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Abstract— This paper presents a comparison of a differential 
evolution (DE) algorithm and a modified discrete particle 
swarm optimization (MDPSO) algorithm for generating 
optimal preventive maintenance schedules for economical and 
reliable operation of a power system, while satisfying system 
load demand and crew constraints. The DE, an evolutionary 
technique and an optimization algorithm utilizes the 
differential information to guide its further search, and can 
handle mixed integer discrete continuous optimization 
problems. Discrete particle swarm optimization (DPSO) is 
known to effectively solve large scale multi-objective 
optimization problems and has been widely applied in power 
systems. Both the DE and MDPSO are applied to solve a multi-
objective generator maintenance scheduling (GMS) 
optimization problem. The two algorithms generate feasible 
and optimal solutions and overcome the limitations of the 
conventional methods including extensive computational effort, 
which increases exponentially as the size of the problem 
increases. The proposed methods are tested, validated and 
compared on the Nigerian power system.  

I. NOMENCLATURE 

tAM  Available manpower at period t  
c1 & c2 Cognitive and social acceleration constants 

respectively 
d Particle’s dimension 

id        Duration of maintenance for unit i  
DPSO Discrete particle swarm optimization 

ie         Earliest period for maintenance of unit i  to begin 
ES Evolutionary strategy 
F Scaling factor for mutation 
GA Genetic algorithm 
GMS Generator maintenance scheduling 
i        Index of generating units 
k Discrete time step 
I        Set of generating unit indices 
il          Latest period for maintenance of unit i  to end 

tL         Anticipated load demand for period t  
MDPSO Modified discrete particle swarm optimization 

itM       Manpower needed by unit i  at period t  
N       Total number of generating units 
Pibd i-th Particle best position for dimension d 
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Pgd Swarm’s best position for dimension d 
Pgn n-th dimension coordinate of the global best 

position (Pg) 
itP       Generating capacity of unit i  in period t  

PSO Particle swarm optimization 
rand1 & rand2 Random numbers with uniform 

distribution in the range of [0, 1] 
randn() Gaussian distributed random number with a zero 

mean and a variance of 1 
t         Index of period 
T         Set of indices of periods in planning horizon 
|V1|, |V2| & |V3| Amount of violations of maintenance 

window, crew and load constraints 
Vid i-th Particle velocity in dimension d 
w Inertia weight constant  

1ω , 2ω  & 3ω  Weighting coefficients of maintenance 
window, crew and load constraints respectively 

II. INTRODUCTION 

TILITIES perform maintenance of systems and 
equipment in order to supply electricity with a high 

reliability level. The reliability of system operation and 
production cost in an electric power system is affected by 
the maintenance outage of generating facilities. Optimized 
maintenance schedules could safe millions of Dollars and 
potentially defer some capital expenditure for new plants in 
times of tightening reserve margins, and allow critical 
maintenance work to be performed which might not 
otherwise be done. Therefore, maintenance scheduling for 
electric utilities system is a significant part of the overall 
operations scheduling problem.   

In modern power systems, the demand for electricity has 
greatly increased with related expansions in system size, 
which has resulted in higher number of generators and lower 
reserve margins making the generator maintenance 
scheduling (GMS) problem more complicated. The primary 
goal of the GMS is the effective allocation of generating 
units for maintenance while maintaining high system 
reliability, reducing production cost, prolonging generator 
life time subject to some unit and system constraints [1]-[2]. 

Basically, different optimization techniques applied so far 
to solving GMS can be classified according to the type of the 
search space and/or the objective function [1]-[12]. Thus, 
much earlier work relied on methods such as branch and 
bound technique [3], dynamic programming [4] and integer 
programming [5] with their performances demonstrated with 
respect to simple case studies.  Depending on the problem 
formulation, the objective function could be minimization of 
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the unit maintenance costs or some predefined reliability 
risks subject to some constraints resulting in nonlinear 
optimization as proposed in [7]-[10]. Solving such nonlinear 
optimization problems for most cases may not be feasible 
because their numerical solutions require extensive 
computational efforts, which increase exponentially with the 
problem complexities. Even though deterministic 
optimization problems are formulated with known 
parameters, real world problems almost invariably include 
some unknown parameters. 
In order to obtain approximate solution of a complex GMS, 
new concepts have emerged in recent years [10]-[13]. They 
include applications of probabilistic approach [10], 
simulated annealing [11], decomposition technique [12] and 
genetic algorithm (GA) [13]. A flexible GMS that 
considered uncertainties is proposed with a fuzzy 0-1 integer 
programming technique adopted and applied to Taiwan 
power system [13].   The application of GA to GMS 
presented in [13] have been compared with, and confirmed 
to be superior to other conventional algorithms such as 
heuristic approaches and branch-and-bound (B&B) in the 
quality of solutions. 

