
applied  
sciences

Article

Multi-Objective Optimization of Planetary Gearbox with
Adaptive Hybrid Particle Swarm Differential Evolution Algorithm

Miloš Sedak *,† and Božidar Rosić †
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Abstract: This paper considers the problem of constrained multi-objective non-linear optimization
of planetary gearbox based on hybrid metaheuristic algorithm. Optimal design of planetary gear
trains requires simultaneous minimization of multiple conflicting objectives, such as gearbox volume,
center distance, contact ratio, power loss, etc. In this regard, the theoretical formulation and numer-
ical procedure for the calculation of the planetary gearbox power efficiency has been developed.
To successfully solve the stated constrained multi-objective optimization problem, in this paper a
hybrid algorithm between particle swarm optimization and differential evolution algorithms has
been proposed and applied to considered problem. Here, the mutation operators from the differential
evolution algorithm have been incorporated into the velocity update equation of the particle swarm
optimization algorithm, with the adaptive population spacing parameter employed to select the
appropriate mutation operator for the current optimization condition. It has been shown that the
proposed algorithm successfully obtains the solutions of the non-convex Pareto set, and reveals key
insights in reducing the weight, improving efficiency and preventing premature failure of gears.
Compared to other well-known algorithms, the numerical simulation results indicate that the pro-
posed algorithm shows improved optimization performance in terms of the quality of the obtained
Pareto solutions.

Keywords: multi-objective optimization; planetary gear trains; gear efficiency; particle swarm
optimization; differential evolution

1. Introduction

Planetary gearboxes have a wide application in various mechanical systems, such as
industrial drives, rotorcraft, automobiles, wind turbines, etc., where they can offer compact
dimensions and higher power densities with less noise and higher torque-to-weight ratios,
especially compared to standard parallel axis gear trains [1,2]. However, the design of
such gearboxes involves multiple planet branches, which also reduces efficiency, where the
multiple gear mesh regions in planetary gear sets dictate the overall efficiency. The main
goal is to reduce the weight and power loss of the construction and produce gearbox
with enhanced service life of the components. In this regard, in recent years a lot of re-
search has been directed towards the optimal design of the gear trains [3,4]. In this way,
researchers have considered the weight minimization of the single stage spur gears under
the constraints, such as gear bending strength and shafts torsional strength [5]. Based on
the obtained optimization results authors concluded that the ratio between weight of gears
and space area has been improved by 48.8% and 33.6%, respectively, which confirmed the
efficiency of the proposed method. Similarly, authors considered the weight optimization
of the helical gear pair, where the design variables included: module of the gears, helix
angle, number of teeth of the pinion gear and the width of gears [6]. The obtained results
indicated that the proposed optimization method has improved performance compared to
conventional gradient-based optimization algorithms. Furthermore, authors in [3] formu-
lated the optimization problem on the single stage gearbox, where the objective function is
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the volume of gears, shaft and bearings. More recently, authors in [4] proposed a method
to minimize the volume of the planetary gear trains with the aim to reduce space and mass.
The proposed method successfully obtained the optimal value in benchmark test functions
and the best parameters regarding the design of planetary gear trains compared to the
well-known designs in the literature.

Majority of the above-mentioned papers deal with the problem of single-objective
optimization (SOO). However, many practical engineering optimization problems have
one or more conflicting objectives, which need to be simultaneously optimized. Regarding
the gear train optimization, it is important to analyze the influence of the different contra-
dictory objectives, such as weight or volume, power loss, center distance etc. Therefore, the
multi-objective optimization (MOO) problems have received significant attention especially
presently in the field of mechanical engineering applications, rotor-dynamic, electrical
machine design and wireless communications, etc., [7–12]. It is a challenging task, which
motivated researchers to have a growing interest in developing optimization methods for
solving these problems. In this regard, researchers considered the optimization problem
of the multi-speed gearbox using a multi-objective evolutionary algorithm involving four
conflicting objectives [13]. The author applied non-dominated sorting genetic algorithm
(NSGA-II) and showed the efficiency of proposed method in solving mixed integer op-
timization problem under several non-linear constraints in obtaining the optimal Pareto
curve. Recently, authors considered the multi-objective optimization of two-stage helical
gearbox, considering two conflicting objectives the volume of the gearbox and the total
power loss [14]. Furthermore, besides the constraints such as bending stress and pitting
stress, in this study authors employed tribological constraints such as scuffing and wear.
Similarly, authors consider the two-stage spur gearbox which is formulated as the multi-
objective optimization problem with three objectives, e.g., volume, power-output and
center distance under several geometric and design constraints [9]. The obtained results
concluded that the proposed method obtains better design solutions compared to those
reported in the literature. Recently, authors considered the multi-objective optimization
of the planetary gearbox with the same objectives [15]. In addition, several different con-
straints have been considered, such as regular strength requirement as well as the bearing
selection and scuffing.

Generally, the MOO problems have been solved by converting them into the equiva-
lent single-objective optimization problem using the conventional techniques, known as
scalarization procedures, such as: weighted-sum and epsilon-constraint methods [16,17].
The widely applied weighted-sum method has good convergence properties; however, it
can only be applied to obtain convex parts of the Pareto optimal front [18]. On the other
hand, epsilon-constraint method can be applied not only to obtain convex parts of the
Pareto set, but also for the non-convex parts [17]. However, there is no unified strategy in
the literature to deal with epsilon-constraints values that always lead to feasible problem
instances. To overcome these drawbacks, recently several parameter-free methods have
been proposed in the literature that work directly with the multi-objective problem, without
scalarization [19,20].

To successfully solve MOO problems, various optimization methods have been
applied from conventional gradient-based methods, surrogate-based algorithms to nature-
inspired evolutionary algorithms [20–22]. In recent years, researchers have applied
different types of evolutionary algorithms (EAs) to solve multi-objective optimization
problems [8,9,23]. However, since the conventional EAs are designed to be used for single-
objective unconstrained optimization problems, they cannot be directly applied to solve
constrained multi-objective optimization problems. To deal with the constraints, several
different constraint handling techniques have been proposed in the literature, which can be
broadly classified as: penalty functions, separate considerations of infeasible and feasible
solutions and dealing with constraints using the MOO problem [24]. First method is the
most widely employed technique to deal with constraints, where COP is transformed
into the unconstrained optimization problem by introducing a penalty value term to the
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objective function, which is related to the constraints. The second method deals with the
constraints in two stages. First, the algorithm optimizes constraints without taking into
the account the objective functions. Then, in the second stage, when significant number of
feasible solutions has been obtained the algorithms focuses on the optimization of objective
functions. The newest technique, among the above-mentioned, treats the constraints of
the MOO problem as the additional objectives, and therefore transforming the constrained
optimization problem to unconstrained MOO problem.

In recent years, several metaheuristic algorithms inspired by nature, such as Genetic
Algorithm (GA) [10], particle swarm optimization (PSO) [25], differential evolution (DE) [26],
firefly algorithm (FA) [27], gray wolf optimization (GWO) [28] etc. have been applied to
solve a wide array of engineering optimization problems. Among them the GA, as a
promising optimization method from the group of EAs has been widely applied to solve
different SOO problems regarding the gearbox optimization, such as weight minimization,
power loss minimization etc., [3–5]. Besides the GA, several papers have been published
that deal with SOO of gear trains using the algorithms, such as DE, PSO and GWO [28–30].
Regarding the MOO problems in gearbox design, most of the papers outlined previously
are relying on the well-known NSGA-II and other improved variations of this algorithm to
solve this complex optimization problem [10,13,14]. Recently, several papers appear in the
literature that deal with the MOO problems using the hybrid variants of the well-known
EAs [8,31]. Although a lot of work in the literature is devoted on developing more effective
optimization algorithms and improving the performance of the existing ones, due to the no
free lunch theorem of mathematical optimization the algorithm maximizing performance
on one class of optimization problem will likely perform worse at others. The no free lunch
theorem states that if no prior assumptions about the optimization problems can be made,
averaging over all possible optimization problems, all optimization algorithms have equal
performance [32], i.e., it is not possible to provide general-purpose universal optimization
algorithm, rather only to provide a strategy that can outperform another on the specific
group of optimization problems under consideration.

