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1

Chapter 1

INTRODUCTION

Project scheduling has been defined as “the discipline that plans, organizes and manages
resources to successfully carry out the specific goals and objectives of a project” (Vanhoucke,
2012). This discipline is considered of great importance given the scope of strategic
planning in various areas of theoretical and practical knowledge: research and devel-
opment, construction, operations and maintenance, product development, etc. This
chapter presents the components of the problem, the objectives and scope of the re-
search and, finally, describes the contents of each chapter.

1.1 Background to the research

In the literature we find different concepts of what should be understood as a project.
According to Erik L. Demeulemeester, 2002 it is defined as “a single process, consisting
of a set of controlled and coordinated activities with start and end dates, carried out to achieve
an objective in accordance with specific requirements, including time and resource constraints”.
In Larson and Gray, 2015 it is defined as “ an effort to create a unique product, service or
result. Due to its temporary nature, it has a defined start and completion time associated with
it. Completion of a project is reached when the project objectives have been achieved or cannot be
met, or when the need for the project no longer exists”. With these two definitions in mind,
a project must meet the following criteria:

1. Start and end time.

2. Specific objectives based on time, quality and cost.

3. Time, resource and physical constraints.

4. Risk.

When defining a project, we must consider a tool that helps to integrate the exe-
cution of activities, the resources to be used, and the deadlines in which they must be
carried out. A schedule should reflect all possible scenarios for the timely delivery of
the process being developed, which is why the project scheduling phase is so important
since it provides us with an adequate schedule for its execution.



2 Chapter 1. INTRODUCTION

Project scheduling has had a remarkable development in recent years due to the
use of technological tools and techniques based on heuristic and metaheuristic opti-
mization, with the objective of modeling new practical situations and executing more
efficient algorithms. In project scheduling there are many factors that produce unfeasi-
ble schedules, among them uncertainty. According to Deblaere, Demeulemeester, and
Herroelen, 2011b, uncertainty in project scheduling can take many forms, for example:
differences between the start dates of planned and actual activities, their respective
costs, resources not available on the agreed date, identification of new activities, etc.
This type of inconvenience in project implementation can lead to an adjustment of the
initial schedule, delays, very high costs and possible cancellation of the project. Sev-
eral companies annually show their project management statistics, warning about the
high percentage of failures, high costs and non-compliance in the three key objectives
in project management (time, budget and quality).

Project managers are obliged to look for the best strategies to find optimal solu-
tions, whether or not there are uncertain situations that cause project disruptions. In
resource-constrained project scheduling, solutions are explored that minimize project
execution time, reduce costs and maintain cash flows to carry out all project activities.
The characteristics of the resource-constrained project scheduling problem, consider-
ing the uncertainty, suggest using solution techniques when there are interruptions in
the schedule

Researchers in project scheduling consider it necessary to improve modeling tech-
niques and related solutions by adjusting procedures to a more realistic environment.
Heuristic and metaheuristic procedures have become a very attractive class of methods
for researchers, linked to increased computational power. The flexibility and tunability
of these methods provide the ability to implement reactive strategies when there are
uncertainty events, with a relatively fast response time. Procedures based on heuristic
and metaheuristic methods for scheduling resource-constrained projects are detailed in
several papers, for example: Weglarz et al., 2011, Hartmann and Briskorn, 2010, Erik
L. Demeulemeester, 2002, Ratajczak-Ropel and Skakovski, 2018.

Solution methods do not usually contemplate the answer to the questions posed
by interruptions. Therefore, it is pertinent to reoptimize the baseline schedule when un-
certain events occur and thus reduce the impact of interruptions on project execution.
These strategies are found in the reactive scheduling approach.

This thesis will consider the problem of scheduling projects with limited resources
in which activities can be performed in different ways and there are uncertain events
that produce interruptions, changes in activities and in the availability of resources,
delaying the completion of the project or, in the worst case, forcing its cancellation.

The research proposal seeks to answer the question: ¿How, through various meta-
heuristic strategies and reactive scheduling, can the problem of multi-mode project
scheduling with limited resources and different types of interruptions be solved in a
way that optimizes multiple performance measures based on time, quality and cost?
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1.2 Statement of the research problem

Project scheduling problems (PSP) refer to a wide variety of problems classified by three
domains: activities, resources and various performance measures Herroelen, Demeule-
meester, and De Reyck, 1999. Activity scheduling may require the use of different types
of limited resources to meet scheduling objectives and thus obtain the three fundamen-
tal factors in managing a project (time, cost, and quality), Erik L. Demeulemeester,
2002.

Among the project scheduling problems is the multi-mode resource constrained
project scheduling problem (MRCPSP), which consists of carrying out a project, in
which the activities are subject to meet precedence, renewable resource and non-
renewable resource constraints. In addition to the above constraints, each activity can
be sequenced in different ways or modes, using different amounts of resources and
varying their duration.

The MRCPSP is denoted by m, 1T, va|cpm, δj, disc, mu,◦ |reg, according to the clas-
sification of Herroelen, Demeulemeester, and De Reyck, 1999. In order to consider reg-
ular and non-regular measurements, we will classify it by u, 1T, va|cpm, δj, disc, mu,◦ |γ
and thus, we will aim to: minimize the project duration (MRCPSP− Cmax), and max-
imize the net present value (MRCPSPDC). The value u provides the number of re-
sources; 1T provides the availability of renewable and non-renewable resources, of
which both the and the total base of the project horizon are specified; va renewable
resources are available in varying quantities; of which the time duration of each is spec-
ified and a total project horizon basis; cpm regulates the final-start precedence relation-
ships without delays as used in the basic PERT/CPM model; δj time periods imposed
on activities; disc corresponds to the resource requirements of the activities and are a
discrete function of the duration of the activity; µ activities have multiple prespecified
execution modes; ◦ there is no specification of the cash flow and γ corresponds to the
regular and non-regular objective functions.

Initially, the approach with which the MRCPSP is considered is a deterministic ap-
proach, meaning that the input parameters to define the problem will invariably pro-
duce the same results, not contemplating the existence of chance or uncertainty. This
approach is used as a starting point to provide an initial baseline schedule. However, it
is possible that at some point there may be variations in the availability of resources or
in the execution of its activities, producing delays in the delivery of the project. Accord-
ing to Deblaere, Demeulemeester, and Herroelen, 2011b, the project should be based on
a reactive procedure so that the schedule can be reviewed and adjusted to new infor-
mation and restore its viability.

Next, we will detail the deterministic model of our research on the MRCPSP under
two objective functions: minimize the project duration and maximize the net present
value. Then, we will define the reactive scheduling approach when uncertainty events
occur in the MRCPSP.
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1.2.1 MRCPSP

A project consists of a set of real activities V = {1, . . . , n} each of which is carried out
without interruption. The dummy activities 0 and n + 1 are introduced to represent the
start and end of the project, respectively. The set of renewable resources is denoted by
Rτ and will be used to denote the availability (units) of the type of renewable resource
k ∈ Rτ . Renewable resources, available period to period, are those that can be restored
at a similar or superior speed than the consumption speed. Non-renewable resources
are limited to the finished duration of the project without restrictions on any time pe-
riod. An example of non-renewable resource is the entire budget for the achievement
of a project. The set of non-renewable resource is denoted by Rη . The availability of a
non-renewable resource type ` ∈ Rη is denoted by Rη

` .

To complete the project satisfactorily, it is necessary to process (execute, sequence)
each activity in one of several modes; the set of modes for an activity i ∈ V is denoted
by Mi = {1, 2, . . . , |Mi|}, where every mode m ∈ Mi represents a different way of
finishing the i-th activity and |Mi| represents the total number of modes. A mode m ∈
Mi determines the duration di,m ≥ 0 of the activity i ∈ V, measured in number of
periods or units of time, which indicates the time necessary to complete the activity, and
whether there exists possibility of interrupting the process of that activity. For dummy
activities, d0,1 = d(n+1),1 = 0. If the execution mode of activity i ∈ V is m ∈ Mi,
rτ

i,m,k ≥ 0, where rτ
i,m,k ≤ Rτ

k and rτ
0,1,k = rτ

n+1,1,k = 0 are the units of the renewable
resource k required by activity i for its realization, while rη

i,m,` ≥ 0 are the required
units of the non-renewable resource l with rη

i,m,` ≤ Rη
` and rη

0,1,` = rη

(n+1),1,` = 0. It is
assumed that there is an end-start relationship with no lead times for the precedence
relationships and a deadline time for the project, δn for the MRCPSP maximizing the
net present value.

Minimize project duration

The mathematical formulations for the MRCPSP most widely used in the literature are
presented by Pritsker, Waiters, and Wolfe, 1969; Talbot, 1982; Valdes and Goerlich, 1993;
Mingozzi et al., 1998a. Most of the existing models for MRCPSP are adapted versions
of Talbot (1982) which introduced a notation of 0-1 programming model with a binary
decision variable ximt = 1 if the i-th activity is performed in m mode and starts at
time t, and ximt = 0 otherwise. We propose to use the following mathematical model.
Christofides, Alvarez-Valdes, and Tamarit, 1987; Neumann, Schwindt, and Zimmer-
mann, 2012 present a formulation based on the start times and resource consumption
of the activities, being a practical and simple model.
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min sn+1 (1.1)

subject to si + di,mi ≤ sj, ∀(i, j) ∈ E, (1.2)

∑
i∈A(S,µ,t)

rτ
i,mi ,k ≤ Rτ

k , k ∈ Rτ , 0 ≤ t ≤ d, (1.3)

n

∑
i=1

rη
i,mi ,`

≤ Rη
` , ` ∈ Rη , (1.4)

mi ∈ Mi, ∀i ∈ V (1.5)

si ≥ 0, ∀i ∈ V (1.6)

s0 = 0 (1.7)

In (1.3),A(S, µ, t), also called the active set, is the set of real activities which will be
sequenced in time t, µ = (mi)i∈V is the vector mode, S = (si)i∈V the vector start times
of each activity and d̄ = ∑

j∈V
max
m∈Mj

dj,m the maximum duration of the project. The objec-

tive function (1.1) minimizes the duration of the project. The constraints represented by
equation (1.2) describe the precedence relationships between activities. Equation (1.3)
ensures that the availability of renewable resources is not exceeded in each period,
while equation (1.4) ensures that non-renewable resources throughout the project. The
restrictions (1.5) and (1.6) ensure that each activity is assigned a single mode and a sin-
gle start time during the execution of the schedule. It is assumed that dummy activities
start and end are only executed in a single zero-duration mode and do not consume
resources (1.7).

A vector mode µ is a n + 2−tuple µ = (1, µ1, . . . , µn, 1) which assigns to the j-
th activity, 1 ≤ j ≤ n, a unique mode µj, 1 ≤ µj ≤ |Mj|. A mode vector µ such
that the constraints (1.4) are satisfied is called resource feasible. Otherwise, it will be
said resource non-feasible. We define the excess of non-renewable resource for a vector
mode µ by

Lη(µ) = ∑
k∈ Rη

|min{0, Rη
k −

n

∑
j=1

rη

j,µ(j),k}| (1.8)

being µ is a feasible resource vector mode if and only if Lη(µ) = 0.

Maximize net present value

A cash outflow CF−j,m is associated with the performance of activity j in mode m and

a profit margin γi. The contractor receives a cash flow amount CF+
m,j = CF−m,j (̇1 + γ)

for each activity j in mode m that has been successfully completed. To calculate the
value of net present value (Npv), the discount rate α (also called the rate of return or
the opportunity cost of capital) is selected, which represents the return that is derived
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from investing in the project, for example, in insurance. Then the discount factor β =

(1 + α)−1 denotes the present value of one dollar to be received at the end of period
1 using a discount value α. The discount factor β is then replaced by e−α. The rule is
then based on accepting the project when Npv > 0 and rejecting it when Npv < 0. The
MRCPSP with objective function Npv or simply MRCPSPDC can be formulated as a
nonlinear programming problem for which we will only consider the payment model:
payment as a function of activity completion times (PAC).

Then the model for the MRCPSPDC with PAC payment model is given by:

Maximize
n

∑
i=1

(ci,in + ci,out) · e−α fi (1.9)

subject to fi ≤ f j − dj,mj , ∀(i, j) ∈ E, (1.10)

∑
i∈A(F,M,t)

rτ
i,mi ,k ≤ Rτ

k , k ∈ Rτ , 0 ≤ t ≤ δn+1, (1.11)

n

∑
i=1

rη
i,mi ,`

≤ Rη
` , ` ∈ Rη , (1.12)

fn+1 ≤ δn+1 (1.13)

mi ∈ Mi, ∀i ∈ V (1.14)

fi ∈ int+, ∀i ∈ V (1.15)

(1.16)

In (1.11), A(F, M, t), also called the active set, is a set of real activities which will
be sequenced in time t; M = (mi)i∈V is the mode vector; and F = ( fi)i∈V is a vector of
completion times for each activity. The objective function (1.9) maximizes the project’s
NPV by discounting the cash inflow and outflow to each activity’s finish time. The con-
straints represented by equation (1.10) describe the precedence relationships between
activities; equation (1.11) ensures that the availability of renewable resources is not ex-
ceeded in each period; and equation (1.12) ensures that non-renewable resources are
available throughout the project. Restrictions in equation (1.13) ensure that the dead-
line for project delivery is met, and those in equation (1.14) ensure that each activity
is assigned only one mode. The restriction in (1.15) states that the decision variables
should be integers. It is assumed that dummy activities start and end are only exe-
cuted in a single zero-duration mode and do not consume resources.

A vector mode µ is a n + 2−tuple µ = (1, µ1, . . . , µn, 1), which assigns to the j-
th activity, 1 ≤ j ≤ n, a unique mode µj, 1 ≤ µj ≤ |Mj|. Any vector µ satisfying
the constraints in (1.12) is called resource feasible. Otherwise, it will be said resource
non-feasible.

According to (Kolisch and Drexl, 1997) the MRCPSPDC is NP-Complete as long as
at least two non-renewable resources are included, which implies that the MRCPSPDC
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Figure 1.1: Project instance
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Figure 1.2: Feasible schedule MRCPSP

is also NP-complete.

Numerical example

For illustration purposes, let us consider the instance J1037_2 from the PSPLIB li-
brary. This instance contains 10 real and two dummy activities. Each of the real
activities has three execution modes. For each mode, two renewable resources and
two non-renewable resources are available. The availability of renewable resources
is Rτ

1 = Rτ
2 = 12 and Rη

1 = 37 Rη
2 = 60 for non-renewable resources. The net-

work of activities in the nodes, and cash flow is presented in Figure 3.2. Table 3.2
shows the durations for each execution mode and the requirements for renewable
and non-renewable resources. The mode vector µ = (1, 1, 2, 3, 3, 3, 1, 3, 2, 3, 3, 1) is
resource feasible as ∑11

i=0 rη
i,mi ,1

= 37 and ∑11
i=0 rη

i,mi ,2
= 60 and Lη(µ) = 0. How-

ever, µ′ = (1, 1, 3, 3, 3, 3, 1, 3, 2, 3, 3, 1) has non-feasible resources as ∑11
i=0 rη

i,mi ,1
= 38,

∑12
i=1 rη

i,mi ,2
= 63 and Lη(µ′) = 4. Figure 3.3 depicts a schedule with a makespan of 27

time periods and net present value of 498 units.
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Act i Mode mi dmi rτ
1,i,mi

rτ
2,i,mi

rη
1,i,mi

rη
2,i,mi

0 1 0 0 0 0 0
1 1 2 5 9 4 7

2 5 5 8 2 7
3 6 5 6 1 6

2 1 1 6 5 6 8
2 8 5 4 5 5
3 8 4 5 4 6

3 1 1 4 9 9 5
2 8 3 4 6 1
3 8 1 4 2 3

4 1 1 7 3 7 8
2 2 6 3 5 8
3 2 5 3 6 5

5 1 1 7 9 4 10
2 4 7 7 2 10
3 9 6 2 1 10

6 1 1 9 5 3 6
2 1 9 4 3 7
3 5 9 3 3 6

7 1 2 9 5 9 8
2 2 9 6 7 8
3 3 9 4 4 8

8 1 1 9 9 10 6
2 5 9 8 6 6
3 9 9 8 4 5

9 1 2 7 2 4 9
2 9 7 2 4 6
3 10 3 1 3 3

10 1 3 5 10 8 10
2 6 4 10 5 7
3 7 4 9 3 7

11 1 0 0 0 0 0
Rτ

1 Rτ
2 Rη

1 Rη
1

12 12 37 60

Table 1.1: Project information
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1.2.2 Reactive scheduling

During the last few years, research efforts have concentrated on the development of
exact, heuristic and metaheuristic procedures for generating an initial schedule assum-
ing complete information in a deterministic environment. However, during execution,
projects can be subject to considerable uncertainty, which can result in numerous sched-
ule disruptions.

Reactive scheduling refers to the modification that will be made to a program dur-
ing the execution of a project (Herroelen and Leus, 2004), to update the program and
provide an immediate response to an unexpected event. Reactive scheduling is some-
times referred to as predictive-reactive scheduling (Herroelen and Leus, 2004). Under
reactive scheduling, it has two main stages (Vieira, Herrmann, and Lin, 2003): gener-
ating an initial schedule and then updating that schedule in response to the outage or
other event to minimize its impact on system performance. The initial schedule will
be subject to achieving the objective of minimizing project duration or maximizing net
present value.

There are several levels and types of disruption, according to Miller and Lessard,
2001. In the case of the levels, we have the natural case, the market, the fiscal scenario,
the industry, and the technical project. In our work, we will study only the technical
project level since the impact on the project is minimal and its probability of occurrence
is high. On the other hand, to distinguish the types of disruption associated with this
level, we will have only activity disruptions and renewable resource disruptions. The
activity interruption is due to events in which the duration of the activity is prolonged
for a not very long period of time. In the case of renewable resource interruption, it is
due to a change in the availability of the resource period by period, affecting activities
that cannot dispose of the resource. This thesis will consider the problem of scheduling
projects with limited resources in which activities can be performed in different ways
and there are uncertain events that produce interruptions, changes in activities and in
the availability of resources, delaying the completion of the project or, in the worst case,
forcing its cancellation.

Reactive programming can be based on several underlying strategies. On the one
hand, the reactive program can be based on very simple techniques aimed at a consis-
tent and rapid restoration of the program. On the other hand, the reactive scheduling
approach may involve a complete scheduling step of the part of the project that remains
to be executed at the time the reaction starts. According to Herroelen and Leus, 2004,
such an approach is called (full) reprogramming. Below are several reactive program-
ming techniques:

• schedule repair: The action requested when there is a disruption or interruption of
the project is to perform program correction as quickly as possible. Program re-
pair may include simple control rules, such as the well-known right justification
rule (Herroelen and Leus, 2004; Vonder et al., 2007a). This rule brings forward
in time all the activities that are affected by the breakdown of the schedule since
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they were being executed at the resource causing the break or due to the interrup-
tion of the timing of the activities or the precedence relationships. Vonder et al.,
2006 states that this reactive strategy can lead to poor results, since it does not
reprogram activities. However, the virtues of these strategies are the simplicity of
the techniques used and the speed of scheduling modification.

• Rescheduling: One of the most commonly used techniques in reactive scheduling
is rescheduling, since it is responsible for updating and scheduling the part of the
project that has not yet been executed, which is the part of the project that is con-
sidered to have a completion time greater than the time in which the interruption
is made. Rescheduling can use any deterministic performance measure, such as
new project makespan (in manufacturing systems, this approach is sometimes
referred to as (full) regeneration). In a sense, scheduling repair can be viewed as
a heuristic rescheduling step.

Many of the research efforts on reactive scheduling focus on stability performance
measurement (ex post) that evaluates stability after the occurrence of the distur-
bance. The goal is to obtain a new schedule that does not deviate significantly
from the original one, regardless of whether or not the initial baseline sched-
ule was optimized and whether or not the potential occurrence of disturbances
was taken into consideration through a proactive approach. Such a strategy is
called “minimal disturbance strategy”. Consequently, several stability measures
are proposed in the scheduling literature. For example, stability can be measured
by a function of the difference between the start time of each activity in the new
schedule and in the original one. It can also be expressed by the number of activ-
ities to be performed in different resource units. Calhoun et al., 2002 have dealt
with the generalized multi-mode resource problem in which a target scheduling
model has been formulated. Finally, Deblaere, Demeulemeester, and Herroelen,
2011b have considered different types of outages separately, which are related to
activity duration, renewable resources and non-renewable resources. The objec-
tive of this study is the minimization of a rescheduling cost that includes a mode
failure cost and an activity start delay cost.

• Contingent scheduling: Many project managers prefer to make manual changes to
the schedule during project execution. To aid in decision making, several algo-
rithms have been proposed in the literature, all of which offer various possibilities
for switching from one solution to another. Contingent scheduling was studied,
for example, Billaut and Roubellat, 1996a; Billaut and Roubellat, 1996b; Briand,
Despontin, and Roubellat, 2002; Artigues, Roubellat, and Billaut, 1999.

• Activity crashing: When the project is in progress, corrective strategies may con-
sist of decreasing the duration of activities. The clash may result in a time/cost
tradeoff, a time/resource problem, multiple modes or multiple clash mode prob-
lems, etc. In fact, according to Ahn and Erenguc, 1998, the duration or cost of an



1.2. Statement of the research problem 11

activity can be expressed in terms of the resource requirements and the blocked
quantity. In Erik L. Demeulemeester, 2002 provides a review of models related to
crashing activities. According to Gerk and Qassim, 2008 the main model used to
formulate and solve crashing activity problems is linear programming.

• Sensitivity analysis: An interesting area of research is the sensitivity analysis of
project schedules. of project schedules. Sensitivity analysis attempts to answer to
answer a number of fundamental questions such as:

1. What are the limits of change of a parameter in the execution of a project so
that the optimal or feasible solution is maintained?

2. Given some changes in the parameters, what is the new optimum cost? What
would be the optimal solution to minimize this cost?

3. Which method generates robust schedules when project interruptions occur?

4. If we talk about resources, what type of resources have the greatest effect on
project cost and time?

1.2.3 Problem definition

The most general problem addressed by this thesis is a reactive scheduling problem
for the MRCPSP when uncertain events occur, which produces interruptions in activi-
ties and resource availability. The reactive scheduling problem for the MRCPSP when
uncertainty events occur is to identify an initial baseline schedule for the project for
which renewable and non-renewable resource constraints are not violated. Then, if
that schedule is under uncertainty-related disruption factors, the schedule is resched-
uled for those activities that have not been executed, taking into account the ability to
optimize the cost of rescheduling and the net present value of the project. The fun-
damental questions to address this problem are: How to generate an initial schedule
for the deterministic MRCPSP that optimizes the duration and the net present value,
what are the corrective measures in the schedule when interruptions are generated,
and what method do we use to build the missing schedule for the activities that were
not executed and minimize the cost of rescheduling them. The solution approach pro-
posed in this paper will address these three questions. The solution method to find a
feasible schedule that minimizes the project duration will be a memetic algorithm and
to maximize the net present value, we propose an algorithm based on adaptive bac-
terial foraging. It should be noted that in this first part uncertainty is not taken into
account and a deterministic problem is defined. However, when starting to execute
the chosen schedule, corrective measures such as rescheduling are considered if uncer-
tain events occur that affect the schedule. Finally, to reestablish the schedule we run a
multi-objective algorithm based on bacterial foraging to calculate the start times of the
activities that were affected by the interruptions. If the schedule found complies with
all the constraints we continue with its execution.
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1.3 Research Hypothesis

It is possible to perform an integration of the MRCPSP solution methods for the deter-
ministic case and the reactive strategies when a specific type of interruption is estab-
lished. Additionally, it is possible to reduce the impact of these interruptions on the
execution of a project.

