24,425 research outputs found

    Incorporating waiting time in competitive location models: Formulations and heuristics

    Get PDF
    In this paper we propose a metaheuristic to solve a new version of the Maximum Capture Problem. In the original MCP, market capture is obtained by lower traveling distances or lower traveling time, in this new version not only the traveling time but also the waiting time will affect the market share. This problem is hard to solve using standard optimization techniques. Metaheuristics are shown to offer accurate results within acceptable computing times.Market capture, queuing, ant colony optimization

    The Incremental Cooperative Design of Preventive Healthcare Networks

    Get PDF
    This document is the Accepted Manuscript version of the following article: Soheil Davari, 'The incremental cooperative design of preventive healthcare networks', Annals of Operations Research, first published online 27 June 2017. Under embargo. Embargo end date: 27 June 2018. The final publication is available at Springer via http://dx.doi.org/10.1007/s10479-017-2569-1.In the Preventive Healthcare Network Design Problem (PHNDP), one seeks to locate facilities in a way that the uptake of services is maximised given certain constraints such as congestion considerations. We introduce the incremental and cooperative version of the problem, IC-PHNDP for short, in which facilities are added incrementally to the network (one at a time), contributing to the service levels. We first develop a general non-linear model of this problem and then present a method to make it linear. As the problem is of a combinatorial nature, an efficient Variable Neighbourhood Search (VNS) algorithm is proposed to solve it. In order to gain insight into the problem, the computational studies were performed with randomly generated instances of different settings. Results clearly show that VNS performs well in solving IC-PHNDP with errors not more than 1.54%.Peer reviewe

    Bilevel models on the competitive facility location problem

    Get PDF
    Facility location and allocation problems have been a major area of research for decades, which has led to a vast and still growing literature. Although there are many variants of these problems, there exist two common features: finding the best locations for one or more facilities and allocating demand points to these facilities. A considerable number of studies assume a monopolistic viewpoint and formulate a mathematical model to optimize an objective function of a single decision maker. In contrast, competitive facility location (CFL) problem is based on the premise that there exist competition in the market among different firms. When one of the competing firms acts as the leader and the other firm, called the follower, reacts to the decision of the leader, a sequential-entry CFL problem is obtained, which gives rise to a Stackelberg type of game between two players. A successful and widely applied framework to formulate this type of CFL problems is bilevel programming (BP). In this chapter, the literature on BP models for CFL problems is reviewed, existing works are categorized with respect to defined criteria, and information is provided for each work.WOS:000418225000002Scopus - Affiliation ID: 60105072Book Citation Index- Science - Book Citation Index- Social Sciences and HumanitiesArticle; Book ChapterOcak2017YĂ–K - 2016-1

    Determining and evaluating new store locations using remote sensing and machine learning

    Get PDF
    Decision making for store locations is crucial for retail companies as the profit depends on the location. The key point for correct store location is profit approximation, which is highly dependent on population of the corresponding region, and hence, the volume of the residential area. Thus, estimating building volumes provides insight about the revenue if a new store is about to be opened there. Remote sensing through stereo/tri-stereo satellite images provides wide area coverage as well as adequate resolution for three dimensional reconstruction for volume estimation. We reconstruct 3D map of corresponding region with the help of semiglobal matching and mask R-CNN algorithms for this purpose. Using the existing store data, we construct models for estimating the revenue based on surrounding building volumes. In order to choose the right location, the suitable utility model, which calculates store revenues, should be rigorously determined. Moreover, model parameters should be assessed as correctly as possible. Instead of using randomly generated parameters, we employ remote sensing, computer vision, and machine learning techniques, which provide a novel way for evaluating new store locations.WOS:000679318000002Scopus - Affiliation ID: 60105072Science Citation Index ExpandedScience Citation Index ExpandedQ4ArticleArticleUluslararası işbirliği ile yapılmayan - HAYIRAğustos2021YÖK - 2020-2

    City decision-making : optimization of the location and design of urban green spaces