Among different EAs, DE emerged as the efficient algorithm which can successfully
obtain global optimum of multimodal optimization problems. This algorithm has been ini-
tially proposed by Storn and Price [26] to solve real-valued unconstrained single-objective
optimization problems. However, due to its simple structure and easy implementation
it has since been expanded to solve mixed integer, constrained and multi-objective opti-
mization problems [2,33]. The performance of DE algorithm depends in large measure
on the appropriate choice of its main control parameters, such as scale factor F, crossover
rate CR and population size NP [34]. To address the issues with optimization performance,
the researchers first considered the appropriate choice of the control parameter values for
different type of objective function landscapes. However, it has been shown that single
fixed control parameter value chosen for the certain problem is not adequate for the whole
optimization process. Therefore, researchers developed several adaptive and self-adaptive
strategies for changing the value of control parameters based on some information from
the optimization process [34]. Furthermore, to successfully deal with MOO problems
researchers proposed numerous variants of DE algorithm, which include external archive
where the successfully non-dominated solutions found during the evolutionary process are
stored and lately, during the evolution process, employed to direct the individuals towards
global optimum [11,35].

Another widely applied algorithm from the group of EAs is the PSO algorithm. This
method is inspired by the intelligence of the swarm of birds searching for food [25]. Initially,
it has been proposed for solving unconstrained single-objective optimization problems in
the continuous domain. In the last few decades, PSO algorithm has been applied to sev-
eral practical engineering optimization problems, where it has shown good performance.
However, the conventional PSO algorithm has some drawbacks in solving large scale com-
plex optimization problems, such as premature convergence and trapping into the local
optima [36]. As with other EAs, the optimization performance of PSO algorithm depends
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largely on the proper choice of the control parameters such as social c1 and cognitive c2
acceleration coefficients and population size NP. In this way, to deal with above-mentioned
drawbacks there has been several papers dealing with the appropriate choice of these
parameters, among which the time-varying acceleration coefficients have been widely ap-
plied [36,37]. To improve the performance in solving the MOO problems researchers have
introduced the archiving strategies into the PSO algorithm, where the best individuals are
selected from a non-dominated external archive [11,38]. Furthermore, researchers studied
the impact of different PSO topologies on the outcome of the optimization process [22].

To further enhance the optimization performance of PSO algorithm in solving MOO
problems, in this paper an improved hybrid PSO and DE algorithm, called Multi-Objective
Hybrid Particle Swarm Optimization Differential Evolution (MHPSODE) algorithm, has
been proposed to deal with the complex MOO of planetary gearbox design. To address the
issues that appear during the optimization of the conventional DE and PSO algorithms, in
this paper a hybrid algorithm has been proposed which successfully combines the traits of
each algorithm and overcomes the disadvantages. The hybridization has been performed
by introducing the mutation operators DE/rand/1 and DE/current-to-best/1 from DE algo-
rithm into the velocity update equation of the PSO algorithm, with the adaptive normalized
population spacing parameter employed to select the appropriate mutation operator for
the current optimization condition. The experimental results have demonstrated that the
proposed MHPSODE algorithm is able to achieve better balance between convergence and
diversity compared to well-known existing algorithms, such as NSGA-II and DEMO by
adopting the proposed adaptive mutation mechanism.

In summary, the main contributions of this paper can be outlined as follows:

• The methodology for the MOO of the single stage planetary gearbox optimization,
along with a comprehensive number of conflicting objective functions and several
critical design constraints has been formulated in this paper.

• The theoretical formulation for the calculation of the planetary gearbox power effi-
ciency has been outlined, as a significant objective in the formulated MOO problem.
To evaluate the efficiency of the planetary gearbox and perform numerical analysis
the appropriate numerical procedure has been presented.

• To improve the optimization performance, especially while solving complex multi-
objective optimization problems, the hybrid algorithm between DE and PSO algo-
rithms, called MHPSODE algorithm has been proposed. The hybridization between
two well-known EAs has been achieved by introducing mutation operators from
DE algorithm into the velocity update equation of the PSO algorithm. Based on an
adaptive normalized population spacing parameter the proposed algorithm is able to
choose appropriate modified mutation operator for the current optimization conditions.

• The performance of the proposed MHPSODE algorithm has been verified by com-
paring it with well-known multi-objective metaheuristic algorithms such as NSGA-II
and DEMO on 10 benchmark MOO problems defined in CEC2009. The experimental
results demonstrated that the proposed MHPSODE algorithm has significantly better
optimization performance compared to other existing algorithms, in terms of both
quality of the obtained Pareto solutions and convergence.

This paper is organized as follows. In Section 2 the formulation of the multi-objective
planetary gear optimization problem has been given. Furthermore, in Section 2.1 the
formulation of the constrains for the considered optimization problem have been outlined.
Section 2.2 gives the mathematical formulation of the planetary gear train efficiency model.
Section 3 presents the problem of constrained multimodal optimization. Furthermore,
in Sections 3.1 and 3.2 the theoretical formulation of the PSO and DE algorithms, has been
outlined, respectively. In addition, Section 3.3 gives the formulation of the proposed hybrid
HPSODE algorithm. Section 4 presents the results of the numerical simulation, where in
Section 4.1 the focus is on the experiments dealing with planetary gearbox optimization, and
in Section 4.2 the statistical comparison of the optimization performance of the proposed
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algorithm on the CEC2009 benchmark problems has been outlined. Finally, the conclusions
are drawn in Section 5.

2. Problem Formulation

This paper considers the problem of MOO of the planetary gearbox with the aim
to obtain the gear design parameters, which lead to construction with lower weight and
volume while simultaneously having increased efficiency and service life. In this regard,
Figure 1 illustrates the planetary gearbox considered for this MOO problem, which consists
of a carrier, three planet gears (g) and a single sun gear with external gearing (a), input shaft,
output shaft and a ring gear with internal gearing (b). The power comes thought the input
shaft, on which the sun gear is mounted, then it is transferred by meshing engagement
between gears to planet gears, which are mounted on the carrier, while the ring gear is kept
fixed. Then the power is outputted thought the output shaft, which is directly connected to
the carrier, as illustrated in Figure 1.

b

ag

Figure 1. 3D illustration of the planetary gearbox considered in this paper.

The materials, input power and speed, etc. and other parameters used in the design
of the planetary gearbox in this study are outlined in Table 1.

Table 1. Parameters of the planetary gearbox considered in the paper.

Parameters Units Symbol Value

Input Power [kW] Pa 175

Input speed [min−1] na 2750

Pressure angle [◦] αn 20

Gear material 18CrNi8

Gear surface Roughness [µm] Ra 0.8

Factor of safety against bending [-] SFmin 1.2

Factor of safety against pitting [-] SHmin 1.25

Number of planet gears [-] nw 3

In this regard, in this paper the following objective functions have been formulated
for the considered MOO optimization problem:
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• Center distance

f1 = a =
mnza

cos β

(
1 + uH

a−g

) cos αt

cos αwt
, (1)

where the involute of the pressure angle is defined as

invαwt = 2
xa + xb
za + zb

tan αn + invαt. (2)

• Contact ratio

f2 = εα(a−g) =
0.5
(√

d2
a(a) − d2

a(b) +
√

d2
a(g) − d2

a(g)

)
− a sin αwt

πmt cos αt
. (3)

• Total volume of gears

f3 = V(x) =
π

4
b
[
d(a)

2 + nw

(
d2

a(b) − D2
)
+
(

d2
(g) − d2

s

)]
. (4)

• Safety factor for bending stress

f4 = SF(a)(x) =
[σF]M(a)

σF(a)
. (5)

• Safety factor for contact stress

f5 = SH(a)(x) =
[σH ]M(a)

σH(a)
. (6)

• Safety factor for bending stress for ring gear

f6 = SF(b)(x) =
[σF]M(b)

σF(b)
. (7)

In the above equations, the tooth root stress for the sun gear is determined according to

σF,a =
Ft

bmn
YFa YSa YεKAKvKFα, (8)

while the critical root stress is obtained as

[σF]M = σF limYSTYRrelT . (9)

In this regard, the safety factor against breakage can be obtained according to the equation

SF,a =
[σF](a)

σF(a)
≥ SF min, (10)

where the SFmin is the minimum allowed safety factor value, which is given in Table 1.
Effective contact stress is determined according to the expression

σH = ZHZEZε

√
Ft

bd(a)

u + 1
u

KAKvKHα, (11)

where the contact stress for sun gear – planet gear pair is obtained as the minimum value,
according to

σHa = σHg < [σH ]M = min
{
[σH ](a), [σH ](g)

}
. (12)
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The critical contact stress is determined as

[σH ]M = σH limZN ZLZR, (13)

while the safety factor form pitting is calculated as

SHa,g =
[σH ](a,g)

σH
≥ SH lim, (14)

where the SHmin is the minimum allowed safety factor value, which is given in Table 1.
The different factors used in the above equations are given in the Appendix A.

