determined for solving a 

mixed-integer non-linear multi-objective optimization problem. The algorithms 

treated in the paper are: ant colony optimization, genetic algorithm, particle 

swarm optimization, differential evolution and teaching-learning basic algorithm. 

The optimization problem consists in optimizing the design of a thermoelectric 

device, based on a model available in literature. Results showed that the inner 

settings can have different effects on the algorithm performance criteria 

depending on the algorithm. A formulation based on the weighted sum method is 

introduced for solving the multi-objective optimization problem with optimal 

settings. It was found that the five heuristic algorithms have comparable 

performances. Differential evolution generated the highest number of non-

dominated solutions in comparison with the other algorithms. 

Nomenclature 

1 2 3, ,a a a  Divisions of the solution space 

totalA   Heat collector surface of exchange [m2] 

c   Cell index, Eq. (5) 

1c   Personal learning coefficient (PSO) 

2c   Global learning coefficient (PSO) 

C   Averaged Euclidian distance from Pareto front, Eq. (3) 

nC   Maximal value of C  obtained by the worst algorithm 

CR   Crossover rate (GA) 

id   Smallest normalized Euclidian distance of point i , Eq. (2) 

ijkD   Density function 

( )kf i   Function values of the objective k  of point i  

min max,k kf f  Minimal and maximal function values of the objective k  



 

 

F   Objective function 

F   Total number of points on the Pareto front for a chosen algorithm 

F    Three dimensional feasible domain 

bestG   Best score of the swarm (PSO) 

H    Entropy 

nH   Normalized entropy 

Ite   Number of iterations to reach 98% of the maximal objective function 

k   Number of ants in a colony ( RACO ) 

N   Total number of solutions, Eq. (5) 

totaln   Number of thermoelectric modules 

pCR   Crossover probability (DE) 

Pop  Population 

bestP   Best personal score (PSO) 

*P   Pareto front 

netP   Net electric power output [W] 

q   Intensification factor (ACOR) 

r   Euclidian distance between the solution and a specified cell 

s   Solution index, Eq. (5) 

1 2 3, ,s s s  Weight ratio coefficients of each objective 

inertiaw   Inertia weight (PSO) 

dampw   Inertia weight damping (PSO) 

Greek symbols 

   Scaling factor (DE) 



 

 

   Pheromone evaporation rate (ACOR) 

ijk   Normalized density function 

   Standard deviation 

   Influence function 

( )s s cr →  Influence function between solution s and cell c, Eq. (5) 

Acronyms 

ACO   Ant colony optimization 

MVACO  Ant colony optimization (mixed-variable problem) 

RACO   Ant colony optimization (continuous domain) 

DE   Differential evolution 

EA   Evolutionary algorithm 

PDF   Probability density function 

GA   Genetic algorithm 

PSO   Particle swarm optimization 

RSD   Relative standard deviation 

SI   Swarm intelligence 

TEG   Thermoelectric generator 

TLBO   Teaching-learning basic optimization 

1. Introduction 

Modern engineering design problems are complex problems that can become quite 

large. They typically involve discrete and continuous variables, as well as non-

differentiable and non-linear functions. As a result, these optimization problems are 

often difficult to solve, in particular with “traditional” optimization techniques. 



 

 

Stochastic global search algorithms are a class of derivative-free optimization methods 

that are an appealing option for solving these problems [1, 2]. This family of algorithms 

uses stochastic and direct-search methods to find good approximate solutions to 

complex problems with little to no prior knowledge of the optimization problem. These 

algorithms are often referred to as heuristics and can be classed into evolutionary 

algorithms (EAs), such as genetic algorithm (GA) and differential evolution (DE), or 

swarm intelligence (SI), like particle swarm optimization (PSO). Due to their inherent 

stochastic features, these algorithms can lead to different solutions to the same problem 

each time they are used and thus the optimality is not guaranteed. Nonetheless, these 

algorithms can converge faster than other methods and can find nearly optimal solutions 

efficiently when used correctly [3]. 

The convergence mechanism of heuristic algorithms can be adapted through two 

main forces during the search for the global minima: diversification and intensification. 

Diversification is a term used to describe the exploration of the overall design space, 

whereas the intensification characterizes the local search of a specific portion of the 

design space. Both forces are contradictory and complementary, and must be balanced 

to reach nearly optimal solutions efficiently [4]. For the vast majority of existing 

heuristics, algorithm settings must be tuned prior to the optimization [5–7]. These 

parameters directly influence the convergence mechanisms and can be problem 

dependant. Setting the algorithm parameters for complex nonlinear mixed-variable 

problems becomes a crucial part of the optimization process for most of the heuristic 

algorithms. Various methods exist to determine optimal settings. Most of these methods 

are considered as an offline tuning which consists in determining the best algorithm 

parameters before actually using the algorithm for solving a specific optimization 



 

 

problem [8]. Alternatives also transform the offline tuning problems into a continuous 

optimization problem to be used with continuous optimization techniques [9]. 

With appropriate settings, heuristics can solve various types of problems. The 

algorithms presented in this paper were initially developed for solving continuous 

single-objective problems. Nonetheless, these algorithms can also be used to solve 

multi-objective optimization problems. According to the literature, one of the most 

common methods is the weighted summation approach which has been intensively 

studied [10]. This approach is a general scalarization method combining all the 

objective functions into a single function, where the objectives are summed with 

weighted parameters. Under some limitations, this approach can be used with single-

objective heuristics to solve mixed-integer, non-linear, multi-objective optimization 

problems. However, the weighted sum method has some drawbacks that can lead to 

inefficient Pareto front representation [11]. Few performance comparisons have been 

found in the literature between different stochastic global search algorithms with this 

method. 

When confronted to a complex optimization problem, the selection of a proper 

heuristic algorithm in terms of optimality of the solutions and acceptability of the 

computational time is not straightforward, and comparison algorithms can be quite 

tedious [12]. In addition, the settings suggested for various heuristics in theory or 

abstract models are not necessarily representative of real-life models [8]. There is thus a 

need to develop more knowledge on the selection of an appropriate heuristic algorithm 

for complex real-life optimization problems with multiple local minima objectives and a 

high number of variables.  

