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Abstract Facility location and allocation problems have been a major area of re-
search for decades, which has led to a vast and still growing literature. Although
there are many variants of these problems, there exist two common features: finding
the best locations for one or more facilities and allocating demand points to these
facilities. A considerable number of studies assume a monopolistic viewpoint and
formulate a mathematical model to optimize an objective function of a single de-
cision maker. In contrast, competitive facility location (CFL) problem is based on
the premise that there exist competition in the market among different firms. When
one of the competing firms acts as the leader and the other firm, called the follower,
reacts to the decision of the leader, a sequential-entry CFL problem is obtained,
which gives rise to a Stackelberg type of game between two players. A successful
and widely applied framework to formulate this type of CFL problems is bilevel
programming (BP). In this chapter, the literature on BP models for CFL problems
is reviewed, existing works are categorized with respect to defined criteria, and in-
formation is provided for each work.

1 Introduction

Facility location problems (FLPs) that arise as real-life applications in both pub-
lic and private sector try to determine the optimal location for facilities such as
warehouses, plants, distribution centers, shopping malls, hospitals, and post offices.
They can have different objectives such as maximization of the profit obtained from
customers and minimization of the costs incurred by locating facilities and serving
customers. The basic FLPs are given in Daskin [14] as p-median, set covering, max-
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imal covering, fixed-charge, and hub location problems. A p-median model tries to
minimize the demand weighted total or average distance between the customers and
their nearest facility by locating p of facilities. A set covering model, on the other
hand, attempts to minimize the number of facilities to be opened necessary to cover
all demand points. In contrast to a set covering model, a maximal covering model
assumes that it may not be possible to cover all the demand points by facilities.
Hence, it locates a fixed number of facilities to cover most of the demand. All the
models mentioned so far are uncapacitated facility location models and neglect the
transportation costs between the customers and facilities as well as fixed costs of
opening facilities. In contrast to these models, fixed-charge models take into ac-
count a limited capacity for facilities and transportation costs to serve customers
using functions of distances and also fixed costs for locating new facilities. Hence,
the total cost which is comprised of fixed cost and transportation cost needs to be
minimized in order to determine the optimal number and locations of facilities, and
the allocation of demand points to the opened facilities. Unlike the other models, a
hub location model includes both the location of facilities referred to as hubs, and
the design of the network by determining the hub node that is going to be assigned
the every non-hub node.

Many factors influence the location decision for a new facility in a market, but
one of the most important factors is related to the existing facilities which belong to
competitors offering the same or similar commodities or services. When there is no
competitor in the market, the new facility will be the only supplier of the commod-
ity or the service leading to a monopoly in the market. However, if there are already
existing facilities in the market, then the new facility will have to compete for cus-
tomers with the aim of maximizing the market share or the profit (see Drezner [17]).
Even the new facilities that are a monopoly at the market entry may face competition
later when other competitors enter the market. In this chapter, we consider FLPs in
a competitive environment, namely Competitive Facility Location (CFL) problems.
These problems are spatial interaction models where a firm or franchise wishes to
locate new facilities in a market with already existing or prospective competitors. In
some problems, the firm or franchise may have existing facilities with known loca-
tions and attractiveness levels in the market, while in others the firm may be a new
entrant with no existing facility.

Several CFL models are proposed in the literature so far, see for instance the sur-
vey papers by Eiselt et al. [21], Eiselt and Laporte [22], Plastria [38], Drezner [18],
Eiselt et al. [23], and the references therein. These survey papers group the stud-
ies existing in the literature according to different model components. In fact, the
most important factors that can be used to differentiate studies on the CFL prob-
lem are twofold: existence of the follower’s reaction as well as the timing of action
and reaction of the players in the game. CFL models with static competition ignore
the reaction of a firm to the opening new facilities or redesigning existing facili-
ties by other competitors. CFL models with foresight, on the other hand, take this
reaction into account, and hence are more difficult in general compared to static
models. The timing of reaction divides the CFL problems with foresight into two
major classes, namely simultaneous-entry CFL problems and sequential-entry CFL
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models. In simultaneous-entry CFL problems, where a Nash game is involved, firms
or franchises simultaneously make their decisions on the facility locations and other
design components, if any. In contrast, there exists a precedence of decision mak-
ing among the competing firms in sequential-entry CFL problems. These problems
are generally recognized as a Stackelberg type of game between two firms (see von
Stackelberg [48]). These games consist of a new entrant firm or a firm with existing
facilities that establishes new facilities in the market, where an existing or a future
competitor is present to react to the action of the first firm. This action-reaction sit-
uation brings us to the so-called two-level or bilevel programming (BP) problems,
which constitutes the backbone of the chapter. BP problems include two indepen-
dent players, namely the leader and the follower, who act sequentially with the ob-
jective of optimizing their own objective functions. The leader selects a strategy to
optimize its objective function with the foresight or anticipation that the follower
reacts to the chosen strategy with the aim of optimizing its own objective function.
Furthermore, these objective functions are usually in conflict with each other as indi-
cated by Moore and Bard [36]. The purpose of the chapter is to provide a review on
the recent studies that include bilevel models within the context of CFL problems.