2.1. Constraints Formulation

In this section, several design constraints regarding the strength requirements em-
ployed in the MOO problem considered in this paper have been outlined. Among others,
the employed constraints include bending strength, pitting strength, assembly condition,
etc. By implementing these constraints, the requirement for the gearbox with enhanced
service life of the components is successfully satisfied.

2.1.1. Bending Constraints

The constraint regarding the gear tooth bending strength is defined as

g(1,2,3) =
[σF]M(a,g,b)

σF(a,g,b)
− SF > 0. (15)

2.1.2. Pitting Constraints

The constraint against surface fatigue resistance has been defined as

g4 =
[σH ]M(a,g)

σH
− SH > 0, (16)

g5 =
[σH ]M(g,b)

σH
− SH > 0. (17)

2.1.3. Space Requirement

Mounting of the planet gears in the gearbox assembly demands the appropriate
clearance between tip circles of gears in mesh to exist. Therefore, the following constraint
needs to be satisfied

g7 = 2a sin
(

π

nw

)
− fz − da−g ≥ 0. (18)

where fz = 0.5 ·mn is the minimum clearance.

2.1.4. Assembly Condition

To avoid possible interference of teeth during the meshing process, the condition that
must be satisfied is that simultaneous meshing of central sun gear with planet gears must
be always satisfied. In this regard, the equality constraint is defined as

h1 =
zazb

nwD
(
zg, zb

) − i = 0. (19)

2.2. Planetary Gear Train Efficiency

The load dependent power losses arise during the operation of gears primarily as
a consequence of relative motion between two gear tooth surfaces in contact under the
normal load, where the sliding and rolling friction always exist. The power loss of the
gear pair is expressed by means of efficiency, which is defined as a degree to which a
system is successful in producing a desired result [10]. The efficiency of the gear pair along
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active length of the line of action (LOA) for a constant angular speed ω1 is obtained in the
integration according to

ηH
gb =

1
la

∫ D

A
ηi(ξ)dξ, (20)

in which the instantaneous efficiency is obtained as

ηi(ξ) =
T2

T1

1
uH

gb
, (21)

where T1 is the constant torque acting on the pinion T2 is the torque acting on the driven
gear, which needs to be determined, and uH

gb is the relative gear ratio, la = A2E2 is the
active length of the path of contact, ξ is the coordinate along the LOA.

Based on the Coulomb’s Law of friction, the sliding friction forces acting on ith
meshing tooth of the pinion and driven gear can be calculated as

Fµpi = µi(ξ)Fni(ξ)sign(Vsi(ξ)), i = 1, 2, (22)

Fµgi = −µi(ξ)Fni(ξ)sign(Vsi(ξ)), i = 1, 2, (23)

where µi(ξ) is the time-varying friction coefficient of ith mesh tooth pair, sgn( · ) is the
signe function, and Fni denotes the normal force acting upon the two teeth in contact.
According to the Figure 2, the direction of the sliding friction force should be opposite to
that of the relative sliding velocity Vsi(t) between surfaces of two teeth in contact, and is
always perpendicular to the LOA. In the process of the gear engagement, the tribological
conditions change as a consequence of varying mesh properties and change in lubricant
film thickness as the one surface of the tooth rolls over the other tooth. In this way, the
friction coefficient varies with the angular position of each gear and the direction of friction
force changes at the pitch point.

Figure 2. Forces acting upon gears during the meshing process of a gear pair.
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Therefore, Benedict and Kelley [39] used elasto-hydrodynamic lubrication (EHL)
theory to explain the friction in gear teeth in contact, and based on experimental results
proposed an equation for the prediction of the dynamic friction coefficient, which is given
as follows

µi(ξ) = C1log10

(
C2 · Fni(ξ)

b
ηoVsi(ξ)V2

ei(ξ)

)
i = 1, 2, (24)

where b is the width of the gear, η0 is the dynamic viscosity of the oil and the coefficients
C1 and C2 are taken as C1 = 0.0127 and C2 = 29.66, respectively.

The intensity of the rolling friction is determined according to the expression

FRpi(ξ) = C · hi(ξ) · b · sgn(Vei), i = 1, 2, (25)

where the minimum film thickness is determined based on the expression given by Dowson
and Higginson [40], as follows

hi(ξ) = 1.6 · α0
0.6 · (ηo ·Vei)

0.7 · E0.003 R0.43

F0.13
n

, (26)

and α0 denotes viscosity-pressure coefficient of lubricant, R is the effective radius of
curvature, and E is Young modulus of gear material.

Therefore, from the static equilibrium condition of forces acting upon gears in mesh,
for Fn1 = Fn2, the following expression for the normal force is obtained

Fn(ξ) =
Tp + FRp1(ξ)ξ + λ(ξ)FRp2(ξ)lp1(ξ)

µ1ξsign(Vs1(ξ)) + 2rbp + λ(ξ)µ2(ξ)lp1(ξ)sign(Vs2(ξ))
. (27)

The sliding and entraining velocities Vsi(ξ) and Vei(ξ), respectively, are determined
according to the expression

Vsi(ξ) = vpi(ξ)− vgi(ξ) i = 1, 2,

Vei(ξ) =
1
2
[
vpi(ξ) + vgi(ξ)

]
i = 1, 2,

(28)

where the tangential velocities vpi(ξ) and vgi(ξ) of pinion and gear on any point of the
profile of the gear are determined as follows

vpi(ξ) = lpi(ξ) ·ω1 i = 1, 2,

vgi(ξ) = lgi(ξ) ·ω2 i = 1, 2,
(29)

Here ω1 and ω2 denote the rotational speed of the pinion and gear, respectively, and
the lpi(ξ) and lgi(ξ) are the lengths given by

lp1(ξ) = ξ + pb,

lp2(ξ) = a sin αw + lp1(ξ),

lp3(ξ) = a sin αw + ξ,

lgi(ξ) = la − lpi(ξ), i = 1, 2,

(30)

where the active length of LOA is obtained as

la = (rb1 + rb2) tan αw. (31)

Based on the obtained total mesh force, the torque T2 is than calculated according to
the equation

T2(ξ) = 2Fnrbp + lg2
(

Fµp2(ξ) + FRp2
)
+ λ(ξ)lg1

(
Fµp1(ξ) + FRp1

)
. (32)
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In the above expressions, λ(ξ) denotes dimensionless coefficient, which takes into the
account changes caused by the single-tooth meshing and double-tooth meshing alternation
during the engagements, according to the expression

λ(ξ) =

{
0, la − pb ≤ mod

(
ξ, pp

)
≤ pb

1, otherwise
. (33)

However, the intensity of the normal force between two surfaces cannot be obtained
directly from Equation (27), since the values of the coefficients µi(ξ) and hi(ξ) are not a
priori known. Therefore, the iterative procedure is established, where in the first iteration
it is assumed that the value of the normal force is

F(0)
n =

Tp

2rbp
. (34)

This iterative procedure is repeated until the termination criterion∣∣∣∣∣ F
(i+1)
n − F(i)

n

F(i)
n

∣∣∣∣∣ ≤ ε, (35)

is satisfied. Then the torque acting on the driven gear and instantaneous efficiency can
be calculated according to the expressions (32) and (21), respectively. In this way, the
pseudo-code of the proposed iterative procedure is presented in Algorithm 1.