In this paper, five different population-based stochastic heuristic algorithms are 

compared for the optimization of the design of a thermoelectric device, which is a 



 

 

mixed-integer nonlinear constrained problem (Ref. [14]). First, the impact of the 

algorithm internal parameter settings on the convergence speed, repeatability, and 

capacity to reach optimal solutions is investigated. Then, a multi-objective optimization 

problem with a weighted sum method is solved using the best setting identified in the 

previous section. Convergence and diversity metrics are used to compare the 

performance of the population-based heuristics. 

2. Heuristic algorithms 

This section presents the five selected population-based heuristic algorithms to be 

compared. The problem solved in this study is described below, in Section 3, and 

consists in optimizing a thermoelectric generator design. This reveals to be a multi-

objective nonlinear optimization problem with both continuous and discrete variables. 

The main features of each algorithm are summarized in the sub-sections below. 

References are provided for readers interested to learn more about the details of each 

heuristic. The algorithms have been implemented in Matlab. 

It should be noted that the algorithm presented here were originally created for 

continuous optimization problems. Since the test case is a mixed-variable optimization 

problem, the discrete variables must undergo a specific treatment. Since all the discrete 

variables of the thermoelectric problem are categorical variables, there is no intrinsic 

ordering. Therefore, the integer variables are considered as continuous variables and 

then rounded to their nearest valid indices before evaluating the objective function. 

2.1 Genetic algorithm (GA) 

Genetic algorithms are one of the most popular EAs that use the concept of natural 

selection to create offspring. A first version of the algorithm has been introduced in Ref. 



 

 

[15]. The bio-inspired concepts of selection, crossover, and mutation are used to 

produce better offspring for the next generation (i.e. better solutions). 

According to literature, GAs have been highly studied and applied to many 

fields such as heat transfer problems [16], HVAC systems [17], porous medium 

combustion [18], flow-shop scheduling [5], and thermoelectricity [19]. The algorithm 

has also been adapted to tackle mixed-discrete optimization problems [20, 21] and 

multi-objective optimization [22]. 

The selection is the first step and it consists in selecting promising parents for 

the generation of offspring. Several methods can be used to select the individuals in the 

population. In this paper, three selection methods are retained: uniform selection, 

roulette selection, and tournament selection. The first selects a parent with a normal 

distribution based on the value of its solution and the number of parents. The roulette 

selection method simulates a roulette wheel in which every individual is present with 

the area proportional to its solution value. The tournament method chooses a group of 4 

individuals randomly in the population and then selects the best ones to become a 

parent. 

A crossover is then performed between two parents to generate new offspring. 

The crossover ratio ( CR ) is used to determine the number of individuals in the 

population that will become the parents (and the number of offspring). The method used 

to make a crossover child can also be adapted. In this paper, three crossover methods 

are retained: scattered, single point, and double points. Each of these methods provide a 

different way to determine from which parent the child will inherit each design variable. 

The scattered method creates a random binary vector equal to the number of variables 

and then gives one of the parent variable to the child depending on the value of the 

binary vector. The single point method selects randomly a value between 1 and the 



 

 

maximal number of variables. The child receives all the variable values of the first 

parent before this point and the rest comes from the second parent. The double point 

method is similar but two points are randomly selected. The first parent gives the 

variable values between the two points to the child and the rest is passed from the 

second parent 

The last step is the mutation. The mutation replaces randomly some variable 

values in some individuals of the population. With the GA used here (from the Matlab 

OptimizationToolbox, Release 2016b), the number of individuals experiencing 

mutations is fixed to the remaining fraction of individuals that has not been subject to 

the crossover (1 CR− ). An adaptable feasible method is used here for the mutation in 

order to satisfy variable bounds. The pseudocode of the algorithm can be summarized 

as: 

Step 1. State variable bounds, algorithm parameters and termination criterion. 

Step 2. Initialize the population, the crossover fraction CR and the selection and 

crossover methods. 

Step 3. Select individuals to become parents. 

Step 4. Perform the crossover on the parents to generate Pop×CR children. 

Step 5. Perform the mutation on Pop×(1−CR) individuals. 

Step 6. Re-form a population combining mutants, children and initial individuals 

and then eliminate the worst individuals. 

Step 7. Repeat steps 3 to 6 until the stopping criterion is met. 

2.2 Particle Swarm Optimization (PSO) 

PSO is a bio-inspired heuristic mimicking the behavior of bird flocks or fish schooling 

[23]. The algorithm has been developed for solving continuous nonlinear problems. 

Nonetheless, the algorithm can be adapted to solve mixed problems by converting 



 

 

discrete variables into continuous values as explained in Ref. [24]. PSOs have been 

successfully used in many real-world applications like heat exchangers [25, 26], 

thermoelectricity [27, 28], inverse heat transfer problems [29, 30], mechanical designs 

[31], and geothermal power plants [32]. Improvements to the algorithm have been 

developed for multi-objective optimization [33], easier parameter tuning [34], better 

search efficiency [35], or to handle local minima more efficiently [36]. 

The algorithm explores the design space, searching for the optimal solution by 

changing the trajectories of each “particle” of the swarm. Each particle is a member of 

the population and a solution vector of the optimization problem. Each individual 

particle moves in the multidimensional space toward the optimal solution by modifying 

its position using the information of its best personal score ( BestP ) and the best score of 

the entire swarm ( BestG ). 

The velocity of each particle is modified using three elements that can be 

adapted with different parameters. The first element is the velocity of the previous 

iteration. The parameter inertiaw  is the inertia weight affected to the velocity to control 

the exploration factor of each particle and minimize the risk of the algorithm getting 

trapped into a local minimum. The second and third elements use the information of 

BestP  and BestG  to change the direction of the particle. The personal learning coefficient 

1c  and the global learning coefficient 2c  are used to control the intensification of the 

search. In addition, w  can be damped at each iteration with the parameter dampw  to 

gradually reduce the inertia weight inertiaw  and increase the intensification of the search 

when the swarm is close to the global minima. The last parameter is the velocity 

limitation. Without control over the minimal and maximal value of the velocity, the 



 

 

swarm could “explode” with very high velocity, moving the particles outside the limits 

of the design space. The pseudocode of the algorithm can be summarized as: 

Step 1. State variables bounds, velocity limits, algorithm parameters and 

termination criterion. 