An example of a general BP problem is depicted in Fig. 1. In this example, both
the leader and the follower own existing facilities in the market with known loca-
tions and attractiveness levels, and customers are aggregated at demand points as
shown by small circles. First the leader, then the follower can install new facilities
at candidate facility sites.

Customer locations

Existing facility sites of the leader

Existing facility sites of the follower

Candidate facility sites of the leader

Candidate facility sites of the follower

Fig. 1 An example of a CFL problem in discrete space

Since papers including BP models are reviewed in this chapter, the reader may
benefit from visualizing the overall structure of a BP model. By letting u and v
denote the decision variables of the leader and the follower, respectively, we can
define a BP model as follows:
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max
u

F(u,v)

s.t. G(u,v)≤ 0
max

v
f (u,v)

s.t. g(u,v)≤ 0.

Here, G(u,v) and g(u,v) are the constraints of the leader and follower, respectively,
while F(u,v) and f (u,v) are their objective functions. Integrality restrictions may
exist on the decision variables u and v. We have to emphasize that such a BP model
is formulated from the viewpoint of the leader. It can be easily seen that the so-
called upper-level problem (ULP) of the leader incorporates the optimization of the
lower-level problem (LLP) of the follower as constraints.

All CFL models attempt to infer the market share captured by each facility. Nev-
ertheless, the captured market share can only be computed when we know the pa-
tronizing behavior of customers, i.e. the rules to allocate the customers to facilities.
In most of the CFL models, the customers choose the facilities solely based on
their proximity to the facility locations or on their preferences towards the facilities.
On the other hand, there also exist CFL models that account for the attractiveness
level, i.e. the design or the quality of facilities. The first CFL problem presented by
Hotelling [27] considers a model involving two identical ice-cream vendors along a
beach strip, namely in a linear market, where the customers are attracted to the clos-
est vendor. This kind of facility location games is then developed by Hakimi [25]
who also established the first fundamental complexity results. He further introduced
two terms into the location science terminology, namely the (r|p)-centroid problem
and the (r|Xp)-medianoid problem for the leader’s and follower’s problem, respec-
tively. The (r|Xp)-medianoid, or the medianoid problem in short, refers to the fol-
lower’s problem which tries to optimally locate r new facilities when the locations
Xp of leader’s p facilities are known. On the other hand, the (r|p)-centroid problem
solves the leader’s problem by opening p new facilities with the anticipation that the
follower will locate r facilities in return by solving the (r|Xp)-medianoid problem.
The CFL literature actually started with identical facilities, but expanded later with
models that consider unequally attractive facilities.

Hence, the CFL models can be further divided into two classes by the customer
choice rule: deterministic utility models and random utility models. In both classes,
customers visit the facilities according to a utility function which is composed of the
facility characteristics and the distance between the customers and the facility sites.
In other words, if a facility has n−1 attributes such as a1, a2, ..., an−1, then the utility
T of this facility is defined as T = T (a1,a2, ...,an), where an represents the distance
between the customer and the facility as the facility’s nth attribute. The major dis-
tinction between the deterministic and random utility models is that in deterministic
utility models customers choose the facility that provides the highest utility to them,
which implies the all-or-nothing property. In other words, a customer visits a facil-
ity with a probability of either zero or one. Drezner [17] points out that the utility
function T is usually an additive function such that T = ∑

n
i=1 βizi(ai) where βi is

the weight of the ith attribute and fi is a function of ai. If the utility function in
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a deterministic model is additive, then most of the time the notion of break-even
distance is used. This is the distance at which utilities of new and existing facilities
are equal. In such a case, customers patronize a facility if and only if the facility
is opened within the break-even distance. On the contrary, the utility function in a
random utility model varies among customers and each customer draws his/her util-
ity from a random distribution of this utility function. Hence, the probability that a
customer visits a facility varies between zero and one. Random utility models are
basically discrete choice models for short-term travel decisions. A discrete choice
model can be employed when an individual decision maker faces a finite number of
alternatives, where each alternative is characterized by a set of attributes. In case of
a CFL problem, the decision makers are the customers aggregated at demand points,
alternatives are the facilities, and attributes are various facility characteristics. The
last component that describes a discrete choice model consists of the decision rules
according to which the decision makers make a choice among the alternatives (see
Ben-Akiva and Bierlaire [4]). The most widely used random utility model in CFL
literature is the gravity-based model which was first proposed by Reilly [44] and
then employed by Huff [28, 29]. It assumes that the probability that a customer vis-
its a facility is proportional to the attractiveness level of the facility and inversely
proportional to a function of the distance between the customer and the facility. The
attractiveness level, which can also be names as the design or the quality of the fa-
cility, is composed of various facility attributes such as the size or the floor area of
the facility, the variety of the products sold, the prices offered by the facility, the
existence of a parking lot, and the proximity to public transportation.