Statistical evaluations and comparison between discrete 
particle swarm optimization (DPSO) algorithm and the 
improved modified discrete particle swarm optimization 
(MDPSO) algorithm using wide range of PSO parameters 
are presented in [14]-[15].   

This paper presents a comparison of differential evolution 
(DE) optimization algorithm and modified discrete particle 
swarm optimization (MDPSO) algorithm. The two 
algorithms appear to ally qualities of established 
computational intelligence techniques with a more striking 
computational performance, thus suggesting the possibility 
of having the potential for on line applications in the 
practical electric power industry. It also illustrates the use of 
DE and MDPSO algorithms for solving the GMS problem 
for the Nigerian power system which operates the traditional 
utility market, and where load frequently exceeds 
generation. 

III. PROBLEM FORMULATION 

Basically, there are two main categories of objective 
functions in GMS, namely, based on reliability and 
economic cost [2]. The reliability criteria of leveling reserve 
generation for the entire period of study is considered in this 
paper [16]-[17]. The problem studied here is solved by 
minimizing the sum of squares of the reserve over the entire 
operational planning period [16]-[17]. The problem has a 
number of unit and system constraints to be satisfied. The 
constraints include the following: 
• Maintenance window and sequence constraints - defines 

the starting of maintenance at the beginning of an 
interval and finishes at the end of the same interval. The 
maintenance cannot be aborted or finished earlier than 
scheduled. 

• Crew and resource constraints - for each period, number 
of people to perform maintenance schedule cannot 

exceed the available crew. It defines manpower 
availability and the limits on the resources needed for 
maintenance activity at each time period. 

• Load and spinning reserve constraints - total capacity of 
the units running at any interval should be not less than 
predicted load at that interval.  

Suppose Ti ⊂ T is the set of periods when maintenance of 
unit i may start, { }1: +−≤≤∈= iiii dlteTtT  for each i. 

Define 
 

⎪⎩
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otherwise0

                                         
periodinemaintenancstartsunitif1 ti

X it

                                                                                             (1)                      
to be the maintenance start indicator for unit i in period t. Let 
Sit be the set of start time periods k such that if the 
maintenance of unit i starts at period k that unit will be in 
maintenance at period t, { }tkdtTkS iiit ≤≤+−∈= 1: . Let 
It be the set of units which are allowed to be in maintenance 
in period t, { }it TtiI ∈= : . 

The objective function to be minimized is given by (2) 
subject to the constraints given by (3), (4) and (5). 
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subject to the maintenance window constraint 
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the crew constraint 
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and the load constraint 
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Penalty cost given by (6) is added to the objective 

function in (2) if the schedule cannot satisfy the maintenance 
window, crew and load constraints. The penalty value for 
each constraint violation is proportional to the amount by 
which the constraint is violated.  
 

VVVtPenalty 332211cos ωωω ++=                    (6)  
     

IV. DIFFERENTIAL EVOLUTION 
Differential evolution is an optimization algorithm that 

solves real-valued problems based on the principles of 
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natural evolution [18]-[19]. DE uses a population of given 
size composed of floating point encoded individuals that 
evolve over generations to reach an optimal solution.  It was 
introduced by Storn and Price in 1995 as heuristic 
optimization method which can be used to minimize 
nonlinear and non-differentiable continuous space functions 
with real-valued parameters. It has been extended to handle 
mixed integer discrete continuous optimization problem 
[20]-[22]. Design principles in DE are [20]-[21]: 
• Simple structure, ease of use and robustness. 
• Operating on floating point with high precision. 
• Effective for integer, discrete and mixed parameter 

optimization. 
• Handling non-differentiable, noisy and/or time 

dependent objective functions. 
• Effective for nonlinear constraint optimization problems 

with penalty functions, etc. 
Like the other evolutionary (EA) family, DE also relies 

on initial random population generation, which is then 
improved using selection, mutation, and crossover repeated 
through generations until the convergence criterion is met. 

Although the canonical form of differential evolution 
solves optimization problems over continuous spaces, minor 
adjustments to the code allow DE to solve mixed integer 
optimization problems [20]-[22]. This is achieved with the 
use of operator that rounds the variable to the nearest integer 
value, when the value lies between two integers. 