Step 2. Initialize the population and the algorithm parameters. 

Step 3. Evaluate the objective function of each particle. BestP  and 
BestG  can be 

changed if they are better than their actual values. 

Step 4. Modify each particle position. inertiaw  can be damped at this step if a 

damping parameter is defined. 

Step 5. Repeat steps 3 and 4 until the stop criterion is met. 

2.3 Ant Colony Optimization for continuous variables (ACOR) 

ACO is an algorithm inspired from the behavior of ants foraging. The algorithm was 

initially developed to solve discrete problems [37, 38]. One particularity of the 

algorithm is how it recreates the movement of ants from the nest to the foraging area 

and vice-versa following the shortest path. The ants are solutions that follow one of the 

paths that are potential solutions in the solution space. When an ant follows a specific 

path, it has the solution component from that particular path. When an ant moves 

between the food source and the nest, it releases a pheromone trail that other ants can 

smell to change their path. The pheromone trail is used to probabilistically sample the 

search space (paths). The shorter the path, the stronger the concentration of the 

pheromone trail, increasing the probability that ants move to that specific path. This bio-

inspired mechanism allows ants to interact with other nest mates to move through 

shorter path in the design space (minimal cost). An evaporation parameter is also 

included to the pheromone trail in order to control the premature convergence to a path 



 

 

that might not be the global minimum. At each iteration, the concentration of the 

pheromone trail is lowered to reduce the attraction of the other ants and increase the 

exploration of the design space by other ants. 

ACOs have been widely used in many fields of application. To name a few, 

ACOs has been successfully applied to heat transfer problems [39, 40], 

thermoelectricity applications [41] and water distribution systems [6]. ACO has also 

been combined with other heuristic algorithms such as PSO to solve inverse heat 

transfer problems [42, 43] for higher effectiveness and overall robustness. Variations of 

the algorithm exist to solve other kinds of problems. ACOR is a variant for continuous 

domain [44] and ACOMV is a variant for mixed-variable problems [45]. For the mixed-

variable problem of the present test case, ACOR was used with a treatment of the 

discrete variables similar to that in ACOMV, where discrete variables are treated as 

categorical variables, similarly to Ref. [46].  

The main idea behind ACO is the pheromone trail used for incremental 

construction of solutions. A finite set of possible paths exist and a probability is given 

from best to worst to each of them depending on the pheromone value. However, with 

continuous variables, the concept of pheromone is different. Instead of a discrete 

probability distribution, a weight is given to each solution in the population rated from 

best to worst with a probability density function (PDF). The weight determines the 

attractiveness of a solution during the construction process and a probability for an ant 

to choose this solution is set based on the weight value. The algorithm parameter q  is 

the intensification factor used in evaluating the weight. A small value of q  increases the 

weight for the best-ranked solutions while a high value of q  makes the weight more 

uniform among the ranked-solutions. Then, the probability to select the solution is 

calculated for each solution based on the weight and their rank. 



 

 

In the first step, k ants (potential solutions) are randomly generated. In a second 

step, the algorithm starts the construction of new solutions variable by variable by 

generating Gaussian random variables. The number of new solutions created can be 

adapted. In this paper, the sample used to construct new solutions is fixed to half the 

population. For each variable of each solution, a standard deviation is calculated 

including the deviation-distance ratio   that works in a way similar to the pheromone 

evaporation rate in ACO.   affects the long term memory by reducing the search for 

already explored points. Therefore, the convergence rate is often lower with a higher 

value of  . Variable by variable, the algorithm select a solution with a roulette wheel 

selection scaled with the probability. Then, a Gaussian random variable is generated 

from the standard deviation and the value of the variable from the selected solution. The 

pseudocode can be summarized by the following steps: 

Step 1. State variable bounds, algorithm parameters and termination criterion. 

Step 2. Initialize the population. 

Step 3. Calculate the Gaussian functions w and the probability associate to each 

solution rank. 

Step 4. Construct solutions (new solutions). For each individual variable, select 

the Gaussian kernel function with the probability to select each Gaussian 

function w. Then, generate random Gaussian variable. 

Step 5. Update the population by eliminating the worst solutions. 

Step 6. Repeat steps 3 to 5 until the stop criterion is met. 

2.4 Teaching-Learning Basic Algorithm (TLBO) 

TLBO is inspired by the apprenticeship of a teacher with learners by exchanging 

information to reach global minima [47–49]. Similarly to other heuristic algorithms, 

TLBO is a population-based algorithm where each individual of the population is a 



 

 

learner and the teacher is the best individual in the population. However, one 

particularity of this algorithm is that it has no internal parameters to fix, which makes it 

easy to adapt to any optimization problem. However, since the algorithm is developed 

to solve non-constrained nonlinear continuous problems, its capability to solve mixed-

integer non-linear problems is not clear.  

TLBOs have been used to solve many kind of optimization problems, such as 

heat exchanger optimizations [50], thermoelectric cooler [51], and heat pipes [52]. The 

algorithm can be used to solve multi-objective optimization problems [53]. 

The algorithm has two distinct phases. The first phase is the teaching phase where the 

best learner (i.e., the selected teacher) tries to provide knowledge to the other learners to 

improve the overall mean score of the class. In the second phase, the learners interact 

with each other to improve their best score. The best learner among the two teaches his 

knowledge to the other one. This is done by adding to the worst learner a fraction of the 

difference in the solution vector between the two learners. This fraction is randomly 

generated for each interaction between two learners [47]. The intensity of this exchange 

could be increased, but here, the ratio of exchange is chosen randomly for each variable 

of the solution. It should be noted that for both phases, the objective function is 

evaluated for the entire population. Therefore, the algorithm required twice the number 

of objective function evaluations as the algorithm presented in this paper. Finally, the 

best solution (learner) is updated to become the teacher for the next iteration. The 

pseudocode can be summarized as: 

Step 1. State variable bounds, algorithm parameters and termination criterion. 