Algorithm 1 Computational methodology of efficiency prediction model

Initialize parameters such as ηo, αo, F(0)
n ,ε

while ξ ≤ la do

while
∣∣∣∣ F(i+1)

n −F(i)
n

F(i)
n

∣∣∣∣ ≤ ε do

Calculate coefficients µi(ξ) and hi(ξ) according to Equations (24) and (26), respec-
tively
Determine normal force F(i)

n using Equation (27)
i← i + 1

end while
Calculate torque on the driven gear T2(ξ)
Determine instantaneous efficiency using
ηi(ξ) =

T2
T1

1
uH

gb

end while
Calculate total efficiency
ηH

gb = 1
la

∫ D
A ηi(ξ)dξ

3. Multi-Objective Optimization

Generally, the MOO problem can be defined as an optimization problem with m = 1, . . . , M
objective functions that are simultaneously minimized. Most of the practical engineering
optimization problems have some limitations regarding the range of the decision variables,
and therefore, the optimization problems usually are further expanded with several type of
constraints to ensure the physical feasibility of the solution. These problems, are referred to
as constrained multi-objective optimization problems (CMOPs), which can be formulated
in the mathematical form as follows
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min fm(xi) m = 1, . . . , M ∧ i = 1, . . . NP

s.t.

gk(xi) ≥ 0, k = 1, . . . , K

hl(xi) = 0, l = 1, . . . , L

xi,j ∈
[

xLower
j , xUpper

j

]
, j = 1, . . . , n

(36)

where M denotes the total number of objective functions to be optimized, gk(xi) is k-th inequal-
ity constraint, K is the total number of inequality constraints, hl(xi) is lth equality constraint, L
is the total number of equality constraints, xLower

j and xUpper
j denote the lower and upper bounds

of the decision variables in the search space, respectively. The set F, which satisfies all the con-
straints, is called feasible domain F =

{
x | gk(xi) ≥ 0∧ hl(xi) = 0∧ xi,j ∈

[
xLower

j , xUpper
j

]}
.

Definition 1. Let x be the point in the feasible solution space, x ∈ F. The point x is said to be
Pareto optimal if and only if in the feasible domain there does not exist another point y ∈ F for
which f (y) ≤ f (x), f (y) 6 = f (x).

Definition 2. Dominated solution: The solution x dominates the solution y (denoted as x ≺ y) if
and only if fi(x) ≤ fi(y) ∀i ∈ {1, 2, . . . , m} and ∃j ∈ {1, 2, . . . , m} such that f j(x) < f j(y).

Definition 3. Non-dominated solution: The solution x and solution y are non-dominate with each
other if and only if ∃j ∈ {1, 2, . . . , m} for which f j(x) < f j(y) and 6 ∃i ∈ {1, 2, . . . , m} such that
fi(x) < fi(y).

Definition 4. Pareto front: The set, which is composed of non-dominated Pareto optimal solutions,
is called Pareto front (PF), denoted as X = {x ∈ F|6 ∃y ∈ F such that f (y) > f (x)}.

Definition 5. Ideal point: the point xideal is the point, which has the best objective function values
in Pareto front xideal = min f(x) = min{ f1(x), . . . , fi(x), . . . , fm(x)}.

3.1. Multi-Objective Particle Swarm Optimization Algorithm

The PSO is the optimization method form the group of EAs, which is inspired by
the behavior of birds in the swarm [25]. The PSO algorithm consists of NP particles in
the swarm, which can be represented with the set P(G) = {xi | xi ∈ F}, i ∈ {1, 2, . . . , NP},
where G denotes the generation index. Each particle in the swarm represents a candidate
solution to the considered optimization problem. Two parameters, namely current position
x(G)

i and velocity s(G)
i are associated with each particle. The position of the particle is

influenced by the best position previously visited by the particle, denoted as x(G)
pbest,i and

the best position discovered by the entire swarm of particles x(G)
gbest. In this regard, at

each iteration of the PSO algorithm the particle updates its velocity and then the position
according to the expression

s(G+1)
i = s(G)

i + c1rand1

(
x(G)

pbest,i − x(G)
i

)
+ c2rand2

(
x(G)

gbest − x(G)
i

)
, (37)

x(G+1)
i = x(G)

i + s(G+1)
i , (38)

where c1 denotes the cognitive coefficient, c2 is social coefficient, rand1 and rand2 denote
distinct random numbers in the range randi ∈ (0, 1), i = 1, 2. For solving the MOO
problems, the procedure of the PSO algorithm need to be modified, in terms of mechanism
for updating the personal best and global best positions [41]. The personal best position
represents the best solution found by individual particle in the previous generations. For
the MOO problem the personal best position for each particle is changed if the current
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personal best solution is dominated by the current position, which is written with the
following equation

x(G+1)
pbest,i =

{
x(G)

pbest,i, if x(G)
pbest,i ≺ x(G)

i

x(G)
i , otherwise

. (39)

On the other hand, the global best position x(G)
gbest represents the best solution found in

the entire swarm up to current iteration. Unlike with SOO problems, in MOO problems
due to the contradictory nature of the multiple objectives it is impossible to choose single
global best solution for the x(G)

gbest. Therefore, an external archive is introduced into the PSO
algorithm, which captures a set of non-dominated solutions obtained in the optimization
process. In each iteration, to evaluate the diversity of the particles in the external archive
the crowding distance is calculated, and then the x(G)

gbest is selected by applying the binary
tournament [22,41].

3.2. Differential Evolution Algorithm

DE algorithm is an effective and robust optimization algorithm, initially proposed to
solve unconstrained optimization problems in the continuous domain [26]. The optimiza-
tion process of the DE algorithm consists of the following phases: initialization, mutation,
crossover and selection.

The DE algorithms begins the optimization process with a population of Np individ-

uals
{

xi|x
(G)
i,j ∈

[
xUpper

j , xLower
j

]}
∀i ∈ {1, 2, . . . , NP}, uniformly and randomly deployed

over the feasible solution space, where each individual is represented by an n-dimensional
vector xi =

[
xi,1, . . . , xi,j, . . . , xi,n

]T . Therefore, each individual xi represents a potential
solution to the optimization problem. Every component of the ith individual should be
generated within the upper and lower bounds xi,j ∈

[
xUpper

j , xLower
j

]
. In this regard, the

component of the ith vector is generated according to the following expression

x(G)
i,j = xLower

j +
(

xUpper
j − xLower

j

)
rand(0, 1)

i = 1, 2, . . . , NP ∧ j = 1, 2, . . . , n,
(40)

where rand(0, 1) is a uniformly and randomly generated number in the range (0, 1).
The mutation operator in DE algorithm is considered to be a random disturbance

term, which allows the algorithm to explore the search space and escape from local optima,
and in this way keeping the diversity of the population. In the literature, exist several
different mutation operators, which have different characteristic and can be suitable for
certain type of the optimization problem or particular phase of the optimization process.
In this way, the most commonly applied mutation operators include [34]:

DE/rand/1

x(G)
i = x(G)

r1 + F
(

x(G)
r2 − x(G)

r3

)
, (41)

DE/rand/2

x(G)
i = x(G)

r1 + F
(

x(G)
r2 − x(G)

r3

)
+ F

(
x(G)

r4 − x(G)
r5

)
, (42)

DE/best/1

x(G)
i = x(G)

best + F
(

x(G)
r1 − x(G)

r2

)
, (43)
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DE/current-to-best/1

x(G)
i = x(G)

i + F
(

x(G)
best − x(G)

i

)
+ F

(
x(G)

r1 − x(G)
r2

)
, (44)

where r1, r2, r3, r4 and r5 represent integers from the set {1, 2, . . . , NP}\i for which r1 6=
r2 6= r3 6= r4 6= r5, xbest denotes the individual with the minimum objective function value,
and F represents the constant scaling factor F ∈ [0, 2].

