144 research outputs found

    Optimized Resource-Constrained Method for Project Schedule Compression

    Get PDF
    Construction projects are unique and can be executed in an accelerated manner to meet market conditions. Accordingly, contractors need to compress project durations to meet client changing needs and related contractual obligations and recover from delays experienced during project execution. This acceleration requires resource planning techniques such as resource leveling and allocation. Various optimization methods have been proposed for the resource-constrained schedule compression and resource allocation and leveling individually. However, in real-world construction projects, contractors need to consider these aspects concurrently. For this purpose, this study proposes an integrated method that allows for joint consideration of the above two aspects. The method aims to optimize project duration and costs through the resources and cost of the execution modes assigned to project activities. It accounts for project cost and resource-leveling based on costs and resources imbedded in these modes of execution. The method's objective is to minimize the project duration and cost, including direct cost, indirect cost, and delay penalty, and strike a balance between the cost of acquiring and releasing resources on the one hand and the cost of activity splitting on the other hand. The novelty of the proposed method lies in its capacity to consider resource planning and project scheduling under uncertainty simultaneously while accounting for activity splitting. The proposed method utilizes the fuzzy set theory (FSs) for modeling uncertainty associated with the duration and cost of project activities and genetic algorithm (GA) for scheduling optimization. The method has five main modules that support two different optimization methods: modeling uncertainty and defuzzification module; scheduling module; cost calculations module; sensitivity IV analysis module; and decision-support module. The two optimization methods use the genetic algorithm as an optimization engine to find a set of non-dominated solutions. One optimization method uses the elitist non-dominated sorting genetic algorithm (NSGA-II), while the other uses a dynamic weighted optimization genetic algorithm. The developed scheduling and optimization method is coded in python as a stand-alone automated computerized tool to facilitate the needed iterative rescheduling of project activities and project schedule optimization. The developed method is applied to a numerical example to demonstrate its use and to illustrate its capabilities. Since the adopted numerical example is not a resource-constrained optimization example, the proposed optimization methods are validated through a multi-layered comparative analysis that involves performance evaluation, statistical comparisons, and performance stability evaluation. The performance evaluation results demonstrated the superiority of the NSGA-II against the dynamic weighted optimization genetic algorithm in finding better solutions. Moreover, statistical comparisons, which considered solutions’ mean, and best values, revealed that both optimization methods could solve the multi-objective time-cost optimization problem. However, the solutions’ range values indicated that the NSGA-II was better in exploring the search space before converging to a global optimum; NSGA-II had a trade-off between exploration (exploring the new search space) and exploitation (using already detected points to search the optimum). Finally, the coefficient of variation test revealed that the NSGA-II performance was more stable than that of the dynamic weighted optimization genetic algorithm. It is expected that the developed method can assist contractors in preparation for efficient schedule compression, which optimizes schedule and ensures efficient utilization of their resources

    Theoretical and Computational Research in Various Scheduling Models

    Get PDF
    Nine manuscripts were published in this Special Issue on “Theoretical and Computational Research in Various Scheduling Models, 2021” of the MDPI Mathematics journal, covering a wide range of topics connected to the theory and applications of various scheduling models and their extensions/generalizations. These topics include a road network maintenance project, cost reduction of the subcontracted resources, a variant of the relocation problem, a network of activities with generally distributed durations through a Markov chain, idea on how to improve the return loading rate problem by integrating the sub-tour reversal approach with the method of the theory of constraints, an extended solution method for optimizing the bi-objective no-idle permutation flowshop scheduling problem, the burn-in (B/I) procedure, the Pareto-scheduling problem with two competing agents, and three preemptive Pareto-scheduling problems with two competing agents, among others. We hope that the book will be of interest to those working in the area of various scheduling problems and provide a bridge to facilitate the interaction between researchers and practitioners in scheduling questions. Although discrete mathematics is a common method to solve scheduling problems, the further development of this method is limited due to the lack of general principles, which poses a major challenge in this research field

    Overview of Multi-Objective Optimization Approaches in Construction Project Management

    Get PDF
    The difficulties that are met in construction projects include budget issues, contractual time constraints, complying with sustainability rating systems, meeting local building codes, and achieving the desired quality level, to name but a few. Construction researchers have proposed and construction practitioners have used optimization strategies to meet various objectives over the years. They started out by optimizing one objective at a time (e.g., minimizing construction cost) while disregarding others. Because the objectives of construction projects often conflict with each other, single-objective optimization does not offer practical solutions as optimizing one objective would often adversely affect the other objectives that are not being optimized. They then experimented with multi-objective optimization. The many multi-objective optimization approaches that they used have their own advantages and drawbacks when used in some scenarios with different sets of objectives. In this chapter, a review is presented of 16 multi-objective optimization approaches used in 55 research studies performed in the construction industry and that were published in the period 2012–2016. The discussion highlights the strengths and weaknesses of these approaches when used in different scenarios