This hypothesis can be tested by considering the following:

1. Solve MRCPSP with objective function to minimize project duration

2. Solve the MRCPSP with objective function to minimize the net present value of
the project.

3. Generate two types of breaks in the MRCPSP when the initial baseline schedule
is executed and propose a solution strategy.

4. To propose an optimization methodology that unifies the deterministic scenario
and the events under uncertainty.

1.4 Research objective

1.4.1 General objective

Design and develop an optimization methodology to solve the multi-mode resource-
constrained project scheduling problem with different types of interruptions, through
various metaheuristics and the implementation of reactive strategies.

1.4.2 Specific objectives

• Develop a memetic algorithm that will provide satisfactory solutions to the MR-
CPSP subject to minimizing project duration.

• Develop a bacterial foraging algorithm that will provide satisfactory solutions to
the MRCPSP subject to maximizing the net present value of the project.

• Design of a multi-objective metaheuristic algorithm to reduce the impact of out-
ages in resource-constrained projects based on the definition of reactive schedul-
ing.

• Integrate metaheuristic procedures into a methodological strategy.

• Evaluate and contrast the developed methods with the best procedures found in
the literature, using the standard PSPLIB and MMLIB library.

• Identify the limitations of the proposed model and identify recommendations for
further research in the field of reactive scheduling.
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Figure 1.3: Proposed optimization methodology

1.5 Research Methodology

In this research a combination of quantitative methods is used, characterized by 4 se-
quential stages. The methodological approach is illustrated in Figure 1.3.

Stage 1 . This is the initial stage, which involves establishing the characteristics of the
problem, defining parameters, input values, output values, durations, resource
consumption, cash flows, precedence relationships and a deadline for project de-
livery. The definition of these concepts is found in the chapter 2 where a taxon-
omy and a systematic review of the problem are developed, achieving a general
and deep vision of the problem.

Stage 2 . In stage two, two metaheuristic procedures are established to generate two
schedules that optimize the project duration and the net present value. The first
method is called memetic algorithm to solve the MRCPSP with objective func-
tion project duration. This algorithm generates an initial population built by the
selection of priority rules for the vector of modes and then for the lists of activ-
ities, managing to find feasible solutions of very good quality. Then, versions
of the crossover and mutation operators are developed, which are in charge of
intensifying and diversifying the search. To these solutions, a variable neighbor-
hood search is applied with justification of the activities by changing the execu-
tion mode. The description of the memetic algorithm can be found in more detail
in the chapter 3. The second solution method is called adaptive bacterial foraging
optimization algorithm that helps to find solutions of the MRCPSP with objective
function to maximize the net present value. This algorithm is based on bacterial
foraging and mimics the way bacteria forage in a nutrient landscape to perform
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nonaggressive parallel optimization by sensing chemical gradients in the envi-
ronment (such as nutrients) and moving toward or away from specific cues. We
highlight for generating the list of activities a priority rule based on providing
good quality lists of activities with respect to net present value. Among its oper-
ators are: chemotaxis, swarming, crossover and mutation. The result is a feasible
schedule that maximizes the net present value. The description of this chapter
can be found in the chapter 4.

Stage 3 . The two solutions found are shown to the client in order to select the initial
baseline schedule by the client and the contractor. After the initial baseline sched-
ule is chosen and execution begins, it must be strictly controlled and monitored.
In our system, two types of interruptions generated by uncertainty events are
established: interruption of activities and interruption of resources. If, when exe-
cuting a subset of activities, an uncertainty event occurs, we establish our reactive
scheduling strategy.

Stage 4 . The reactive scheduling strategy we use is based on rescheduling, in charge
of updating and scheduling the activities that have not been executed and were
affected by the interruptions. Then, the project parameters are updated in the
respective instance and a multi-objective algorithm is executed to calculate the
new times that minimize the cost of rescheduling and the net present value of
the project, taking into account the new project values. Otherwise, if there are no
interruptions, the project is completed with the delivery of the executed project.
Finally, if the schedule provided by the MBFO is feasible according to the delivery
date, then the project is completed, otherwise it is marked as a failed project. The
description of the MBFO applied to an experiment can be found in chapter 5.

1.6 Research Contribution

There are several contributions that this thesis proposes to the literature of multi-mode
resource constrained project scheduling, consisting essentially in the development of
a new reactive scheduling strategy and its solution approaches. The specific contribu-
tions are summarized below.

Memetic algorithm for solving the MRCPSP

• The implementation of a variable neighborhood search (VNS) adapted to a dou-
ble justification operator, and a uniform crossing operator;

• The development of an improvement procedure that optimizes the consumption
of resources and minimizes the work for the activities or their duration;

• A robust experimental design to find suitable parameters for the MA algorithm.

An adaptative bacterial foraging for solving the MRCPSP with discounted cash
flows
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• A dual justification operator based on cash flow, based on multi-modal justifica-
tion.

• A priority rule based on multi-modal behavior.

• Adaptations of the chemotaxis and swarming operators for improved solutions.

• Taguchi experimental design to find the appropriate parameters for the ABFO
algorithm.

The Reactive MRCPSP

• Proposed a modern multi-objective solution method to optimize two objectives:
minimize rescheduling cost and maximize net present value.

• In order to maximize NPV and minimize the cost of rescheduling, we build re-
active scheduling models to generate schedules when interruptions occur during
execution.

• The development of two heuristic algorithms when activity and resource inter-
ruptions occur. Validation of their effectiveness based on a computational exper-
iment performed with a PSPLIB instance.

• Based on the computational experiment, we find that the best solutions are found
when we have 15% and 20% of deadline.

1.7 Research Limitations

This study has a number of limitations. The first limitation refers to the set of instances;
the PSPLIB and MMLIB libraries are artificial libraries and it would be pertinent to
apply the algorithms to real instances with more than 100 activities, several execution
modes, and resources. The second limitation refers to the use of exact solution methods;
due to the nature of the problem studied it is pertinent to use metaheuristic strategies,
however, it would be appropriate to use exact procedures based on mathematical pro-
gramming. The third limitation refers to the use of different types of interruptions in
the projects, this would give a wider field to reschedule the schedules with different
strategies.

1.8 Justification for the research

Reactive scheduling applied to project scheduling helps to build viable schedules when
uncertainty events occur. In recent years, more and more attention has been paid to
building and developing techniques to counteract uncertainty in projects and to be
able to adjust their results. However, the techniques that have been used the most are
constructive heuristics and exact, branch and bound procedures. Among the project
scheduling problems is the multiple-mode resource-constrained project scheduling
problem whose deterministic solution is based on a schedule that meets the resource
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constraints and precedence relationships. However, when an initial baseline schedule
is constructed, it is under great uncertainty for its execution, then it is appropriate to
use reactive strategies to adjust the schedule and re-execute it.

In practice, maximizing the net present value and minimizing the cost of
rescheduling results in better resource utilization and reduced downtime in a sched-
ule. These factors result in the client providing an extension to the contractor to meet
the objectives set out in the new schedule.

There are several approaches, however, the approach we use is based on reactive
scheduling, since it is the process that starts running from the beginning of the project
until its end. There is no reactive scheduling technique that dominates all the solutions
but we will be giving solutions to these questions from our approach.

1.9 Structure

Chapter 1 introduces the research problem. Likewise, the definition of the problem
and its mathematical formulation are presented. Then, the objectives and the research
methodology are presented with all their characteristics, giving a vision of the doc-
ument. In order to make known the components of the problem, solution methods,
prominent authors, and most relevant studies. From these strategies, we focus on reac-
tive programming in order to find research gaps.

In Chapter 2, a taxonomy and a comprehensive literature review of the state of the
art in the multi-mode resource-constrained project scheduling problem is performed,
associating various objective functions and taking into account reactive scheduling. In
addition, the literature review leads to disaggregate and classify the strategies to deal
with uncertainty: reactive scheduling, stochastic scheduling, fuzzy scheduling, and
proactive scheduling. This review was carried out in order to classify the existing liter-
ature, in reference to the research problem. We sought to innovate in the methodology
of resolution and formulation of the problem, based on the research gaps found.

In chapter 3, a memetic algorithm for the solution of the MRCPSP is proposed. The
memetic algorithm is composed of a variable neighborhood search that helps to justify
the activities based on the execution modes. Then, a uniform crossover operator and a
mutation operator are proposed to help diversify and intensify the search. Finally, the
results were shown which are very good compared to other metaheuristics.

In chapter 4, a new and modern algorithm based on bacterial foraging is proposed.
The net present value of the MRCPSP is optimized, with a payment model: payments at
activities’ completion times. An adaptation of the swarming and chemotaxis operators
improves the results significantly. They were tested in the PSPLIB and MMLIB libraries.
Their results are compared with a genetic algorithm, achieving a higher percentage of
feasible solutions.
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In chapter 5, the problem is approached with reactive programming in mind. A
methodology is constructed to solve the MRCPSP when there are interruptions in ac-
tivities and resources. This methodology consists of a multi-objective bacterial foraging
algorithm that minimizes the cost of rescheduling and maximizes the net present value.

In Chapter 6, the observations and conclusions of the research and proposed stud-
ies are concluded in the last chapter, followed by future research directions as an exten-
sion of this study.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

Over the past 40 years, the topic of project scheduling has attracted the attention of a
considerable number of researchers. The problem of project scheduling can be defined
as the allocation of resources to carry out a set of activities in a pre-established order
over time. The competition of activities for the use of resources must be taken into
account. It is important to highlight the relevance of meeting a timely and effective
schedule, for this reason, the project manager must perform an analysis to manage
the costs and resources needed to deliver the project on time. With proper scheduling
techniques, some activities and tasks can also be adjusted in case a project is delayed or
if there is a change in scope.

Areas of project scheduling research include good resource utilization, completion
time estimation, cost management, and excellent project quality. This paper focuses
on the investigation of these characteristics. The Figure 2.1 shows the life cycle of any
project and the research topics that we will address in our research.

A project is a single process, consisting of a set of controlled and coordinated
activities with start and end dates, undertaken to achieve an objective in accordance
with specific requirements, including time and resource constraints, Erik L. Demeule-
meester, 2002. Projects can have probabilistic or deterministic elements. The first orig-
inated with the United States Navy’s nuclear missile program for submarines in 1958,
and was called PERT (Program Evaluation and Review Technique) Malcolm et al., 1959.
The second, CPM (Critical Path Method), arose from the DuPond company’s efforts to
better manage the construction and repair of its chemical plants between 1956 and 1959,
(Kelley Jr and Walker, 1959; Malcolm et al., 1959). However, the mentioned methods
do not take into account resource limitations. Due to the need to reduce the costs of a
project, it is imperative to optimally manage resources, whose availability is limited. To
this end, numerous solution techniques have been proposed, both exact and heuristic
and metaheuristic. One of the sources of motivation for research work in this line has
been the PSP Project Sequencing Problems with resource restriction (Davis, 1966; Laue,
1968; Petrović, 1968; Balas, 1968; Wiest, 1967; Wiest, 1964). A very important part of the
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PSP
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Project Control 03
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Project control
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C
D
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Critical path
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Reactive project scheduling

Proactive project scheduling

Stochastic project scheduling

Fuzzy project scheduling

Figure 2.1: The project life cycle and integrating study topics in our research.

projects is the sequencing of the activities, in which, given the objective function, it is
necessary to know the best possible way to carry out the activities taking into account
the restrictions imposed by the precedence relationships and limited resources.
This chapter presents a study of the scientific literature on the MRCPSP, covering the
period from 1982 to 2020 and consisting of 283 documents. The reference for the follow-
ing work is Eksioglu, Vural, and Reisman, 2009 which offers a taxonomy on the Vehicle
Routes Problem (VRP) and Weglarz et al., 2011 which performs a very complete literary
review on the MRCPSP.

2.2 Background of revisions

This part describes a methodology to classify the literature that addresses the problem
of scheduling projects with limited resources, in a multiple way (MRCPSP). This model
encompasses formulations, their components, solution methods, and complexity. This
taxonomy is done in order to cover, to a large extent, the different approaches of the
MRCPSP. In general, the bibliographic reviews carried out to date summarize previous
publications, losing sight of the existing relationships between the different approaches
proposed by researchers and the directions of future lines of research.

In Özdamar and Ulusoy, 1995, scheduling problems are classified according to two
attributes associated with optimization problems: the objective and the constraints.
The classification associated with the goal takes two forms into account: time-based
goal (makespan) and time-related goal (mean delay, mean time to finish, and weighted
or total delay in a multiproject environment). In sequencing problems you work with
one or more objectives. The classification associated with constraints refers to resources
and precedence relationships. The resource restrictions are given by three categories:
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renewable, non-renewable and doubly restricted. The precedence restrictions are given
by the relationships that exist between each of the activities, however, their classifi-
cation does not provide information on the precedence relationships. In Herroelen,
Demeulemeester, and Reyck, 1997 a conceptual description of the classification of the
problem of scheduling projects with limited resources and some important extensions
is made. His approach is to make known the approaches, procedures and strategies to
solve the different problems associated with project scheduling, whether they are re-
laxed problems or change of objective functions. In the quotation Herroelen, Demeule-
meester, and De Reyck, 1999 the need to classify the problems of project sequencing is
raised, since it would greatly facilitate the presentation and discussion of the problems
of project sequencing. This characterization is based on three fields α|β|γ:

• α field: resource characteristics.

• β field: characteristics of the activities.

• γ field: performance measures.

α



α1


◦ : No resource types in the scheduling problem

1 : Only one type of resource

m : The number of resource types is m

α2



◦ : No resource type specifications

1 : Renewable resources

T : Non-renewable resources

1T : Renewable and non-renewable resources

v : Partially (non)renewable resources

α3

{
◦ : (partially) renewable resources available in constant quantity.

va : (partially) renewable resources available in variable quantity.



22 Chapter 2. LITERATURE REVIEW

β



β1


◦ : It is not allowed to split the activity

pmtn : It is allowed to interrupt the activity and resume it where it was interrupted

pmtn− rep : Activity can be interrupted and resumed from the beginning of the activity

β2



◦ : No precedence relationships

cpm : Final-start precedence relationships

min : Precedence relationships with minimum time delays

gpr : Generalized precedence relationships with minimum and maximum time delays

prob : Probabilistic type project network

β3

{
◦ : Waiting times equal to zero

ρj : Different waiting times per activity

β4


◦ : The activities have entire durations

cont : The activities have continuous durations

dj = d : All activities are of equal duration

β5


◦ : No delivery dates.

δj : Deadlines for activities

δn : Delivery date for the project.

β6



◦ : Activities require resources in a constant discrete amount.

vr : Activities require resources in a discrete variable amount.

disc : Resource requirements of activities are a discrete function of activity duration

cont : Activity resource requirements are a continuous function of the duration of

the activity.

int : The resource requirements of the activities are expressed as a function of intensity

or speed.

β



β7


◦ : Activities can be carried out in only one execution mode.

µ : Activities can be performed in several pre-specified modes of execution.

id : Activities are subject to mode identity restrictions.

β8



◦ : No cash flows

cj : Activities associated with cash flows

c+j : Activities associated with positive cash flows

per : Periodic cash flows for the project

sched : Determine the amount and timing of cash flows.

β9

{
◦ : No changeover times (transport),

sjk : Sequence-dependent changeover times.
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γ

{
reg Performance measure is any measure of early (regular) completion

nonreg Performance measure is any measure of free (non-regular) completion.

For this reason, in Reyck and Herroelen, 1999 performs the classification based on
the MRCPSP with generalized precedence relations, without leaving the based on the
MRCPSP with generalized precedence relationships, without neglecting the the rank-
ing of the most important PSPs. In the table 2.1, shows some of the most important
PSPs found in the literature (Reyck and Herroelen, 1999).

Single mode Multiple mode
No resource
types

Multiple
renewable
resource
types

1 non-
renewable
resource type

1 renewable
resource type

Multiple
renewable and
non-renewable
resource types

no trade-offs no trade-offs time/cost
trade-offs

time/resource
trade-offs

time/cost
trade-offs,
time/resource
trade-offs, re-
source/resource
trade-offs

ZERO-LAG FS CPM/PERT RCPSP DTCTP DTRTP MRCPSP
cpm|Cmax m, 1|cpm|Cmax 1, T|cpm, disc,

mu|Cmax

1, 1|cpm, disc,
mu|Cmax

m, 1T|cpm, disc,
mu|Cmax

MIN SS, SF,
FS,FF

PDM
min|Cmax

GRCPSP
m, 1, va|min,
ρi, δi|Cmax

GDTCTP
1, T|min, ρi,
disc, mu|Cmax

GDTRTP
1, 1|min, ρi,
disc, mu|Cmax

GMRCPSP
m, 1T|min, ρi, disc,
mu|Cmax

MIN+MAX
SS, SF,FS,FF

MPM
gpr|Cmax

RCSP-GPR
m, 1, va|gpr,
ρi, δi, vr|Cmax

DTCTP-GPR
1, T|gpr, ρi, δi,
disc, mu|Cmax

DTRTP-GPR
1, 1, va|gpr, ρi,
δi, disc, mu|Cmax

MRCPSP-GPR
m, 1T, va|gpr, ρi,
disc, µ|Cmax

Table 2.1: A classification of project scheduling problems

In Brucker et al., 1999, the objective is to provide a new classification scheme to
describe the resource environment, the characteristics of the activities and the objec-
tive function, managing to bridge the gap between project sequencing problems and
machine scheduling problems. It expresses the intention to place the single mode case
and the multiple mode case at the same level, at the next level are the solution meth-
ods: branch and bound methods, lower bounds, heuristic methods, for the multiple
mode case the dominance rules are denoted. However Herroelen, Demeulemeester,
and Reyck, 2001 makes a criticism of the classification proposed by Brucker et al., 1999,
describing the drawbacks in its classification and comparing it with the classification
proposed in Herroelen, Demeulemeester, and De Reyck, 1999. The classification ad-
dressed in Hartmann and Kolisch, 2000 is based on heuristic algorithms to solve the
RCPSP. Therefore, this bibliographic review is part of the research, largely denoting the
advances, both for heuristic algorithms, priority rules and metaheuristic algorithms.
Since the MRCPSP is a generalization of the RCPSP, most of the solution methods can
be adapted and configured to solve the MRCPSP. This classification of solution methods
will be used to carry out the MRCPSP taxonomy. Six years later, Kolisch and Hartmann,
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2006 the same authors, again carry out a review of the advances in solution methods
for the RCPSP. Most notable in these two investigations is the comparison of the com-
putational results of the RCPSP solution methods. In 2007, Lancaster and Ozbayrak,
2007 expanded on the work of Kolisch and Hartmann, 2006, using the classification
framework of Herroelen, Demeulemeester, and De Reyck, 1999.

The documents that classify the problem have made very important contributions,
since their approach is directed to the formulation and variants of sequencing prob-
lems. Most of the documents carry out a modeling process and algorithmic contribu-
tions to solve the problem, considering various types of objectives. In 2001, the work
carried out by Kolisch and Padman, 2001 examines the literature integrating exact and
heuristic models, data types and algorithms, which leads to a contribution in the clas-
sification of the problem. In the proposed classification, in the first level we can find
the elements of the PSP, the objectives, the graphic representations of the problem and
the solution methods. For the solution methods node we find two branches: the exact
methods and the heuristics, without taking into account that the metaheuristic methods
were going to create their own branch of research due to their considerable increase in
research work and contributions. The data considered in this document are only deter-
ministic. In Herroelen and Leus, 2005 a very important classification based on stochas-
tic data is performed. Reviews PSP approaches under uncertainty, such as: reactive
scheduling, stochastic project scheduling, fuzzy project scheduling, robust (proactive)
scheduling, and sensitivity analysis. Describe for each of the proposed approaches, so-
lution methods given in the literature. In 2010, Hartmann and Briskorn, 2010 provided
some variants and extensions of the RCPSP. The classification addressed in Hartmann
and Kolisch, 2000 is based on heuristic algorithms to solve the RCPSP. Therefore, this
bibliographic review is part of the research, largely denoting the advances, both for
heuristic algorithms, as well as for priority rules and metaheuristic algorithms. Since
the MRCPSP is a generalization of the RCPSP, most of the solution methods can be
adapted and configured to solve the MRCPSP. This classification of solution methods
will be used to carry out the MRCPSP taxonomy. Six years later, Kolisch and Hartmann,
2006 the same authors, again carry out a review of the advances in solution methods
for the RCPSP. Most notable in these two investigations is the comparison of the com-
putational results of the RCPSP solution methods. In 2007, Lancaster and Ozbayrak,
2007 expanded on the work of Kolisch and Hartmann, 2006, using the classification
framework of Herroelen, Demeulemeester, and De Reyck, 1999.

2.3 MRCPSP Taxonomy

A taxonomy is a process based on the principles, methods, and purposes of classifica-
tion. In general, taxonomies are used to help understand the relationships between all
the domains in an investigation. In addition, taxonomies represent hierarchical struc-
tures of the terms that represent the domains, indicating the subsets of terms and the
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relationship of these subsets. The domains in research are many, among them, we have
scheduling problems, solution methods, formulation, etc.

2.3.1 Epistemology of MRCPSP literature

We initially searched articles, books, theses, etc., using various databases such as Sco-
pus, IEEE, JSTOR, Web of Science, CiteSeer, EBSCO and ELSEVIER. Search engines
such as Google Scholar, SIBILA, Springer and the list of academic databases and refer-
ence list provided by Weglarz et al., 2011 were used to find and access scientific research
papers about the MRCPSP. Once databases were identified, specific searches by key-
words, authors, title and abstract related to “Project scheduling resource constraints”,
“RCPSP”, “MRCPSP”, “heuristic AND MRCPSP”, “metaheuristic AND MRCPSP”, etc.
were conducted. Finally, we organize this information by author, title, keywords, sum-
mary and other options. Although various specialized software such as JabRef, Zotero,
Mendeley, Endnote and Reference Manager are available for this purpose Luna et al.,
2014, JabRef was chosen as it provides an agile, complete interface and is the standard
LATEX bibliography format Kopka, Daly, and Rahtz, 2004.

A total of 321 documents were reviewed, including articles, books, book chapters,
technical reports and conferences; approximately 82% of documents corresponds to
articles, 8% to books, 4% corresponds to Proceedings, 3% corresponds to Collection,
2% to PhD Theses and < 1% to Technical Reports (Figure 2.2a).
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Figure 2.2: (a) Percentages of informational material; (b) number of publications per
year.