After the mutation, in the DE algorithm the crossover operator is applied to increase

diversity. According to the binomial crossover the trial vector u(G)
i =

[
u(G)

i,1 , . . . , u(G)
i,n

]T
is

generating by mixing the jth component of the target x(G)
i,j and the corresponding mutant

vector u(G)
i,j , according to the expression

u(G)
i,j =

v(G)
i,j , if randj ≤ CR ∨ j = jrand

x(G)
i,j , otherwise

,

j = 1, . . . , n ,

(45)

where randj is the random number in the range (0, 1), index jrand is a randomly chosen
integer from the set {1, 2, . . . , n} and CR is the crossover probability such that CR ∈ [0, 1].

Finally, after crossover the selection operator is applied to determine whether the
individuals generated by the crossover and mutation operators are better than individuals
in the previous generation. Therefore, based on the objective function value of the trial
vector and objective function value of the target vector the selection is performed according
to the expression

x(G+1)
i =

{
u(G)

i , if f
(

u(G)
i

)
≤ f

(
x(G)

i

)
x(G)

i , otherwise
, (46)

where x(G+1)
j is the individual kept for the next generation.

3.3. Multi-Objective Hybrid Particle Swarm Optimization and Differential Evolution Algorithm

To successfully solve MOO problems, the EAs must effectively balance the conver-
gence and diversity of the swarm during the optimization process. It has been previously
shown that the PSO algorithm tends to be easily trapped into the local optima and to
lose the diversity [36]. Therefore, to keep an effective balance between convergence and
diversity the mutation operators from the DE algorithm have been introduced into the
optimization procedure of the PSO algorithm. In the literature, it has been well established
that the DE/rand1 and DE/rand/2 mutation operators have good exploration ability and
hence, are able to successfully discover the region of global optimum [33]. On the other
hand, mutation operators DE/best/1 and DE/current-to-best/1 focus their search in the
region of the best solution, and therefore have better exploitation and faster convergence
towards optimal solution [33].

In this regard, to improve the global exploration ability and prevent premature conver-
gence to one of the local optima, the key elements from the DE/rand/1 mutation operator
are included into the velocity update equation of the PSO algorithm. Therefore, the term
c1

(
x(G)

pbest,i − x(G)
i

)
in velocity equation has been substituted with the term F

(
x(G)

r2 − x(G)
r3

)
,

and the velocity update equation has the following form

s(G+1)
i = s(G)

i + rand1F
(

x(G)
r2 − x(G)

r3

)
+ c2rand2

(
x(G)

gbest − x(G)
i

)
. (47)

On the other hand, to improve the exploitation ability the term F
(

x(G)
best − x(G)

i

)
from

the DE/current-to-best/1 algorithm has been introduced into Equation (37) instead of the
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term c2rand2

(
x(G)

gbest − x(G)
i

)
. Furthermore, to maintain the required level of diversity, the

term F
(

x(G)
r1 − x(G)

r2

)
has been added to Equation (37), which becomes

s(G+1)
i = s(G)

i + c1rand1

(
x(G)

pbest,i − x(G)
i

)
+ c2F

(
x(G)

best − x(G)
i

)
+ F

(
x(G)

r1 − x(G)
r2

)
. (48)

Based on the above, to obtain a suitable diversity and convergence, which can balance
the global exploration and local exploitation abilities of the particles, the normalized popu-
lation spacing PS(G+1) has been introduced into the algorithm. The value of the normalized
population spacing of the ith particle in the population in the (G + 1)th iteration can be
determined according to the expression

PS(G+1) =

√√√√ 1
NP − 1

NP

∑
i=1

(
d̄(G+1) − d(G+1)

i

)2
, (49)

where d(G+1)
i denotes the minimum L1-norm distance between the ith particle and all other

particles in the population, and d̄(G+1) represents the average minimum L1-norm distance
of all particles.

Therefore, employing the introduced normalized population spacing PS(G+1) to com-
bine the developed Equations (47) and (48), the expression for velocity update of the PSO
algorithm can be stated with the pseudo-code given in Algorithm 2.

Algorithm 2 Presudocode of the velocity update equation of the hybrid algorithm

if PS(G+1) > 0.75 then
if rand > 0.5 then

s(G+1)
i = s(G)

i + rand1F
(

x(G)
r2 − x(G)

r3

)
+ c2rand2

(
x(G)

gbest − x(G)
i

)
else

s(G+1)
i = s(G)

i + c1rand1

(
x(G)

pbest,i − x(G)
i

)
+ c2rand2

(
x(G)

gbest − x(G)
i

)
end if

else if PS(G+1) ≤ 0.75 then
if rand > 0.5 then

s(G+1)
i = s(G)

i + c1rand1

(
x(G)

pbest,i − x(G)
i

)
+c2F

(
x(G)

best − x(G)
i

)
+ F

(
x(G)

r1 − x(G)
r2

)
else

s(G+1)
i = s(G)

i + c1rand1

(
x(G)

pbest,i − x(G)
i

)
+ c2rand2

(
x(G)

gbest − x(G)
i

)
end if

end if

According to the pseudo-code given in Algorithm 2, it can be observed that based
on the value of the population spacing PS(G+1) the appropriate equation for the velocity
update will be chosen. Therefore, for PS(G+1) > 0.75 the diversification of the population is
uneven, and the exploitation ability should be enhanced. Therefore, the improved expres-
sion in Equation (47) will be applied with the probability of 0.5, otherwise Equation (37) is
applied. On the other hand, smaller value of PS(G+1), e.g., PS(G+1) ≤ 0.75, indicates that
the local exploitation should be improved. Therefore, the expression (48) is applied with
the probability 0.5, otherwise Equation (37) is applied.

To further increase diversity of the population the crossover operator from the DE
algorithm has been incorporated into the PSO algorithm. Based on the above, the pseudo-
code of the proposed MHPSODE iterative procedure is presented in Algorithm 3.
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Algorithm 3 Pseudo-code of the proposed hybrid particle swarm differential evolution algorithm

Initialize the parameters NP, n, MaxIter
Uniformly and randomly generate positions of the particles in the swarm
Initialize velocities of each particle in the swarm s(0)i , ∀i ∈ 1, 2, . . . , NP

Set the initial x(0)i,pbest and x(0)gbest values
while iter < MaxIter do

update the inertia weight w(G)

for i = 1:NP do
Calculate the velocity
if PS(G+1) > 0.5 then

if rand > 0.5 then
s(G+1)

i = s(G)
i + rand1F

(
x(G)

r2 − x(G)
r3

)
+ c2rand2

(
x(G)

gbest − x(G)
i

)
else

s(G+1)
i = s(G)

i + c1rand1

(
x(G)

pbest,i − x(G)
i

)
+ c2rand2

(
x(G)

gbest − x(G)
i

)
end if

else if PS(G+1) ≤ 0.5 then
if rand > 0.5 then

s(G+1)
i = s(G)

i + c1rand1

(
x(G)

pbest,i − x(G)
i

)
+c2F

(
x(G)

best − x(G)
i

)
+ F

(
x(G)

r1 − x(G)
r2

)
else

s(G+1)
i = s(G)

i + c1rand1

(
x(G)

pbest,i − x(G)
i

)
+ c2rand2

(
x(G)

gbest − x(G)
i

)
end if

end if
Update the position of particles
x(G+1)

i = x(G)
i + s(G+1)

i
Evaluate crossover operator from the DE algorithm according to Equation (45)
Determine the personal best solution according to

x(G+1)
pbest,i =

{
x(G)

pbest,i, ifx(G)
pbest,i ≺ x(G)

i

x(G)
i , otherwise

Calculate the global best solution
end for

end while

4. Experimental Results

In this section, the experimental analysis using the numerical simulations has been
caried out to determine the Pareto optimal solutions of the considered MOO problem of
the planetary gearbox optimization and to analyze the improvements in terms of optimiza-
tion performance of the proposed MHPSODE algorithm. In this regard, to analyze the
optimization performance and to verify the performance of the modifications introduced
in the proposed MHPSODE algorithm, in this paper, the statistical comparison has been
performed between the proposed algorithm and several well-known algorithms, such as
NSGA-II [42], MO_Ring_PSO_SCD [22] and DEMO [43] on CEC2009 benchmark problems.