    EA-BJ-04

    Get PDF

    Hybrid harmony search algorithm for continuous optimization problems

    Get PDF
    Harmony Search (HS) algorithm has been extensively adopted in the literature to address optimization problems in many different fields, such as industrial design, civil engineering, electrical and mechanical engineering problems. In order to ensure its search performance, HS requires extensive tuning of its four parameters control namely harmony memory size (HMS), harmony memory consideration rate (HMCR), pitch adjustment rate (PAR), and bandwidth (BW). However, tuning process is often cumbersome and is problem dependent. Furthermore, there is no one size fits all problems. Additionally, despite many useful works, HS and its variant still suffer from weak exploitation which can lead to poor convergence problem. Addressing these aforementioned issues, this thesis proposes to augment HS with adaptive tuning using Grey Wolf Optimizer (GWO). Meanwhile, to enhance its exploitation, this thesis also proposes to adopt a new variant of the opposition-based learning technique (OBL). Taken together, the proposed hybrid algorithm, called IHS-GWO, aims to address continuous optimization problems. The IHS-GWO is evaluated using two standard benchmarking sets and two real-world optimization problems. The first benchmarking set consists of 24 classical benchmark unimodal and multimodal functions whilst the second benchmark set contains 30 state-of-the-art benchmark functions from the Congress on Evolutionary Computation (CEC). The two real-world optimization problems involved the three-bar truss and spring design. Statistical analysis using Wilcoxon rank-sum and Friedman of IHS-GWO’s results with recent HS variants and other metaheuristic demonstrate superior performance

    Interpretive Structural Model of Key Performance Indicators for Sustainable Manufacturing Evaluation in Cement Industry

    Get PDF
    This paper aims to analyze the relationships among the Key Performance Indicators (KPIs) for sustainable manufacturing evaluation in the cement industry. The initial KPIs have been identified and derived from literature, and then validated by industry survey. As a result, three factors dividing into a total of thirteen indicators have been proposed as the KPIs for sustainable manufacturing evaluation in cement industry. Interpretive structural modeling (ISM) methodology is applied to develop a network structure model of the KPIs. The results show the indicators of economic factor are regarded as the basic indicator, while the indicators of environmental factor are indicated to be the leading indicator. Of those indicators, raw material substitution is regarded as the most influencing indicator. The ISM model can aid the cement companies by providing a better insight in evaluating sustainable manufacturing performance

    Interpretive Structural Model of Key Performance Indicators for Sustainable Manufacturing Evaluation in Cement Industry

    Get PDF
    This paper aims to analyze the relationships among the Key Performance Indicators (KPIs) for sustainable manufacturing evaluation in the cement industry. The initial KPIs have been identified and derived from literature, and then validated by industry survey. As a result, three factors dividing into a total of thirteen indicators have been proposed as the KPIs for sustainable manufacturing evaluation in cement industry. Interpretive structural modeling (ISM) methodology is applied to develop a network structure model of the KPIs. The results show the indicators of economic factor are regarded as the basic indicator, while the indicators of environmental factor are indicated to be the leading indicator. Of those indicators, raw material substitution is regarded as the most influencing indicator. The ISM model can aid the cement companies by providing a better insight in evaluating sustainable manufacturing performance

    Reactive scheduling to treat disruptive events in the MRCPSP

    Get PDF
    Esta tesis se centra en diseñar y desarrollar una metodología para abordar el MRCPSP con diversas funciones objetivo y diferentes tipos de interrupciones. En esta tesis se exploran el MRCPSP con dos funciones objetivo, a saber: (1) minimizar la duración del proyecto y (2) maximizar el valor presente neto del proyecto. Luego, se tiene en cuenta dos tipos diferentes de interrupciones, (a) interrupción de duración, e (b) interrupción de recurso renovable. Para resolver el MRCPSP, en esta tesis se proponen tres estrategias metaheurísticas: (1) algoritmo memético para minimizar la duración del proyecto, (2) algoritmo adaptativo de forrajeo bacteriano para maximizar el valor presente neto del proyecto y (3) algoritmo de optimización multiobjetivo de forrajeo bacteriano (MBFO) para resolver el MRCPSP con eventos de interrupción. Para juzgar el rendimiento del algoritmo memético y de forrajeo bacteriano propuestos, se ha llevado a cabo un extenso análisis basado en diseño factorial y diseño Taguchi para controlar y optimizar los parámetros del algoritmo. Además se han puesto a prueba resolviendo las instancias de los conjuntos más importantes en la literatura: PSPLIB (10,12,14,16,18,20 y 30 actividades) y MMLIB (50 y 100 actividades). También se ha demostrado la superioridad de los algoritmos metaheurísticos propuestos sobre otros enfoques heurísticos y metaheurísticos del estado del arte. A partir de los estudios experimentales se ha ajustado la MBFO, utilizando un caso de estudio.DoctoradoDoctor en Ingeniería Industria
    corecore