We first provide a classification of the studies that are relevant within the scope
of this chapter, namely works that develop a BP model for the CFL problem. The
second and third columns of Table 1 categorize the studies according to leader’s
action and follower’s reaction. The main objective of any FLP is to find the optimal
location for new facilities. Thus, in every CFL study except Küçükaydın et al. [32],
both players wish to determine the optimal location (“L”) of their new facilities.
However, a relatively few number of papers also consider the design (“D”) of new
or existing facilities as a decision variable. Thus, it is possible that the ULPs and
LLPs include only the location decisions (“L”) or only the design decisions (“D”)
or both (“L+D”). In Küçükaydın et al. [32] the follower’s reaction only consists of
design decisions of the existing facilities. Furthermore, Fischer [24] determines the
optimal facility location as well as product prices offered by the facilities for both
players which can be recognized as a (“L+D”) decision.

It is possible to categorize the CFL problems (as is the case with all FLPs) with
regard to the set of candidate sites for opening facilities, which can be a discrete set,
a continuous set, or a network. Thus, the next column of Table 1 differentiates the
studies according to this criterion. Discrete CFL problems consider predetermined
facility sites as candidate locations for the new facilities, whereas in continuous
CFL problems it is possible to locate a facility anywhere in the plane. Finally, in
network-based problems, the candidate sites are the nodes and edges of the network.
All but one study existing in the table are identified as either a discrete (“Disc”) or a
continuous problem (“Cont”). The only study that involves a CFL problem defined
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on a network is due to Tóth and Kovács [49]. Thus, it is classified as a network
problem (“Netw”).

The customer choice rules that are found in the papers reviewed are as follows:
“Distance (Dist)”, “Preference (Pref)”, “Price (Price)”, “Gravity-based (Gravity)”,
and “Proportional (Prop)” in the fifth and sixth columns of Table 1. The first three of
these rules can be thought of as a deterministic customer allocation, whereas the last
two can be seen as a probabilistic allocation. The papers classified in the determin-
istic choice rule group allocate the customers either to the closest facility, or to the
most preferred facility, or to the facility offering the lowest price. In the case pref-
erence is used, each customer ranks the facilities according to a “linear” order. The
papers in this group clearly applies a deterministic utility model and preserve the
all-or-nothing property assuming that the facilities are either identical or different
in terms of their attributes. The papers employing the probabilistic customer alloca-
tion employ random utility models, where each customer splits his/her demand into
multiple facilities. All papers with probabilistic allocation utilize the gravity-based
model with the following exceptions. The paper by Drezner et al. [20] is classified
as “Proportional” since in that work customers may be attracted to multiple facilities
if they remain within the region of influence of a facility and their purchasing power
is distributed equally among all capturing facilities. Furthermore, the market share
captured by a firm from a customer is proportional to the number of its facilities
attracting that customer and inversely proportional to the total number of attracting
facilities belonging to both the firm and its competitors. Besides [20], Biesinger et
al. [12] also employ a proportional allocation rule in addition to deterministic as well
as gravity-based rules. In this work, each customer is attracted to the nearest facility
of the leader and follower at the same time and his/her demand is proportionally
split between the two facilities according to their attractiveness levels, which only
depend on the distance from the customer.

The seventh and eighth columns of Table 1 give information on the number of
facilities opened by the leader and the follower: they either open a single facility
(“S”), or multiple facilities (“M”), or do not locate any new facility (“N”) because
their decisions are only related to the redesign of existing facilities. The last col-
umn labels the reviewed papers with respect to the solution approach adopted. Two
classes of studies are identified: those that are solved by a heuristic method (“H”)
to find a good feasible solution for the leader, and those that are solved by exact
methods (“E”) to determine an optimal solution of the leader.

Most of the survey papers on CFL problem group the reviewed works according
to various components such as candidate locations, the number of facilities to be
opened, the existence of reaction, and the objective function. In this chapter, we
select two major ingredients of the CFL problems that include a BP model: leader’s
decision(s) and the allocation of customers to the facilities. In our opinion, these
two issues are important because of two reasons. First, they have a hinge on how
realistic the models are. Second, they specify the difficulty level of the developed BP
model. Therefore, we partition the papers given in Table 1 into four sections. Sect. 2
and Sect. 3 include the papers where the leader decides only on the location of
new facilities. The difference among the papers in these two sections is that Sect. 2
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Table 1 Characteristics of the reviewed papers
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contains papers with deterministic customer allocation, whereas Sect. 3 consists
of the studies with probabilistic allocation. The papers with location and design
decisions of the leader are discussed in detail in Sect. 4 and Sect. 5. These two
sections are differentiated from each other again by the type of the allocation of
customers to facilities.