An initial population composed of vectors Po 
i,                           

 

i =1,2,…np, is randomly generated within the parameter 
space. The adaptive scheme used by the DE ensures that the 
mutation increments are automatically scaled to the correct 
magnitude. For reproduction, DE uses a tournament 
selection where the offspring vectors compete against one of 
their parents. The parallel version of DE maintains two 
arrays, each of which holds a population of np, D - 
dimensional, real value vectors. The primary array holds the 
current population vector, while the secondary array 
accumulates vectors that are selected for the next generation. 
In each generation, np competitions are held to determine 
the composition of the next generation. Every pair of 
randomly chosen vectors P1 and P2 defines a vector 
differential: (P1 - P2). Their weighted differential is used to 
perturb another randomly chosen vector P3 according to (7) 
given by: 
      
  

)( 213
'
3 PPFPP −∗+=           (7) 

 
F is typically (0 ≤ F ≤ 1.2) and a value of 0.7 is taken in 

this study. It controls the speed and robustness of the search; 
a lower value increases the rate of convergence but also the 
risk of being stuck at the local optimum. The crossover is a 
complimentary process for DE. It aims at reinforcing the 
prior successes by generating the offspring vectors. In every 
generation, each primary array vector Pi, is targeted for 
crossover with a vector like P3

′ to produce a trial vector Pt 
according to (8).  
 

⎩
⎨
⎧ <

=
otherwiseP

CrandifP
P

i

R
t

'
3           (8)         

  
CR is typically (0 ≤ CR ≤ 1.0) and a value of 0.9 is taken 

in this study. The newly created vector will be evaluated by 
the objective function and the corresponding value is 
compared with the target vector. The best fit vector is kept 
for the next generation as given by (9). The best parameter 
vector is evaluated for every generation in order to track the 
progress made throughout the minimization process; thus 
making the DE elitist method. 
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V. MODIFIED DISCRETE PSO 

Particle swarm optimization (PSO) is an algorithm 
inspired by the social behavior of bird flocking or fish 
schooling which is used for finding optimal regions of 
complex search spaces through the interaction of individuals 
in a population of particles [23]. The following subsections 
describe the DPSO and enhanced modified DPSO (MDPSO) 
algorithms. Statistical evaluations and comparison between 
DPSO algorithm and the improved MDPSO algorithm are 
presented in [14]-[15].  

A. Discrete PSO  

The general concepts behind optimization techniques 
initially developed for problems defined over real-valued 
vector spaces, such as PSO, can also be applied to discrete-
valued search spaces where either binary or integer variables 
have to be arranged into particles [24]-[25].  When integer 
solutions (not necessarily 0 or 1) are needed, the optimal 
solution can be determined by rounding off the real optimum 
values to the nearest integer [24]-[25]. Discrete particle 
swarm optimization has been developed specifically for 
solving discrete problems. DPSO allows discrete steps in 
velocity and thus in position. In this version of PSO, the 
velocity is limited to a certain range [- Vmax, Vmax] such that 
Vid always lies in that range. The new velocity and position 
for each particle i in dimension d is determined according to 
the velocity and position update equations given by (10) and 
(11). 

 

)))1((

))1(()1(()(
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kXPrandckVwroundkV

idgd

idibdidid
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)()1()( kVkXkX ididid +−=                      (11)                      

B. Modified DPSO  

The modified discrete particle swarm optimization is a 
combination of DPSO and an evolutionary strategy 
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enhancing the algorithm to perform optimal search under 
complex environments such as the case of the constrained 
GMS optimization problem considered in this paper. This 
version of MDPSO is a variant of the original formulation of 
the DPSO to solve discrete optimization problems. 
Supposing X = (X1, X2,…XN) is the particle chosen with a 
random number less than a predefined mutation rate (for 0 < 
mutation rate < 0.3) then the mutation result of this particle 
is given by (12). 

 
( () / 2) 1, 2, ...id gd gdX P randn P d N= + ⋅ =      (12)                                                        

  
Herein, the mutation operator is introduced into the DPSO 
algorithm. The main goal is to increase the diversity of the 
population by preventing the particles from moving too 
close to each other, thus converging prematurely to local 
optima. This in turn improves the DPSO’s search 
performance.  The flowchart for the MDPSO algorithm 
applied to GMS problem is illustrated in Fig. 1.  
 

      

  

 

 

 

 

 

 

 

 

 

Fig. 1.  Flowchart of MDPSO algorithm for GMS problem 

VI. CASE STUDIES ON NIGERIAN POWER SYSTEM 

The Nigerian power system consists of a total of 49 
functional units distributed among 7 generating stations at 
the following locations: AFAM, DELTA, EGBIN, SAPELE, 
JEBBA, KAINJI and SHIRORO. Table I summarizes the 
units’ base case ratings.  Note that all the units at AFAM and 
DELTA stations as well as 8 units at EGBIN station are gas 
turbines, whilst all units at SAPELE station and other 6 units 
at EGBIN station are steam driven. The JEBBA, KAINJI 
and SHIRORO hydro stations are all sited in Northwestern 
Nigeria. Over 25 years of operational experience and 
available historical data on hydrological conditions reveal 

that inflow variation profile at each hydro station location, 
significantly impacts the generated power output of each 
hydro plant. This inflow profile also dictates the allowed 
periods for the maintenance of the three hydro plants.   