4.1. The Planetary Gear Train Optimization

The results of the multi-objective planetary gearbox optimization problem, formulated
in Section 2, have been presented in this subsection. In this regard, the minimization
of the volume, center distance, safety factor for bending stress and contact stress, and
minimization of power losses have been treated as the objectives. Results obtained from
the formulated MOO problem have been compared with the reference gearbox outlined in
the ISO/AGMA standards [44]. To perform comparison, the ISO VG 220 oil has been used
in the numerical simulations, as referenced in the standard for the industrial gearbox.
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Numerical results, such as the corresponding number of teeth on planet, central and
ring gear, module as well as the profile shift coefficients obtained from the numerical
simulation using the proposed MHPSODE and NSGA-II algorithms have been shown
in Table 2, where the values for the reference industrial gearbox are also presented for
comparison. Due to the conflicting nature of multiple objectives, the result of the MOO
problem is not a single unique solution, rather a set of solutions, e.g., a Pareto set. To
extract a single solution, which can be compared to the reference values, the ideal solution
must be determined. The ideal solution xideal represents the minimum best value for each
individual objective, regardless of compliance with the rest of objective functions. Seeing
that the ideal solution does not belong to the Pareto set, it is obtained as the approximation
of the true ideal value from the obtained objective values on Pareto frontier. Therefore,
the solutions, named compromise solution, of the considered MOO problem, presented in
Table 2 are obtained as the results on the Pareto curve cosset to the ideal solution, where
the measure for closeness is the Euclidean distance.

Table 2. The obtained values of design variables for the considered MOO problem of planetary gearbox and parameters of
the reference industrial gearbox.

Algorithm za zg zb mn[mm] xa xg xb ηH
gb V[mm3] a[mm]

Multi-objective optimization with gearbox center distance and efficiency as objectives

MHPSODE 22 44 45 6 0.25 0.251 0.25 0.9908 2× 109 150.5
NSGA-II 21 52 56 6 0.25 0.25 0.2545 0.9887 2.2× 109 221

Multi-objective optimization with gearbox center distance and bending stress

MHPSODE 22 32 102 6 0.25 0.25 0.4147 0.9735 2.99× 109 140
NSGA-II 22 37 105 6 0.25 0.25 0.274 0.9717 3.98× 109 180

Multi-objective optimization with gearbox center distance and contact stress

MHPSODE 18 22 45 10 0.5571 0.25 0.25 0.969 3× 109 138
NSGA-II 18 22 50 12 0.2848 0.25 0.494 0.965 3.86× 109 245

Multi-objective optimization with gearbox volume and efficiency as objectives

MHPSODE 17 22 45 10 0.25 0.25 0.41 0.9912 2.45× 109 199
NSGA-II 18 23 45 12 0.25 0.25 0.25 0.9689 3.1× 109 251
Industrial gearbox

- 20 37 94 9 - - - 0.97 3.21× 109 285

The Pareto optimal curve for the MOO problem obtained with the proposed MHP-
SODE and well-known NSGA-II algorithms, where the objectives are the power loss of the
planetary gear set and center distance between sun and planet gears, is depicted in Figure 3.

From the Figure 3 it is observed that efficiency of the planetary gearbox and the center
distance between sun and planet gears are conflicting objectives. The ideal solution for the
center distance and power efficiency are 91 mm and 0.995%, respectively. Therefore, the
compromise solution obtained by MHPSODE algorithm (marked with red diamond), as
the solution which belongs to the Pareto set and is closest to the ideal solution is 150.5 mm
for the center distance and 0.9908% for the gearbox efficiency.

Next, the center distance between sun and planet gears and the bending stress are
considered to be the objectives of the MOO problem. Therefore, the corresponding Pareto
curves obtained with the proposed and NSGA-II algorithms are depicted in in Figure 4.

As in the previous case, from the Figure 4 it is observed that considered objectives are
conflicting. The ideal solution is 89.92 mm for center distance and 367 N/mm2 for bending
stress. Therefore, the compromise solution for this case is center distance 140 mm and
bending stress 996.8 N/mm2, obtained from the MHPSODE algorithm.
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Figure 3. Illustration of the Pareto frontier for the objective functions: center distance and planetary
gearbox efficiency.

The obtained Pareto curves for the case when the considered objectives are the center
distance and contact stress σH are depicted in Figure 5.
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Figure 4. The obtained Pareto frontier for the center distance and bending stress σF as objectives.

Since, the considered objectives are conflicting, the ideal solution is determined where
center distance is 40 mm and σH is 615 N/mm2. Therefore, we are adopting center distance
of 138 mm and contact stress of 1070 N/mm2 as the compromise solution obtained by
MHPSODE algorithm.
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Figure 5. The obtained Pareto frontier for the center distance and contact stress σH as objectives.

Furthermore, the minimization of volume of the planetary gearbox, and therefore
its mass, is of great importance in applications where the lightweight constructions are
required, such as in aerospace industry. In this regard, the stated MOO problem has been
carried out, where the considered objectives are the volume of the gears in the gearbox and
the power loss of the planetary gearbox. Figure 6 shows the Pareto curves for this case
obtained from proposed MHPSODE and NSGA-II algorithms.
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Figure 6. The obtained Pareto frontier for the volume of the gears and planetary gearbox efficiency
as objectives.
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From the results depicted in Figure 6, it can be observed that the considered objective
functions are conflicting. Analyzing the obtained Pareto set, starting from the left to right
and moving along the Pareto set, it can be observed that with the increase in the value
of gearbox volume, leads to simultaneous decrease in the value of the planetary gearbox
efficiency, and vice versa. Therefore, the ideal solution is volume of gears 1.28× 109 mm3 and
gearbox efficiency of 0.995%. The point on the Pareto front closest to the ideal solution, a
compromise solution, is volume of gears 2.45× 109 mm3 and efficiency of 0.9912% obtained
form MHPSODE algorithm.

Analyzing the results shown in Table 2, and taking into the consideration the results
presented in Figures 3–6, it can be observed that the best solution is obtained using the
proposed MHPSODE algorithm. The best solutions in terms of the gearbox efficiency,
among outlined is obtained for the case when the gears volume and efficiency is considered.
Compared to the industrial gearbox reference, it leads to the 23.6% improvement in gearbox
volume, 30% decrease in center distance, which directly correlate with gearbox size, and
2.2% improvement in gearbox efficiency. In addition, it can be observed that the best
reduction in center distance is obtained in the case when the contact stress is considered to
be one of the objectives. Furthermore, from Figures 3–6 it can be observed that the NSGA-II
algorithm cannot obtain the complete Pareto front, which is especially true for non-convex
Pareto fronts in Figures 3 and 4. Comparing the best solutions in Table 2 obtained by
MHPSODE and NSGA-II algorithms, it can be observed the improvement of 30.4% in
center distance, 10% improvement of gearbox volume and 0.25% improvement of gearbox
efficiency for the solutions obtained by proposed MHPSODE algorithm. The availability
of the full Pareto front is of great importance for the designer, as it provides a range of
solutions from which to choose the most appropriate, and gives an insight into how the
change of one objective function affects the other one.

Furthermore, in Figure 7 the MOO problem was considered where center distance
between sun and planet gear and volume have been taken as the objectives.
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Figure 7. Linear dependency between center distance between sun and planet gear and volume of gearbox.

From the results in Figure 7, it can be concluded that between two objectives exists
linear correlation with the correlation coefficient 0.96. Therefore, we conclude that when
considering MOO of gears only one of the objectives should be considered. This can
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increase the efficiency and reduce the workload on the design process.
Furthermore, in this sub case the MOO has been performed taking into consideration

5 different ISO grade oils in the numerical simulations. The analysis has been carried out
volume and efficiency as the objective functions to determine the best performing oil for
the formulated problem. Therefore, Figure 8 shows the obtained Pareto fronts, where four
oil types have been employed e.g., ISO VG 100, ISO VG 150, ISO VG 680 and ISO VG 460.
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ISO VG 460
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ISO VG 100

Figure 8. Pareto frontier for center distance and gearbox efficiency for different ISO grade oils.