Step 2. Initialize the population. 

Step 3. Calculate the population mean and identifying the best solution to 

become the teacher. 



 

 

Step 4. Teaching phase: modifying solutions with the best solution (i.e., the 

teacher). Update the best solution if one of the learners is better. 

Step 5. Learning phase: a learner is compared to another one randomly where 

the better solution is used to modify the other learner. Update the best solution if 

one of the learners is better. 

Step 6. Repeat steps 3 to 5 until the stop criterion is met. 

2.5 Differential Evolution (DE) 

DE is an algorithm with an approach similar to that of GAs (i.e., mutation, crossover, 

selection). The algorithm has been introduced by Ref. [54] to solve nonlinear 

continuous problems. 

According to the literature review, DEs have been less studied than other 

heuristics. Nonetheless, authors have used DE in some applications such as optimal 

shell-and-tube heat exchangers [55], heat exchanger network synthesis [56], and other 

various engineering problems [57, 58]. Variations of DEs also exist to solve multi-

objective optimization problems [59]. 

At each generation, the algorithm selects randomly a target vector and two other 

solution vectors from the population pool and performs a mutation using a scaling factor 

 . This factor affects how different the mutant vector will be from the target vector. 

Afterwards, a crossover is done between the target vector and the mutant vector to 

obtain the trial vector with a crossover probability pCR . The crossover is performed on 

each variable of the vector. Higher pCR  increases the probability that the trial vector 

will have variable values from the mutant vector. The best solution between the trial 

vector and the target vector is the solution retained. The pseudocode can be summarized 

by: 

Step 1. State variable bounds, algorithm parameters and termination criterion. 



 

 

Step 2. Initialize the population. 

Step 3. Perform the mutation with three randomly selected vectors.  

Step 4. Perform the crossover between the mutant vector and the trial vector. 

Step 5. Select the best solution between the trial vector and the target vector. 

Retain the best one in the population for the next generation. 

Step 6. Repeat Steps 3 to 5 until the stop criterion is met. 

3. Test case: Thermoelectric generator design optimization 

As mentioned above, the five selected algorithms have been analysed on a series of 

continuous problems. However, few comparison exercises were found, and in 

particular, the capability of these algorithms to solve non-linear mixed variable 

problems is not well documented. The optimization problem described in the present 

section has been used for that purpose. It consists in optimizing the design of a 

thermoelectric generator system developed for heat recovery applications, see Ref. [14]. 

Thermoelectric generators (TEGs) are devices capable of directly converting 

heat into electricity by using the Seebeck effet. Featuring no mobile parts or working 

fluids, highly durable TEGs are attracting more and more attention for heat recovery 

applications. However, the high cost and low efficiency of actual thermoelectric 

materials is the main limitation for commercial use. The thermoelectric generator model 

used in this paper is based on the one developed in Ref. [14], and therefore is not 

repeated here. The heat source has constrained temperature and heat flux distributions 

over its surface. In order to achieve a significant temperature difference through the 

thermoelectric modules, a cooling system is installed on the cold side of the TEG. Fig. 1 

shows a schematic view of the system. [Figure 1 near here] 



 

 

3.1. Objective functions 

The objective of this design optimization is to maximize the electric power output while 

minimizing the cost of system. The cost of the TEG system is related to the number of 

thermoelectric modules and the total surface of exchange of the cooling system. Thus, a 

total of three objectives should be simultaneously optimized. A weighted sum method is 

used here since most of the algorithms presented were primarily developed for single-

objective problem. Therefore, the objective function is: 

 ( ) ( ) ( )1 2 3net total totalF s P s n s A= − + +  (1) 

where the coefficients is  are the weight ratio of each objective i , netP  is the net power 

obtained from the difference between the electric power output and the pumping power 

for the cooling system, totaln  is the total number of modules of the TEG, and totalA  is the 

total surface of exchange of the heat exchanger (cooling system). In order to obtain the 

equivalent of a Pareto front corresponding to all three objectives, multiple combinations 

of weight ratios are tested with each algorithm. Every combination of weight ratio 

varying from [0:0.2:1] is tested for a total of 216 solutions for each run. Afterwards, a 

non-dominated sorting is performed on the solution set to eliminate the dominated 

solutions. It should be noted that the weighted summation approach is unable to 

generate solution of non-convex portion of a Pareto optimal front [11]. [Figure 2 near 

here] [Table 1 near here] 

3.2. Model description 

In this paper, the fixed hot-side heat flux and temperature distribution shown in Fig. 2 

was used to test the algorithms. The surface is divided into a 12 × 12 grid for a total of 

144 cells of equal dimensions. The list of 165 variables (both discrete and continuous) 

of the model is presented in Table 1. 



 

 

4. Analysis of the effect of heuristic algorithm parameters on performance 

The “best” algorithm settings can be different from a problem to another and can affect 

the comparison exercise proposed here. Different techniques have been proposed to 

fine-tune the parameters of evolutionary algorithms (e.g., [60] and [61]), but for the type 

of problems addressed here, only scarce information or rules of thumb were found in 

literature to select the optimal algorithm parameters. Therefore, it was decided to 

investigate and document the effect of these parameters on the performance of the 

algorithms. A specific case was used for this purpose, with weight ratio values 

 1 2 3, ,s s s  of  1,0,0 . In other words, this corresponds to the problem of maximizing 

the net power output only. Note that a preliminary analysis (not shown here) has 

verified that a change in the weights did not affect significantly the main findings of this 

section (i.e., which algorithm parameters work better). The stopping criterion is when 

the number of iterations reaches 100. The number of individuals in the population is set 

to 2000. The initial population is different for each run and is generated using a Latin 

hypercube sampling (LHS) rather than creating a uniformly distributed random 

population. It was demonstrated that the initial population generated from LHS is more 

uniform across the design space which leads to faster convergence speed and higher 

diversity of optimal solutions [62]. Table 2 presents the list of parameters tested and 

their values. One should note that every possible parameter combination of Table 1 has 

been tested. To verify the repeatability, a total of 5 runs are done with each algorithm 

for each parameter combination. [Table 2 near here] 

4.1. Impact of algorithm parameters on convergence rate, repeatability and 

optimal solutions 

The combination of algorithm parameters can either increase the exploration of the 

search space or increase the intensification of the search around local or global minima. 