2 Leader’s Decision: Location, Allocation: Deterministic

Alekseeva et al. [1] consider an (r|p)-centroid problem in the discrete space. Since
the facilities in the market are assumed to be identical, the customers visit only
the closest open facility, where ties are broken in favor of the leader. The authors
propose an iterative exact method which makes use of a single-level reformulation
including polynomial number of variables and exponentially many constraints. At
each iteration of the method, a family of the constraints representing the follower
strategies are extracted and the best strategy of the leader against this family is found
by a local search heuristic, which provides an upper bound on the objective function
value of the leader. The algorithm stops when the upper bound is equal to a lower
bound. To this end, the family of constraints is enlarged at each iteration.

Two different settings are developed in Beresnev et al. [5] for a CFL problem
in discrete space with a deterministic customer choice rule. The two settings differ
from each other in terms of the LLP. In the first setting, both players try to maximize
their profit gained from customers, whereas in the second setting fixed cost of open-
ing facilities is subtracted from the income captured by follower’s facilities which
represents the number of customers. Moreover, the facilities opened by the follower
are not allowed to be detrimental, i.e., the obtained income should exceed the sum of
the fixed costs. The leader and the follower share the same set of candidate facility
sites, but the follower cannot open its new facility at a site occupied by the leader.
Each customer shows his/her preferences towards the new facilities by considering
a linear order. Then they select the first open facility according to this order. The
author proposes an algorithm which constructs an auxiliary pseudo-Boolean func-
tion, called estimation function, whose minimum value is sought to obtain an upper
bound on the objective function value of the bilevel models.

Beresnev [6] considers a sequential game between two competing firms that
share the same set of candidate facility sites. Each customer is served by a sin-
gle open facility and is captured by a leader’s facility if it is the most desirable
one among all open facilities of the leader. However, it is assumed that the cus-
tomers who do not patronize any of the leader’s facilities can be captured by any
of the follower’s facilities as long as it is more desirable than all of the leader’s fa-
cilities. A bilevel integer linear programming model is introduced to represent the
problem. Since the presence of multiple optima in the LLP poses uncertainty, the
author introduces two rules, namely the rule of cooperative behavior and the rule
of non-cooperative behavior. When the rule of cooperative behavior is imposed,
the follower chooses the optimal solution to its problem which provides the best
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outcome for the leader. On the contrary, when the rule of non-cooperative behav-
ior is assumed, then the follower selects the optimal solution which decreases the
objective function value of the leader the most. In order to obtain approximate co-
operative and non-cooperative solutions, an algorithm that consists of two stages is
proposed. At the first stage, a solution of the leader is fixed and the optimal objective
function value of the follower is estimated. Then at the second stage, an auxiliary
problem is solved, which provides the desired feasible solution of the bilevel prob-
lem. In order to obtain these feasible solutions, an algorithm for estimating an upper
bound on the objective function value of the bilevel model at any feasible solution
is developed. The author represents the problem to find the optimal cooperative and
non-cooperative solutions as the maximization of pseudo-Boolean function which
is solved by a local search algorithm.

Beresnev [7] is concerned with the same bilevel integer linear programming
problem given by Beresnev [6]. In contrast to the study of Beresnev [6], the author
suggests a branch-and-bound (B&B) method to find the optimal non-cooperative
solution. The problem at hand is first converted into a problem of maximizing a
pseudo-Boolean function, where the number of variables coincides with the number
of candidate facility sites of the leader. Since this function is implicitly defined, first
the LLP and then the auxiliary problem should be solved to optimality. The author
adopts the same method used in [6] for estimating an upper bound. In [6], the upper
bound is generated for the case where the profits obtained from customers are the
same for all facilities. However, in this study the algorithm produces an upper bound
in the general form and provides at the same time a feasible solution which yields
a lower bound. In order to obtain a good incumbent solution at the root node of the
B&B tree, a standard local search algorithm is used which is devised in [8] dealing
with a similar problem in [5] and [6].

A centroid problem in the plane is dealt with in Bhadury et al. [9], where the
follower locates additional facilities as a reaction. Both players wish to capture most
of the demand that is represented by varying the weights at discrete points. The
customers choose the closest facility and in case of a tie, leader’s facility is preferred.
The authors present two heuristic methods to solve the medianoid problem, namely
a greedy heuristic and a minimum differentiation heuristic which turns out to be
more robust. The latter algorithm is based on an observation of Hotelling: when
the prices are fixed and equal, the facilities tend to be located at a central point in
the market under duopoly. The idea behind this is basically to locate a new facility
at an arbitrarily small distance away from an existing facility. After the medianoid
problem is solved with these two heuristics, they make use of them again to solve
the ULP. When a solution of the leader is fixed, the follower’s problem is solved.
Given this solution of the follower, the leader acts like the follower and its problem is
solved using the same two heuristic methods. This alternating procedure is repeated
until a stopping criterion is met.