According to the results in Figure 8, it can be concluded that the ISO VG 460 oil
performed better than other considered ISO grade oils and showed the minimum value for
both considered objective functions. Comparing the compromise solutions obtained, the
solution obtained using ISO VG 460 oil obtained 10% improvement in center distance and
1.2% improvement in power efficiency compared to the worst performing oil, e.g., ISO VG
100. The main reason for the poor performance of the other types of oil is lover viscosity,
which lead to the lower power efficiency and increase of gearbox volume. This analysis
emphasizes that the proper choice of lubricant does not only affect the power efficiency of
gears, but also has impact on the overall dimensions of the gearbox.

4.2. The Benchmark Results

In this section, the optimization performance of the proposed MHPSODE algorithm
has been evaluated and compared with well-known multi-objective evolutionary algo-
rithms, such as NSGA-II [42], MO_Ring_PSO_SCD [22], and DEMO [43] on CEC2009
benchmark problems. The considered multi-objective optimization test instances released
in CEC2009 benchmark consist of 10 unconstrained optimization problems and 3 problems
that deal with constrained optimization [45]. In the following simulations the first 10 func-
tions are taken into consideration. Furthermore, the DTLZ-I [46] test problem has also employed
for analysis.

To analyze and compare the optimization performance of multiple algorithms, in
this paper the Inverted Generational Distance (IGD) is employed as the performance
metrics [45,47]. The IGD metric can be calculated based on the expression

IGD =
∑vi∈PA

d(vi, PA)

|P∗| , (50)
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where d(vi, PA) denotes the minimum Euclidean distance between vi and the points in
the non-dominated solution set PA obtained by the tested algorithm, and P∗ is the set of
uniformly distributed points in the solution space. To calculate IGD metrics, the 10,000
reference points have been sampled from the obtained Pareto fronts. It should be noted
that smaller values of IGD metric points to better performing algorithm.

To obtain results for the statistical analysis all the experiments are independently
run for 30 times and the standard deviation of the above-mentioned performance metrics
has been calculated. To perform the statistical analysis, and determine the statistically
significant differences between the obtained results, in this paper Wilcoxon Signed-Rank
Test and Friedman test have been performed with the significance level α = 0.05.

First, to determine the significant differences between the performance of two algo-
rithms, the Wilcoxon signed-rank test has been applied. Here, the sum of ranks for the
problem, where first algorithm outperforms the second is denoted with R+, while the sum
of ranks, where second algorithm outperforms the first one is symbolized with R−. In this
regard, for the null hypothesis of the Wilcoxon signed-rank test it is assumed that: “there is
no difference between the mean results of the two samples” [48]. Conversely, the alternative
hypothesis is that: “there is a difference in the mean results of the two samples” [48]. The p
value has been employed and compared to the significance level in the statistical analysis to
test the hypothesis. Therefore, the null hypothesis can be rejected when p ≤ α. According
to the obtained results of the statistical analysis one of the following three signs (+,−,≈)
have been given to the comparison of the algorithms. In this regard, the sign (+) denotes
that the first algorithm significantly outperforms the second algorithm, (−) sign means
that the first algorithm performed significantly worse than the first one, and (≈) denotes
that the two algorithms taken for consideration have comparable performance.

Secondly, the Friedman test [48] has been performed to determine the significant
differences in performance between all considered algorithms, which is achieved by com-
paring the ranks of all algorithms. In this way, the algorithm with a minimum rank value
is denoted as the best performing algorithm, while the one with the highest rank is con-
sidered to be the worst performing algorithm. For the null hypothesis of the Friedman
test it is assumed that: “there is no difference among the performance of all algorithms”,
while the alternative hypothesis is “there is a difference among the performance of all
algorithms” [48].

The results of numerical simulation computed over 30 independent runs over ten
multi-objective test functions of the CEC2009 benchmark and DTLZ-I test problems are
presented in Table 3 in the form of mean and standard deviation values of IGD metrics.
Here, the best results obtained are marked in bold and second best are underlined.

Table 3. The mean and standard deviation values of IDG metrics for different considered optimization algorithms.

Test Instances DEMO NSGA-II MO_Ring_PSO_SCD MHPSODE
mean ± std

MMF1 4.86× 10−2 ± 6.48× 10−2 8.75× 10−2 ± 1.42× 10−1 6.43× 10−2 ± 6.58× 10−2 3.35 × 10−2 ± 3.86 × 10−2

MMF2 1.89× 10−1 ± 9.18× 10−2 1.85× 10−1 ± 7.75× 10−2 1.59 × 10−2 ± 5.32 × 10−3 1.94× 10−1 ± 7.17× 10−2

MMF3 9.01× 10−1 ± 2.98× 10−1 2.46× 10−1 ± 8.67× 10−2 1.69× 10−1 ± 1.40× 10−1 1.42 × 10−1 ± 1.68 × 10−1

MMF4 2.48× 10−1 ± 1.11× 10−1 7.37 × 10−2 ± 3.07 × 10−2 1.22× 10−1 ± 6.79× 10−2 9.25× 10−2 ± 3.28× 10−2

MMF5 9.64 × 10−3 ± 1.56 × 10−2 2.30× 10−2 ± 3.01× 10−2 6.13× 10−2 ± 1.33× 10−1 1.81× 10−2 ± 5.46× 10−2

MMF6 4.62× 10−2 ± 8.10× 10−2 4.92× 10−2 ± 6.94× 10−2 4.43× 10−2 ± 8.14× 10−2 4.36 × 10−2 ± 3.83 × 10−2

MMF7 1.23× 10−2 ± 4.06× 10−3 3.96× 10−2 ± 5.86× 10−2 6.51× 10−2 ± 7.11× 10−2 1.12 × 10−2 ± 3.60 × 10−3

MMF8 2.40× 10−1 ± 1.66× 10−1 1.45× 10−1 ± 1.00× 10−1 8.58 × 10−2 ± 9.26 × 10−2 9.22× 10−2 ± 8.35× 10−2

MMF9 2.06× 10−1 ± 2.11× 10−1 1.25× 10−1 ± 9.39× 10−2 7.44× 10−2 ± 4.93× 10−2 5.99 × 10−2 ± 4.03 × 10−2

MMF10 4.57× 10−1 ± 3.37× 10−1 2.50× 10−1 ± 1.21× 10−1 1.21× 10−1 ± 1.34× 10−1 8.41 × 10−2 ± 9.24 × 10−2

DTLZ-I 1.69× 100 ± 1.97× 100 2.56× 101 ± 1.86× 101 3.31× 101 ± 7.71× 101 1.46 × 100 ± 1.80 × 100
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Based on the results in Table 2, it can be concluded that the proposed MHPSODE
algorithm performed the best on functions f1, f3, f6, f7, f9 and f10, while it performed the
second best on f4, f5 and f8. It can be observed that only on f2 the proposed algorithm did
not perform satisfactorily, where MO_Ring_PSO_SCD is the best performing algorithm
while NSGA-II is the second best. Furthermore, it can be observed that MHPSODE achieved
the best performance on DTLZ-I test problem.

To perform the statistical pair-wise comparison of the optimization performance of
the proposed MHPSODE and other considered algorithms, the obtained results have
been analyzed using Wilcoxon signed-rank test. In this regard, in Table 4 the statistical
results of applying Wilcoxon’s signed-rank test on CEC2009 benchmark problems have
been presented.

Table 4. The statistical results of the Wilcoxon’s test between HPSODE and other considered algo-
rithms on CEC2009 benchmark.

Algorithms R+ R− p-Value Dec.

MHPSODE vs. DEMO 30,818 14,333 0.00 +
MHPSODE vs.

MO_Ring_PSO_SCD 24,799 20,352 0.1345 ≈

MHPSODE vs. NSGA-II 27,930 17,221 0.000 +

From the results in Table 4, it can be concluded that the proposed MHPSODE algo-
rithm has significantly better performance than DEMO and NSGA-II algorithms. However,
in comparison with the MO_Ring_PSO_SCD algorithm it is observed that proposed algo-
rithm achieves similar performance, while in this case MHPSODE algorithm still provides
higher R+ values than R− in all considered cases.