 

 

For a given problem, a trade-off must be made between different algorithm parameters 

to reach a global minimum in less iterations. However, the effect of those algorithm 

parameters on the performance (i.e. convergence rate, repeatability and achievement of 

global minima) is not always clear. For example, some algorithms can reach optimal 

performance with a wide range of algorithm parameters combinations making them 

easier to use, such as PSO [32]. One might thus be interested in determining the effect 

of those algorithm parameters on the algorithm performance. Therefore, this section 

features an analysis of the effect of algorithm parameters of GA, PSO, ACOR and DE. 

One should remember that TLBO does not have internal parameters to choose. 

In this section, the algorithm parameters from Table 2 are tested and compared 

for each algorithm. For every possible combination of algorithm parameters, the 

performance of an algorithm was assessed by calculating: 

(1) The best solution obtained among the 5 optimization runs; 

(2) The coefficient of variation or relative standard deviation ( RSD ), which is the 

ratio of the standard deviation over the mean for the 5 optimization runs. A low 

RSD  value indicates a better repeatability; 

(3) The number of iterations required to reach 98% of the maximal objective 

function ( Ite ). The average Ite  among the five runs is calculated. 

These metrics are reported in Figs. 3 to 5 as a function of the algorithm parameters. 

In Fig. 3, one can see the impact of the crossover ratio CR  and the selection 

method on the performance of the GA. The crossover method has been fixed to the 

scattered function. In Fig. 3a, a crossover ratio of 0 (i.e., mutation ratio of 1) provides 

poor solutions with either of the selection methods. In addition, high mutation reduces 

considerably the convergence speed and the reliability. It can be seen from Figs. 2b and 



 

 

2c that the number of iterations required and the RSD  tend to be higher with CR  below 

0.6. With CR  over 0.6, each selection method is able to reach satisfying solutions with 

less iterations and with a better reliability. Nonetheless, for a better reliability, the 

tournament selection method should be used since the RSD  is the lowest as presented in 

Fig 2b (~0.015). Therefore, proper parameters for the test case could be CR  between 

0.6 to 1.0 while using the tournament selection method and the scattered crossover 

method. [Figure 3 near here] 

In Fig. 4, the effect of the personal and global learning coefficient (
1c and 

2c ) of 

PSO on the performance is presented. The inertia weight inertiaw  and inertia damping 

dampw  have been fixed to 1 and 0.99 respectively based on Ref. [7]. One should note 

that, reducing dampw  resulted in premature convergence of the algorithm while 

removing the damping resulted in too much exploration leading to much lower 

convergence speed. In Fig. 4a, the results show that the value given to 1c and 2c  has no 

significant impact on the solution obtained. Increasing the intensification of the search 

(i.e. by increasing 1c  and 2c ) seems to have no effect on the performance. However, 

having 2c  = 0 is not an appropriate choice because the algorithm does not converge as 

shown in Fig. 4a. Furthermore, the impact of 1c  is negligible for this test case. From 

Fig. 4b, PSO seems to have an overall good reliability since the RSD  is relatively low 

(~0.01). As for the convergence speed, the results from Fig. 4c show that higher values 

of 
1c  and 

2c  increase the number of iterations required to reach the final solution. With 

a higher weight given to personal and global learning, some individuals in the 

population are more easily attracted toward local minima. Hence, the local minima 

obstructs the swarm in the search of the global minima, resulting in lower convergence 



 

 

speed. Therefore, with inertiaw =1 and dampw =0.99, appropriate 
1c  and 

2c  values could be 

between 0.4 and 1.4 for this test case. [Figure 4 near here] 

In Fig. 5, the effect of the intensification factor q  and the deviation-distance 

ratio   of ACOR on the performance is presented. In Figs. 4a and 4c, the results show 

that a high value of   reduces the capacity of the algorithm to reach good solutions as 

well as the convergence speed. Consequently, lower   values (between 0.3 and 0.6) 

appear to be the best choice. In Fig. 5a, with   between 0.3 and 0.6, q  can cover a 

wide range without affecting the capacity of the algorithm to reach good solutions. 

However, q  has a direct impact on the convergence speed of the algorithm. In Fig. 5c, it 

can be seen that lower values of q  (i.e., increasing the weight for high-ranked solutions) 

reduce the total number of iterations required for the algorithm to converge. Thus, good 

parameters combination could be   ~ 0.4 and q  below 0.01 for fast convergence and 

good capacity to reach satisfying solutions. In Fig. 5b, RSD  is globally higher with 

every parameter combinations and no tendency can be observed, which suggests that 

reliability provided by ACOR is generally low for this test case. [Figure 5 near here] 

In Fig. 6, the effect of the crossover probability pCR  and scaling factor   of 

DE on the performance are presented. Fig. 6a shows that higher pCR  leads to better 

solutions. In addition, having lower   also improves the solutions. Nonetheless, the 

effect of   is less present with high pCR . One should note that a pCR  value of 1 

makes all trial vectors mutant which prevents the algorithm from converging correctly. 

In Fig. 6b, the RSD  is relatively low and constant, which reveals that the algorithm has 

a good reliability overall. The convergence speed in Fig. 6c shows that high pCR  and 

low   reduce the number of iterations required to reach convergence. In the end, 



 

 

proper parameters for DE for this test case are approximatively pCR  ~ 0.8 and   ~ 

0.01. [Figure 6 near here] 

To better compare the different algorithms, the resulting net power output versus 

the RSD  is reported in Fig. 7 for every combination of algorithm parameters tested for 

GA, PSO, ACOR and DE. The power output versus the required number of iterations 

(average over the 5 runs with the same settings) is also shown in this figure. Each point 

in Fig. 7 represents a single combination of parameters. 