    Full text link
    Le besoin grandissant pour une planification urbaine plus durable et pour des interventions publiques visant à l'amélioration du bien-être collectif, ont grandement contribué à un engouement pour les espaces verts. Les parcs sont reconnus pour leur impact positif en zone urbaine dense, et nous sommes intéressés par l'application des concepts théoriques du domaine de la recherche opérationnelle pour assister les décideurs publics afin d'améliorer l'accessibilité, la distribution et la conception des parcs. Étant donné le contexte, nous sommes particulièrement motivés par le concept d'équité, et étudions le comportement des usagers des parcs à l'aide d'un modèle d'interaction spatiale, tel qu'appliqué dans les problèmes d'emplacement d'installations dans un marché compétitif. Dans cette recherche, nous présentons un modèle d'emplacement d'installations à deux étapes pouvant être adapté pour assister les décideurs publics à l'échelle de la ville. Nous étudions spécifiquement l'application aux espaces verts urbains, mais soulignons que des extensions du modèle peuvent permettre d'aborder d'autres problèmes d'emplacements d'installations sujets à des enjeux d'équité. La première étape de notre problème d'optimisation a pour but d'évaluer l'allocation la plus équitable du budget de la ville aux arrondissements, basé sur une somme du budget pondérée par des facteurs d'équité. Dans la deuxième étape du modèle, nous cherchons l'emplacement et la conception optimale des parcs, et l'objectif consiste à maximiser la probabilité totale que les individus visitent les parcs. Étant donné la non-linéarité de la fonction objective, nous appliquons une méthode de linéarisation et obtenons un modèle de programmation linéaire mixte en nombres entiers, pouvant être résolu avec des solveurs standards. Nous introduisons aussi une méthode de regroupement pour réduire la taille du problème, et ainsi trouver des solutions quasi optimales dans un délai raisonnable. Le modèle est testé à l'aide de l'étude de cas de la ville de Montréal, Canada, et nous présentons une analyse comparative des résultats afin de justifier la performance de notre modèle.The recent promotion of sustainable urban planning combined with a growing need for public interventions to improve well-being and health in dense urban areas have led to an increased collective interest for green spaces. Parks have proven a wide range of benefits in urban areas, and we are interested in the application of theoretical concepts from the field of Operations Research to assist decision-makers to improve parks' accessibility, distribution and design. Given the context of public decision-making, we are particularly concerned with the concept of fairness, and are focused on an advanced assessment of users' behavior using a spatial interaction model (SIM) as in competitive facility locations' frameworks. In this research, we present a two-stage fair facility location and design (2SFFLD) model, which serves as a template model to assist public decision-makers at the city-level for the urban green spaces (UGSs) planning. We study the application of the 2SFFLD model to UGSs, but emphasize the potential extension to other applications to location problems concerned with fairness and equity. The first-stage of the optimization problem is about the optimal budget allocation based on a total fair-weighted budget formula. The second-stage seeks the optimal location and design of parks, and the objective consists of maximizing the total expected probability of individuals visiting parks. Given the non-linearity of the objective function, we apply a ``Method-based Linearization'' and obtain a mixed-integer linear program that can be solved with standard solvers. We further introduce a clustering method to reduce the size of the problem and determine a close to optimal solution within reasonable time constraints. The model is tested using the case study of the city of Montreal, Canada, and comparative results are discussed in detail to justify the performance of the model

    An Evolutionary Model for Spatial Location of Economic Facilities

    Get PDF
    Locating an economic facility, warehouse, plant, retail store, etc., is one of the most important questions that a business company faces. In this paper we consider a normative model for a certain class of relocation processes. That is, when one location structure is gradually substituted by another one. This happens in response to external factors such as appearance of competitors or change of demand. Thus, we are facing with sequential decisions and the model and algorithm corresponding to them become endogenously dynamic. An evolutionary model for location of economic facilities is presented. Its application to an empirical case, namely changing locations of alcohol distribution stores, is briefly presented

    PROMOTION OPTIMIZATION IN COMPETITIVE ENVIRONMENTS BY CONSIDERING THE CANNIBALIZATION EFFECT

    Get PDF
    This study proposes a new model to optimize sales promotion in competitive markets and examines the impact of competition on sales promotion planning and business performance in retail chains. The model can be used to determine the best promotional discount for different products with a cannibalization effect when competitors are present in the retail market and offer the same products with different discounts. An integer nonlinear programming problem is proposed to model the above issue. To solve the model, it is reformulated as a mixed-integer linear programming problem. Consequently, a MIP solver can be used to solve the model in a reasonable CPU time. Several examples are solved and a sensitivity analysis of the model parameters is performed. The results of our numerical study show interesting findings that considering different competitors is very important in promotion planning and optimization. Failure to take them into account can lead to loss of profits
    • …
    corecore