These scenarios have been taken into consideration in 
solving this GMS problem using the DE-a, DE-b, MDPSO-a 
and MDPSO-b case studies described below. DE-a, DE-b, 
MDPSO-a and MDPSO-b represent two case studies having 
different schedules for maintenance. A detailed description 
of these case studies is presented below.  

 
TABLE I 

OUTAGE AND MANPOWER DATA FOR THE 49 UNITS  
NIGERIAN POWER SYSTEM 

S/N Plant 
number

Name of 
turbine

Type of 
turbine

Base 
case 
rating  
(MW)

Allowed 
period

Maintenance 
duration 
(Weeks)

Manpower 
required for 
each week 

1 3 EGBINST1 ST 190 5 6+5+5+4+2
2 3 EGBINST2 ST 190 5 6+5+5+4+2
3 3 EGBINST3 ST 190 5 6+5+5+4+2
4 3 EGBINST4 ST 190 5 6+5+5+4+2
5 3 EGBINST5 ST 190 5 6+5+5+4+2
6 3 EGBINST6 ST 190 5 6+5+5+4+2
7 4 EGBINGT1 GT 30 2 4+3
8 4 EGBINGT2 GT 30 2 4+3
9 4 EGBINGT3 GT 30 2 4+3
10 4 EGBINGT4 GT 30 2 4+3
11 4 EGBINGT5 GT 30 2 4+3
12 4 EGBINGT6 GT 30 2 4+3
13 4 EGBINGT7 GT 30 2 4+3
14 4 EGBINGT8 GT 30 2 4+3
15 5 SAPELST1 ST 0 4 4+3+3+2
16 5 SAPELST2 ST 0 4 4+3+3+2
17 5 SAPELST3 ST 0 4 4+3+3+2
18 5 SAPELST4 ST 0 4 4+3+3+2
19 5 SAPELST5 ST 0 4 4+3+3+2
20 5 SAPELST6 ST 85.3 4 4+3+3+2
21 6 JEBBGH1 H 88.3 4 5+4+3+2
22 6 JEBBGH2 H 88.3 4 5+4+3+2
23 6 JEBBGH3 H 88.3 4 5+4+3+2
24 6 JEBBGH4 H 88.3 4 5+4+3+2
25 6 JEBBGH5 H 88.3 4 5+4+3+2
26 6 JEBBGH6 H 88.3 4 5+4+3+2
27 7 KAING05 H 112.5 4 5+5+4+3
28 7 KAING06 H 0 4 5+5+4+3
29 7 KAING07 H 0 3 4+3+2
30 7 KAING08 H 0 3 4+3+2
31 7 KAING09 H 0 3 4+3+2
32 7 KAING10 H 76.5 3 4+3+2
33 7 KAING11 H 90 4 5+4+3+3
34 7 KAING12 H 0 4 5+4+3+3
35 8 SHIRGH1 H 140 2 4+3
36 8 SHIRGH2 H 140 2 4+3
37 8 SHIRGH3 H 140 2 4+3
38 8 SHIRGH4 H 0 2 4+3
39 1 AFAMGT19 GT 138 5 5+5+4+3+3
40 1 AFAMGT20 GT 138 5 5+5+4+3+3
41 2 DELTAG03 GT 19.6 2 4+3
42 2 DELTAG04 GT 19.6 2 4+3
43 2 DELTAG06 GT 19.6 2 4+3
44 2 DELTAG07 GT 19.6 2 4+3
45 2 DELTAG08 GT 0 4 4+4+3+3
46 2 DELTAG15 GT 85 4 4+4+3+3
47 2 DELTAG16 GT 85 4 4+4+3+3
48 2 DELTAG17 GT 85 4 4+4+3+3
49 2 DELTAG18 GT 85 4 4+4+3+3
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GT- Gas turbine, ST- Steam turbine, H- Hydro. 