In Fig. 7a, it can be seen that DE (in blue) has to lowest RSD  values and setting 

different algorithm parameters mostly affect the best solution obtained. On the other 

hand, PSO (in green) has higher RSD  values as well as higher netP  globally with most 

of the algorithm parameters tested. Nonetheless, the maximal net power achieved does 

not change significantly with the PSO settings. ACOR (in red) appears as a 

“compromise” between PSO and DE. In Fig. 7a, it can be seen that ACOR has most of 

its points (in red) clustered between DE (in blue) and PSO (in green) for the RSD  value. 

In addition, most of the cluster of points is located close to higher power output values. 

Therefore, results from Fig. 7a suggest that ACOR has both higher repeatability and 

better capacity to reach good solutions with multiple algorithm parameter combinations. 

In contrast, GA (in black) has a more spread out cluster and most of its points reach 

lower net power output as well as higher RSD . 

In Fig. 7b, the net power output versus Ite  is shown for each combination of 

algorithm parameters. It can be seen that DE (in blue) has the slowest convergence rate 

with most of its parameter combinations. In general, both GA and PSO required around 

25 to 50 iterations to reach nearly optimal solutions. Similarly to their RSD , changing 

the algorithm parameters for these algorithms has a significant impact on the 

convergence speed but they still remain faster than DE. As for ACOR, Fig. 7b reveals 



 

 

that the choice of algorithm parameters has an important impact on the convergence 

speed. In fact, the required number of iterations for ACOR varies from 5 to 95. In 

addition, it can be seen that the points with the lowest or the highest required number of 

iterations lead to less net power output. Therefore, the convergence rate and level of 

optimality are highly affected by the ACOR setting. [Figure 7 near here] 

4.2. Algorithm performance comparison with proper algorithm parameters 

Based on the previous figures, a set of algorithm parameters has been chosen for each 

algorithm. These choices offered a satisfying trade-off between the capability to achieve 

nearly optimal solutions, as well as good reliability and convergence rate. The selected 

algorithm parameters, the maximal objective function value, and the RSD  of each 

algorithm are reported in Table 3. The convergence of GA, PSO, ACOR, DE and TLBO 

with the algorithm parameters from Table 3 is reported in Fig. 8. The solid lines are the 

average solution of all five runs at each iteration, while the gray areas are the range 

between the best and worst solutions among the five runs. The size of the gray area is 

directly related to the RSD . [Table 3 near here] 

It can be seen in Fig. 8 that the convergence of both DE and TLBO is slower. 

Furthermore, DE even seems not to have fully converged even after 100 iterations. 

Nonetheless, DE has a smaller “gray area” revealing its low RSD  value. Moreover, DE 

was able to achieve the best solution of all (i.e., a net power of 12,004 W). Even if 

TLBO required no algorithm parameters to set, it has to perform twice the number of 

objective function evaluations, making it more time-consuming. Globally, it can be 

concluded that for the present problem, DE is highly reliable and reaches good solutions 

but converges slowly. On the contrary, TLBO has slow convergence and lower 

capability to reach nearly optimal solutions. [Figure 8 near here] 



 

 

The low rate of convergence of DE and TLBO can be compensated with GA, 

PSO and ACOR. However, the gray area of PSO in Fig. 8 is important, meaning that 

different runs might be required and that it is likely that the solution of a run will not be 

the global minima. Regardless, a wide range of coefficients 
1c  and 

2c  can be selected to 

reach similar solutions as shown previously in Fig. 7. With a similar value of the 

maximized objective function netP  as that provided by PSO, GA required less iterations 

and had a better repeatability as presented in Fig. 8. Overall, the algorithm that reaches 

the best solution is DE, the algorithm that has the fastest convergence speed is ACOR, 

the algorithm that as the best reliability is DE and TLBO. Other studies on DE 

compared to other population-based heuristics support this conclusion [7, 63, 64]. 

The conclusions on the performance of all five algorithms are summed up in 

Figure 9. Based on the results presented above, the algorithms have been ranked based 

on the different investigated criteria for the present optimization problem. The further 

an algorithm sits on a given axis, the better it is. The “robustness to parameter variation” 

is an added criterion that evaluates how sensitive an algorithm is to changes of its 

internal settings. This “qualitative” criterion is assessed from the objective function 

RSD  from all the algorithm parameter combinations. Fig. 9 expresses that PSO is the 

only algorithm where changing the algorithm parameters has little to no impact on the 

solution reached. [Figure 9 near here] 

5. Impact of heuristics on sets of non-dominated solutions 

The multi-objective optimization problem introduced above is solved with the five 

heuristics compared here using the algorithm parameters found in Table 3. As 

mentioned before, the weighted sum method is used to build a single objective function 

combining the original three objectives, see Eq. (1). Optimizations are done for every 



 

 

combination of weights is  between [0:0.2:1] for a total of 216 optimization problems 

for each algorithm. The same number of individuals and maximal number of iterations 

as above is used in this section. Once again, five different runs are done for each 

algorithm for a total of 5400 optimization runs. This section compares the sets of 

solutions that are obtained as a function of the optimization algorithms. 

5.1. Creation of Pareto front 

With the total of 5400 solutions obtained, it is possible to create the equivalent of a 

Pareto front. A non-dominated sorting is performed on the 5400 points to keep only the 

non-dominated points (1077 points in this case) which were then reported in Fig. 10. 

This represents a good estimation of the Pareto front for this problem. In fact, Fig. 10 

was compared to the multi-objective optimization solutions for the same thermoelectric 

model reported in Ref. [14]. Both sets of non-dominated points were found to have 

nearly identical hyperspace surfaces over the solution space. This demonstrates the 

validity of the weighted sum method used for this test case. [Figure 10 near here] 

The Pareto front P* from Fig. 10 is obtained by selecting non-dominated points 

from the solutions provided by all the algorithms. It is interesting to find out which 

points from P* originate from which algorithm along with their location over the Pareto 

front. In Fig. 11, the solutions are represented on the Pareto front as a function of the 

algorithm from which they originate. In addition, the percentage of points on P* 

provided by each algorithm is reported in Table 4. These percentages were calculated to 

determine which algorithms were able to find the best solutions with the weighted 

summation approach. It was found that all heuristics were able to provide non-

dominated solutions, with DE providing the most (32%) and PSO, the least (10%). 