Figure 2.2b shows the number of research papers per year. In the last two decades,
with the advancement of technology and computing capacity of computers, research
conducted around the MRCPSP has dramatically increased mainly because it has been
possible to develop more efficient algorithms and heuristics for increasingly larger
problems. During the 90’s, the focus was on making a formal classification of the prob-
lem and solving the problems by means of exact algorithms. The advances in recent
years have led to the use of various techniques, such as metaheuristic algorithms, with
outstanding results. In addition, due to the need of companies and the industry to carry
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Title of the journal Quantity

European Journal of Operational Research 72
Computers & Operations Research 13
Annals of Operations Research 10
Computers & Chemical Engineering 10
Journal of Scheduling 9
Journal of the Operational Research Society 9
Management Science 9
IIE transactions 6
Naval Research Logistics (NRL) 6
International Journal of Production Research 5
Computers & Industrial Engineering 4
Omega 4
OR Spectrum 4
OR Spektrum 4
Applied Mathematics and Computation 3
Information Sciences 3
Operational Research 3
Advances in project scheduling 2
Other Journals 80

Total 256

Table 2.2: List of articles regarding academic journals covering the MRCPSP. The
“Other Journals” class groups journals in which only one research paper on the sub-
ject.

out processes more quickly, efficiently and reliably, researchers have focused their ef-
forts on the study of the sequencing of projects with resource constraints.

Out of the 321 documents reviewed, we identified 256 research articles that were
published between 1982 and 2018 in 83 journals (Table 2.2) . The main source of in-
formation is the European Journal of Operational Research with a 28% of the total of
articles, followed by Computers & Operations Research with a 5%. There are several
journals that usually contain only one article and make up for 31% of research papers.

2.3.2 Need for a taxonomy for MRCPSP

There are several documents that classify the MRCPSP focusing on 3 areas: resources,
activities, and objective function; others classify the exact or heuristic solution methods
Özdamar and Ulusoy, 1995; Herroelen, Demeulemeester, and Reyck, 1997; Herroelen,
Demeulemeester, and De Reyck, 1999; Brucker et al., 1999; Hartmann and Kolisch,
2000; Kolisch and Padman, 2001; Herroelen and Leus, 2005; Kolisch and Hartmann,
2006; Lancaster and Ozbayrak, 2007; Hartmann and Briskorn, 2010, and Weglarz et al.,
2011. In this document, we have made a classification by grouping various dimensions
and concepts.

The advantages of creating a taxonomy for the MRCPSP will be taken from Bailey,
1994 and adapt to the object of study.

1. Description. Classifying a problem is the main descriptive tool. A good clas-
sification allows the researcher to provide a comprehensive and perhaps even
definitive list of classes and subclasses of the problem. It would facilitate the pre-
sentation and discussion of project sequencing problems. For example, the taxon-
omy presented in Tables 2.4 and 2.5 shows that the object of study of an article can
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be classified as research in the dimension “project components” to non-renewable
resources, in another dimension “metaheuristic solution” based on population (ge-
netic algorithm).

2. Reduction of complexity. One of the most important reasons for making a taxon-
omy is to reduce the degree of complexity of a problem by classifying each of the
underlying dimensions associated with the problem such as project components,
formulation, solution methods, and algorithmic complexity. The taxonomy pre-
sented allowed us to condense the information to classify the topic addressed in
the articles.

3. Identification of similarities. The taxonomy presented allows us to recognize
similarities in the research conducted around the MRCPSP. For example, a re-
searcher makes a contribution based on metaheuristic solution methods, a par-
ticular case of “genetic algorithm”. Subsequent work based on variations of the
metaheuristic algorithm can be considered in the same case and thus observe the
contributions of this method.

4. Identification of differences. Similarly, classification procedures allow us to dif-
ferentiate cases so that dissimilar cases can be separated for analysis, rather than
remaining mixed. For example, using different solution approaches, Figure 2.3:

4. Types of solutions4. Types of solutions

4.1 Exact solution4.1 Exact solution 4.2 Lower Bounds4.2 Lower Bounds 4.3 Heuristics4.3 Heuristics 4.4 Metaheuristics4.4 Metaheuristics

Figure 2.3: Solution methods.

5. Relationship study. Although the taxonomy presented is purely descriptive, it
provides the relevant relationships for the classification of each of the documents
and reveals their contributions in a more meaningful way. However, there may be
subclasses that are empty or with few cases; this is important because it indicates
that there is no relationship between some of the variables used.

6. Versatility.The taxonomy presented above is perhaps a very appropriate tool to
show the concepts and joint classifications of the documents associated with the
MRCPSP.

7. Solution methods. A taxonomy facilitates the adaptation of solution procedures
to the problem setting and, as such, facilitates the preparation of literature re-
views.
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2.3.3 MRCPSP Taxonomy

In the proposed taxonomy, level 1 comprises the classes or categories “Project compo-
nents”, “mathematical formulation”, “complexity” and “types of solution”. The ram-
ification for each of the classes and sub-levels depend on the area of study and the
contribution given to the development of the theory related to the MRCPSP. An impor-
tant characteristic that must be highlighted is that classes and subclasses that make up
the different levels may not be exclusive, that is, a study document can enter into the
four existing categories. For instance, Sprecher Sprecher and Drexl, 1998 considers the
class project components: renewable resources and non-renewable resources, but also in
the class types of solution uses an algorithm B&B (exact method) with some boundary
rules (heuristic methods). Table 2.3 shows the articles that helped to carry out the tax-
onomy for each of the first level classes and their contribution. There may be empty
cells, since articles do not address the subject or do not imply the attributes of that cell.

Regarding the Table 2.3, a heat map with dendrogram was used, which organizes
the data into subcategories that are divided into others until the desired level of detail
is reached. This graphic representation, shown in Figure 2.4, allows us to clearly ap-
preciate the grouping relationships between the four categories and even between the
articles and their authors. Observing the successive subdivisions we can get an idea
about their grouping criteria.

The articles are ordered from top to bottom depending on the relationship and
the fulfillment of the categories, for example the articles Lawler et al., 1993; Zapata,
Hodge, and Reklaitis, 2008; Waligóra, 2014 they make contributions simultaneously to
categories [1] and [2]. Now if we consider an author, for example Herroelen W. has
made contributions for the components of the project Herroelen and Leus, 2004; Her-
roelen, Demeulemeester, and De Reyck, 1999 and in the solution methods Herroelen,
Demeulemeester, and Reyck, 1997; Herroelen, 2005; Herroelen and Leus, 2005. Two
groups formed by categories are observed, the first group consists of categories [1] and
[4], and the second group consists of categories [3] and [2]. This behavior is due to
the fact that, once the formulation and certain aspects related to complexity have been
carried out, researchers have concentrated their efforts on describing solution methods
and the different versions of the problem associated with project scheduling.

2.3.4 MRCPSP taxonomic classes

Tables 2.4 and 2.5 show the epistemological taxonomy as a result of the bibliographic
reviews found in a group of articles that describe approaches and procedures on the
MRCPSP. The classification is proposed as a knowledge model to clearly distinguish
the topics and subtopics addressed in different bibliographic reviews. In addition, it
suggests a block review of each document, identifying its components. For example,
the Resource attribute are classified by category, types and numbers.
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Figure 2.4: Graphic description of the base documents of the taxonomy.

1. Project components: The components of the project are related to the descrip-
tion made in Herroelen, Demeulemeester, and De Reyck, 1999, and Brucker et
al., 1999, where they provide the characteristics of the resources, activities, per-
formance measures and classifications to the various problems. Without leaving
aside, the important contributions shown in Kolisch and Padman, 2001; Kolisch
and Hartmann, 2006; Lancaster and Ozbayrak, 2007; Hartmann and Briskorn,
2010; Weglarz et al., 2011; Farhad Habibi and Sadjadi, 2018 and others.

1.1 Constraints: In the problems of scheduling activities, tasks or other work, it
must always be kept in mind that these must be processed using a source
or supply from which the performance of the activities or tasks will occur.
These supplies are called resources. Among the resources we have machin-
ery, workers, money, materials, etc. Since most of the resources used in
a project have a limited availability or each activity requires the use of a
percentage of the resource, projects introduce resource constraints in their
scheme. In addition, each activity must be performed within a certain time,
with the objective of providing an optimal schedule subject to resource and
time constraints. Among the time constraints, we have the project com-
pletion date or a deadline, fixed processing times, waiting times, etc. The
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object of study is multi-mode resource-constrained project scheduling prob-
lems, which link time and resource constraints in substitution, Talbot, 1982;
Blazewicz, Lenstra, and Kan, 1983

1.2 Precedence relationships: Technological reasons derive in the sequencing of
an activity that depends on the execution of another. These relationships be-
tween activities are called precedence relationships, because the usual (and
simplest) way in which they appear is based on the fact that one activity
cannot start before another(s) finishes. Precedence relationships between ac-
tivities can be visualized by representing the project by means of a directed
graph where each activity is represented by a node or vertex and a prece-
dence relationship between two activities by a directed edge. This represen-
tation is known as RAN. The β2 characteristic of the activities in the Her-
roelen classification. Herroelen, Demeulemeester, and De Reyck, 1999 has
5 groupo {◦, cpm, min, gpr, prob}. The cpm relationships are those in which
the activities have precedence relationships with zero delays or the activi-
ties start immediately after the predecessors finish. According to Reyck and
Herroelen, 1999, a min relation specifies that an activity can only start (fin-
ish) when the predecessor activity has already started (finished) during a
period of time. For the gpr (min+max)case, the max relation specifies that
an activity must start (finish) no later than a certain number of time periods
beyond the start (finish) of another activity. A minimum delay is essentially
a generalized precedence relation that can be transformed into a nonneg-
ative start-start time delay, with the additional assumption that no cycles
can occur in the network. In the prob group, the network of activities is of
the probabilistic type in which the evolution of the corresponding project is
not uniquely determined in advance, see Elmaghraby, 1977; Neumann and
Steinhardt, 1979.

1.3 Resources: Resources are classified by category, type, and number. The
classification by numbers depends on how many units of resources are to be
used. Among these, we have discrete resources that can be assigned to ac-
tivities in discrete quantities. For example machines, tools, workers, etc. We
also have continuous resources which can be allocated in arbitrary, a priori
unknown quantities from a given interval. For example energy, liquids, and
money. Another category is that of preferred resources. A resource is pre-
ferred if each of its units can be removed from the processing of the current
activity, assigned to another activity, and then returned to the previously in-
terrupted activity whose processing can be resumed as if the resource inter-
ruption had not occurred. resource interruption had not occurred. Resources
without this property are called non-preferred. Note that the occurrence of
non-preferential resources may result in deadlocks, as considered in the the-
ory of operating systems (see for example (see, for example Coffman and
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Denning, 1973). Consequently, resources of this type are of particular im-
portance in computer systems.
Resources by category are considered according to their limitations. The
basic categories of resources are renewable, non-renewable, and doubly lim-
ited resources. This category is the one taken into account in any project
planning and programming documents in recent decades. Renewable re-
sources are those that can be restored at a rate similar to or greater than
the rate of consumption while being available from period to period. Non-
renewable resources are limited over the entire duration of the project, with
no period-by-period restrictions. Doubly constrained resources are con-
strained over both the planning horizon and over the planning horizon and
on a period-by-period basis. For a more detailed look at these categories, see
Weglarz et al., 2011.

1.4 Activities: in general, it is usually convenient to divide the project into
work packages, as it allows to work packages, as this allows the project to
be broken down into clearly identifiable parts. identifiable parts. Each of
these parts can be broken down into interdependent activities or tasks to be
performed. activities or tasks to be performed, which are interdependent
among them. The activities must have the following characteristics:

• Be measurable in terms of time, resources, effort, and cost.

• To have a final product as a result.

• Have a clear starting point and an end.

• To be the responsibility of a person.

The information we need for each activity can be summarized as follows:

• Description of the task.

• Inputs or necessary preconditions.

• Resource requirements with costs.

• Estimated time.

The classification made by Herroelen, Demeulemeester, and De Reyck, 1999
is one of the most complete. However, in this document, we will only cat-
egorize activities by resource requirements, durations, modes of execution,
and preventive activities. For the case of resource requirements, we will con-
sider those activities that have a discrete or continuous demand for a certain
type of resource. The duration of the activities is handled in a deterministic
or stochastic way. We make the distinction of execution modes to classify
single-mode and multi-mode problems. In many project scheduling mod-
els it is assumed that some activities are not interrupted (non-preferred) and
others can be interrupted (preferred).
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1.5 Objectives: All optimization problems consist of finding a best solution con-
cerning a given criterion. Generally, an evaluation function or performance
measure is the criterion by which the quality of a solution is quantified. Ob-
jective functions are based on time, resource, quality, and cost criteria. For
more details, see Sprecher, 1994; Slowinski, 1989; Kolisch and Padman, 2001;
Weglarz et al., 2011; Ballestín and Blanco, 2011. Let’s look at some perfor-
mance measures that will be studied later.

• Minimize project duration: this is undoubtedly the most widely applied
measure in the project sequencing domain. Duration is defined as the
time interval between the beginning and the end of the project. Since the
start of the project is usually assumed to be at time t = 0, minimizing the
duration is equivalent to minimizing the maximum of the completion
times of all activities.

• Maximize the net present value of the project: when large, long-term
projects involve significant amounts of cash flow, in the form of expendi-
tures to initiate activities and payments to complete parts of the project,
the net present value (NPV) is an appropriate criterion to measure the
project’s optimality. This criterion generates a critical path of cost and
not the critical path of time generated when duration is minimized.

• Maximize project quality: this objective is very important for project
managers. The quality of a project is given by the fact that the project
is done within the planned deadlines, meets the budget, and that the
client is satisfied with the product. The formulation of this problem has
focused on minimizing the deviation from the deadlines and the budget
due to activities that must be preprocessed.

• Minimize project cost: This objective has attracted much attention from
researchers because of its practical relevance. The cost of activities can
be minimized since different ways of developing an activity result in
different direct costs, which must be minimized (cost-duration trade-
off). On the other hand, it can be considered to minimize the cost of
resources which is determined by the sequencing of activities, which
influences the cost indirectly through the resources.

1.6 Representation: According to Erik L. Demeulemeester, 2002, there are two
ways of representing the relationship between activities, precedence rela-
tionships, and resource consumption: Activities at nodes (AoN) and activ-
ities on arcs (AoA). An AoA diagram is based on the idea that each activ-
ity is a transition of events, whereas AoN activities are established at the
nodes, being the arcs of the existing precedence relationship between activ-
ities. Kyriakidis, Kopanos, and Georgiadis, 2012 proposed a new form of
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representation based on activities-resources (RTN). This representation con-
siders three types of nodes for logical linkage, dependencies (activities and
decision tables), and a new node to include resources.

2. Mathematical formulation: This class seeks to separate the different approaches
in the mathematical modeling of problems associated with project scheduling.
For example, Talbot, 1982 made a formulation for the MRCPSP that consisted
of an integer linear programming model. Among the types of formulations are
those based on the type of variables: discrete (integer), continuous and mixed.

3. Complexity: this class concentrates all the efforts of the researchers to determine
whether the respective project scheduling problem is easy or difficult to solve.
The contributions of the researchers will be taken into account by investigating
the algorithmic complexity of the problems. For example, Blazewicz, Lenstra,
and Kan, 1983 was one of the researchers who contributed to the development of
computational complexity.

4. Solution methods: For solution, types can be differentiated by types of methods,
described in Figure 2.3. For example, the exact methods for solving the MRCPSP,
shown by (Hartmann and Drexl, 1998). Most of these methods are based on
branch and bound procedures, i.e., dividing the problem into subproblems and
trying to solve the subproblems by computing lower bounds or using dominance
rules. Exact methods ensure the optimal solution of the problem, although,
in general, they require a large computational effort, since they are NP-hard
problems (Blazewicz, 1986). However, it is possible to obtain sequences of good
good quality sequences using approximate methods: heuristics, metaheuristics,
or hybrids.

The articles that are selected in the Tables 2.6 and 2.7, are part of the total number
of review of the total number of reviewed documents to which the taxonomy was
applied.

For the types of solution can be differentiated by methods being utilized (i.e.,
exact, lower bound, heuristics and metaheuristic solutions) for the MRCPSP, es-
cribed in Figure 2.3 and Table 2.5. These solution methods are presented by Ab-
dolshah, 2014 focused on the resource-constrained project scheduling problem
(RCPSP). For example, most of the exact methods to solve the MRCPSP shown
by (Hartmann and Drexl, 1998) are based on the procedures of branch and bound,
that is, to divide the problem into subproblems and try to solve the subproblems
by calculating lower bounds or using rules of dominance. The exact methods en-
sure the optimal solution of the problem, although, in general, they require a great
computational effort, because they are NP-hard problems (Blazewicz Blazewicz,
Lenstra, and Kan, 1983). However, it is possible to obtain good quality sched-
ules using approximate methods such as heuristic, metaheuristic or hybrid algo-
rithms. Figure 2.5 shows that metaheuristic procedures in 70% of research papers,
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heuristic procedures are used in 10%, exact procedures in 18% and lower bound
procedures in 2%. Selected papers are presented in Tables 2.6 and 2.7.

1. Project components
1.1 Restrictions

1.1.1 Time
1.1.2 Resources

1.2 Precedence relations
1.2.1 cpm
1.2.2 min
1.2.3 gpr
1.2.4 prob

1.3 Resources
1.3.1 Resources by numbers
1.3.2 Preferred resources
1.3.3 Resource categories

1.3.3.1 Renewables
1.3.3.2 Non-renewable
1.3.3.3 Doubly restricted
1.3.3.4 Partially renewable

1.3.4 Other Categories
1.3.4.1 Dedicated
1.3.4.2 Space
1.3.4.3 Adjacent
1.3.4.4 Acumulative
1.3.4.5 Reusables
1.3.4.6 Synchronized
1.3.4.7 Multiple Skills
1.3.4.8 Heterogeneous
1.3.4.9 Exchange Resources

1.4 Activities
1.4.1 Resource requirements
1.4.2 No-preemted
1.4.3 Preempted

1.4.3.1 preemted-resume
1.4.3.2 preemted-repeat

1.4.4 Durations
1.4.4.1 Deterministic
1.4.4.2 Stochastics

1.4.5 Execution modes
1.4.5.1 Single mode
1.4.5.2 Multi-mode

1.5 Objectives
1.5.1 Time-based

1.5.1.1 Minimize project duration
1.5.1.2 Minimize expected project comple-

tion time
1.5.1.3 Minimization of weighted average

flow time
1.5.1.4 Minimize weighted sum total of

start times
1.5.1.5 Minimize maximum tardiness
1.5.1.6 Minimize the average (weighted)

tardiness

1.5.1.7 Minimize weighted total tardiness
1.5.1.8 Minimize total weighted flow time
1.5.1.9 Minimize early (weighted) average

1.5.1.10 Minimize the number of late activi-
ties

1.5.1.11 Minimize sum of start times
1.5.1.12 Minimize the weighted earliest and

latest completion time.
1.5.2 Resource-based

1.5.2.1 Minimize cost of renewable re-
source availability

1.5.2.2 Minimize average resource use
1.5.2.3 Minimize total adjustment cost
1.5.2.4 Minimize total cost of resource use
1.5.2.5 Minimization of project cost depen-

dent on mode or weighted resource
consumption

1.5.2.6 Minimize total rental cost
1.5.3 Financial

1.5.3.1 Maximize net present value
1.5.3.2 Minimize project implementation

cost
1.5.3.3 Minimize project completion cost
1.5.3.4 Minimize the total cost of penalties
1.5.3.5 Minimize the total expected cost of

the project
1.5.3.6 Minimize the total weighted penalty

cost for advancing-delaying the
project

1.5.4 Based on quality
1.5.4.1 Maximizing the total weighted sum

of the quality of activities
1.5.5 Other objectives:

1.5.5.1 Based on reprogramming of activi-
ties.

1.5.6 Regular and non-regular measurements
1.5.6.1 Regular
1.5.6.2 No-regular

1.6 Representation
1.6.1 Representation of activities in arcs (AoA)
1.6.2 Representation of Activities in nodes

(AoN)
1.6.3 Resource-Task Network (RTN) Represen-

tation
2. Mathematical formulation

2.1 Entera
2.2 Continues
2.3 Mixed

3. Complexity

Table 2.4: Project components, formulation and complexity

2.4 Systematic literature review on reactive project

scheduling.

Reactive scheduling refers to a situation where we cannot (or do not) plan ahead for
problems or opportunities. Simply put, we only react when such problems or opportu-
nities occur. In contrast, proactive scheduling occurs when we plan ahead to manage or
avoid problems. During execution, projects can be subject to considerable uncertainty,
which can lead to numerous schedule disruptions. Among these disruptions are:

1. Interruptions in the project network.
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4. Types of solutions
4.1 Exact solution

4.1.1 Mathematical planning
4.1.1.1 Linear planning
4.1.1.2 Integer planning
4.1.1.3 Zero-one method

4.1.2 Numerical methods
4.1.2.1 Dynamic planning
4.1.2.2 Branch and Bound method

4.1.2.2.1 Branch and bound
4.1.2.2.2 Branch and cut
4.1.2.2.3 Branch and price

4.1.3 Synthetic methods
4.1.3.1 Critical path-PERT
4.1.3.2 Simulation
4.1.3.3 Synthetic

4.1.4 Stochastic
4.1.4.1 Markov chain
4.1.4.2 Goal theory
4.1.4.3 System analysis

4.2 Lower bounds
4.3 Heurística

4.3.1 Search based
4.3.1.1 Constructive

4.3.1.1.1 Generation scheduling
4.3.1.1.1.1 Parallel scheduling
4.3.1.1.1.2 Serial scheduling
4.3.1.1.1.3 Double scheduling

4.3.1.1.2 Priority based
4.3.1.1.2.1 Single pass
4.3.1.1.2.2 Multi pass
4.3.1.1.2.2.1 Priority rule
4.3.1.1.2.2.2 Forward backward
4.3.1.1.2.2.3 Simulation methods

4.3.1.2 Improvement
4.3.1.2.1 Neighborhood search
4.3.1.2.2 Forward bacward improvemente

4.3.2 Based on exact methods
4.3.2.1 Descomposition

4.3.2.1.1 Iteration
4.3.2.1.2 Column genation

4.3.2.2 Relaxation
4.3.2.2.1 Exact method
4.3.2.2.2 Lagrange

4.3.3 Hybrid
4.3.3.1 Combination with several heuristic

4.4 Metaheuristics
4.4.1 Based construction

4.4.1.1 GRASP
4.4.1.2 Variable neighboard search (VNS)
4.4.1.3 Ant Colony Optimization (ACO)
4.4.1.4 Guided local search (GLS)
4.4.1.5 Iterated local search (ILS)

4.4.2 Local search
4.4.2.1 Simulated annealing (SA)
4.4.2.2 Hill climbing
4.4.2.3 Tabu search (TS)
4.4.2.4 Random optimization

4.4.3 Population based
4.4.3.1 Evolutionary algorithm
4.4.3.2 Genetic algorithm
4.4.3.3 Genetic programming
4.4.3.4 Evolution Strategies
4.4.3.5 Evolutionary programming
4.4.3.6 Otros

4.4.3.6.1 Estimation of distribution
4.4.3.6.2 Differential evolution
4.4.3.6.3 Coevolutionary algorithms
4.4.3.6.4 Memetics algorithms

4.4.4 Swarm inteligence
4.4.4.1 Artificial ant colony optimization
4.4.4.2 Particle swarm optimization
4.4.4.3 Artificial bee colony optimization
4.4.4.4 Artificial immune system

4.4.5 Artificial intelligence
4.4.5.1 Artificial neural network

4.4.6 Hybrid
4.4.6.1 Exact methods
4.4.6.2 Metaheuristic

4.4.7 Metahybrid
4.4.7.1 Heuristic

Table 2.5: Types of Solutions.