A. Case I: DE-a and MDPSO-a 
 

Table I present the data for the Nigerian power system 
used to investigate the performance of the proposed DE and 
MDPSO algorithms. All the hydrothermal units feeding the 
Nigerian national grid are to be scheduled for maintenance 
over a planning horizon of 52 weeks. The table shows the 
allowed periods for which planned preventive maintenance 
of generating units should be carried out. In this case study, 
GTs and steam turbines are to be shut down for maintenance 
only when the hydro plants are operating at their maximum 
generation.  This corresponds to the months of January to 
April and November to December each year. The hydro 
plants can then be scheduled for maintenance during low 
inflow period corresponding to the months of May to 
October of each year. Within these months no thermal plant 
is allowed to be shut down for maintenance. The 

Start

End

Initialize a population 
of particles

Evaluate the objective
function given in (1)

Update pbest and
gbest

Update velocity and 
position of each particle

Is
rand < mutation rate ?

Perform mutation 
using (12)
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termination condition 
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maintenance duration of each unit and crew required weekly 
for each unit are shown in Table 2.  A maximum power 
demand of 3625MW plus 5% load increase is considered 
during the hot season of March to July every year.  

B. Case II: DE-b and MDPSO-b 
 

In this case study, the advantage and cost benefits of 
appropriate combination of thermal and hydro plants for 
maintenance within the period of low water level from May 
to October is investigated. Five thermal plants, namely 
AFAMG 19, AFAMG 20, EGBINST 1, EGBINST 2 and 
SAPELEST 6 are scheduled for maintenance along with the 
hydro plants within the period of low water level. The 
remaining thermal plants are maintained in the months of 
January to April and November to December each year. 
There is 5% load variation between the months of March 
and July. Though the proposed maintenance scenario in DE-
b and MDPSO-b deviates from the current practice of the 
Nigerian power utility, wherein the thermal plants are 
expected to be operated at optimum generation during low 
inflows at all the hydro stations, the results of this 
comparison are noteworthy for good energy management 
and planning. 

C. Results 
 

Table II shows yearly summary of the load availability 
(with and without maintenance), load demand and the cost in 
Nigerian Naira to purchase energy from Independent Power 
Producers (IPPs) or possibly the West African Power Pool 
(WAPP) to supply loads that would have been suppressed as 
a result of maintenance activities. As seen from the Table II, 
the annual base case generation for Nigeria cannot meet the 
yearly load demand due to inadequate generation from some 
generating units. Some of these units’ contributions to the 
national grid are marginally low and are represented by a 
zero generation output. This means that there will be 
persistent load shedding to be carried out by the utility 
throughout the year.  

 
TABLE II 

ANNUAL LOAD AVAILABILITY, DEMAND AND COST 
OF PURCHASING ENERGY 

Annual 
generation - 

without 
maintenance

Annual 
generation - 

with 
maintenance 

Annual load 
demand      

Annual 
suppressed 

load - without 
maintenance

Annual 
suppressed 
load - with 

maintenance

Increase in 
suppressed 
load due to 

maintenance 

Mega Watt 
hour (MWh) 29,601,936.00 27,348,720.00 31,990,896.00 2,388,960.00 4,647,168.00 94.52%

191,945,376.00 14,333,760.00 27,883,056.00 13,549,296.00

Mega Watt 
hour (MWh) 29,601,936.00 27,347,930.40 31,990,896.00 2,388,960.00 4,643,182.66 94.36%

191,945,376.00 14,333,760.00 27,859,095.96 13,525,335.96

Mega Watt 
hour (MWh) 29,601,936.00 27,350,064.00 31,990,896.00 2,388,960.00 4,646,664.00 94.50%

191,945,376.00 14,333,760.00 27,879,992.00 13,546,232.00

Mega Watt 
hour (MWh) 29,601,936.00 27,348,720.00 31,990,896.00 2,388,960.00 4,642,465.67 94.33%

191,945,376.00 14,333,760.00 27,854,794.02 13,521,034.02

Case MDPSO-b

Cost of purchasing energy (X 1000 
Naira/year)

Case DE-b

Cost of purchasing energy (X 1000 
Naira/year)

Case DE-a

Case MDPSO-a

Cost of purchasing energy (X 1000 
Naira/year)

Cost of purchasing energy (X 1000 
Naira/year)

 
Cost of energy in Nigeria: 6 Naira/kWh and 118 Naira is equivalent to 1 US Dollar 

The effect of scheduling thermal units for maintenance 
along with the hydro units within the months of May to 
October is seen in Table II. The MDPSO-a produce result 
that shows not only a slightly better annual generation as 
seen in Fig. 3, but also an improved energy management as 
there is 0.16% decline in suppressed load during 
maintenance due to 0.16% increase in annual generation, 
and an equivalent reduction in the cost of energy to be 
purchased when compared to the results obtained by DE-a. 
For the MDPSO-b, there is 0.17% decline in suppressed load 
during maintenance due to 0.17% increase in annual 
generation, and an equivalent reduction in the cost of energy 
to be purchased when compared to the results obtained by 
DE-b. Generally from Table III, the MDPSO-b shows 
improved performance over DE-b, MDPSO-a and DE-a. 
Though these percentages are small, it shows that better 
energy management is achievable with proper scheduling of 
the generating units. 