Biesinger et al. [11] formulate a bilevel mixed-integer linear model for a discrete
(r|p)-centroid problem on a weighted complete bipartite graph. Only one facility
can be opened at a predetermined candidate site, where each customer is assigned
to the closest facility. If there are two closest facilities to a customer, he/she chooses
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the one which belongs to the leader. A hybrid genetic algorithm is proposed to solve
the problem. In order to evaluate a solution of the leader, three methods are con-
sidered, which leads to a multi-level evaluation scheme. The first one includes an
exact evaluation by solving the follower’s problem by means of a commercial solver.
The second method solves the LP relaxation of the follower’s problem which pro-
vides a lower bound on the objective function value of the leader. Finally, the last
method employs a greedy algorithm on the follower’s problem to get an upper bound
on the objective function value of the leader. The best result is obtained by the
second method. The proposed genetic algorithm builds up a solution archive for
identifying solutions that have been already generated. The generated solutions are
stored in a special data structure and the duplicates are converted into new solu-
tions. The algorithm is then locally improved using a tabu search procedure. The
best computational results are obtained by the algorithm using the tabu search with
a reduced neighborhood. Davydov et al. [16] are concerned with the same discrete
(r|p)-centroid problem considered in [11]. This time the problem is solved by two
heuristic methods, namely a local search with variable neighborhood search and a
stochastic tabu search method. Both procedures employ a neighborhood swap over
leader’s variables. To accelerate the local search, the neighborhood is partitioned
into three parts and the two most promising parts are searched thoroughly by find-
ing the ascent direction quickly.

An (r|p)-centroid problem in the continuous plane is addressed in Davydov et
al. [15] for identical facilities, where the customers select the closest facility. The
follower’s problem is reformulated as an integer linear programming problem that
describes a maximal covering problem introduced by Church and ReVelle [13] and
solved exactly by a B&B method. In order to solve the centroid problem, the au-
thors develop a local search heuristic based on variable neighborhood search. In
order to find the best neighboring solution according to the swap neighborhood, the
(r|Xp−1 +1)-centroid problem is considered as a subproblem in which it is assumed
that the leader has already opened p− 1 facilities and wishes to locate one more
additional facility. Moreover, it is shown that the (r|Xp−1 + 1)-centroid problem is
polynomially solvable for fixed r.

In the CFL problem analyzed in Kononov et al. [31] customers choose a facility
to visit on the basis of their preference over a facility. By assuming that the pref-
erence hi j of customer j is different for each facility site i, the authors avoid ties
between two or more facilities, which eliminates the need to consider optimistic
and pessimistic strategies. As a matter of fact, it is not the absolute preference val-
ues but their relative values or ranking, which determines the assignment of each
customer to a facility. Hence, a deterministic allocation model is developed. Both
the leader and the follower open multiple facilities among a set of candidate sites
to maximize the profit giving rise to a discrete CFL model. The problem is solved
approximately by successively generating upper bounds on the optimal value of the
leaders objective function and lower bounds on the optimal value of the followers
objective function. Mel’nikov [34] tackles essentially the same problem considered
in [31] except a customer may have the same preference for two different facility
sites. A randomized local search algorithm is proposed in the paper for the solu-
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tion of the problem. The same problem is also studied in MirHassani et al. [35]
where customers patronize the facility closest to them. In other words, instead of
the preference matrix hi j, distance matrix di j is prepared among the customer lo-
cations and candidate facility sites. As the solution approach, the authors utilize a
modified quantum binary particle swarm optimization (QBPSO) method that uses
an improvement procedure within the QBPSO. The benefit of the improvement is in-
creasing the speed of convergence and preventing the algorithm from being trapped
in local optimal solutions. The CFL problem analyzed in Panin et al. [37] differs
from the others in this group in one aspect: the allocation of customers to facilities.
Rather than taking into account the distance between the customer location and fa-
cility site or a predetermined preference parameter as is the case in [31, 34, 35],
customers choose the facility to be visited on the basis of the selling price of the
product set by the players differently for each customer. Associated with customer
j, there exists a maximal price w j that this customer is willing to pay for the product.
Hence, the firms cannot set a price larger than w j. Furthermore, there is a cost ci j
which represents the cost of serving customer j from an open facility at site i, which
constitutes a lower bound on the price. Finally, the number of facilities to be opened
by the leader and follower firms is fixed as in the well-known p-median problem
as opposed to the other aforementioned papers which treat the number of facilities
opened an endogenous variable, i.e., determined by the solution of the model.