2. Interruption of a new activity

3. Precedence interruption

4. Activity interruptions.

• Interruption of the duration of the activity

• Interruption of activity resource

5. Resource interruptions

• Renewable resource disruptions

• Nonrenewable resource disruptions

6. Multiple disruptions

All of these types of interruptions can result in the impossibility of the project’s
reference scheduling. In general, project management wants to avoid these scheduled
breaks. schedule breaks. This can be accomplished by generating a baseline schedule
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Figure 2.5: Sunburst charts to represent the solution methods

proactively, by proactively, trying to anticipate certain types of interruptions to min-
imize they’re to minimize their effect if they occur. If the schedule still breaks down
despite these proactive planning efforts, a reactive scheduling policy will be neces-
sary to repair the unworkable schedule. unfeasible schedule. In the realm of proactive
scheduling and reactive scheduling of projects for MRCPSP, some work has already
been done. some work has already been done.

Extensive research has been conducted on issues related to reactive scheduling in
project outage events; however, a systematic literature review reflecting the state of
the art of this crucial field has not been performed. Therefore, we decided to conduct
a study to highlight current theoretical and empirical developments in the domain of
reactive scheduling when outage events occur in projects and to exploit questions that
have not yet been answered by the literature, but researchers and practitioners are still
very interested to know. In this study, we focus on the following:

1. Analyzed trends and distribution / literature patterns based on reactive schedul-
ing of projects .

2. Propose a classification framework to highlight emerging issues and research
problems not yet addressed in the field of reactive project scheduling.

3. A reactive project scheduling monitoring and evaluation framework is recom-
mended.

2.4.1 Method

We followed the systematic literature review (SLR) methodology suggested by (Gupta
et al., 2019), (Tranfield, Denyer, and Smart, 2003) and (Macpherson and Jones, 2010).
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Data sources and search strategy

To collect relevant articles, we scanned the most important databases, including Web of
Science and Scopus, with the search limited to 2000 to 2020. Our search in all databases
focused on the following string: reactive AND project scheduling. We limited our
search to article titles only to select studies that had "projects" as a central part of the
discussion and analysis.

Study selection

For the selection of studies, we followed the inclusion and exclusion criteria listed in
Figure 2.6. The article selection process was performed in any phase. First, we included
articles written in English and published as journal article, article (book chapter), article
(proceedings paper) and review. Therefore, we excluded gray literature (conference
papers, doctoral dissertations, workshop abstracts, books, prefaces, poster sessions,
and news reports). This phase resulted in 61 publications for consideration. To take
this forward in the second stage, based on the title and abstract reviews, we selected
papers that had a clear focus on reactive scheduling issues related to project planning
and execution. Finally, the rigorous search process resulted in 47 papers to be part of
this systematic literature review. In Table 2.8 we detail the information of our data set.

11

22

33

44

55

Establishing the research 
questions

Establishing the research 
questions

Defining the conceptual 
boundaries

Defining the conceptual 
boundaries

Setting the inclusión 
criteria

Setting the inclusión 
criteria

Applying the exclusion 
criteria

Applying the exclusion 
criteria

Validating search 
results

Validating search 
results

• What is the trend in research of reactive scheduling of projects in
terms of research context?

• What is the status of reactive scheduling of projects research in
different continents/countries?

• What is the emerging research themes in the area of reactive
scheduling of projects?

• Which areas could not get much attention in reactive scheduling
of projects domain

• Broadly defining reactive scheduling of projects

Search boundaries
• Electronic databases (e.g. Web of Science, Scopus, EbscoHost)
Keywords for search & Period covered
• Reactive scheduling AND Project OR reactive scheduling of Project
• Till 2019

• Remove grey literatura (Conference papers, Books, White papers,
etc.)

• Remove articles published in all other languages except English
• Remove duplicate studies using Mendeley
• Remove articles that are not related to reseach domain
• Remove all articles outsides the cover period

• Cross-comparison among Researchers 1 and 2
• Revisiting articles by researchers and solve posible differences
• Ensuring inter-rater reliability

SLR 
Methodology

SLR 
Methodology

Figure 2.6: Info-graphics of SLR methodology

After article selection, we managed a database of publications with Mendeley and
JabRef, recording relevant information in a Microsoft Excel spreadsheet and completing
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Description Results
MAIN INFORMATION ABOUT DATA
Timespan 2003:2020
Sources (Journals, Books, etc) 36
Documents 47
Average years from publication 7.55
Average citations per documents 29.38
Average citations per year per doc 2.981
References 1
DOCUMENT TYPES
article 28
article; book chapter 1
article; proceedings paper 3
proceedings paper 13
review 2
DOCUMENT CONTENTS
Keywords Plus (ID) 85
Author’s Keywords (DE) 150
AUTHORS
Authors 109
Author Appearances 141
Authors of single-authored documents 1
Authors of multi-authored documents 108
AUTHORS COLLABORATION
Single-authored documents 1
Documents per Author 0.431
Authors per Document 2.32
Co-Authors per Documents 3
Collaboration Index 2.35

Table 2.8: Main information about reactive project scheduling article collection

an idea diagram for each article. The flow of our methodology can be seen in Figure
2.6.

2.4.2 Literature analysis: trends and themes

This review structure is based on 47 research articles published from 2003 to 2020. Fig-
ure 2.7, part a. and b. shows the behavior of the peaks in the different years, with
a very low average number of citations per year, but with an upward trend in recent
years. The reason for this behavior is due to the great interest of researchers in solving
reactive scheduling problems.

Studies based on reactive project scheduling have been published in a wide range
of engineering and management-oriented journals, see Figure 2.8. The selected research
papers belong to 36 journals. Among them, the Journal of scheduling (4), Computers &
Industrial Engineering (3), European Journal of Operational Research (3), and Interna-
tional Journal of Production Research (3) are the top four journals (Fig. 3). The top six
journals account for only about 17% of the total number of journals, which reflects the
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b.a.

Figure 2.7: Publication trend of studies on reactive scheduling of projects

degree of diversity in reactive project programming-based publications. Most of these
journals belong to the overlapping domains of engineering and management covering
specialized topics in project implementation and design.

Figure 2.8: Frequency distribution of reactive project scheduling in these leading jour-
nals.

We know that the citation value for a research article is determined by how many
times an article has been cited or mentioned by other articles. In performing the cita-
tion analysis, we relied on a Web of Science managed citation report that only covers
articles from journals listed in this database. Our analysis reveals that in the list of
the top 16 cited articles, the study published by Herroelen and Leus, 2005 which is
a survey dealing with the 5 procedures that exist to deal with uncertainty: reactive
scheduling, stochastic scheduling, scheduling under fuzziness, proactive scheduling,
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sensitivity analysis (citations = 515; Figure 2.9). Interestingly, this same article achieved
the highest citation rate (30.29 citations per year) among the selected articles. This high-
lights the importance of addressing reactive scheduling from the point of view of the
author Herroelen and Leus, 2005.

Figure 2.9: Total citations per paper.

Figure 2.10 (a. and b.) highlights the most relevant authors during the last 20 years.
Their hard research work and contributions, which have guided the academic world to
formulate and develop strategies to deal with reactive scheduling in projects.

2.4.3 Research lines found by the SLR

Below we show the classification we have identified in the context of reactive project
scheduling, using the coding of the articles addressed in the study. It is worth high-
lighting the research of (Herroelen and Leus, 2005) since it has been the starting point
of our study. In Table 2.9, you will find a classification for managing uncertainty in
projects.

5. Approaches to dealing with uncertainty in a
project scheduling environment.

5.1 Proactive (Robust) Project Scheduling
5.2 Generating a Baseline Schedule
5.3 Stochastic Project Scheduling
5.4 Fuzzy Project Scheduling
5.5 Reactive Project Scheduling

6. Classification of reactive reactive.

6.1 Schedule Repair

6.2 Rescheduling

6.3 Contingent Scheduling

6.4 Critical Chain/Buffer Management
(CC/BM)

6.5 Activity Crashing

6.6 Sensitivity Analysis

Table 2.9: Classification of approaches to manage project uncertainty..
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a.

b.

Figure 2.10: Frequency distribution of reactive project scheduling in these leading jour-
nals.

From the review of the documents and the above classification, we observe a mul-
tidimensional problem: uncertainty management and types of uncertainty. When es-
tablishing a reactive strategy, we can select schedule repair, rescheduling, contingent
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scheduling, critical chain/buffer management (CC/BM), activity crashing, and sensi-
tivity analysis. In Figure 2.11, we observe the relationship between reactive and proac-
tive scheduling, associated with reactive scheduling techniques. Now, by Table 2.10 we
can add the solution type dimension.

Metaheuristic Heuristic  and Exact

Solution Methods

Figure 2.11: Metaheuristic, heuristic and exact strategies found by SLR

count

Figure 2.12: Frequency distribution of reactive project scheduling in these leading jour-
nals.

2.5 Chapter Summary

In this chapter, we have presented a taxonomy and systematic review of the litera-
ture for the field of resource-constrained multiple-mode project scheduling and reactive
scheduling to handle events that affect project schedules. In this section, we summarize
the overall review and provide future research directions based on the research gaps in
the literature.

2.5.1 Taxonomy Summary and Research Directions

In line with the results of our taxonomy review, we identified three lines of future MR-
CPSP research studies. As very few of the models reviewed are aimed at solving the
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MRCPSP using several objective functions, it would be desirable that exact, heuristic,
or metaheuristic solution methods include multiobjective programming in their exe-
cution. Secondly, most previous work assumes that activities cannot be stopped or
interrupted at any time, which is not necessarily true. It is possible that, due to external
conditions, the activities are interrupted and generate penalties for exceeding the time
of completion. Research is needed to develop new methods that allow the inclusion of
these constraints during the mathematical formulation and posterior computational so-
lution of the MRCPSP. Last but not least, future studies must be focused on developing
ways to consider updates to the project’s parameters as the project progresses, espe-
cially when a large number of jobs (or sequences) are available. As of now, decisions
are made with the initial data and it is not possible to include updates to the project’s
schedule or activities. This produces erroneous results because the project does not
conform to the physical constraints. Overall, these lines of research are oriented to the
conception of more realistic, reliable, and robust models.

2.5.2 Summary of SLR for reactive scheduling and research direc-
tions

Forty-seven articles published in 36 academic journals up to 2020 were classified and
considered. The trend analysis showed that there has been a growth in the number
of publications in recent years; however, these publications were distributed in a wide
range of journals. It is worth noting that scientific production fell in the years from
2009 to 2013 with a very low average percentage of citations per year in this period.
Our study revealed that among the different research methods based on procedures
for solving reactive scheduling problems has been growing, which could be attributed
to the need to provide solutions to this type of problem under uncertain events.

In this classification, we find publications according to certain methods to deal
with uncertainty and their possible strategies to solve it under the reactive approach.
Among the methods to deal with uncertain events we have: reactive, proactive, fuzzy,
and stochastic project scheduling. Since our research is based on reactive schedul-
ing, the solution strategies that dominate are metaheuristics, heuristics, and exact pro-
cedures. There is a strong relationship between reactive scheduling and proactive
scheduling, this is given by providing schedules as protected as possible against in-
terruptions and then, deploying procedures during the execution to revise or optimize
the schedule when necessary. Forty-seven articles published in 36 academic journals up
to 2020 were classified and considered. The trend analysis showed that there has been a
growth in the number of publications in recent years; however, these publications were
distributed in a wide range of journals. It is worth noting that scientific production fell
in the years from 2009 to 2013 with a very low average percentage of citations per year
in this period. Our study revealed that among the different research methods based on
procedures for solving reactive scheduling problems has been growing, which could
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be attributed to the need to provide solutions to this type of problem under uncertain
events.

2.5.3 Joint Research Direction

From the taxonomy and SLR summarized above, it can be concluded that more research
is needed to develop better and efficient strategies, methods, approaches, models to
solve MRCPSP when suffering from uncertain events and apply reactive scheduling
immediately. Some of the possible research directions identified for future studies are:

1. Combine exact, heuristic, and metaheuristic strategies to improve solutions of
MRCPSP under uncertainty on a reactive plane.

2. Create an integrated reactive and proactive scheduling model under various ob-
jective functions.

3. Implement metaheuristic strategies to solve the multi-objective problem focused
on reactive scheduling.
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Chapter 3

A MEMETIC ALGORITHM FOR
SOLVING THE MRCPSP

3.1 Introduction

The field of project scheduling has had a notable development in the last decades
mainly because of the current competitive environment to offer quality products on
time and within the budget, and the important role that it plays in the decision-making
construction, transportation, distribution and communication fields. One of the most
important components of project scheduling is its management, which includes basic
administrative functions of planning, programming, and control. One source of mo-
tivation research is the multi-mode project scheduling problem (PSP) with resources-
constrained, where activities can be executed in different ways or modes and the main
goal is to minimize the duration of the project or makespan. In the literature, this is
known as the multi-mode resource-constrained project scheduling problem (MRCPSP).

Generally speaking, the MRCPSP is composed of three subproblems:

P1. Finding feasible modes per non-renewable resource, provided there are more than
two non-renewable resources. This is a NP-Complete problem (Kolisch, 2013).

P2. Finding a feasible solution of the RCPSP associated with any mode vector, which
corresponds to a NP-Hard problem. (Blazewicz, Lenstra, and Kan, 1983).

P3. Finding the optimal solution within the set of feasible solutions, which resembles
a NP-Hard problem (De Reyck et al., 1998).

Exact and heuristics strategies have been designed to solve P1, P2 and P3. How-
ever, depending on the number of activities, resource limitations and precedence re-
lationships, this problem is difficult to solve in a reasonable period of time while pro-
viding quality solutions. Several exact strategies and heuristics are distinguished in
Weglarz et al., 2011 that show some advantages when solving the MRCPSP. Unlike
previous strategies, the use of metaheuristics (MS) has become the preferred method
for solving the MRCPSP; some of them are presented in Table 3.1. In order to critically
evaluate the research around the MS to solve the MRCPSP, we performed a systematic
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Figure 3.1: Classification of Metaheuristic Strategies for solving the MRCPSP following
the criteria proposed by Van Peteghem and Vanhoucke, 2014. LS1: improving qual-
ity of initial population; LS2: improving feasibility; LS3: improving makespan; LS4:
forward-backward.

review literature based on the classification criteria proposed by Van Peteghem and
Vanhoucke, 2014:

1. Metaheuristic strategy: construction based, local search, population based,
swarm intelligence, hybrid.

2. Schedule representation: activity-list (AL), random key (RK).

3. Mode representation: mode list (ML) and mode vector (MV).

4. Schedule generation scheme: serial (S) and parallel (P).

5. Local search procedure: improving quality of initial population (LS1), improving
feasibility (LS2), improving makespan (LS3) and forward-backward (LS4).

Figure 3.1 shows a systematic analysis of MS strategies for solving the MRCPSP,
considering the number of citations and the classification criteria proposed by Van Pe-
teghem and Vanhoucke, 2014. Here we focus on solving the MRCPSP (P1-P2-P3) using
a MS procedure known as Memetic Algorithm (MA). The MA, designed by Moscato et
al., 1989, is defined as a MS that synergistically combines concepts from evolutionary al-
gorithms (EA) and local search (LS). This algorithm has demonstrated to be effective for
solving several problems of high computational complexity and provided exceptional
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Author Abreviation Year Metaheurist
Jozefowska et al., 2001 JOZE01 2001 Simulated annealing
Hartmann, 2001 HART01 2001 Genetic Algorithm
Nonobe and Ibaraki, 2002 NON02 2002 Tabu search
Alcaraz, Maroto, and Ruiz, 2003 ALCA03 2003 Genetic Algorithm
Bouleimen and Lecocq, 2003 BOUL03 2003 Simulated annealing
Zhang, Tam, and Li, 2006 ZHANG06 2006 Particle swarm optimization
Jarboui et al., 2008 JARB08 2008 Particle swarm optimization
Chiang, Huang, and Wang, 2008 CHIAN08 2008 Ant Colony Optimization
Damak et al., 2009 DAMA09 2009 Differential evolution
Lova et al., 2009 LOVA09 2009 Genetic Algorithm
Van Peteghem and Vanhoucke, 2009 VAN09 2009 Artificial immune system (AIS)
Ranjbar, De Reyck, and Kianfar, 2009 RANJ09 2009 Hybrid
Tseng and Chen, 2009 TSENG09 2009 Genetic Algorithm
Elloumi and Fortemps, 2010 ELLO10 2010 Rank-based evolutionary algorithm
Chen et al., 2010a CHEN10 2010 Hybrid
Van Peteghem and Vanhoucke, 2010 VAN10 2010 Genetic Algorithm
Wang and Fang, 2011 WANG11 2011 Shuffled frog-leaping algorithm
Van Peteghem and Vanhoucke, 2011 VAN211 2011 Scatter search
Zhang, 2011 ZHAN11 2011 Ant Colony Optimization
Coelho and Vanhoucke, 2011 COEL11 2011 Genetic Algorithm
Barrios, Ballestin, and Valls, 2011 BARR11 2011 Genetic Algorithm
Wang and Fang, 2012 WANG12 2012 Estimation of distribution algorithm
Chiang and Huang, 2012 CHIA12 2012 Ant Colony Optimization
Sebt, Alipouri, and Alipouri, 2013 SEBT13 2013 Evolutionary programming
Mirzaei and Akbarzadeh-T, 2013 MIRZ13 2013 Multi-Agent Learning Approach
Li and Zhang, 2013 LI2013 2013 Ant Colony Optimization
Shen and Li, 2013 SHEN13 2013 Particle swarm optimization
Chen and Wang, 2013 CHEN13 2013 Particle swarm optimization
Gomes, Neves, and Souza, 2014 GOME14 2014 Greedy randomized adaptive search procedure
Koulinas, Kotsikas, and Anagnostopoulos, 2014 KOUL14 2014 Particle swarm optimization
Vartouni and Khanli, 2014 VARTOUNI14 2014 Genetic Algorithm
Soliman and Elgendi, 2014 SOLI14 2014 Estimation of distribution algorithm
Wang, Liu, and Zhou, 2014 WANG14 2014 Coevolutionary algorithms
Chen, Liang, and Padilla, 2014 CHEN14 2014 Artificial bee colony optimization
Cui and Yu, 2014 CUI214 2014 Particle swarm optimization
Asta et al., 2015 ASTA15 2015 Hybrid
Zhang, Luo, and Zhang, 2015 ZHAN15 2015 Particle swarm optimization
Jedrzejowicz and Ratajczak-Ropel, 2015 JKED15 2015 Multi-Agent Learning Approach
Sebt, Afshar, and Alipouri, 2015 SEBT15 2015 Genetic Algorithm
Sebt, Afshar, and Alipouri, 2016 SEBT16 2016 Hybrid
Muritiba, Rodrigues, and Costa, 2018 MURI18 2018 Path-relinking algorithm
Geiger, 2017 GEIGER17 2017 Variable Neighborhood search
Zaman et al., 2020 ZAMAN20 2020 Variable Neighborhood search
Chakrabortty, Abbasi, and Ryan, 2020 CHAK20 2020 Hybrid

Table 3.1: Metaheuristic strategies for solving the MRCPSP.



52 Chapter 3. A MEMETIC ALGORITHM FOR SOLVING THE MRCPSP

results for the exploration and diversification of solutions in each iteration. Further-
more, its easy implementation and adaptation to problems with linear and non-linear
constraints, make MA attractive for combinatorial optimization problems.

The contributions of this paper can be summarized as follows:

1. The implementation of a variable neighborhood search (VNS) adapted to a dou-
ble justification operator, and a uniform crossing operator;

2. The development of an improvement procedure that optimizes the consumption
of resources and minimizes the work for the activities or their duration;

3. A robust experimental design to find suitable parameters for the MA algorithm.

The content of this document is as follows. In section 2 we conducted a systematic
review literature to classify MS procedures developed between 2000 to 2020. A detailed
description of the MRCPSP is given in section 3.2. In section 3.3, our approach is ex-
plained in detail. In section 3.4 the results of a computational experiment are shown.
Finally, our conclusions, along with potential lines of research, are presented in section
??.

3.2 Problem Description

Here we follow the problem description in Erik L. Demeulemeester, 2002, which simul-
taneously assigns the mode and the start time to each activity. The standard MRCPSP
involves the selection of activities by an execution mode for each activity and the as-
signment of an initialization or completion time to each activity in such a way that the
precedence relations are fulfilled, the resources are not exceeded and the makespan is
minimized.

According to the classification in Herroelen, Demeulemeester, and De Reyck, 1999,
the MRCPSP is denoted as u, 1T|cpm, disc, µ|Cmax, where u provides the number of
resources; 1T provides the availability of renewable and non-renewable resources, both
specified in a period of unit duration and a total project horizon basis; cpm regulates
the final-start precedence relationships without delays as used in the basic PERT/CPM
model; disc corresponds to the resource requirements of the activities and are a discrete
function of the duration of the activity; µ activities have multiple prespecified execution
modes; and Cmax is the objective function, which involves minimizing the duration of
the project or makespan.

A project consists of a set of real activities V = {1, . . . , n} each of which is carried
out without interruption. The dummy activities 0 and n+ 1 are introduced to represent
the start and end of the project, respectively. The set of renewable resources is denoted
by Rτ and will be used to denote the availability (units) of the type of renewable re-
source k ∈ Rτ . Renewable resources, available period to period, are those that can be
restored at a similar or superior speed than the consumption speed. Non-renewable
resources are limited to the finished duration of the project without restrictions on
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any time period. An example of non-renewable resource is the entire budget for the
achievement of a project. The set of non-renewable resource is denoted by Rη , and the
availability of a non-renewable resource type ` ∈ Rη is denoted by Rη

` .

To complete the project satisfactorily, it is necessary to process (execute, sequence)
each activity in one of several modes; the set of modes for an activity i ∈ V is denoted
by Mi = {1, 2, . . . , |Mi|}, where every mode m ∈ Mi represents a different way of
finishing the i-th activity and |Mi| represents the total number of modes. A mode m ∈
Mi determines the duration di,m ≥ 0 of the activity i ∈ V, measured in number of
periods or units of time, which indicates the time necessary to complete the activity,
and whether it is possible to interrupt the process of that activity. For dummy activities,
d0,1 = d(n+1),1 = 0. If the execution mode of activity i ∈ V is m ∈ Mi, rτ

i,m,k ≥ 0, where
rτ

i,m,k ≤ Rτ
k and rτ

0,1,k = rτ
n+1,1,k = 0 are the units of the renewable resource k required

by activity i for its realization. On the other hand, rη
i,m,` ≥ 0 are the required units of

the non-renewable resource l with rη
i,m,` ≤ Rη

` and rη
0,1,` = rη

(n+1),1,` = 0.