[Figure 11 near here] 



 

 

5.2. Metric for convergence 

To evaluate the performance of each algorithm, an approach similar to the metric for 

convergence of Ref. [65] is used. The convergence metric typically evaluates the 

convergence at each generation of a given set of points to a reference set which is the 

allegedly “true” Pareto front (Fig. 10 or P* in this case). With the weighted sum 

method, each optimization (i.e., each point on the Pareto front) is independent and thus, 

a “classic” convergence analysis does not provide any useful information on the 

convergence speed. Instead, only the final front of each algorithm was compared to the 

true Pareto front. 

The set of points from Fig. 10 forms a reference set *P . For each point i  of 

each run of each algorithm, the smallest normalized Euclidian distance 
id  from *P  is 

calculated with: 
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where F  is the total number of points on the front for the chosen algorithm. The lower 

the value of C , the closer the algorithm to the Pareto front of Fig. 10. Since 5 runs are 

performed for each algorithm, a total of 25 metric values C  are calculated. Then, to 



 

 

keep the metric values between 0 and 1, the metric values C  are normalized by the 

maximal value obtained from the worst algorithm ( nC ). Therefore, the worst algorithm 

has a score of 1 while the others are below. 

5.3. Metric of diversity 

The weighted sum method does not guarantee the diversity in solutions over the Pareto 

front. Even with a proper method for generating weight ratios, the distribution of 

solutions over P* might vary from one algorithm to another. This can be seen from Fig. 

11, where TLBO points (in pink) are all clustered in one area and DE points (in blue) 

are more evenly distributed across the Pareto front. Another metric can be used to 

evaluate the diversity of the non-dominated solutions originating from each algorithm 

on the front in Fig. 10. In other words, this metric estimates how well each algorithm 

can generate good solutions all along P* with a weighted sum method. The metric of 

diversity is based on a similar approach of Ref. [66]. The concept of Shannon’s entropy 

(or information theory) is applied to measure how a set of points is spread across a 

feasible region. A set of solutions with higher entropy means that the solutions have a 

better coverage of the solution space. 

First, the three dimensional feasible domain denoted by F   is normalized and 

then subdivided into a grid of 1 2 3a a a   cells. The subdivision is determined so that the 

decision-maker is indifferent to solutions within the same cell. The feasible domain is 

delimited by the extreme solutions from the approximate Pareto front from Fig. 10. For 

a given cell, an influence function   to each solution is defined. The influence 

function is a decreasing function of the distance between the specific cell and that 

solution. In this paper,   is defined as a normal distribution by the Gaussian function 

given as follow: 
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where r  is the Euclidian distance between the solution and the specified cell and   is 

the standard deviation that affect the influence of far solutions on the specific cell. As a 

general rule,   is selected subjectively so that solutions at the boundaries from the 

center of the mesh has no influence (near zero value of  ). 

Then, for each cell, a density function is defined as a collection of the influence 

functions of all the solution points. The density function ijkD  to a specific cell c  in the 

three dimensional solution space is given as: 
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where N  is the total number of solutions and ( )s s cr →  is the influence function 

evaluated from the Euclidian distance between the solution s and the cell c . 

Afterwards, the density functions for each cells is turned into a normalized 

density function: 
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At last, the entropy H  is defined as follow: 
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where ( )
1 2 3 1 2 3

lnk k k k k k  is assumed zero when 
1 2 3

0k k k = . Then, to keep the metric 

values between 0 and 1, H  is normalized by the maximal value obtained from the best 

algorithm ( nH ). One should note that, any solution within a single cell is considered the 

same. Therefore the division of the feasible area is performed in order to keep the 

number of solutions within a cell to a minimal while reducing the computational time. 



 

 

Here, the solution space is subdivided into 20 20 20   cells. A value of   of 0.01 is 

selected in this test case. 

5.4. Assessment of heuristics based on convergence and diversity metrics 

One can see from Fig. 11 that all the algorithms are present on the Pareto front P* in the 

sense that all algorithms were able to generate non-dominated solutions. However, the 

number and distribution of the non-dominated points of each algorithm on P* is 

different. The metrics presented are quantitative tools that provide useful information on 

the performance of each heuristic algorithm analysed in this paper. For each algorithm, 

the normalized mean values C  calculated from nC  and the normalized entropy nH  are 

reported in Table 4. From Table 4, the value of the relative mean convergence metric 

 of each algorithm is roughly similar (values over 0.9), which shows that the front 

achieved with each heuristic has a similar distance from the allegedly "true" Pareto 

front. Nonetheless, TLBO stands out from the other algorithms with  of 0.84, which 

indicates that it is closer to the Pareto front of Fig. 10. However, from Fig. 11, it is 

visible that the best solutions provided by TLBO are clustered in the lower left corner of 

the Pareto front, whereas all the other algorithms cover more of the Pareto front. 

Therefore, from the metric C  alone, even if some algorithms like TLBO could appear 

to be a better choice to reach optimal solutions, the algorithm might not provide the best 

solutions over the entire solution domain. In contrast, it can be seen from Table 4 that 

other algorithms, such as DE and ACOR, have a higher value of C , but are more 

spread out over the solution domain. [Table 4 near here] 

The normalized entropy value nH  also supports this statement. In fact, the 

normalized metric value nH  of TLBO (0.77) is the lowest while DE and ACOR have the 

C

C



 

 

highest values (1.00 and 0.98 respectively). In addition, both DE and ACOR have 

generated more points on the set P* with 32.7% and 21.3% respectively. 