The CFL problem analyzed in Plastria and Vanhaverbeke [39] is based on the
maximal covering model. The aim of the leader is to maximize the demand covered
by its newly opened facilities by taking into account the market entry of a competi-
tor with a single facility. The allocation of customers is modeled using the so-called
patronizing sets associated with customer j, namely customer at location j can be
served by a facility that is opened within a certain distance away from the customer.
Candidate facility sites within this region belong to the patronizing set S j of cus-
tomer j. An important assumption regarding the allocation is that if both the leader
and follower open a facility in the patronizing set of a customer, then this customer
is served from a leader’s facility. Although this is a Stackelberg game that can be
formulated as a bilevel model, the authors propose a single-level mixed-integer pro-
gramming model, which is solved using ILOG CPLEX 9.0.

In Rahmani and Yousefikhoshbakht [40] the authors consider a closed-loop sup-
ply chain network where customers not only have demand for new products, they
also want to return used products. Both players can open one of three kinds of fa-
cility at a candidate site: forward, backward, and hybrid processing facility. More-
over, multiple facilities of a given type can be established by both parties. A bilevel
mixed-integer nonlinear programming model is developed, which is then trans-
formed into bilevel mixed-integer linear model. No attempt has been made to solve
the resulting model.

Shiode et al. [46] deal with the following variant of the CFL problem. Each
firm opens a single facility in the continuous plane. Customers choose the nearest
facility to them. The feature differentiating the problem from those studied in other
papers is that customer demand is dependent on whether the facility belongs to the
leader or follower firm. Furthermore, the distance between customers and facilities
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is measured by the rectilinear or rectangular distance. It is shown that in the case
of linear market, where all customers are located on a line, the optimal location for
leader’s facility coincides with a demand point. In the case of planar market, where
customer locations are scattered in the plane, leader’s facility is optimally located
on one of the grid points that are obtained by drawing horizontal and vertical lines
through the customer locations.

Shiode et al. [47] develop a trilevel model rather than a bilevel one because there
are three competitors which try to find the best locations for their single facilities.
The demand of customers are assumed to be continuously distributed along the line
segment and each customer visits the nearest facility. In fact, it turns out that there
are infinitely many customers existing along the line segment, but the continuously
distributed demand in an interval has a finite value.

3 Leader’s Decision: Location, Allocation: Probabilistic

Ashtiani et al. [3] suggest a discrete CFL problem, where the leader wishes to de-
termine the optimal location for p new facilities to maximize its market share. The
follower, on the other hand, wants to maximize its market share by locating r new
facilities after leader’s action, but r is uncertain to the leader. It is assumed that
the follower can locate either 1,2, . . . ,r new facilities at candidate sites where each
number corresponds to a different scenario. The only information that the leader ob-
tains is the probability of occurrence for each scenario. Since Huff’s gravity-based
rule is employed, the existing and new facilities have various attractiveness levels.
However, the attractiveness level of a new facility is not considered as a decision
variable in the model; they are rather predetermined for each candidate facility site.
Since the exact number of new facilities of the follower is not known to the leader,
robust optimization is employed for the solution of the problem, where the objec-
tive function of the leader maximizes the expected value of the market share under
various scenarios and minimizes the difference between the optimal solution of a
scenario and the expected value. Although the authors claim that the leader’s prob-
lem is solved to optimality, no solution methodology is given.

Six different bilevel models in discrete space including only location decisions
are considered by Biesinger [12]. The various models are based on three customer
choice rules: binary, proportional, and partially binary. In a binary model, customers
visit only the closest facility, whereas the proportional model considers Huff’s
gravity-based rule. In partially binary case, the demand is distributed among the
closest facilities of the leader and the follower, where the attractiveness depends on
the distance between the customer and the facility. Although the attractiveness lev-
els of the facilities are taken into account for the proportional and partially binary
cases, they are set equal to one so that the utility of a facility for a customer relies
solely on the distance. Each of these customer choice rules is combined with both
essential and unessential demand which gives rise to six different bilevel models.
In case of essential demand, the entire demand of customers is satisfied, whereas
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a certain proportion of customers’ demand is fulfilled based on the distance to the
serving facility for the unessential demand case, i.e., the demand decreases with the
increased distance. The bilevel model applying the binary customer choice rule with
essential demand coincides with the model by Biesinger [11] given in Sect. 2. The
LLP is formulated as linear mixed-integer programming problem in all scenarios
which can be solved by the same three methods suggested by [11]. Again an evolu-
tionary algorithm is further improved by a complete solution archive and is turned
into a hybrid procedure by employing a tabu search variant which uses the solution
archive as the tabu list.

Biesinger et al. [10] suggest the same bilevel model using the proportional rule
with essential demand considered in Biesinger [12], where the attractiveness levels
of the facilities are equal to one. The follower’s problem is first converted into a
mixed-integer problem following a linear transformation. An evolutionary algorithm
with a complete solution archive and an embedded tabu search method to optimize
leader’s locations is employed.