The most widely used mathematical formulations of the MRCPSP are those pre-
sented by Pritsker, Waiters, and Wolfe, 1969; Talbot, 1982; Valdes and Goerlich, 1993;
Mingozzi et al., 1998a. Most of the existing models for solving the MRCPSP are adapted
versions of Talbot (1982) who introduced the notation of a 0-1 programming model with
a binary decision variable ximt. In this model, ximt=1 if the i-th activity is performed in m
mode and starts at time t, and ximt = 0 otherwise. Here we propose, based on the start
times and resource consumption of the activities, the following mathematical formula-
tion, which constitutes a practical and simple model (Christofides, Alvarez-Valdes, and
Tamarit, 1987; Neumann, Schwindt, and Zimmermann, 2012):

min sn+1 (3.1)

subject to si + di,mi ≤ sj, ∀(i, j) ∈ E, (3.2)

∑
i∈A(S,M,t)

rτ
i,mi ,k ≤ Rτ

k , k ∈ Rτ , 0 ≤ t ≤ d, (3.3)

n

∑
i=1

rη
i,mi ,`

≤ Rη
` , ` ∈ Rη , (3.4)

mi ∈ Mi, ∀i ∈ V (3.5)

si ≥ 0, ∀i ∈ V (3.6)

s0 = 0 (3.7)

In (3), A(S, µ, t), also called the active set, is the set of real activities that be se-
quenced in time t, µ = (mi)i∈V is the vector mode, S = (si)i∈V is the vector of start
times for each activity and d̄ = ∑

j∈V
max
m∈Mj

dj,m is the maximum makespan. While the ob-

jective function (1) minimizes the makespan, the constraints represented in equation (2)
describes the precedence relationships between activities, equation (3) ensures that the
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per-period availability of the renewable resources is not violated, and equation (4) rep-
resents the restriction of non-renewable resources during the execution of the project.
Restrictions (5) and (6) ensure that each activity is assigned a single mode and a sin-
gle start time during the execution of the schedule. It is assumed that the start and
end of dummy activities are only executed in a single zero-duration mode and do not
consume resources (7).

A vector mode µ is a n + 2−tuple µ = (1, µ1, . . . , µn, 1) which assigns a unique
mode µj, 1 ≤ µj ≤ |Mj|m, to the j-th activity (1 ≤ j ≤ n). A mode vector µ for
which constraint (4) is satisfied is called resource feasible, and resource non-feasible
otherwise. The excess of non-renewable resource for a vector mode µ is defined by

Lη(µ) = ∑
k∈ Rη

|min{0, Rη
k −

n

∑
j=1

rη

j,µ(j),k}| (3.8)

being µ a feasible resource vector mode if and only if Lη(µ) = 0.

For illustration purposes, let us consider the instance J1037_2 from the PSPLIB li-
brary. This instance contains 10 real and two dummy activities. Each real activity has
three execution modes and, for each mode, two renewable and two non-renewable re-
sources are available. The availability of renewable resources is Rτ

1 = Rτ
2 = 12, and

the availability of non-renewable resources is Rη
1 = 37 Rη

2 = 60. Fig. 3.2 depicts
the network of activities in the nodes and Table 3.2 shows the durations for each ex-
ecution mode and the requirements for renewable and non-renewable resources. The
mode vector µ = (1, 1, 2, 3, 3, 3, 1, 3, 2, 3, 3, 1) is resource feasible as ∑11

i=0 rη
i,mi ,1

= 37,

∑11
i=0 rη

i,mi ,2
= 60 and Lη(µ) = 0. However, µ′ = (1, 1, 3, 3, 3, 3, 1, 3, 2, 3, 3, 1) has non-

feasible resources as ∑11
i=0 rη

i,mi ,1
= 38, ∑12

i=1 rη
i,mi ,2

= 63 and Lη(µ′) = 4. Fig. 3.3 depicts
a schedule with a makespan of 27 time periods.

Figure 3.2: Project instance
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Act i Mode mi dmi rτ
1,i,mi

rτ
2,i,mi

rη
1,i,mi

rη
2,i,mi

0 1 0 0 0 0 0
1 1 2 5 9 4 7

2 5 5 8 2 7
3 6 5 6 1 6

2 1 1 6 5 6 8
2 8 5 4 5 5
3 8 4 5 4 6

3 1 1 4 9 9 5
2 8 3 4 6 1
3 8 1 4 2 3

4 1 1 7 3 7 8
2 2 6 3 5 8
3 2 5 3 6 5

5 1 1 7 9 4 10
2 4 7 7 2 10
3 9 6 2 1 10

6 1 1 9 5 3 6
2 1 9 4 3 7
3 5 9 3 3 6

7 1 2 9 5 9 8
2 2 9 6 7 8
3 3 9 4 4 8

8 1 1 9 9 10 6
2 5 9 8 6 6
3 9 9 8 4 5

9 1 2 7 2 4 9
2 9 7 2 4 6
3 10 3 1 3 3

10 1 3 5 10 8 10
2 6 4 10 5 7
3 7 4 9 3 7

11 1 0 0 0 0 0
Rτ

1 Rτ
2 Rη

1 Rη
1

12 12 37 60

Table 3.2: Project information



56 Chapter 3. A MEMETIC ALGORITHM FOR SOLVING THE MRCPSP

1

2

3

4
5

6 7

8

9

10

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Time

R
1τ

1

2

3

4
5

6
7

8

9

10

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Time

R
2τ

Figure 3.3: Feasible schedule MRCPSP.

3.3 Memetic Algorithm

3.3.1 Basic scheme of a MA

The MA starts by selecting an initial population POB composed of nPob agents ordered
according to their fitness in non-decreasing order. Each agent is denoted by I = (λ, µ)

where µ is a mode vector and λ is a list of activities (LA). Further, a local search (LS)
is applied to all members of the population in order to improve their evaluation and
apply the mutation operator. Then, POB is partitioned into pairs of agents. For each
pair of resulting agents, the recombination operator is applied, thus obtaining two new
agents to which LS is performed to improve its evaluation. Further, the mutation op-
erator is subsequently applied, and a new LS is performed, hence the resulting agents
adhere to POB. Next, the selection operator is applied to reduce POB to its original
size nPob and obtain the next generation to which the same procedure is applied. This
process is repeated for a pre-established number of generations, Ngen, or alternatively
until a time limit is reached. Algorithm 1 provides a general template for a MA based
on the aforementioned considerations.

3.3.2 Representation

The MA operates in the same way than a genetic algorithm (GA) with a coded repre-
sentation of solutions, which is crucial for the success of a MA and the efficient use of
its operators. Kolish & Hartmann (1999) distinguish five different coded representation
schemes used for solving they RCPSP. Within these schemes, the LA and random key
(RK) representations are worth mentioning as their use a structure based on priority
rules between activities. In the LA representation, used by several authors (Bouleimen
and Lecocq, 2003; Hartmann, 2001; Jozefowska et al., 2001), a schedule is represented
by a precedence feasible activity list λ = (0, j1, . . . , jn, n + 1) in which each activity ji
must have a higher i than each of its predecessors in Pji , that is, Pji ⊂ {j1, j2, ji−1} for
j = 1, . . . , n.

While in the LA representation the position of an activity is determined by the rel-
ative priority of that activity over the others, in the RK representation the sequence in
which the activities are scheduled is based on the priority value attributed to each ac-
tivity. Valls et al., 1999 developed the topological order representation. When activities
i and j satisfy si < sj, activity i would have a higher priority than the activity j. In this
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Algorithm 1: Basic Memetic Algorithm.
Input : Instance I of the problem P, par parameters of P
Output: sol

1 begin
2 POB← GenerateInitialPop(par, P) ;
3 for all I ∈ POB do
4 I ← LS(I);
5 I ←Mutation(I);
6 POB← POB;
7 end
8 repeat
9 Select two agents IM, IF in POB;

10 generate binary vector v;
11 ID ← Crossover(IM, IF, v), IG ← Crossover(IF, IM, v);
12 ID ←Mutation(ID), IG ←Mutation(IG);
13 ID ← LS(ID), IG ← LS(IG);
14 newpop1 ← adhere ID, IG;
15 POB← Compete(POB, newpop1);
16 if Converge(POB) then
17 POB← Restart(POB, par);
18 end
19 until Termination criterion (par);
20 return GetNthBest(POB,1);
21 end

paper, however, we use the LA representation since it is equivalent to the topological
order representation (Valls et al., 1999), the transformation to a sequence is efficient and,
because it is a sequential process, it is easier to encode and transform it into a schedule
where each individual is represented by a double list composed by a list of activities
λ and a mode vector µ. Alcaraz, Maroto, and Ruiz, 2003 adds a forward/backward
(f/b) gene to the LA representation, which indicates the direction in which the serial
generation scheme builds the sequence. In our approach we use the two directions of
the activity scheduling at random. After establishing the list of activities λ, we generate
the mode vector µ and establish whether it is a feasible resource mode vector.

3.3.3 Initial Population

A fundamental part of the MA is the generation of the initial population POB of size
nPob. Algorithm 2 is executed to create the initial population using various MS. In
phase 1, Algorithm 3 is used to build nPob agents. Each agent has a mode vector which
is produced by the random selection of a mode construction rule; this rule selection
includes the sum of durations (SOD)(Boctor, 1993), the total work content (TWC)(Van
Peteghem and Vanhoucke, 2011), the opening mode-assignment (OMA)(Kolisch, 2013)
and random selection (RAND). If µ is a feasible resource, an improvement step is per-
formed in order to optimize either time or resource consumption by decreasing the
work of a randomly selected activity. The work of an activity is defined as
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work(j, µj) = dj,µj ·
(|Rτ |

∑
k=1

rτ
j,µj ,k

)
(3.9)

If µ is not a feasible resource, a LS procedure, previously used by Hartmann, 2001
in its GA, is applied to transform the mode vector into a vector of feasible modes using
Algorithm 4.

To generate the LA of feasible precedence λ, we establish the modes of the activ-
ities with respect to µ and subsequently define the RCPSP associated with the vector
of modes. Then, starting from an empty activity list and selecting a priority rule, a
precedence feasible activity list is constructed. The priority rules considered are Latest
Start Time (LST), Shortest Processing Time (SPT), Minimum Slack (MSLK), Resource
Scheduling Method (RSM), Latest Finish Time (LFT), Earliest Start Time (EST), Great-
est Positional Weight (GRPW), Longest Processing Time (LPT) and RAND. Next, pri-
ority rules are selected in the following order: SPT, MSLK, RSM, LFT, EST, GRPW, LPT
and RAND. Each of this priority rules contributes 10% of the solutions from the ini-
tial population, making up 80% of all solutions. The last priority rule to be selected is
the LST rule, which generates the remaining 20% of the solutions, to complete 100%
of the solutions. The above percentages (i.e., 10% and 20%) are chosen by performing
a 2-tailed Wilcoxon matched-pairs signed-ranks test for each pair of priority rules fol-
lowing Kolisch, 1996a. Hence, the initial population is formed with the nPob solutions
found, thus combining quality, feasibility and diversity.

In phase 2, as agents are generated, their fitness function is calculated. Agents
are subsequently attached to the population in non-decreasing order according to their
fitness. Thus, the result is an initially ordered population where the first agent has the
lowest fitness, and the last agent has the highest fitness.

Algorithm 2: Introduction of high quality solutions in the initial population.
Function: GenerateInitialPop(par Parameter, P Problem)
Output : Poblation POB

1 begin
2 POB← initilize;
3 while |POB| < nPob do
4 I ← GenerateAgent(par, P);
5 POB← POB ∪ {I};
6 end
7 return POB;
8 end

3.3.4 Schedule generation scheme and fitness computation

Each agent I is related to a certain sequence S, which is obtained from the adjustment
of the mode vector µ. The RCPSP associated to said mode vector is searched and the
generation scheme is applied in series (i.e., serial generation scheme [SGS]). SGS starts
without sequencing any activities with renewable and non-renewable resources at their
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Algorithm 3:
Function: GenerateAgent(par Parameter, P Problem)

1 Randomly select a rule in {SOD, TWC, OMA, RAND};
2 µ← rule(·);
3 µ← LocalSearchMode(µ, par, P);
4 The RCPSP is built with the mode vector;
5 Feasible precedence list λ is generated with one of the priority rules;
6 Agent I is defined for I = (λ, µ);
7 Return I = (λ, µ)

Algorithm 4: Feasible mode vector generator.
Function: LocalSearchMode(agent i,par Parameter, P Problem)

1 µ mode vector associated with i
2 if Lη(µ) = 0 then
3 the vector of modes is feasible;
4 We randomly select one case;
5 case 1 do
6 µ← ImprovementMode(µ) Return µ
7 end
8 case 2 do
9 Return µ

10 end
11 else
12 repeat
13 Select randomly j ∈ V with Mj > 1;
14 select randomly mj ∈ Mj \ {µj};
15 define µ′ = (µ1, . . . , mj, . . . , µn);
16 calculate Lη(µ) y Lη(µ′);
17 if Lη(µ′) ≤ Lη(µ) then
18 µ = µ′

19 else
20 go to the random selection of the activity.
21 end
22 until Lη(µ) = 0 or some stop criterion;
23 end
24 Return µ
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Algorithm 5: Mode improvement step.
Function: ImprovementMode(mode vector µ)

1 µ′ = copy(µ)
2 for i = 1 to n do
3 act ∈ V is randomly selected;
4 forall j ∈ Suc(act) (set of successors) do
5 forall m ∈ Mact and k ∈ Mj do
6 if work(act, m) + work(j, k) < work(act, µact) + work(j, µj) then
7 µ′act ← m;
8 µ′j ← k;
9 if Lη(µ′) = 0 then

10 µ← µ′

11 end
12 end
13 end
14 end
15 end
16 Return µ

initial availability. In each iteration g, 1 ≤ g ≤ n, we select the activity at position λg

and the start time is calculated such that it complies with the constraints of renewable
resources. This activity further defines a partial sequence Sg = (sλ1 , . . . , sλg). When all
the activities have been sequenced, a complete sequence with all the start times of the
activities will be available. The completion time of the sequence will be determined by
the final dummy activity.

To solve the three sub-problems P1-P2-P3 that compose the MRCPSP, a (M, S) pair
must be found. Here, M is a feasible mode vector and S is a feasible schedule, associ-
ated with the M mode vector, such that the makespan is minimized. Therefore, there
is a schedule associated for each I when the SGS is applied. Although S is feasible in
general, we allow to schedule some activity i into V considering its later start time and
resource constraints only when this is not the case, i.e., si > Lsti. Thus, we penalize
those agents that do not have a feasible resource mode vector. This penalty is further
used to adapt the objective function in Barrios, Ballestin, and Valls, 2011. Specifically,
the fitness of an agent is defined by

F(I) =

{
sn+1, if Lη(µ) = 0

F1(I) otherwise,
(3.10)

which penalizes the excessive use of non-renewable resources.

When the mode vector is not a feasible resource, we calculate the fitness of the
agent using F1 as
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F1(I) =


sn+1 + F(I∗) + ∑

i∈V
(si − Lsti)

+ − CPmin + Lη(µ) if Lη(µ∗) = 0

sn+1 + UB(µ) + ∑
i∈V

(si − Lsti)
+ + Lη(µ) otherwise,

(3.11)

where UB(µ) = ∑i∈V di,µi is an upper bound given the mode vector of I. This
function is composed by F(I∗), the aptitude of the best agent of the current population
with feasible mode vector, plus the increase over the project duration determined by
the minimum critical path of the project sn+1 − CPmin and the excess of non-renewable
resources. Since some activities may be allowed to start after their later start so that
they do not violate resource restrictions, such positive difference is also considered as
a penalty, that is, those activities for which si > Lsti are penalized. For cases in which
no agent in the population has a feasible mode vector, we define the fitness as the sum
of all the maximum durations of the project activities plus the excess of non-renewable
resources, its date of completion in the project and the differences between si and Lsti,
provided that si > Lsti. Therefore, non-feasible agents have greater fitness than doable
solutions. Finally, when the population does not have any agent with a vector in a
feasible way, their fitness will be greater than those having at least one agent with a
vector of feasible resources.

3.3.5 Crossover

The objective of the crossover operator is to generate new agents using mainly the
information extracted from the combined agents. Therefore, the selection crossover
operator has a big impact on the algorithm’s result when looking for quality solutions.
The uniform crossover operator, which is a generalization of the two-points crossing
operator for the RCPSP(Hartmann, 1999), constitutes an alternative to the crossover
operator. In what follows we redefine this operator for the MRCPSP.

The uniform crossover operator starts by selecting two agents IM and IF from the
search space I and a binary v vector with n + 1 components. Then, the crossing op-
erator XU(IM, IF, v) = ID = (λD, µD) is applied, with vi ∈ {0, 1} for i = 1, . . . , n + 1.
Next, the list of activities λD of ID is defined by

jD
i =

{
jM
k if vi = 0 with k = min{` ∈ N : jM

` /∈ {jD
1 , . . . , jD

i−1}}

jF
k if vi = 1 with k = min{` ∈ N : jF

` /∈ {jD
1 , . . . , jD

i−1}}

when vn+1 = 0 and i = 1, 2, . . . , n, and by

jD
i =

{
jM
k if vi = 0 with k = max{` ∈ N : jM

` /∈ {jD
1 , . . . , jD

i−1}}

jF
k if vi = 1 with k = max{` ∈ N : jF

` /∈ {jD
1 , . . . , jD

i−1}}
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when vn+1 = 1 and i = n, n− 1, n− 2, . . . , 1. Algorithm 6 shows this procedure.
It is important to highlight that, when using this crossing operator, four different alter-
natives for generating agents are available, thus expanding the exploration of different
regions in the search space. One way to generate a new agent is by alternating the
position of IM and IF.

Algorithm 6: Uniform crossover operator.

Function: Crossover(IM, IF, v)
1 if vn+1 = 0 then
2 for i = 1 to n do
3 if vi = 0 then
4 Calculate k = min{` ∈ N : jM

` /∈ {jD
1 , . . . , jD

i−1}};
5 Define jD

i = jM
k

6 else
7 Calculate k = min{` ∈ N : jF

` /∈ {jD
1 , . . . , jD

i−1}};
8 Define jD

i = jF
k

9 end
10 end
11 else
12 for i = n to 1 do
13 if vi = 0 then
14 Calculate k = max{` ∈ N : jM

` /∈ {jD
1 , . . . , jD

i−1}};
15 Define jD

i = jM
k

16 else
17 Calculate k = max{` ∈ N : jF

` /∈ {jD
1 , . . . , jD

i−1}};
18 Define jD

i = jF
k

19 end
20 end
21 end
22 for i = 1 to n do
23 if vi = 0 then
24 µ(jD

i ) = µM(jD
i )

25 else
26 µ(jD

i ) = µF(jD
i )

27 end
28 end
29 Return ID

3.3.6 Mutation

The mutation operator is applied in two stages: after applying LS to the population
POB and when an agent is generated by the crossing operator (Algorithm 7). In our
approach, we use an adaptation to the mutation operator used by Lova et al., 2009 for
solving the MRCPSP. Once the crossover operator has been applied and the population
of generated agents has replaced the original population, the mutation operator is ap-
plied again to the agent population. The mutation alters one or more genes (positions)
of a selected chromosome, that is, reintroduce genetically lost material and thus have
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Algorithm 7: Mutation operator.

Function: Mutation(I)
1 Select randomly i in {1, . . . , n};
2 if RND ≤ Pmut then
3 Calculate jµ = maxP(ji) and jν = minS(ji);
4 select jr ∈ (jµ, jν);
5 ĵr = ji;
6 ĵi = jr
7 else
8 ĵi = ji
9 end

10 if µ it is a feasible resource then
11 for i = 1 to n do
12 µ̂(ji) = µ(ji)
13 end
14 else
15 f ixrec(µ)
16 end
17 Return Î

some extra variability in the population. In fact, the mutation can lead to completely
new gene values, which sometimes allow the MA to arrive at better solutions than pre-
vious versions of the GA. In addition, the mutation helps to prevent the stagnation of
the population in any local optimum.

The mutation applies to both components of each individual representation (i.e.,
the LA and the modes vector). In the first case, the mutation procedure used is the in-
sertion procedure, which works as follows. For each activity in the LA, a new position
is chosen at random between the highest positions of its predecessors and the lowest
position of its successors. The activity is then inserted in the new position with proba-
bility Pmut. Regarding the mode allocation list, the application of the mutation operator
changes depending on whether or not the individual has a vector of feasible resource
modes. Hence, if the agent has a feasible mode vector, that mode vector is left. Con-
versely, if the mode vector is not feasible, we use the function f ixrec(µ). This function
is responsible for leveling the consumption of non-renewable resource by changing the
mode for the activity that consumes the most resource.

3.3.7 Variable Neighborhoods Search for Double Justification Multi-
ple Mode

The local search procedure used here is the variable neighborhoods search (VNS) de-
scribed in Hansen et al., 2010. The VNS consists of changing the structure of neigh-
borhoods systematically in order to continue the search after finding a local optimum.
The procedure implemented in VNS uses only two neighborhoods. In our implementa-
tion, the function GetNeighbor randomly generates a new agent I′ from a neighborhood
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(Algorithm 8). This neighborhood is defined by two types of movements: insertion for-
ward or N1, and insertion backward or N2, described as follows:

N1 movement: Given an agent I ∈ I , the insertion forward definesN1(I) by randomly
selecting λ, µ ∈ {1, 2, . . . , n− 1} with µ < λ. Then, the new agent will be gener-
ated by placing the activity iλ in the position µ, while activities in intermediate
positions move a position towards the right to guarantee practicality. In addition,
there is no precedence relation iv → iλ for v ∈ {µ, . . . , λ− 1}.

N2 movement: Given an agent I ∈ I , the insertion backwards defines N2(I) by ran-
domly selecting λ, µ ∈ {1, 2, . . . , n− 1} with λ < µ. Then, the new agent will be
generated having placed the activity iλ in the position µ, while activities in the
intermediate positions move a position to the left to guarantee the feasibility. In
addition, there is no relation of precedence iλ → iv for v ∈ {λ + 1, . . . , µ}.

Algorithm 8: VNS algorithm.
Function: VNS(I)

1 k := 1 ;
2 repeat
3 I ′ ← GetNeighbor(I, k);
4 I ′′ ← MMDJmax(I ′ , k) ;
5 ChangeNeighborhood(I, I ′′ , k);
6 until k = 2 or a prefixed number of times;

7 Return I

The MMDJmax operator, which is a fundamental part of Algorithm 8, is described
in Algorithm 9. This implementation is based on the justification operator by Tormos
and Lova, 2001, which is undoubtedly a powerful tool to obtain better quality solu-
tions. Barrios, Ballestin, and Valls, 2011 used an operator called double multiple mode
justification (MMDJmax).

We adapted these justification operators to the VNS algorithm to improve its so-
lutions. Given an agent I ∈ V, k = 1 and its respective S schedule obtained when
applying a SGS, activities are ordered in increasing numbers according to their start-
ing time, in order to select those activities with the earlier starting times. Further, each
activity, including its mode and start time, is eliminated from the schedule. All the re-
maining modes of the activity are evaluated, and new start date is determined such that
the new start time is the same or less than the previous, and the end date is earlier than
the previous, as long as the restrictions of renewable and non-renewable resources are
not violated. In this way, each activity provides a search dimension depending on the
number of modes. Then, the mode that allows the activity to be moved further forward
is selected. This technique simultaneously modifies the LA and the mode vector. When
k = 2, the procedure is similar, but activities are ordered in decreasing form depending
on their completion times.