Table III shows the cost of improving the ‘reliability 
index’ (RI) for DE-a, MDPSO-a, DE-b and MDPSO-b 
without and under maintenance. The RI given by (13) 
describe the degree of performance of the algorithms that 
results in optimal maintenance schedules. The functional 
aspect of the reliability indices is that they show the 
generation adequacy and the ability of the system to supply 
the aggregate electrical energy and meet demand 
requirements of the customers at all times during 
maintenance period. It is computed by taking the minimum 
of the ratio of available generation to load demand over 
5000 trials and the entire operational period of 52 weeks. 
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TABLE III 
COST OF IMPROVING RELIABILITY 

Reliability 
index 0.89 1 0.679 0.89 1

Cost  (x1000 
Naira) 0 14,333,760.00 0 13,549,296.00 27,883,056.00

Reliability 
index 0.89 1 0.76 0.89 1

Cost  (x1000 
Naira) 0 14,333,760.00 0 13,525,335.96 27,859,095.96

Reliability 
index 0.89 1 0.72 0.89 1

Cost  (x1000 
Naira) 0 14,333,760.00 0 13,546,232.00 27,879,992.00

Reliability 
index 0.89 1 0.775 0.89 1

Cost  (x1000 
Naira) 0 14,333,760.00 0 13,521,034.02 27,854,794.02

Case DE-b

Case MDPSO-b

Case MDPSO-a

Without maintenance With maintenance

Case DE-a

 
 

Without maintenance for the two cases, there is 
14,333,760.00 Naira to be expended on purchase of energy 
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if RI of 1 is to be achieved. For zero cost, there is slight 
improvement in the RI for MDPSO-a compared to DE-a 
under maintenance. Similarly, the result shows MDPSO-b 
having better RI than DE-b under maintenance. The costs for 
0.89 and 1 reliability indices under maintenance is seen to be 
higher for DE-a when compared with MDPSO-a, and also 
higher for DE-b when compared with MDPSO-b. 

Figs. 2 and 3 shows the available generation for the case 
DE-a and MDPSO-a, and case DE-b and MDPSO-b  
respectively during maintenance, the maximum generation 
and a 5% varying load within the hot season of March to 
July each year. 

For case DE-a and MDPSO-a, between the months of May 
and October when the hydro plants are undergoing 
maintenance, the bulk of the generation comes in from the 
thermal plants as non of them is scheduled for maintenance 
within this period. Fig. 2 shows MDPSO-a producing 
slightly better and more even generation compared with DE-
a over the planning period under maintenance. In Fig. 3, the 
MDPSO-b similarly compared favorably over DE-b. The 
uneven generation produced by both DE-a and DE-b 
compared to MDPSO-a and MDPSO-b respectively results 
in an unpredictable energy profile, sharp and large variations 
in load shedding. MDPSO-b produce an average generation 
and standard deviation of 3130.53±75.72MW compared to 
3130.51±226.68MW generated by DE-b. MDPSO-a and 
DE-a produce average generation and standard deviation of 
3130.52±118.67MW and 3130.50±232.41 MW respectively. 
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Fig. 2. Generation plots for DE-a and MDPSO-a during maintenance 
period. 

0 5 10 15 20 25 30 35 40 45 50
2600

2800

3000

3200

3400

3600

3800

4000

Maintenance Period (Weeks)

A
va

ila
bl

e 
G

en
er

at
io

n 
(M

W
)

              DE-b
              MDPSO-b

Load Demand Max. Generation

 
Fig. 3. Generation plots for DE-b and MDPSO-b during maintenance 
period. 

 

Figs. 4 and 5 shows the corresponding crew availability 
for case DE-a and MDPSO-a, and case DE-b and MDPSO-b 
respectively during maintenance. MDPSO-a and MDPSO-b 
scheduling produce better crew distribution over the entire 
maintenance period than DE-a and DE-b respectively. 
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Fig. 4. Crew plots for DE-a and MDPSO-a during maintenance. 
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Fig. 5. Crew plots for DE-b and MDPSO-b during maintenance. 