Furthermore, the numerical experiments have been carried out to study the effective-
ness of hybridization proposed in this paper by comparing the overall performance of all
considered algorithms. In this regard, the average ranks according to Friedman for the
considered algorithms for different objective functions of CEC2009 benchmark problems
have been presented in Table 5.

Table 5. Average ranks computed using the Friedman statistical test for all algorithms across all problems using CEC2009
benchmark, with the significance level α = 0.05.

Algorithm MMF1 MMF2 MMF3 MMF4 MMF5 MMF6 MMF7 MMF8 MMF9 MMF10 Mean ranking Rank

MHPSODE 2.93 1.43 1.66 2.13 2.5 1.8 3.4 1.96 2.00 1.73 2.16 1
MO_Ring_PSO_SCD 2.76 1.56 2.00 2.47 3.13 2.63 3.26 2.00 2.3 1.87 2.4 2

DEMO 2.5 3.5 2.6 1.53 2.73 2.6 2.13 2.63 3.03 2.97 2.62 3
NSGA-II 1.8 3.5 3.73 3.86 1.63 2.97 1.2 3.4 2.66 3.43 2.82 4

Friedman p value 0 0 0 0 0 0 0 0 0 0

In this table, the rank of the best performing algorithm is denoted in bold, and the
second best is underlined. From the results in Table 5, it can be observed that the p values
computed using the Friedman test for different objective functions are less than signifi-
cance α = 0.05. This means that there is significant difference between the performance of
different considered algorithms, which agrees with the conclusions drawn from statistical
comparison using Wilcoxon’s test. Therefore, the obtained results of the statistical compari-
son demonstrate the effectiveness of the hybrid algorithm proposed in this paper.

Finally, the average computation times of the considered algorithms in searching for
the global optimum of the MOO problem have been determined on the computer with 1.6 GHz
CPU and 8 GB of RAM. Therefore, the comparison between the average computation
times of the MHPSODE, MO_Ring_PSO_SCD, DEMO and NSGA-II algorithms in solving
considered CEC2009 benchmark problems are shown in Table 6.
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Table 6. Average computation times of the considered algorithms on CEC2009 benchmark functions.

Algorithm MMF1 MMF2 MMF3 MMF4 MMF5 MMF6 MMF7 MMF8 MMF9 MMF10 Total avg. Time

MHPSODE 1.79× 102 2.08× 102 7.72× 101 1.50× 101 1.04× 101 1.77× 101 1.65× 102 2.39× 101 8.83× 101 1.10× 101 7.96× 101

NSGA-II 3.47× 101 2.16× 101 3.01× 101 1.87× 101 5.59× 101 4.33× 101 3.86× 101 1.90× 101 1.86× 101 1.90× 101 2.99× 101

DEMO 2.94× 100 2.89× 100 3.21× 100 2.79× 100 4.13× 100 3.34× 100 3.26× 100 5.79× 100 3.21× 100 3.75× 100 3.53× 100

MO_Ring_PSO_SCD 2.25× 102 1.86× 102 1.61× 102 1.39× 102 2.50× 102 2.60× 102 2.38× 102 1.88× 102 1.93× 102 1.76× 102 2.02× 102

From the results presented in Table 6, it can be observed that the DEMO algorithm has
the fastest implementation among the considered algorithms, while the MO_Ring_PSO_SCD
algorithm has the worst implementation. The NSGA-II algorithm has consistent average ex-
ecution times among all considered MOO functions, while the execution time of proposed
MHPSODE algorithm depends on the complexity of the problem which is solved. Since
the considered planetary gearbox optimization problem is not a real-time task, and based
on the conclusions drawn from the analysis of the performance of the algorithms on MOO
problems, the higher execution time of the proposed MHPSODE provides a compromise
between the required design parameters of planetary gearbox and average computation time.

5. Conclusions

In this paper, the multi-objective optimization of the planetary gear train has been
considered with multiple objective functions, such as center distance, volume of the gears,
gearbox efficiency, bending stress etc. The theoretical formulation and numerical procedure
for the calculation of the planetary gearbox power efficiency has been formulated as an
important objective in the considered problem. To solve this complex MOO problem in
this paper the hybrid algorithm, named MHPSODE, as the hybridization between DE
and PSO algorithms has been proposed. The hybridization has been performed by intro-
ducing mutation operators from DE algorithm into the velocity update equation of the
PSO algorithm, where the appropriate mutation operator is applied based on an adaptive
normalized population spacing parameter.

Using the proposed algorithm, the non-convex Pareto frontier has been obtained,
which represents the relationship between conflicting objectives. The Pareto front ob-
tained in analysis is convenient for the designer to select the appropriate parameters of
the construction. The results were validated and compared with the parameters of the
reference industrial gearbox, which showed the maximum 30% reduction in center distance,
23.6% improvement in gearbox volume and 2.2% improvement in efficiency. In addition,
to determine the best performing oil for the formulated problem the analysis has been
performed with multiple ISO grade oils, which concluded that ISO VG 460 achieves the
best trade-off between efficiency and gearbox dimensions. Furthermore, to evaluate the
optimization performance of the proposed MHPSODE algorithm the performance has been
compared on the CEC 2009 benchmark problems. Compared to the well-known algorithms,
the proposed method obtained the better convergence and more accurate Pareto front on
the considered optimization problems. Therefore, the proposed hybrid algorithm applied
on the considered MOO problem of planetary gearbox optimization can provide the design
parameters which lead to improved efficiency, reduction in the total weight and enhanced
service life of the planetary gearbox.
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Education and Science under Grant TR35029.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Appl. Sci. 2021, 11, 1107 24 of 26

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

KA Application factor [-]
aag Center distance between sun and planet gears [mm]
Yε Contact ratio factor [-]
Zε Contact ratio factor [-]
Kv Dynamic factor[-]
ηo Dynamic viscosity of oil [N · s/m2]

ZE Elasticity factor [
√

N/mm2]
KFα Face load factor [-]
F Feasible domain of the optimization problem
b Gear width [mm]
β Helix angle [◦]
ZN Life factor for contact stress [-]
ZL Lubricant factor [-]
mn Module [mm]
E Modulus of elasticity of gears [kN/mm2]
αn Normal pressure angle [◦]
nw Number of planet gears [-]
zg Number of teeth of planet gear [-]
zb Number of teeth of ring gear [-]
za Number of teeth of sun gear [-]
da(g) Outside diameter of planet gear [mm]
da(b) Outside diameter of ring gear [mm]
da(a) Outside diameter of sun gear [mm]
ds Outside bearing diameter [mm]
D Outside diameter of ring gear [mm]
ηH

gb Planetary gearbox efficiency [-]
xg Profile shift coefficient of planet gear [-]
xb Profile shift coefficient of ring gear [-]
xa Profile shift coefficient of sun gear [-]
d(a) Pitch circle of sun gear [mm]
d(g) Pitch circle of planet gear [mm]
YRelT Relative surface factor [-]
ZR Roughness factor affecting surface durability [-]
YST Stress concentration factor [-]
KHα Transverse load factor [-]
αt Transverse pressure angle [◦]
αc Viscosity-pressure coefficient [mm2/N]
V Volume of gears [mm3]
ZH Zone factor [-]

Appendix A

The values and procedures for calculation of different factors used in the calculation
of the contact and bending stress of the planetary gearbox are outlined in this section.
The contact ratio factors Yε and Zε as well as zone factor ZH are determined according to
the expressions in [49,50]. The factors YFa and YSaare calculated according to the DIN3990
standard method C [49]. The values of application factor and elasticity factor are taken
as KA = 1.2 and ZE = 189.9

√
N/mm2, respectively. Dynamic factor Kv, and face and

transverse load factors KFα KHα are calculated according to method B and method C
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of ISO standard, respectively [50]. Furthermore, the relative surface factor YRelT , stress
concentration factor YST , life factor for contact stress ZN , lubricant factor ZL and roughness
factor affecting surfaces ZR are determined according to [49,50].
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