Function ChangeNeighborhood in Algorithm 8 compares the values of F(I) with
the new value F(I′′) obtained from the k−th neighborhood. If an improvement is ob-
tained, the new data is updated and k is returned to its initial value. If not, the next
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Algorithm 9: MMDJmax algorithm.

Function: MMDJmax(I, k)
1 for s = 1 until n do
2 i = v(s);
3 for h = 1 until |Mi| do
4 Build M′: M′(j) = M(j) ∀j 6= i, M′(i) = h;
5 if M′ is feasible resource then
6 Calculate ESih and LSih ;
7 if ESih < LSih then
8 Calculate the highest t ∈ [ESih , LSih ] where i can be sequenced in

[t, t + di,h]
9 end

10 end
11 end
12 end
13 Return I

neighborhood is considered. The neighborhood change can be performed determinis-
tically, stochastically or using both approaches simultaneously.

3.4 Computational Experiments

Here we show the results of our MA in detail. In section 3.4.1, we conduct an exper-
imental design to determine the potential interaction between the parameters of our
MA algorithm. Section 4.4.3 reports the results of our MA algorithm when different
instances are used. Finally, in section 3.4.3, we compare the results of our MA with
different procedures available in the literature for solving the MRCPSP.

3.4.1 Experimental Design

In order to assess whether the parameters of the MA affect its performance, computa-
tional experiments were conducted using a random sample of the set of instances of
50 activities of the MMLIB library (i.e., MMLIB50). An orthogonal matrix was used to
design a factorial experiment, and the effect of five factors and their interactions on the
response variable were examined. Controlled parameters of the MA included the ini-
tial population size (nPob), the crossing probability (Pcross), the mutation probability
(Pmut), the number of generations (Ngen), and the use of the VNS operator (Vns). With
the exception of the Vns factor that have two levels (0: No, 1: Yes), all parameters were
set to have three levels (Table 3.3). For the MMLIB50 instance, the response variable is
%Dev, that is, the average deviation from the critical path lower bound.

An L18 orthogonal design was chosen;values of %Dev obtained with our MA are
shown in Table 3.4. Statistical analysis of the experiment using ANOVA revealed that
factors Vns, nGen, pCross, and nPob have, overall, the higher significantly significant
effects on %Dev (Table 4.4); the percentage contribution to the mean squared is 52.67%,
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MA parameter nPob pCross pMut nGgen Vns

Level 1 20 0.2 0.1 20 0 (No)
Level 2 60 0.6 0.2 50 1 (Yes)
Level 3 100 0.8 0.3 80 -

Table 3.3: Levels of the parameters of the MA used in the computational experiments.

Factors

Trial No. nPob pCross pMut nGen Vns %Dev

1 20 0.8 0.1 50 1 0.33
2 100 0.2 0.2 50 0 0.389
3 60 0.8 0.1 50 0 0.372
4 20 0.5 0.2 80 1 0.343
5 60 0.5 0.2 20 0 0.4
6 60 0.8 0.3 80 1 0.328
7 100 0.5 0.3 50 1 0.333
8 20 0.2 0.3 20 1 0.39
9 100 0.2 0.1 80 1 0.358
10 100 0.8 0.2 20 1 0.393
11 60 0.2 0.3 80 0 0.383
12 20 0.8 0.2 80 0 0.377
13 60 0.5 0.1 20 1 0.345
14 20 0.5 0.3 50 0 0.4
15 100 0.5 0.1 80 0 0.369
16 100 0.8 0.3 20 0 0.378
17 60 0.2 0.2 50 1 0.348
18 20 0.2 0.1 20 0 0.466

Table 3.4: L18 orthogonal arrays with the response variable.

15.12%, 14.45%, and 11.6%, respectively. Although the factor pMut is not a statistically
significant contributing factor to %Dev, it was not removed from the model since it can
introduce new information to the agents. Now, in order to avoid incorrectly selecting
the model parameters and minimize Type I or Type II errors, P-values were corrected
for multiple testing using the FDR.

Table 4.5 shows %Dev for each level of factors in the experimental design (see Table
3.4 for more details), with ∆ representing the maximum difference between the level
responses. Further, these differences were ranked from 1 (minimum) to 5 (maximum)
to reflect the maximum difference in performance. Profile plots for %Dev by all factors
are shown in Fig. 3.4. These plots help to graphically identify the best levels for the
experimental factors and provide an excellent guide for the adjustment of the MA. We
identified that the optimum set up conditions for the proposed MA are nPob = 100,
pCross = 0.8, pMut = 0.2 and nGen = 80, while applying the VNS strategy.
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Figure 3.4: Boxplots and profile plots for %Dev as a function of the MA parameters.
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Factor Df. Mean Square F-value C(%) P-Value P-Adjust

nPob 2 0.001 7.952 11.660 0.013 0.016
pCross 2 0.002 9.859 14.457 0.007 0.012
pMut 2 0.000 0.150 0.220 0.863 0.863
nGen 2 0.002 10.31 15.121 0.006 0.012
Vns 1 0.011 71.85 52.677 0.000 0.000
Residuals 8 0.000 5.865

Residual standard error: 0.01236 on 8 degrees of freedom.
Multiple R-squared: 0.9413, Adjusted R-squared: 0.8754.
F-statistic: 14.27 on 9 and 8 DF, p-value: 0.000503

Table 3.5: ANOVA results. Here, C(%) represents the contribution of each factor and P-
Adjust the associated P-value corrected for multiple testing using the False Discovery
Rate (FDR) (Benjamini and Hochberg, 1995).

Factors

nPob pCross pMut nGen Vns
Level 1 0.3846 0.3856 0.3700 0.3869 0.3932
Level 2 0.3633 0.3656 0.3663 0.3625 0.3438
Level 3 0.3576 0.3543 0.3692 0.3562
∆ 0.0269 0.0312 0.0037 0.0306 0.0494
Rank 2 4 1 3 5

Table 3.6: Ranking of factors by level effects.

3.4.2 Results of the MA

In this section, we assess the performance of our MA algorithm under several instances
available in the literature. The MA has been coded and compiled in C++ and tested on a
Toshiba laptop computer with an Intel Core i5 2.3GHz processor. Computer tests were
performed using the PSPLIB and MMLIB libraries created by the ProGen (Kolisch and
Sprecher, 1996) and Rangen1 (Van Peteghem and Vanhoucke, 2014) generators. The
PSPLIB library contains, for each subset of instances, 640 instances with two renewable
and non-renewable resources, and 10, 12, 14, 16, 18, 20, and 30 activities. However,
there are instances that are not feasible, i.e., not all of these instances can be resolved.
Thus, all non-feasible instances will be excluded from our research.

Table 3.7 lists all instances with optimal results or at least a viable solution found
for different subset instances of the PSPLIB and MMLIB libraries. For example, the
MMLIB library contains three subsets of instances: the sets MMLIB50 and MMLIB100
have 540 instances with 50 and 100 activities, respectively. Each project activity has
two renewable resources, two non-renewable resources, and three modes per activ-
ity. To date, 220 optimal solutions have been found for the instances in MMMLIB50
(Chakrabortty, Abbasi, and Ryan, 2020) and 236 optimal for those in MMLIB100. The
MMLIB+ set, on the other hand, has a total of 3240 instances, between 2-4 renewable
resources, and 2-4 non-renewable resources with 3, 6, and 9 modes per activity. A total
of 373 optimal solutions have been found for this set (Chakrabortty, Abbasi, and Ryan,
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2020).

Dataset Number of
instances

Number of
activities

Number of
renewable
resources

Number of
nonrenewable

resources

Execution
modes per

activity

J10 536 10 2 2 3
J12 547 12 2 2 3
J14 551 14 2 2 3
J16 550 16 2 2 3
J18 552 18 2 2 3
J20 554 20 2 2 3
J30 552 30 2 2 3

MMLIB50 540 50 2 2 3
MMLIB100 540 100 2 2 3
MMLIB+ 3240 50-100 2,4 2,4 3,6,9

Table 3.7: Parameter settings of the test instances of the PSPLIB and MMLIB libraries

Our main results are presented in Table 3.8; column #Act shows the number of
activities, #Feas the number of feasible instances, and #Opt the number of optimal so-
lutions found. We calculated the average deviation, %Dev, considering 1000 and 5000
schedules with fixed parameters for the J10, J12, J14, J16, J18, J20 and J30 instances of
the PSPLIB library, and the MMLIB50, MMLIB100 and MMLIB+ instances from the
MMLIB library. For the J30, MMLIB50, MMLIB100 and MMLIB+ instances, we com-
puted %Devcpm, defined as the average deviation from the critical path lower bound
(LBcpm). The %Opt column corresponds to the percentage of optimum solutions found
for the J10, J12, J14, J16, J18 and J20 instances, or equal to the LBcpm for J30.For the
MMLIB50, MMLIB100 and MMLIB+ instances, %Opt is obtained by comparing the so-
lutions provided by our MA algorithm with the best-known lower bounds. In addition,
we considered a time limit of 0.1 and 0.15 seconds per activity (s/act), and calculated
1000 and 5000 schedules using the criteria proposed by Van Peteghem and Vanhoucke,
2011.

Our MA algorithm behaves very well for all instances of the PSPLIB library. How-
ever, the increase of %Dev is discussed because of the influence of the MA parameters
in the MMLIB instances. To investigate this pattern further, we performed a multivari-
ate linear regression analysis with using the order strength (OS), the renewable and
nonrenewable resource strength (RSτ and RSη), the number of modes (|M|), the re-
newable resource factor (RFτ), and the number of renewable ((|Rτ |) and nonrenewable
(|Rη |) resources as the independent the factors/variables. The response variable is the
average deviation from the critical path lower bound with 5000 calculated schedules.
Results are presented in Table 3.9. For the MMLIB50 and MMLIB100 set of instances,
the the proportion of variance in %Dev explained by the independent variables in the
model is low; these values are 51% and 52%, respectively. A different behavior occurs
in the MMLIB+ instance where this percentage is 72%. We found that the OS is not
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Stopping Criterion

1000
Sched-
ules

5000
Sched-
ules

0.1 s/act 0.15 s/act

Instance #Feas #Opt %Dev #Opt %Dev #Opt %Dev#Opt %Dev%Opt

J10 536 535 0.004 536 0 536 0 536 0 100
J12 547 537 0.085 547 0 537 0.087 547 0 100
J14 551 537 0.094 548 0.02 537 0.1 547 0.02 99
J16 550 518 0.22 543 0.05 525 0.18 541 0.06 99
J18 552 500 0.36 526 0.19 514 0.25 528 0.16 97
J20 554 496 0.41 524 0.22 508 0.33 531 0.16 96
J30∗ 552 - 13.76 - 12.74 - 13.66 - 12.7 54
MMLIB50∗ 540 - 27.30 - 26.76 - 26.82 - 26.56 40
MMLIB100∗ 540 - 33.23 - 29.14 - 31.61 - 30.26 44
MMLIB+∗ 3240 - 90.18 - 88.05 - 92.78 - 91.25 11
∗average % deviation from the critical path length, %Devcpm

Table 3.8: Performance of our MA for instances of the PSLIB and MMLIB libraries.

Dataset R2 Const. OS RFτ RSτ |M| RSη |Rη | |Rτ |
MMLIB50 0.51 0.83 0.01 0.25 -0.54 - -0.97 - -
MMLIB100 0.52 0.71 0.06 0.45 -0.64 - -0.95 - -
MMLIB+ 0.72 1.32 0.01 - -1.33 0.19 -2.12 0.04 0.03

Table 3.9: Results of the multivariate regression on the MMLIB library.

significant for any of the instances, while RFτ is significant and has a strong positive
effect on %Dev for both MMLIB50 and MMLIB100. Interestingly, increasing RSτ and
RSη decreases %Dev for all set of instances, that is, lower values of RSτ and RSη signif-
icantly improve the performance of our MA algorithm. For MMLIB+, increasing |M|,
|Rτ | and |Rη | increases %Dev. This behavior, however, is expected as changing these
parameters increases the complexity of the MRCPSP. Table 3.10 summarizes the results
of our MA with respect to the OS, RSτ , RSη and RFτ parameters. Overall, our results
indicate that execution time of the MA is acceptable and the quality of the sequences is
quite good.

3.4.3 Comparison with other Metaheuristics

In this section, we compared the results provided by our MA algorithm and other pro-
cedures available in the literature (see, for instance, Van Peteghem and Vanhoucke,
2014) when 5000 schedules are generated and the %Dev is calculated. For the J30 sets
of instances of PSPLIB library, and the MMLIB50, MMLIB100, and MMLIB+ instances
of MMLIB library, %Devcpm is used.

Tables 3.11 and 3.12 summarize our results. Overall, our MA outperforms all ap-
proaches in the J10, J12, J14, and J30, and competes reasonably well for the remaining
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Measure Parameter MMLIB50 MMLIB100 MMLIB +

1000 5000 1000 5000 1000 5000
OS 0.25 29.93 26.73 29.2 25.84 88.00 86.62

0.5 31.44 27.81 36.45 32.51 91.31 89.03
0.75 31.08 27.37 34.06 29.39 100.13 97.05

RFτ 0.5 23.56 21.02 22.66 19.36 - -
0.75 30.95 27.54 32.09 28.17 - -
1.00 37.82 33.13 46.09 41.27 90.18 88.05

RSτ 0.25 48.39 44.28 54.15 49.98 134.73 133.43
0.5 23.82 20.53 23.43 19.88 72.20 70.08
0.75 20.24 17.11 22.12 17.87 65.24 62.76
1.0 - - - - 44.53 42.70

RSη 0.25 62.94 57.07 65.64 58.35 145.2 142.33
0.5 19.51 16.18 22.05 18.32 85.19 82.73
0.75 10.01 8.67 12.02 11.07 39.93 38.11

Table 3.10: %Dev for three instances of the MMLIB library for 1000 and 5000 schedules
when the proposed MA algorithm is used.

set of instances of the PSPLIB library. For the MMLIB50 and MMLIB100 sets of the MM-
LIB library, PA18 and VANP11 are slightly better than our MA implementation, whereas
for the MMLIB+ set, CHAK20 outperforms PA18 and our proposal.

PSPLIB Library

Method J10 J12 J14 J16 J18 J20 J30 Average
Rank

PR (PA18) 0.01 0 0.05 0.03 0.09 0.06 12.85 1.87
MA (This work) 0 0 0.02 0.05 0.19 0.22 12.74 1.89
EA (VANP11) 0 0.02 0.08 0.15 0.23 0.32 13.66 2.07
GA (VANP10) 0.01 0.09 0.22 0.32 0.42 0.57 13.75 2.2
MV (CHAK20) 0.15 0.62 0.81 0.15 0.89 0.27 13.63 2.36
GA (COEL11) 0.07 0.16 0.3 0.48 0.56 0.8 14.44 2.4
GA (LOVA09) 0.06 0.17 0.32 0.44 0.63 0.87 14.77 2.47
DEA(DAMA09) 0.09 0.11 0.34 0.42 0.59 1.62 15.43 2.66
EA (ELLO10) 0.12 0.24 0.8 1.14 1.53 0.91 13.91 2.66
EOD(WANG12) 0.12 0.14 0.43 0.59 0.9 1.28 15.55 2.72
GA (HART01) 0.06 0.14 0.44 0.59 0.99 1.21 16.93 2.91
PSO (JARB08) 0.03 0.09 0.36 0.44 0.89 1.1 18.14 3.01
EA (RANJ09) 0.18 0.65 0.89 0.95 1.21 1.64 16.21 3.1
GA (TSEN09) 0.33 0.52 0.93 1.08 1.32 1.69 17.06 3.28
PSO (ZHANG06) 0.11 0.17 0.41 0.83 1.33 1.79 18.63 3.32
GA (ALCA03) 0.24 0.73 1 1.12 1.43 1.91 21.85 4.04
SA (BOUL03) 0.21 0.19 0.92 1.43 1.85 2.1 99.64 15.19

Table 3.11: Comparison of the average deviation of different algorithms for several
instances. For J30, the average deviation from the critical path, %Devcpm, is calculated.

In order to determine whether there are significant differences between procedures
for solving the MRCPSP, we performed a Kruskal-Wallis (KW) test. For the PSPLIB



72 Chapter 3. A MEMETIC ALGORITHM FOR SOLVING THE MRCPSP

MMLIB Library

Method MMLIB50 MMLIB100 MMLIB+ Average
Rank

PR (PA18) 24.24 25.18 86.84 45.42
MA (This work) 26.76 29.14 88.05 47.98
MV (CHAK20) 35.6 65.7 48.37 49.89
EA (VANP11) 25.45 26.51 101.45 51.14
GA (LOVA09) 28.59 31.01 114.07 57.89
DEA (DAMA09) 32.46 36.87 126.69 65.34
GA (HART01) 30.61 33.98 132.01 65.53
EA (RANJ09) 32.16 37 131.06 66.74
EA (ELLO10) 32.47 40.22 130.06 67.58
EOD (WANG12) 31.95 38.55 144.84 71.78
GA (ALCA03) 43.05 52.67 177.55 91.09
GA (TSEN09) 37.92 66.04 183.02 95.06

Table 3.12: Comparison of the average deviation of different algorithms for several
instances. For MMLIB50 and MMLIB100, the average deviation from the critical path
was calculated.

library, we selected the four most important metaheuristic procedures that have domi-
nated the literature in the last 10 years (i.e., PA18, CHAK20, VANP11, VANP10) and the MA
proposed in this study, and tested whether any of the selected algorithms produced sta-
tistically significant differences in the percentage of deviation changes. Interestingly,
the KW test provided no evidence of significant differences between the algorithms
compared to solve the MRCPSP (χ2

4 = 8.201, P = 0.084). Similarly, we considered all
the procedures described above for the MMLIB library and observed no significant sta-
tistical difference (χ2

1 = 9.10, P = 0.611). In summary, these results indicate that our
proposal performs equally well then the most important metaheuristic procedures and
can be considered a plausible and feasible alternative to solve MRCPSP in the selected
instances.

3.5 Chapter Summary

The multi-mode resource-constrained project scheduling problem (MRCPSP) is a very
general scheduling model. The MRCPSP covers problems where activities can be ex-
ecuted in several ways or modes, and are affected by parameters such as their dura-
tion, temporary relationships with other activities, and renewable and non-renewable
resource requirements. The objective of the MRCPSP is to select a combination of
time/resources to minimize the duration of the project and completing all activities
while satisfying all resource constraints and precedence relationships. Here we de-
scribe a Memetic Algorithm to solve the MRCPSP. This algorithm uses the components
of genetic algorithms and variable neighborhoods search to implement (1) an adap-
tation of the uniform crossover operator, and (2) a local search to assess agents’ per-
formance that appropriately guide the evolution of the algorithm and hence generate
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better solutions. We implement a metaheuristic strategy and compare its performance
for solving different instances of the standard PSPLIB and MMLIB libraries. Overall,
our Memetic Algorithm provides suitable solutions for the MRCPSP and shows out-
standing performance in all tested instances.
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Chapter 4

AN ADAPTATIVE BACTERIAL
FORAGING OPTIMIZATION
ALGORITHM FOR SOLVING
THE MRCPSP WITH
DISCOUNTED CASH FLOWS

4.1 Introduction

The bacterial foraging optimization (BFO) algorithm (Passino, 2002) is inspired by the
group behavior of foraging bacteria such as E.coli and M.xanthus. The algorithm im-
itates how bacteria feed in a landscape of nutrients to perform a non-aggressive par-
allel optimization, perceiving chemical gradients in the environment (such as nutri-
ents) and moving towards or away from specific signals. The BFO algorithm belongs
to the natural-inspired algorithm class (Bio-Inspired Computing) (Kar, 2016), which
is applied in scheduling (Zhengwei, Pang, and Wang, 2011), data clustering (Wan et
al., 2012), prediction of the stock market (Majhi et al., 2009), economic load dispatch
(Saber and Venayagamoorthy, 2008), dynamic economic dispatch (Vaisakh, Praveena,
and Rao, 2010), forecasting using neural networks (Zang, He, and Ye, 2010) and a job-
shop scheduling problem (Ge and Tan, 2012). Furthermore, Chen, Zhu, and Hu, 2011
propose a BFO algorithm based on artificial bacteria that are capable of self-adapting
their exploration and exploitation behaviors in the foraging process. The proposal uses
a crossing technique of a genetic algorithm (GA) to improve the evaluation of the objec-
tive function (Panda and Naik, 2012). The mutation operator is then applied to change
the structure and position of the bacteria with reference to the nutrient-rich areas and to
reintroduce the genetic material lost in the colony and create a variation in the bacteria.

The multi-mode resource-constrained project scheduling problem (MRCPSP) is an
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important practical problem in both project management and combinatorial optimiza-
tion. The MRCPSP is NP-hard and, if there is more than one nonrenewable resource,
then finding a feasible solution for the MRCPSP is NP-complete (Kolisch and Drexl,
1997). The classical MRCPSP consists of selecting an execution mode for each activ-
ity and the assignment of an initialization or completion time of the activities under
resource and precedence restrictions with the objective of minimizing the makespan.
Some variants of the MRCPSP with respect to the measure performance include maxi-
mizing the project’s net present value (NPV), minimizing the resource availability cost,
or minimizing project associated costs (Weglarz et al., 2011). According to Herroelen,
Van Dommelen, and Demeulemeester, 1997, there are several payment models such as
the Lump-sum payment (LSP), payments at activities’ completion times (PAC), equal
time intervals (ETI) and progress payment (PP). The existing metaheuristics to solve the
MRCPSP using the NPV as the objective function are GA (Ulusoy, Sivrikaya-Şerifoğlu,
and Şahin, 2001; Leyman and Vanhoucke, 2016; Aboutalebi, Najafi, and Ghorashi,
2012), simulated annealing (SA) (Dayanand and Padman, 2001; Mika, Waligóra, and
Weglarz, 2005; Delgoshaei et al., 2014), memetic algorithms (MA) (Chen and Chyu,
2008), ant colony optimization (ACO) (Chen et al., 2010b) and Tabu search (TS) (Icmeli
and Erenguc, 1994). However, the use of metaheuristic strategies for solving the MR-
CPSP based on bacteria’s behavior is nonexistent.

This paper proposes an adaptative bacteria foraging optimization (ABFO) algo-
rithm to resolve the MRCPSP with discount cash flows (MRCPSPDC), defined as the
sum between discounted cash inflows and outflows. We apply the PAC payment
model, where the client pays the contractor for the completion of each activity of the
project. The ABFO is characterized by implementing several operators, including the
chemotaxis operator based on the double-justified operator to explore and exploit fea-
sible regions; the swarm operator that transmits the information of the best bacteria
to the rest of the bacteria in the colony; and the crossover and mutation operators to
the ABFO algorithm. The parameters for the ABFO implementation are obtained us-
ing a robust Taguchy experimental design. Computational experiments show that our
ABFO algorithm provides very good solutions for the MRCPSP under the objective of
maximizing NPV.

The remainder of the paper is organized as follows: Section 4.2 describes the MR-
CPSPDC formulation; section 4.3 shows our ABFO in details and in section 4.4 the
results of the computational experiments are reported.