In sum, with the results shown in Table 4, it can be concluded that the five 

algorithms compared in this work were “functional” and did not yield completely 

different levels of performance for the test case problem. That being said, DE 

outperforms the other algorithms in terms of reliability, capacity to reach optimality, 

and diversity of solutions using the weighted sum method for the multi-objective 

optimization. However, it has been demonstrated that DE has a slow convergence speed 

and relatively high setting sensibility on reaching near-optimal solution in comparison 

to the other algorithms. ACOR and GA have faster convergence speed, good capacity to 

reach optimality and good diversity. However, the algorithm parameters of ACOR are 

difficult to tune. For easier tuning and adjustments, other algorithm like PSO and TLBO 

are appealing options. PSO has a fast convergence speed but poor reliability, while 

TLBO has slow convergence speed but high reliability. However, both algorithms have 

lower quality and diversity of near-optimal solutions when used with a weighted sum 

method. 

6. Conclusion 

The performance of five stochastic global search algorithms with weighted sum 

approach to solve a multi-objective optimization problem are compared. A nonlinear 

mixed-variable constrained optimization test case is considered, which consisted in 

optimizing the design of a thermoelectric device. This comparative analysis is 

conducted to highlight the forces and weaknesses of each algorithm and help in 

algorithm selection. The algorithms compared in this paper are: GA, PSO, ACOR, 

TLBO and DE. 



 

 

As a first step, the parameters of each algorithm influencing the intensification 

and diversification mechanisms have been analyzed to assess their impact on: the 

capacity to reach optimal solutions, the convergence speed, and on the reliability. TLBO 

has been removed from this first analysis since the algorithm does not have any specific 

parameter to fine-tune. From this analysis, it can be concluded that the choice of proper 

parameters for a specific problem can be influential, although some algorithms are more 

sensitive to the values of these settings than others. For ACOR and DE, the solution 

reached is highly influenced by the choice of parameter values, whereas little effect has 

been observed on GA and PSO. 

As a second step, the weighted sum method is used to solve the multi-objective 

optimization test case with proper settings. An approximation of the "true" Pareto front 

is obtained by performing a non-dominated sorting on the set of solutions obtained from 

every weight ratio combination with all five algorithms. Then, each algorithm is 

compared using convergence and diversity metrics. In general, all the algorithms are 

relatively close to the true Pareto front and yield comparable performances. 

Nonetheless, it has been observed that DE produced more solutions on the Pareto front 

as well as a highest level of diversity, followed by ACOR. 

The results of this paper provide a useful insight on the selection of heuristic 

algorithms and their specific settings for similar complex design optimization problems. 

Future work could investigate other heuristics (e.g., firefly algorithm [67], etc.) and 

perform this comparison with other types of problems. 
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Table 1: Discrete and continuous decision variables of the TEG model (with 12 × 12 

grid), based on Ref. [14] 

Variables Number of variables Bound 

Thermoelectric material selection 144 {1…3} 

Thermoelectric electric connection grid 

layout 

1 {1…24} 

Heat collector flow grid layout 1 {1…24} 

Heat collector duct geometry 1 {1,2} 

Number of fins 

(for each duct) 

12 {0…100} 

Total electric current 

[A] 

1 [0.1…100] 

Surface-to-length ratio of modules  

[m] 

3 [0.0001…0.01] 

Global heat transfer coefficient U  

[W/m2K] 

1 [1…100] 

Capacity rate of the collector C 

[W/K] 

1 [100…25,000] 

  



 

 

Table 2: List and range of algorithm parameters 

Algorithm Parameters Combination tested 

GA 

CR  [0 : 0.05 : 1] 

Crossover fct. 

Scattered - single point - 

double points 

Selection fct. 

uniform - roulette wheel - 

Tournament 

PSO 

inertiaw  1 

dampw  [0.7 ; 0.99 ; 1] 

1c  [0 : 0.2 : 2] 

2c  [0 : 0.2 : 2] 

ACO 

q  [0.001 : 0.001 : 0.02] 

  [0.1 : 0.1 : 1] 

DE 

  [0.01 : 0.01 : 0.1] 

pCR  [0.1 : 0.1 : 1]  

TLBO - - 

  



 

 

Table 3: Best parameters for nearly optimal net power output 

Alg. Best parameters 

max( )netP

[W] 

RSD  

GA 

% Crossover 0.70 

11,936 0.0173 Crossover fct. Tournament 

Selection fct. Scattered 

PSO 

inertiaw  1 

11,928 0.0217 

dampw  0.99 

1c  0.6 

2c  1 

ACOR 

q  0.006 

11,977 0.0109 

  0.4 

DE 

  0.02 

12,004 0.0091 

pCR  0.8 

TLBO - - 11,817 0.0083 

  



 

 

Table 4:  Normalized mean metric value C , normalized entropy 
nH  and percentage of 

points that belongs to the approximate Pareto front *P  

Algorithm C  
nH  % pts  

GA 0.97 0.96 17.9 

PSO 0.93 0.84 10.4 

ACOR 0.97 0.98 21.3 

DE 0.99 1.00 32.7 

TLBO 0.85 0.77 17.7 
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Figure Captions 

Figure 1: Schematic view of the TEG system sandwiched between the heat source and a 

heat collector. 

Figure 2: Constrained temperature and heat flux distributions over the heat source 

surface. 

Figure 3: Impact of GA parameters on a) maximal net power, c) RSD  and c) Ite . 

Figure 4: Impact of PSO parameters on a) maximal net power, c) RSD  and c) Ite . 

Figure 5: Impact of ACOR parameters on a) maximal net power, c) RSD  and c) Ite . 

Figure 6: Impact of DE parameters on a) maximal net power, c) RSD and c) Ite . 

Figure 7: Effect of the algorithm parameters on a) RSD  and b) the required number of 

iterations using GA, PSO, ACOR, and DE for all the settings tested. 

Figure 8: Convergence comparison of the net power optimization with algorithm 

parameters of Table 3. The lines are the mean value and the gray areas are the min-max 

range. 

Figure 9: Qualitative summary of the heuristic algorithm performance for the problem 

tested. 

Figure 10: Approximate Pareto front P* after the non-dominated sorting obtained with 

the sum-weight method with all solutions from GA, PSO, ACOR, TLBO and DE. 

Figure 11: Origin of the non-dominated solutions achieved by all algorithms. 