Drezner and Drezner [19] propose three models which take changing market
conditions over a planning horizon into consideration. Only the second proposed
model, namely the Stackelberg equilibrium model, is discussed here. Both players
want to maximize the market share by locating a single facility in the continuous
plane. Huff’s gravity-based rule is employed to estimate the market share. However,
only the location of the facilities is sought. It is assumed that the follower opens its
single facility at some time point t1 over the planning horizon t. It is further assumed
that the buying power of customers can change in time, but the facility attractiveness
not. In order to solve the problem, the authors suggest three heuristic procedures,
namely a brute force approach, a pseudo-mathematical programming approach, and
a gradient search approach, but no computational results are reported.

Ramezanian and Ashtiani [41] deal with the version of the CFL problem in which
the leader wants to open p new facilities among predefined candidate locations by
anticipating that the follower will react by installing r new facilities. Both players
are assumed to have already existing facilities. By making use of the Huff’s gravity-
based model, the authors try to find the optimal facility locations of both parties by
an exhaustive enumeration method, where the objective function of the leader and
follower is to maximize their own market share. As a consequence, only a small
problem instance is solved consisting of 16 demand points and 5 existing facili-
ties three of which belong to the leader while the remaining two are owned by the
follower. Parameters p = r = 2 implying that two new facilities are opened by the
competitors.

Virtually the same problem described above is investigated in Sáiz et al. [45] with
p = r = 1. The distinctive feature of this paper is the solution approach, which is a
branch-and-bound algorithm. Two B&B algorithms are developed: one for the fol-
lower’s lower-level problem and one for the leader’s upper-level problem. The main
idea in this algorithm is recursive partitioning of the original problem into smaller
disjoint subproblems until the solution is found. It is guaranteed that a global op-
timum is found by successively generating new lower and upper bounds that ulti-
mately lie within a given interval.
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Tóth and Kovács [49] examine also a similar CFL problem with two differences.
First, the problem is formulated on a network where customers represent nodes and
facilities can be located along the edges of the network in contrast to the two papers
cited above that allow facilities to be opened at candidate sites. Second, operational
costs are taken into account for the single facility opened by the leader and the fol-
lower. Due to this cost component, the zero-sum property in the objective function,
which is used in the B&B algorithm in [45], is violated and hence a more diffi-
cult problem is obtained. The authors devise a B&B method to solve the leader’s
problem that includes another B&B embedded within the former. The calculation of
lower and upper bounds involve interval arithmetic and DC (Difference of Convex
functions) decomposition.

4 Leader’s Decision: Location and Design, Allocation:
Deterministic

The only study that belongs to this category is due to Fischer [24]. This study fo-
cuses on a discrete Stackelberg-type CFL problem with two competitors. The cus-
tomers are aggregated at discrete points which make up the markets and each com-
petitor supplies the same product to these markets. Both the leader and the follower
want to decide on the locations of a fixed number of new facilities and the price of
the product at each market. Since the price at a market is defined by the distance
between the facility and the market, the price of the product can differ from market
to market (i.e., discriminatory pricing). It is assumed that customers buy the product
from the competitor giving the lowest price. Two bilevel models are formulated: a
mixed-integer nonlinear bilevel model in which both players fix their locations and
prices in the end, and a linear bilevel model with binary variables where price ad-
justment is possible. A heuristic solution procedure is developed to solve the linear
bilevel model, but no computational result is given.

5 Leader’s Decision: Location and Design, Allocation:
Probabilistic

Hendrix [26] considers a problem where both the leader firm and the follower firm
want to open a single facility in the continuous plane. In addition to the location of
their facilities, the players also aim to determine the facilities’ quality level. The ob-
jective functions are represented by the respective profits of the firms, where open-
ing a facility with quality x incurs a linear cost cx. The choice of each customer
is modeled using Huff’s gravity-based rule based on the ratio of the quality to the
Euclidean distance between the location of the customer and facility site. One of
the important results is that co-location of the leader’s and follower’s facilities is not
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possible. The authors also give conditions under which one of the firms can force
the other not to enter the market due to the negative profit.

In Küçükaydın et al. [32], the authors deal with a variant of the CFL problem
where multiple facilities are opened by the leader firm among a predetermined
set of candidate sites to maximize its profit. The quality levels of these facilities
are also decision variables. The reaction of the competitor firm, which is the fol-
lower, consists of adjusting the quality of its existing facilities. Employing Huff’s
gravity-based rule, the authors develop a bilevel mixed-integer nonlinear program-
ming (MINLP) model and solve it using a global optimization method called GMIN-
αBB after converting the bilevel model into an equivalent one-level MINLP model.
This conversion is possible thanks to the concavity of the objective function of the
follower’s lower level problem in terms of the quality variables when the leader’s
decision variables are fixed.