4.2 Problem description

The MRCPSPDC involves the selection of activities by an execution mode for each ac-
tivity and the assignment of an initialization or completion time of the activities in such
a way that the precedence relations are fulfilled without violating the deadlines, the re-
sources are not exceeded, and the NPV of the project is maximized. The MRCPSPDC
problem is denoted as m, 1T|cpm, δn, disc, µ, ci|npv when the PAC payment function is
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considered. Following the classification in Herroelen, Demeulemeester, and De Reyck,
1999, m provides the number of resources; 1T provides the availability of renewable
and non-renewable resources, whose availability is specified both in a unit duration
period and in a total project horizon basis; cpm regulates the final-start precedence
relationships without delays as used in the basic PERT/CPM model; δn a project dead-
line is imposed; disc corresponds to the resource requirements of the activities and is a
discrete function of the duration of the activity; µ activities have multiple prespecified
execution modes; ci activities have an associated arbitrary cash flow, and npv is the
objective function, which involves maximizing the NPV of the project.

Formally, let V = {0, 1, 2, . . . n + 1} be the set of activities of a project, where
1, . . . , n are real activities, each of which is conducted without interruption. The
dummy activities 0 and n + 1 are introduced to represent the start and end of the
project, respectively. Consider the acyclic graph G = (V, E), where V denotes the
set of nodes and E the set corresponds to a finish-start, zero-lag precedence relation-
ship between pair of activities. Precedence relationships between activities are defined
by (i, j) ∈ E, which denotes that activity i is an immediate predecessor of activity j,
implying that activity j may not start before activity i is completed. To complete the
project satisfactorily, it is necessary to process (execute, sequence) each activity in one
of several modes; the set of modes for an activity i ∈ V is denoted by Mi, where every
mode m ∈ Mi represents a different way of realizing the activity i. A mode m ∈ Mi de-
termines the duration di,m ≥ 0 of the activity i ∈ V, measured in number of periods or
units of time, which indicates the time necessary to complete the activity. For dummy
activities, d0,1 = d(n+1),1 = 0. Furthermore, for the execution of each activity, renewable
and non-renewable resources are needed. The set of renewable resources is denoted by
Rτ and will be used to denote the availability (in units) of the type of renewable re-
source k ∈ Rτ . Renewable resources, available period to period, are those that can be
restored at a similar or superior speed than the consumption speed. Non-renewable
resources are limited to the finished duration of the project, without restrictions on any
time period. The set of non-renewable resources is denoted by Rη . The availability of a
non-renewable resource type ` ∈ Rη is denoted by Rη

` . In addition, we assume δn > 0
to be the deadline for completing the project. Moreover, each activity is associated with
a cash in- and outflow, such that ci,in > 0 and ci,out < 0, respectively, the discount rate
is α > 0 and fi is completion time of the activity i ∈ V.

We use the following mathematical formulation, which is based on the PAC pay-
ment model (Vanhoucke, Demeulemeester, and Herroelen, 2001; Leyman and Van-
houcke, 2016):
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Maximize
n

∑
i=1

(ci,in + ci,out) · e−α fi (4.1)

subject to fi ≤ f j − dj,mj , ∀(i, j) ∈ E, (4.2)

∑
i∈A(F,M,t)

rτ
i,mi ,k ≤ Rτ

k , k ∈ Rτ , 0 ≤ t ≤ δn+1, (4.3)

n

∑
i=1

rη
i,mi ,`

≤ Rη
` , ` ∈ Rη , (4.4)

fn+1 ≤ δn+1 (4.5)

mi ∈ Mi, ∀i ∈ V (4.6)

fi ∈ int+, ∀i ∈ V (4.7)

In (3), A(F, M, t), also called the active set, is a set of real activities which will be
sequenced in time t; M = (mi)i∈V is the mode vector; and F = ( fi)i∈V is a vector of
completion times for each activity. The objective function (1) maximizes the project’s
NPV by discounting the cash inflow and outflow to each activity’s finish time. The con-
straints represented by equation (2) describe the precedence relationships between ac-
tivities; equation (3) ensures that the availability of renewable resources is not exceeded
in each period; and equation (4) ensures that non-renewable resources are available
throughout the project. Restrictions in equation (5) ensure that the deadline for project
delivery is met, and those in equation (6) ensure that each activity is assigned only one
mode. The restriction in (7) states that the decision variables should be integers. It is as-
sumed that dummy activities start and end are only executed in a single zero-duration
mode and do not consume resources.

A vector mode µ is a n + 2−tuple µ = (1, µ1, . . . , µn, 1), which assigns to the j-th
activity, 1 ≤ j ≤ n, a unique mode µj, 1 ≤ µj ≤ |Mj|. Any vector µ satisfying the
constraints in (4) is called resource feasible. Otherwise, it will be said resource non-
feasible. We define the excess of non-renewable resource for a vector mode µ by

Lη(µ) = ∑
k∈ Rη

|min{0, Rη
k −

n

∑
j=1

rη

j,µ(j),k}| (4.8)

Thus, µ is a feasible resource vector mode if and only if Lη(µ) = 0.

4.3 The ABFO algorithm

The ABFO algorithm is based on the chemotactic behavior of bacteria that will perceive
chemical gradients in the environment (such as nutrients) and move towards or away
from specific signals. According to Passino, 2002, this search is saltatory. The ABFO is
a metaheuristic strategy that combines concepts from BFO and several metaheuristics
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such as GA, particle swarm optimization (PSO) and ant colony optimization (ACO).
The different steps followed by the ABFO algorithm can be initially subdivided into
four mobile behaviors: chemotaxis, swarm, reproduction, and elimination-dispersion.
However, we have added two new procedures based on the mutation and a change
in the way bacteria reproduce. Parameters used in our implementation of the ABFO
algorithm are described in Table 4.1. Algorithm 10 provides an overview of the ABFO
algorithm for maximizing the NPV of the project using the PAC model.

Table 4.1: Nomenclature for Algorithm 10.

Parameter Description
n Number of actual project activities
nBact Initial number of bacteria in the colony
Nc The number of chemotactic steps
Ns The swimming length
Nre The number of reproduction steps
Ned The number of elimination-dispersal steps
Ped Elimination-dispersal probability
Pswarm Swarming probability
Pcross Crossover probability
PmutE Spontaneous mutation probability
PmutR Reverse mutation probability
Bactbest Best bacteria in the colony

4.3.1 Representation

Like GA, ACO and PSO, the ABFO algorithm operates on the same coded repre-
sentation of solutions. Bacterium are presented as X = (λ, µ), where λ is a (n +

2)−dimensional vector called activity list, and µ is a mode vector. A list of activities
λ is of feasible precedence if all the predecessors of an activity are located in the list
before that activity (Bouleimen and Lecocq, 2003; Hartmann, 2001; Jozefowska et al.,
2001; Leyman and Vanhoucke, 2016; Van Peteghem and Vanhoucke, 2010). The µ vec-
tor is called the mode vector for the corresponding activities. For each activity j ∈ V, a
mode µj ∈ Mj is selected. Then

X =

(
0 j1 · · · jk · · · jn n + 1
1 µ1 · · · µk · · · µn 1

)
(4.9)

where each bacteria X is related to a given SX schedule, which is obtained from the
setting of the µ modes. Then, the single-mode resource-constrained project scheduling
problem (RCPSP) associated with the mode vector is searched using a serial generation
scheme is applied. The advantage of the list of activities is that it is always feasible
with respect to the precedence relationships. In addition, it eliminates schedules with
incompatibility problems that can never be terminated due to technological limitations.
However, it will produce redundancy in the search space and will make the size of the
search space at most n! for the list of activities. The search space for the mode vector
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Algorithm 10: Pseudocode for our ABFO implementation.
Input : n, nBact, Nc, Ns, Nre, Ned, Ped, Pswarm Pcross, PmutE, PmutR
Output: Bactbest

1 begin
2 Col ← InitializeColony(nBact, n) ;
3 for l = 1 to Ned do
4 for k = 1 to Nre do
5 for j = 1 to Nc do
6 Col ← Chemotaxis(Col, nBact, Ns);
7 for all Bact ∈ Col do
8 if NPVBact ≥ NPVBactbest then
9 Bactbest ← Bact

10 end
11 end
12 end
13 Col ← SortByCellHealth(Col);
14 Swarming(Col, Pswarm);
15 Crossover(Col, Pcross);
16 Mutation(Col, PmutE, PmutR);
17 Col ← SelectByCellHealth(Col, nBact/2)
18 end
19 for all Bact ∈ Col do
20 if RAND() ≤ Ped then
21 Bact← CreateBactAtRandomLocation()
22 end
23 end
24 end
25 end
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will be SP = {(1, µ1, · · · , µn, 1) : µj ∈ Mj with j ∈ V} taking into account feasible
and non-feasible modes. Although other types of representation such as random key
(Kolisch and Hartmann, 1999) and topological order (Valls et al., 1999) have been used,
Hartmann and Kolisch, 2000 concluded that activity list-based procedures outperform
these representations. However, Debels et al., 2006 showed that the standardized ran-
dom key (SRK) also leads to promising results.

4.3.2 Initial colony

The ABFO algorithm starts by building an initial colony conformed by bacteria gener-
ated randomly or by priority rules, for the selection of activities and modes. We use
Algorithm 11 to generate nBact bacteria. Each bacteria has a mode vector which is
produced by the random selection of a mode construction rule; this rule selection in-
cludes the shortest feasible mode (SFM)(Boctor, 1996), the lower total work content
(LTWC)(Van Peteghem and Vanhoucke, 2011), the minimum resource consumption
(MRC)(Kolisch, 2013) and random selection (RAND). Moreover, if µ is not a feasible
resource, a local search (LS) procedure, previously used by Hartmann, 2001 in its GA,
is applied to transform the mode vector into a vector of feasible modes using Algorithm
12.

Algorithm 11: Generate bacteria.
Input : par Parameter , P Problem
Output: X Bacteria

1 begin
2 Randomly select a rule in {SFM, LTWC, MRC, RAND};
3 µ← rule(·);
4 µ← Feasible mode vector assignment;
5 The RCPSP is built with the mode vector;
6 Feasible precedence list λ is generated with one of the priority rules;
7 Bacteria X is defined for X = (λ, µ);
8 end

To generate the list of activities of feasible precedence λ, the modes of the activities
are fixed with respect to µ. Then, 10% of the nBact solutions are calculated with the Lat-
est Start Time (LST), Shortest Processing Time (SPT), Minimum Slack (MSLK), Resource
Scheduling Method (RSM), Latest Finish Time (LFT), and Earliest Start Time (EST) pri-
ority rules, as well as the Greatest Range Positional Weight (GRPW), Longest Process-
ing Time (LPT), RAND (Random Priority Rules) and Modified-Cumulative Cash Flow
(mCF) rules proposed by Tantisuvanichkul, 2014, to dynamically select activities with
the highest value of ci (ci,in or ci,out) from a list of available activities without violating
the precedence rules, critical path and other restrictions. Formally, this is equivalent to
calculate
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Algorithm 12: Feasible mode vector assignment.
Input : Mode vector µ
Output: Feasible mode vector µ

1 begin
2 if Lη(µ) = 0 then
3 the vector of modes is feasible;
4 end
5 repeat
6 Select randomly j ∈ V with |Mj| > 1;
7 select randomly mj ∈ Mj \ {µj};
8 define µ′ = (µ1, . . . , mj, . . . , µn) calculate Lη(µ) y Lη(µ′);
9 if Lη(µ′) ≤ Lη(µ) then

10 µ = µ′;
11 else
12 go to the random selection of the activity;
13 end
14 until Lη(µ) = 0 or some stop criterium;
15 end

max
j∈Dg

cj · e−α·tj + ∑
k∈Sucj

ck · e−α·(tk−tj)
with tj =

{
ESTj, if cj ≥ 0,

LSTj, otherwise,
(4.10)

where Dg is the set of eligible activities in step g and Sucj is set successors of j ∈
V. The initial colony is formed with the best nCol obtained, thus combining quality,
feasibility and diversity.

4.3.3 Schedule generator scheme

The schedule generator scheme (SGS) is a crucial part of many procedures for the stan-
dard MRCPSP. Each bacteria X is related to a certain sequence S, which is obtained
from the adjustment of the mode vector µ. The RCPSP associated with said mode
vector is searched and the generation scheme is applied. There are two schedule gener-
ator schemes, namely the serial (SGS-serial) (Kelly, 1963) and parallel (SGS-parallel)
(Bedworth and Bailey, 1999) schemes. These schemes generate a feasible schedule by
extending, in stages, a partial schedule. That is, the finish times are assigned to only
a (not necessarily proper) subset of V. At each stage, the SGS builds the set of all el-
igible activities, also called the decision set. Only the series scheme is detailed, since
it works on the temporary increase, significantly increasing the value of the NPV. In
addition, the SGS-serial starts without sequencing any activities with renewable and
non-renewable resources at their initial availability. Then, at each iteration g, 1 ≤ g ≤ n,
we select the activity at position g based on a priority rule; the start time is calculated
such that it complies with the constraints of renewable resources. This activity defines
a partial sequence Sg = (sλ1 , . . . , sλg). When all the activities have been sequenced, a
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complete sequence with all the start times of the activities will be available. The com-
pletion time of the sequence will be determined by the final dummy activity.

4.3.4 Evaluation of bacterium

An important aspect of the ABFO algorithm is the determination of the evaluation
or strength of the bacteria in the colony. This is accomplished by a fitness function,
which evaluates the quality of the solutions. To obtain the evaluation of a bacteria, the
SGS-serial is applied and a feasible sequence F is obtained. If for a given bacteria
the applied schedule results in the violation of the deadline or nonrenewable resource
constraints, the penalty

NPV(X) =


∑
i∈V

(ci,in + ci,out) · e−α( fi+|K|)) if Lη(µ) = 0

∑
i∈V

(ci,in + ci,out) · e−α( fi+Ci+|K|)) if Lη(µ) > 0
(4.11)

is included in the objective function. Here, K = 1
2 max{0, δn − fn+1} and

Ci =

{
fn+1 + Lη(µ) if ci,in + ci,out ≥ 0

− fn+1 − Lη(µ) if ci,in + ci,out < 0
(4.12)

In general, the solution strategies for the MRCPSPDC use penalties when any re-
striction is violated for the single-mode and multi-mode case. Mika, Waligóra, and
Weglarz, 2005 shows a function to evaluate the NPV using a penalty for deadline re-
striction. However, it only works with positive cash flow. Leyman and Vanhoucke,
2016 use two penalty functions and apply this approach to improve the viability of the
project with respect to the project deadline and the feasibility of mode selection, and
generalizes the objective function presented by Leyman and Vanhoucke, 2015 for the
single-mode case.

4.3.5 Chemotaxis

The chemotaxis process can be described in two operations, namely, swim and tumble.
The tumble operation is based on conducting a search in different directions in which
the bacteria can find environments with a greater amount of nutrients. This behavior is
also called a random direction walk. Instead, the swim operation is considered a walk
in the same direction to areas with better conditions. We describe the whole process of
swimming and tumbling in a single procedure.

At each step of a chemotaxis process, a vector v of n components is generated;
each component belongs to the set {0, 1}. The total number of “1”s are decided by non-
negative integer called the specific step size for the tumble, which is determined by the
Tum(i) as follows (Ge and Tan, 2012):
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Tum(i) =
[[(

NPVmax − NPVi
NPVmax − NPVmin

)
n
]]

(4.13)

In this expression, [[·]] is the integer part function, NPVi is the net present value of
the i−th bacteria, and NPVmax and NPVmin correspond, respectively, to the maximum
and minimum value of the NPV in the colony. As Tum(i) is inversely proportional
to the fitness of the i−th bacteria, a high value in the evaluation of the i−th bacteria
produces a low Tum(i) (Ge and Tan, 2012).

To perform the tumble on the i−th bacteria, the number of Tum(i) positions to be
selected from the position vector is randomly calculated. Further, values of the ele-
ments of vector v at these positions are set to “1”. Then, for these positions, a priority
value, which indicates the order to make the change in the position vector, is calculated
as:

priori(j) =
cj · e−α·t + ∑k∈Sj

ck · e−α·(tk−tj)

maxj∈H{cj · e−α·t + ∑k∈Sj
ck · e−α·(tk−tj)}

(4.14)

In the expression above, the set H corresponds to those activities for which the
vector v has a 1 in that position. We select the highest NPV given an activity and its
successors. Then, for each of them, we calculate the quotient in equation (14) and deter-
mine the direction according to the highest value among the priorities. After finding the
directions to make the bacteria turn, the swimming mechanism is applied. For each di-
rection, we will make a movement regarding the duration of the activities by changing
the mode as long as the new mode complies with the non-renewable resource restric-
tions. Algorithm 13 shows the chemotaxis procedure. The TumbleSwim(·) operator,
which is a fundamental part of Algorithm 13, is described in Algorithm 14. This imple-
mentation is based on the double multiple mode justification by Barrios, Ballestin, and
Valls, 2011. We adapted these operators to increase the value of the objective function.
Hence, given the vector v, we make a movement with respect to the duration of the
activities by changing the mode as long as the new mode meets the non-renewable re-
source restrictions. After making the movements with respect to the modes, we make a
change in the start and end times of those activities for which it optimizes the objective
function. Thus, activities j ∈ V with positive cash flow will be justified on the left, or
on the right otherwise.

4.3.6 Swarming

We adapt the Swarming operator by Ge and Tan, 2012 to the MRCPSPDC. Initially, an
n−dimensional vector v with entries in the set {0, 1} is generated. This vector defines
the order in which the elements of the newly produced bacteria vector are extracted
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Algorithm 13: Chemotaxis procedure.
Input : Col, n, S, Ns
Output: Col

1 begin
2 for all Bact ∈ Col do
3 for i = 1 to Ns do
4 Define Tum(Bact) and v;
5 Bact′ ← TumbleSwim(Bact, Tum(Bact), v);
6 if Npv(Bact′) < Npv(Bact) then
7 i← Ns;
8 else
9 Bact← Bact′;

10 end
11 end
12 end
13 end

Algorithm 14: TumbleSwim Operator.

Input : Bact, Tum(Bact), v
Output: Bact

1 begin
2 DefineH = {i ∈ V : v(i) = 1} with |H| = Tum(Bact);
3 Calculate priori(j) for each j ∈ H.;
4 for k = 1 to Tum(Bact) do
5 Select i = min{j ∈ H : priori(j) = max

s∈H
{priori(s)}};

6 for h = 1 to |Mi| do
7 Build M′: M′(j) = M(j) ∀j 6= i, M′(i) = h;
8 if M′ is feasible resource then
9 Calculate ESih and LSih ;

10 if ESih < LSih then
11 Calculate the t ∈ [ESih , LSih ] where i can be sequenced in [t, t + di,h]

and ci · e−αt is greatest.
12 end
13 end
14 end
15 Update activity list and mode vector M of Bact;
16 CalculateH = H \ {i} ;
17 end
18 end
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from the best bacteria and the selected bacteria, respectively. After one element is ex-
tracted from one bacteria and removed from the other, it is added to the newly pro-
duced bacterial vector. This step is repeated until both the best and the best vector of
bacteria are empty and the resulting bacteria contains all the elements involved. A new
bacteria is created based on the detection and communication of the quorum and is
accepted in the population if its aptitude is higher than the original. Figure 4.1 gives
an example of the Swarming operator. It should be noted that, when the Swarming
operator is used, it is possible to produce premature convergence to a local optimum.
To avoid this, a probability Pswarm must be considered.

Figure 4.1: Example of the Swarming operator.

4.3.7 Crossover

After performing the Tumbling operator and swimming in the chemotactic step, it is
necessary to order the bacteria according to their health in descending form. To sim-
ulate the behavior of some bacteria inheriting information to their descendants, we
use a uniform crossing operator that generalizes the crossing operators of one and two
points. Algorithm 15 shows the pseudocode for the uniform crossing operator used in
our approach. When using this crossing operator, the colony is divided into two groups
to select the parental bacteria; these groups are subsequently crossed to produce the de-
scendant bacteria.

4.3.8 Mutation

The mutation operator has a spontaneous mutation and a reverse mutation phase
(Amador-Fontalvo, Paternina-Arboleda, and Montoya-Torres, 2014), and runs as long
as the bacteria need it, depending on the colony. A bacterium that has no affinity with
colony members will be more likely to mutate than one that has good affinity.

In the spontaneous phase, the mutation operator alters one or more positions of
a selected bacteria, that is, reintroduces lost material and thus have some extra vari-
ability in the colony. In fact, spontaneous mutation can lead to totally new bacteria,
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Algorithm 15: Uniform crossover operator.

Input : XM, XF and v.
Output: XD

1 begin
2 if vn+1 = 0 then
3 for i = 1 to n do
4 if vi = 0 then
5 Calculate k = min{` ∈ N : jM

` /∈ {jD
1 , . . . , jD

i−1}};
6 Define jD

i = jM
k ;

7 else
8 Calculate k = min{` ∈ N : jF

` /∈ {jD
1 , . . . , jD

i−1}};
9 Define jD

i = jF
k ;

10 end
11 end
12 else
13 for i = n to 1 do
14 if vi = 0 then
15 Calculate k = max{` ∈ N : jM

` /∈ {jD
1 , . . . , jD

i−1}};
16 Define jD

i = jM
k ;

17 else
18 Calculate k = max{` ∈ N : jF

` /∈ {jD
1 , . . . , jD

i−1}};
19 Define jD

i = jF
k ;

20 end
21 end
22 end
23 for i = 1 to n do
24 if vi = 0 then
25 µ(jD

i ) = µM(jD
i );

26 else
27 µ(jD

i ) = µF(jD
i );

28 end
29 end
30 end
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which sometimes allows ABFO to reach better solutions. In addition, the mutation
helps preventing population stagnation at any local optimum. The mutation applies to
both the λ activity list and the µ mode vector. In the first case, the spontaneous muta-
tion procedure used is that of insertion which works as follows: for each activity in the
list of activities a new position is chosen at random between the highest positions of
its predecessors and the lowest position of its successors. The activity is then inserted
in the new position with a probability PmutE. As for the mode assignment vector, the
application of mutation operator changes depending on whether or not the bacterium
has a feasible resource mode vector. If the bacterium has a feasible mode vector, that
mode vector is left. Otherwise, it seeks to improve the consumption of non-renewable
resources.

The second phase is the reverse mutation. This process is used only for a part of
the bacteria that performed spontaneous mutation, which are selected with probabil-
ity PmutR and still have little affinity with the colony. If these bacteria have moved to
unfeasible regions, they should return to the position they had before the spontaneous
mutation took place. We consider PmutE = PmutR = Pmut.

4.3.9 Selection

At the end of the mutation of the bacteria, the number of bacteria has doubled because
the uniform crossing operator produces two daughter bacteria whenever the parents
cross. It is necessary to select nBact/2 bacteria with the highest level of health deter-
mined by NPV(·), while the other nBact/2 bacteria are eliminated from the colony.

4.3.10 Elimination and Dispersal

The process of elimination-dispersion is responsible for updating the colony, eliminat-
ing some bacteria with probability Ped and then introducing bacteria in different po-
sitions. In reality, the elimination-dispersion operator helps preventing the premature
convergence of the colony, thus introducing new information to it.