 
Figs. 6 and 7 present the reliability indices for case DE-a 

and MDPSO-a, and case DE-b and MDPSO-b respectively 
during maintenance period, compared against the RI of 0.89 
without maintenance. The figures also show that the DE 
algorithm displays premature convergence compared to the 
MDPSO algorithm for this GMS problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Reliability index plots for DE-a and MDPSO-a. 
 
It is seen from Figs. 6 and 7 that DE-a produce 0.679 RI 

compared to 0.76 RI generated by MDPSO-a, while DE-b 
and MDPSO- b produce 0.72 RI and 0.775 RI respectively 
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after 5000 iterations of 5000 trials. The result clearly shows 
the superior performance of the MDPSO algorithm over the 
DE algorithm for this GMS problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Reliability index plots for DE-b and MDPSO-b. 
 

Figs. 8 and 9 shows the plots of costs of purchasing 
energy versus the reliability indices for case DE-a and 
MDPSO-a, and case DE-b and MDPSO-b respectively 
obtained using the data presented in Table III. It can be seen 
from Fig. 8 that at any RI, the corresponding energy cost for 
DE-a solution is higher than that produced by MDPSO-a 
solution. Similarly, at any energy cost MDPSO-a gives 
better RI than DE-a. Without maintenance, the system has 
much higher RI than the case considered with maintenance, 
and there is no need to purchase energy as a result of 
maintenance activities. The same analogy follows for the 
case DE-b and MDPSO-b shown in Fig. 9. 

Table IV shows the summary and comparison table 
between the performances of the DE and MDPSO 
algorithms. The table presents different comparison criteria 
on the basis of which the superior performance of the 
MDPSO algorithm over the DE algorithm has been 
established for this GMS problem. The MDPSO algorithm 
effectively and optimally allocates generators for 
maintenance without any unutilized maintenance week 
compared to the DE algorithm as shown in Table IV, and 
Tables A and B of the appendix.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Cost versus reliability index plots for DE-a and MDPSO-a. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Cost versus reliability index plots for DE-b and MDPSO-b. 
 

TABLE IV 
COMPARISON AND PERFORMANCE TABLE BETWEEN 

 DE AND MDPSO ALGORITHMS 

DE-a MDPSO-a DE-b MDPSO-b

Annual suppressed 
load (MWh) 2,388,960.00 2,388,960.00 2,388,960.00 2,388,960.00

Cost of purchasing 
energy (X1000 
Naira/year)

14,333,740.00 14,333,740.00 14,333,740.00 14,333,740.00

Reliability index (RI) 0.89 0.89 0.89 0.89
Annual suppressed 
load (MWh) 4,647,168.00 4,643,182.66 4,646,664.00 4,642,465.67

% increase in 
suppressed load 94.52% 94.36% 94.50% 94.33%

Cost of purchasing 
energy (X1000 
Naira/year)

27,883,056.00 27,859,095.96 27,879,992.00 27,854,794.02

Reliability index (RI) 0.679 0.76 0.72 0.775
Ave generation and 
standard dev. (MW) 3130.50±232.41 3130.52±118.67 3130.51±226.69 3130.53±75.72

Ave crew reqirement 
and standard dev. 12±9.89 12±4.82 12±8.77 11±4.00

Utilized maintenance 
weeks out of 52 weeks

45 weeks 
utilized

 52 weeks 
utilized

46 weeks  
utilized

52 weeks 
utilized

Algorithm

Without 
maintenance

Under 
maintenance

 

VII. CONCLUSION 
This paper has shown the application of differential 

evolution (DE) and modified discrete particle swarm 
optimization (MDPSO) algorithms for solving the GMS 
problem, featuring the advantages of well established 
computational intelligence techniques. The problem of 
generating optimal preventive maintenance schedule of 
generating units for economical and reliable operation of a 
power system while satisfying system load demand and crew 
constraints over one year period, has been presented in the 
Nigerian power system comprising 49-units.  

The results reflect a feasible and practical optimal solution 
that can be implemented in real time. Two cases of the 
Nigerian power system to investigate the importance and 
appropriate placement of some thermal plants for 
maintenance along with the hydro plants during low water 
level have been investigated using the DE and the MDPSO 
algorithms. Several results obtained and analyses carried out 
were presented from the standpoints of their practical 
applications.  

The proposed methods evolved an intelligent maintenance 
unit scheduling framework for the Nigerian power utility 
that achieved better utilization of available energy 
generation with improved reliability and reduction in energy 
cost. The proposed method can be flexibly modified to 
accommodate the maintenance unit requirements of 
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emerging independent power producers and future 
generation additions as well as network constraints not 
considered in this paper.  