Küçükaydın et al. [33] extend the work in [32] by adding the capability of
opening new facilities and/or closing existing one to the competitor’s reaction set.
Clearly, the new problem is a more challenging one. First, an exact solution pro-
cedure is developed that integrates complete enumeration in terms of competitors
location variables for opening new facilities and keeping/closing existing facilities
with GMIN-αBB. Since the exact method can only provide solutions for small prob-
lem instances in a reasonable CPU time, three heuristics based on tabu search are
proposed. These heuristics perform a search over the location variables of the leader
in the upper level problem. Upon fixing these variables, the follower’s lower level
problem is solved to optimality using a branch-and-bound algorithm with NLP re-
laxation because it is shown to be concave optimization problem.

In the CFL problem examined in Redondo et al. [42] the leader firm wants to
open a single facility in the continuous plane in addition to its existing facilities in
the market. The quality of the new facility is also a decision variable to be set by
the firm. The reaction of the follower firm consists of exactly the same decisions as
the leader in the sense that the location of a new facility and its quality level has to
be determined. This problem is also referred to in the literature as the (1|1)-centroid
problem. Four heuristics are developed for the solution of the problem. These are
a grid search procedure, an alternating procedure and two evolutionary algorithms.
The only difference between the problem investigated in Redondo et al. [43] from
the one in [42] is that the demand of customer j is not fixed, but varies according
to the utility the facility provides to the customer, which is computed according to
Huff’s gravity-based model. The variable demand also referred to as elastic demand
of a customer is assumed to vary between the minimum possible demand and maxi-
mum possible demand. Note that most of the literature on CFL uses the assumption
of inelastic or fixed demand. In order to solve the medianoid problem, the authors
apply an exact interval branch-and-bound method and an evolutionary algorithm
called UEGO that uses a Weiszfeld-like procedure and can find the global optimum
with a certain reliability. Then, they develop three heuristic methods to solve the
centroid problem, i.e. leader’s problem: a grid search procedure, a multi-start al-
gorithm, and a subpopulation-based evolutionary algorithm, called TLUEGO. The
same problem is then considered by Arrondo et al. [2] to improve the computational
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performance of TLUEGO. To this end, they suggest three parallelizations of the al-
gorithm, namely a distributed memory programming algorithm, a shared memory
algorithm, and a hybrid of these two algorithms.

Drezner et al. [20] introduce a BP model for a discrete CFL problem taking into
account the concept of cover. Each existing and new facility possesses a radius of
influence which defines a threshold distance to the customers, i.e. a customer visits a
facility if and only if his/her distance to that facility is less than or equal to the radius
of facility. Hence, a facility can capture only the customers who are within its sphere
of influence. Thus, the radius of each facility determines its attractiveness level. The
demand of a customer who is not covered by the sphere of influence of any facility
is considered lost. The leader and follower aim to maximize the market share under
a certain budget by expanding their own chains conceiving three strategies. The first
strategy takes into account only enlarging the sphere of influence of the existing
facilities, whereas the second one solely opens new facilities whose location and
radii need to be determined. The final strategy combines the first two strategies. The
authors define the radius of the facilities as a continuous decision variable. However,
they employ discrete design (radius) scenarios in the solution of the model and one
of a finite number of available radii is determined for each open facility. First, the
follower’s problem is solved to optimality using a B&B method. Then a tabu search
algorithm is implemented for the solution of leader’s problem which uses a greedy-
type heuristic to find a starting solution. The computational results indicate that both
the leader and follower can extend their market share by acquiring the lost demand.

Kochetov et al. [30] propose a discrete CFL bilevel problem making use of the
Huff’s gravity-based rule. Both the leader and follower want to maximize their mar-
ket share by deciding on the location and attractiveness for their new facilities under
a budget limitation. As in the study of Drezner et al. [20], a discrete design scenario
set is adopted for the attractiveness levels of the facilities. They apply a linear trans-
formation on the follower’s problem to turn it into a linear mixed-integer program-
ming problem. Then an alternating matheuristic, derived from Bhadury et al. [9], is
employed for the solution of the bilevel model which terminates when either a Nash
equilibrium is reached or an already visited solution is obtained.

6 Concluding Remarks

In this chapter, we review and categorize studies on CFL problems formulated as
BP models which are published between 2002 and 2016. We first categorize each
study according to various features of the CFL problem investigated. After collect-
ing each work in one of the four groups depending on two distinguishing factors
of CFL problems, namely the leader’s decision(s) and the allocation of customers
to facilities, we give detailed information on each work. It must be noticed that the
studies in which decisions are made not only about the locations of the facilities
but also about their design is outnumbered by the papers containing only location
decisions. Thus, future studies can give more emphasis to this issue. Another ob-
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servation is related to the fact that relocation, redesign, and/or closing of existing
facilities concurrently with opening new facilities can be studied more thoroughly
with the inclusion of additional features incorporated into the CFL problem. An-
other fruitful research direction can be the extension of bilevel models in a setting
where multiple firms acting simultaneously among themselves react to the leader.
Such a setting introduces the requirement of considering Nash games in the lower-
level problem of a bilevel programming model.
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