APPENDIX 
TABLE A 

TYPICAL GENERATOR MAINTENANCE SCHEDULES OBTAINED BY DE-A  
AND MDPSO-A AFTER 5000 ITERATIONS OF 5000 TRIALS 

DE-a MDPSO-a DE-a MDPSO-a

1 11 2,14,15,17 27 33,38,44,45,48 22
2 11,12 2,6,14,15,17 28 33,37,38,39,44, 45 22

3 11,12,13,18 2,6,15,17,18 29 33,36,37,38,39, 
44,45 22,37,38

4 11,12,13,18,25 2,6,15,17,18,20 30 33,36,37,38,39, 
42,44 37,38

5 11,12,13,25 2,6,18,20 31 36,37,39,40,42 25,36
6 12,13,14,25 4,6,12,18,20 32 34,36,40,42 25,28,36
7 13,14,15,25 4,12,19,20 33 34,40,41 25,28
8 14,15,16,26 4,5,19 34 34,41 21,25,28

9 14,15,16,21,22,24,2
6,27,30 4,5,9,19 35 41 21,28,32

10 14,15,16,17,21,22,2
3,24,26,27,28,30 4,5,9,19 36 - 21,32,34

11 15,16,17,23,26,27,2
8,29,30 1,5,13 37 43,46 21,32,34

12 16,20,27,28,29 1,5,13 38 43,46 23,34,35
13 20,29 1,3,8 39 43,49 23,34,35
14 19,29 1,3,8,16 40 49 23,27
15 19 1,3,16 41 - 23,27,31
16 - 3,7,10,11,16 42 - 27,31
17 - 3,7,10,11,16 43 - 27,31
18 31 33 44 1,11 46,47,48,49
19 31 29,33 45 1,2,11 46,47,48,49
20 31 29,30,33 46 1,2,3,8,11 46,47,48,49
21 31 24,30,33 47 1,2,3,4,8,10,11 46,47,48,49
22 - 24,30 48 1,2,4,5,8,10 39,40,41
23 35 24,26 49 2,5,6,8,9,10 39,40,41,44,45
24 35,47 24,26 50 6,7,9,10 39,40,44,45
25 35,47 26 51 7,9 39,40,42,43
26 35,45,48 22,26 52 7,9 39,40,42,43

Generating units scheduled for 
maintenance

W
ee

k 
no

.

W
ee

k 
no

.Generating units scheduled for 
maintenance

 
 

TABLE B 
TYPICAL GENERATOR MAINTENANCE SCHEDULES OBTAINED BY DE-A 

 AND MDPSO-A AFTER 5000 ITERATIONS OF 5000 TRIALS 

DE-b MDPSO-b DE-b MDPSO-b

1 10 4,9,15 27 28,33,39,40,43 24,25,30
2 10,11 4,7,9,15 28 28,33,34,39, 40,49 22,24,25,30,38

3 10,11,12,17 4,7,8,15 29 28,31,32,33,34, 
39,40,49 22,25,38,40

4 10,11,12,24 4,6,8,10,11,15 30 28,31,32,33,34, 22,23,38,40
5 10,11,12,24 6,10,11,16 31 31,32,34,35,37, 49 22,23,38,40
6 11,12,13,24 1,5,16 32 29,31,35,37,49 23,40
7 12,13,14,24 1,5,12,16 33 29,36 23,40
8 13,14,15,25 1,12,16 34 29,36 31,32,37

9 13,15,20,21,23,25,2
6 1,3 35 29,36 18,31,32,37

10 13,16,20,21,22,23, 
25,26 1,3 36 - 18,28,31,37

11 16,22,23,25,26 3,13 37 38,41 18,28,31,37
12 19,22,23,26 3,13 38 38,41 18,28,37
13 19,22,23 2,3,13 39 38,44 20,36
14 18 2,13,14,17 40 44 19,20,36
15 18 2,14,17 41 - 19,20,26,36
16 - 2,14,17 42 - 19,20,26,33,36
17 - 2,14,17 43 - 19,26,33,36
18 27,45,46,47,48 34 44 9 41,44,49
19 27,45,46,47,48 21,34 45 9 41,44,45,47,49
20 27,45,46,47,48 21,27,39 46 1,6,9 45,47,49
21 27,45,46,47,48 21,27,39 47 1,2,6,8,9 45,47,49
22 45,46,47 21,27,35,39 48 2,3,6,8 45,46,47
23 30 35,39 49 3,4,5,6,7,8 46,48
24 30 29,39 50 4,5,7,8 46,48
25 30,42 24,29,30 51 5,7 42,43,46,48
26 30,40,42,43 24,25,29,30 52 5,7 42,43,48

Generating units scheduled for 
maintenance
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ee
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. Generating units scheduled for 
maintenance
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ee
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