4.4 Computational Experiments

In this section, we present the results of computational experiments. In section 4.4.1 we
present the set of instances resolved using the ABFO algorithm, the algorithm param-
eters and the stop criteria. In section 4.4.2, we perform a Taguchi experimental design
to quantify the influence of each parameter of our ABFO algorithm on its performance,
while in section 4.4.3 we present the results of the algorithm evaluated in the sets of in-
stances. In section 4.4.4 we compare the results of our ABFO with the genetic algorithm
(GA) presented in Leyman and Vanhoucke, 2016. Finally, we compare the contribution
of ABFO operators applied to the set of MMLIB50 instances in section 4.4.5.
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4.4.1 Set of instances and parameter settings

The ABFO algorithm has been coded and compiled in C++. In order to test our
ABFO algorithm, computational tests were performed on a Toshiba laptop computer
with an Intel Core 2.3 GHz processor. Experiments were similar to those presented
in Leyman and Vanhoucke, 2016 for the PAC payment function using the sets of in-
stances of the PSPLIB (Kolisch and Sprecher, 1996) and MMLIB (Van Peteghem and
Vanhoucke, 2014) libraries. The PSPLIB library contains seven sets of instances (J10,
J12, J14, J16, J18, J20 and J30); each instance is comprised of 640 schedules with two
renewable resources, two non-renewable resources, and 10, 12, 14, 16, 18, 20 and 30
activities, respectively. However, there are instances that are not feasible, i.e., not all
of these instances can be resolved. Thus, all non-feasible instances were excluded
from our research. Although the MMLIB library is composed by three instances (i.e.,
MMLIB50, MMLIB100 and MMLIB+), the sets MMLIB50 and MMLIB100 have 540 in-
stances each with 50 and 100 activities, respectively. Furthermore, each activity has
two renewable resources, two non-renewable resources and three modes. The MM-
LIB+ set, on the other hand, has a total of 3240 instances, between 2-4 renewable re-
sources, 2-4 non-renewable resources with 3, 6 and 9 modes per activity. For experimen-
tal purposes, we assumed project deadline values DIncr ∈ {makespan× (1 + K)\K =

5%, 10%, 15%, 20%}, where makespan is the minimum duration of the project found to
date. For the cash flow, we used the data in Leyman and Vanhoucke, 2016 such that for
each project there is a percentage of negative cash flow (%Neg), which takes values in
{0%, 20%, 40%, 60%, 80%, 100%}. The ABFO algorithm was executed using the optimal
values established by our Taguchi design, and 5000 schedules as the stopping criterion
following Lova et al., 2009.

4.4.2 Taguchi experimental design

The Taguchi experimental design is a standardized form of design of experiments
(DOE) developed by Dr. Genichi Taguchi in the 1940s to improve the quality of manu-
factured goods in an effort to simplifying and standardizing the application of the DOE
technique. Two of the major tools used in the Taguchi’s method include the orthogonal
array (OA) and the signal-to-noise ratio (SNR). This experimental design applies frac-
tional factorial test designs, called OAs, that serve to reduce the number of experiments
to be performed. The selection of a suitable OA depends on the number of control fac-
tors and their levels. Using an OA design can estimate the effect of multiple process
variables which are simultaneously affecting on the performance characteristic, while
minimizing the number of test runs. Whether a particular process variable has an effect
on the response of interest is determined using an Analysis of Variance (ANOVA). The
OA is denoted as LN(Sk), where N is the number of factor combinations in the experi-
ment, S in the number of levels for each factors, and k represents the number of factors
in the experiment. Following Taguchi’s method, the minimum number of runs required
to conduct the experiment can be calculated as NTaguchi = 1 + ∑k

i=1(S
k − 1) = 15.
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Levels (coded) Levels (uncoded)

Factor Level 1 Level 2 Level 3 Level 1 Level 2 Level 3
nBact 1 2 3 10 30 50
Nc 1 2 3 2 4 6
Nre 1 2 3 5 10 15
Ned 1 2 3 5 10 15
Pswarm 1 2 3 0.1 0.5 0.9
Pcross 1 2 3 0.1 0.5 0.9
Pmut 1 2 3 0.1 0.5 0.9

Table 4.2: Parameters (factors) and their levels.

In this study, the identified factors were colony size (nBact), the elimination-
dispersion step (Ned), reproduction step (Nre), chemotactic step (Nc), swarming prob-
ability (Pswarm), mutation probability (Pmut) and crossover probability (Pcross), each of
which has three possible levels (Table 4.2). The suitable OA should be greater than the
number of experiments NTaguchi. Thus, the L27(37) OA was selected. Table 4.3 shows
the combinations of ABFO algorithm parameters for the Taguchi experimental design.

Taguchi’s method was used to determine the optimal parameters for our ABFO
algorithm. Experiments were performed in the MMLIB50 set of instances of the MMLIB
library. In instances where feasible solutions (Feas) were determined (i.e., solutions
that do not violate resource and deadline restrictions), the response variable was the
average NPV (AvgNPV) calculated as

AvgNPV =
1
|Feas| ∑

x∈Feas
NPV(x) (4.15)

For each instance of the MMLIB50 set, the experiment was conducted by ran-
domly selecting a negative percentage cash flow in {0%, 20%, 40%, 60%, 80%, 100%}
and a deadline project increase in {5%, 10%, 15%, 20%}. Table 4.4 shows the ANOVA
results; column C(%) is the percentage contribution of each factor to the total variation.
We found that factors nBact and Ned have the higher significant effects on AvgNPV;
the percentage contribution to the mean squared is 37% and ≈ 25%, respectively. Al-
though the other factors are not statistically significant, they were kept as they may in-
troduce new information or variations to the colony. Now, in order to avoid incorrectly
selecting the model parameters and minimize Type I or Type II errors, the resulting
P-values were corrected for multiple testing using the False Discovery Rate (Benjamini
and Hochberg, 1995); corrected P-values are reported in Table 4.4 the P-Adjust column.

Table 4.5 shows the AvgNPV for each level of factors in the Taguchi experimental
design (Table 4.3). The ∆ value represents the maximum difference between the level
responses. These differences are then ranked from 1 to 7, being 7 the rank for the
maximum value of AvgNPV. Thus, the optimum set up parameters that maximize
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Factors

Experiment nBact Nc Nre Ned Pswarm Pcross Pmut AvgNPV
1 10 6 10 10 0.1 0.9 0.9 -82192.94
2 10 6 10 15 0.5 0.1 0.5 -92610.33
3 10 4 15 5 0.5 0.9 0.1 -97486.04
4 10 2 5 10 0.5 0.5 0.9 -89516.52
5 10 2 5 5 0.1 0.1 0.1 -123536.66
6 10 2 5 15 0.9 0.9 0.5 -88533.90
7 10 4 15 15 0.1 0.5 0.5 -88789.31
8 10 6 10 5 0.9 0.5 0.1 -85040.58
9 10 4 15 10 0.9 0.1 0.9 -94020.51

10 30 2 15 10 0.1 0.9 0.5 -49722.65
11 30 4 10 10 0.5 0.5 0.5 -61358.33
12 30 2 15 5 0.9 0.5 0.9 -76807.57
13 30 2 15 15 0.5 0.1 0.1 -65278.19
14 30 4 10 5 0.1 0.1 0.9 -104694.10
15 30 6 5 15 0.1 0.5 0.1 -78679.51
16 30 6 5 10 0.9 0.1 0.5 -84569.60
17 30 4 10 15 0.9 0.9 0.1 -80373.05
18 30 6 5 5 0.5 0.9 0.9 -116035.01
19 50 2 10 15 0.1 0.5 0.9 -36236.18
20 50 6 15 10 0.5 0.5 0.1 -73876.07
21 50 2 10 10 0.9 0.1 0.1 -69788.72
22 50 6 15 5 0.1 0.1 0.5 -87026.80
23 50 4 5 10 0.1 0.9 0.1 -68129.99
24 50 4 5 5 0.9 0.5 0.5 -79919.31
25 50 6 15 15 0.9 0.9 0.9 -37661.26
26 50 2 10 5 0.5 0.9 0.5 -64536.93
27 50 4 5 15 0.5 0.1 0.9 -48600.91

Table 4.3: Orthogonal matrix design L27 for the Taguchi experiment.

Factor Df. Mean Square F-value C(%) P-Value P-Adjust

nBact 2 2122261837 10.802 37.007 0.002 0.014
Nc 2 169850867 0.864 2.962 0.446 0.624
Nre 2 399890192 2.035 6.973 0.173 0.404
Ned 2 1427041817 7.263 24.884 0.009 0.029
Pswarm 2 13882248 0.071 0.242 0.932 0.932
Pcross 2 323919444 1.649 5.648 0.233 0.407
Pmut 2 99024863 0.504 1.727 0.616 0.719
Residuals 12 196478188 20.557

Residual standard error: 14020 on 12 degrees of freedom.
Multiple R-squared: 0.7944, Adjusted R-squared: 0.5546.
F-statistic: 3.313 on 14 and 12 DF, p-value: 0.02212

Table 4.4: Results of the ANOVA.
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Factors

nBact Nc Nre Ned Pswarm Pcross Pmut

Level 1 -93525 -73773 -86391 -92787 -79889 -85569 -82465
Level 2 -79724 -80374 -75203 -74797 -78810 -74469 -77451
Level 3 -62864 -81965 -74518 -68529 -77412 -76074 -76196
∆ 30661.18 8192 11872 24257 2477 11100 6269
Rank 7 3 5 6 1 4 2

Table 4.5: Ranking of factors by level effects.

the NPV when using our ABFO algorithm are nBact = 50, Nc = 2, Nre = 15, Ned = 15,
Pswarm = 0.9, Pcross = 0.5 and Pmut = 0.9.

4.4.3 Results of the ABFO

In this stage we evaluate the performance of our ABFO algorithm under the set in-
stances and parameter settings for the MRCPSPDC. Table 4.6 shows the results of the
MRCPSPDC under the PAC model for the set of instances in the MMLIB library. The
performance comparison criteria are based on the AvgNPV and the percentage of fea-
sible solutions (%FEAS).

First, we selected the MMLIB50, MMLIB100 and MMLIB+ libraries. Secondly, we
progressively increased the levels of %Deadline (columns of the array), which resulted
in a significant increase of AvgNPV and the percentage of feasible solutions (%FEAS).
Finally, we progressively increased the %Neg (rows of the array) decreasing the value
of AvgNPV as there are more activities with negative cash flow. However, it should be
noted that the number of feasible solutions increases. For instance, in the MMLIB100
library with a %Deadline of 10% and a %Neg of 60%, the AvgNPV is -671.68 with a
%FEAS of 71.3%.

Figure 4.3 depicts the computation time of our ABFO to find feasible solutions
for each set of instances. For the instances of the PSPLIB library, the computational
time increases as the number of activities increases. However, the average computation
time time is considerably low. For the MMLIB50, MMLIB100 and MMLIB+ instances,
increasing the number of modes produces a significant increase in computation time.

4.4.4 Comparison with GA

Here we compare the results of our proposed ABFO algorithm with those of the
GA by Leyman and Vanhoucke, 2016. Data for the GA were obtained from http:

//www.projectmanagement.ugent.be. The performance of the algorithms is compared
on the basis of 5000 schedules generated as the stopping criteria. Tables 4.7 and 4.8 sum-
marize the AvgNPV when %Deadline and %Neg vary. The Mean row corresponds to
the AvgNPV fixing %Deadline and varying Neg. Although ABFO does not dominate

http://www.projectmanagement.ugent.be
http://www.projectmanagement.ugent.be
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Table 4.6: Average NPV obtained by the ABFO algorithm for the MMLIB library and
percentage of feasible solutions found.

%Deadline

%Neg. 5% 10% 15% 20%

MMLIB50 0 11063.18 10981.72 11008.29 11030.17
(60.37) (90.56) (96.85) (99.81)

20 5811.49 5787.93 5810.47 5826.71
(61.30) (90.93) (97.78) (99.44)

40 1029.72 1026.02 1048.68 1068.70
(60.56) (91.11) (98.15) (100.00)

60 -1135.39 -1095.17 -1057.08 -1021.80
(62.96) (91.67) (97.78) (99.63)

80 -4059.89 -3974.51 -3904.71 -3835.91
(68.52) (91.85) (97.41) (99.63)

100 -10501.82 -10362.69 -10221.25 -10064.90
(75.93) (96.48) (98.70) (100.00)

MMLIB100 0 20884.26 20388.61 20386.17 20387.45
(46.85) (71.48) (88.33) (95.19)

20 12760.47 12406.55 12344.44 12367.75
(45.19) (70.00) (89.07) (96.30)

40 4074.07 3941.03 3937.45 3965.40
(47.78) (71.67) (87.96) (96.30)

60 -698.56 -671.69 -641.67 -600.40
(49.07) (71.30) (87.96) (96.30)

80 -7911.51 -7635.61 -7501.70 -7377.78
(51.85) (76.30) (90.56) (97.22)

100 -19529.06 -19047.71 -18759.77 -18456.16
(58.52) (78.52) (91.67) (97.78)

MMLIB+ 0 12960.73 10981.65 10796.50 10802.35
(19.73) (58.08) (80.48) (91.72)

20 7377.31 6214.98 6062.11 6069.55)
(18.19) (57.91) (81.99) (92.81)

40 1922.54 1446.85 1429.45 1450.54
(20.67) (59.76) (81.36) (92.96)

60 -735.30 -693.72 -626.05 -560.89
(21.83) (61.38) (82.94) (92.71)

80 -4504.76 -3752.80 -3522.94 -3408.19
(25.37) (64.97) (85.11) (93.75)

100 -11485.75 -9954.19 -9558.94 -9313.23
(34.57) (70.65) (86.76) (94.74)
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Figure 4.2: Comparison of the computation times for the (a) PSPLIB and (b) MMLIB li-
braries with 5000 generated schedules as the stopping condition. Arrows show average
computation time.

GA in all sets of instances, the improvement in the percentage of feasible solutions is
remarkable.

4.4.5 Comparison of ABFO operators.

To illustrate the technique presented in this work, we applied the ABFO algorithm
to the set of instances of the MMLIB50 with 50 nonfiction activities that require two
renewable and two nonrenewable resources for their execution. Each activity has three
execution modes. Specifically, we calculated the AvgNPV for each subset of instances
varying %Deadline.

Figure 4.3 shows the AvgNPV as a function of the number of sequences when
different ABFO operators are used. It is clear that separate operators do not provide
remarkable results. The crossover operator, at the beginning of the ABFO, generates
diversity and improves the NPV, but solutions are also suitable for a local optimal. In-
terestingly, the mutation operator improves the NPV significantly. On the other hand,
the chemotactic step, unlike the other operators, produces seasonality on the NPV as
the number of schedules increases. It should be noted that the Swarming operator con-
verges fast, which is a situation that can be controlled with the elimination-dispersion
step.
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Table 4.7: Average NPV (top) between ABFO and GA for instances in the PSPLIB li-
brary when 5000 schedules are used as the stopping criterion . %FEAS is shown in
().

%Deadline

%Neg. 5% 10% 15% 20%

ABFO GA ABFO GA ABFO GA ABFO GA

J10 0 2435.84 2430.42 2442.06 2434.05 2443.90 2435.99 2444.38 2437.04
(94.95) (96.93) (99.46) (99.82) (100.00) (100.00) (100.00) (100.00)

20 1259.45 1238.12 1274.10 1267.60 1284.37 1274.89 1294.39 1281.61
(91.70) (96.93) (99.64) (99.64) (100.00) (100.00) (100.00) (100.00)

40 504.66 503.94 521.94 515.46 535.53 524.37 548.31 532.99
(91.52) (96.57) (99.64) (99.82) (100.00) (100.00) (100.00) (100.00)

60 505.08 502.52 521.63 513.46 535.56 522.29 548.26 530.76
(93.14) (87.36) (99.82) (96.39) (100.00) (99.46) (100.00) (99.10)

80 75.76 35.65 94.50 84.84 109.32 94.14 124.61 103.23
(94.40) (89.89) (99.10) (98.38) (100.00) (100.00) (100.00) (99.82)

100 -2365.01 -2360.16 -2316.92 -2334.18 -2272.05 -2311.34 -2223.52 -2286.78
(95.49) (90.43) (99.64) (98.92) (100.00) (99.82) (100.00) (100.00)

Mean 389.39 399.13 423.12 415.02 439.43 423.39 456.07 433.14
(95.76) (98.41) (99.78) (99.81) (100.00) (100.00) (100.00) (100.00)

J12 0 2943.07 2937.30 2949.00 2940.83 2950.90 2942.31 2951.11 2943.48
(95.80) (98.90) (99.82) (100.00) (100.00) (100.00) (100.00) (100.00)

20 1733.65 1731.44 1741.91 1737.94 1747.31 1742.68 1751.84 1746.78
(96.16) (98.54) (99.27) (100.00) (100.00) (100.00) (100.00) (100.00)

40 22.00 19.21 46.59 35.24 71.23 49.89 97.51 64.05
(96.34) (98.17) (99.09) (100.00) (99.82) (100.00) (100.00) (100.00)

60 21.82 17.75 46.70 33.30 71.55 47.16 98.00 61.17
(96.16) (94.52) (99.09) (98.35) (100.00) (100.00) (100.00) (99.82)

80 -410.28 -415.52 -383.51 -398.86 -357.17 -384.04 -330.18 -369.73
(95.43) (98.35) (98.90) (100.00) (99.82) (100.00) (100.00) (100.00)

100 -2848.26 -2851.10 -2792.22 -2815.68 -2730.69 -2784.52 -2665.07 -2753.01
(97.81) (98.17) (99.82) (99.82) (100.00) (100.00) (100.00) (100.00)

Mean 230.69 245.32 267.38 257.01 292.19 268.91 317.2 282.19
(96.28) (97.78) (99.32) (99.70) (99.94) (100.00) (100.00) (100.00)

J14 0 3091.35 3089.76 3101.04 3095.11 3104.35 3097.26 3105.00 3098.71
(94.37) (98.37) (99.82) (100.00) (99.82) (100.00) (100.00) (100.00)

20 1884.18 1881.59 1893.07 1889.45 1898.42 1894.54 1901.69 1898.08
(94.37) (98.19) (99.64) (100.00) (99.82) (100.00) (100.00) (100.00)

40 170.89 169.58 194.51 185.82 216.69 200.52 238.56 214.63
(94.56) (97.64) (99.27) (100.00) (99.64) (100.00) (100.00) (100.00)

60 171.95 165.67 194.31 182.96 217.36 196.97 238.55 210.91
(94.19) (94.74) (98.91) (99.82) (99.64) (99.82) (100.00) (100.00)

80 -532.39 -539.82 -502.04 -518.71 -471.22 -501.27 -440.04 -484.06
(96.01) (94.19) (99.27) (99.46) (99.82) (100.00) (100.00) (100.00)

100 -2979.71 -2988.29 -2919.18 -2951.06 -2849.76 -2914.89 -2773.49 -2878.88
(96.73) (96.19) (99.64) (99.64) (100.00) (100.00) (100.00) (100.00)

Mean 281.25 315.27 326.16 316.70 352.64 328.90 378.38 343.23
(95.03) (96.55) (99.42) (99.82) (99.79) (99.97) (100.00) (100.00)

J16 0 3303.73 3303.45 3311.95 3309.99 3315.24 3312.37 3316.84 3313.55
(95.82) (98.18) (100.00) (100.00) (100.00) (100.00) (100.00) (100.00)

20 2090.30 2093.36 2101.13 2100.82 2106.21 2105.70 2109.13 2109.22
(94.00) (98.36) (99.27) (100.00) (100.00) (100.00) (100.00) (100.00)

40 -18.36 -18.27 12.08 0.91 40.82 18.96 69.19 36.46
(95.09) (94.91) (99.27) (99.45) (99.82) (100.00) (100.00) (100.00)

60 -17.82 -20.20 12.36 -1.73 40.94 16.10 68.39 32.54
(93.64) (83.27) (99.64) (93.82) (100.00) (98.36) (100.00) (99.45)

80 -727.61 -734.91 -688.78 -710.75 -651.25 -688.96 -612.66 -667.96
(94.00) (95.09) (99.64) (99.09) (100.00) (99.82) (100.00) (100.00)

100 -3171.58 -3183.93 -3102.02 -3142.69 -3020.57 -3100.98 -2934.64 -3060.59
(96.36) (95.27) (100.00) (99.64) (100.00) (100.00) (100.00) (100.00)

Mean 220.7 271.83 273.64 265.97 305.23 278.21 336.04 294.11
(94.81) (94.18) (99.63) (98.67) (99.96) (99.70) (100.00) (99.91)

J18 0 3579.79 3580.53 3585.97 3583.61 3589.78 3586.10 3590.69 3587.36
(93.84) (97.83) (98.55) (100.00) (100.00) (100.00) (100.00) (100.00)

20 1904.74 1907.41 1918.79 1918.96 1930.07 1926.81 1937.97 1934.02
(92.75) (97.28) (99.09) (100.00) (100.00) (100.00) (100.00) (100.00)

40 -209.26 -211.02 -174.00 -185.54 -139.98 -162.90 -105.51 -140.82
(93.84) (95.65) (98.91) (99.09) (100.00) (100.00) (100.00) (100.00)

60 -207.70 -214.79 -174.66 -191.48 -139.89 -168.62 -106.39 -146.47
(92.93) (89.13) (99.28) (94.75) (100.00) (96.92) (100.00) (98.55)

80 -919.74 -925.89 -876.96 -898.30 -833.63 -872.23 -789.77 -846.72
(95.29) (91.85) (99.64) (99.46) (100.00) (100.00) (100.00) (100.00)

100 -3426.82 -3436.51 -3345.05 -3386.52 -3254.38 -3341.03 -3159.03 -3293.33
(96.20) (93.48) (99.82) (99.64) (100.00) (99.82) (100.00) (100.00)

Mean 87.24 159.62 155.66 146.66 192 164.12 227.99 183.14
(94.14) (94.2) (99.21) (98.82) ((100.00) (99.46) (100.00) (99.76)
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%Deadline

%Neg. 5% 10% 15% 20%

ABFO GA ABFO GA ABFO GA ABFO GA

J20 0 4037.93 4040.64 4046.59 4042.21 4049.56 4045.32 4050.85 4046.70

(94.95) (96.93) (99.46) (99.82) (100.00) (100.00) (100.00) (100.00)

20 2363.33 2365.48 2375.30 2374.09 2382.99 2381.38 2388.34 2387.35

(91.70) (96.93) (99.64) (99.64) (100.00) (100.00) (100.00) (100.00)

40 215.33 217.28 245.05 239.23 267.54 257.02 290.62 274.61

(91.52) (96.57) (99.64) (99.82) (100.00) (100.00) (100.00) (100.00)

60 -296.81 -304.94 -255.68 -276.43 -218.09 -250.20 -181.94 -226.95

(93.14) (87.36) (99.82) (96.39) (100.00) (99.46) (100.00) (99.10)

80 -1014.42 -1018.71 -963.50 -987.03 -917.83 -959.24 -871.37 -930.68

(94.40) (89.89) (99.10) (98.38) (100.00) (100.00) (100.00) (99.82)

100 -3866.50 -3882.87 -3769.65 -3819.57 -3671.12 -3766.57 -3556.35 -3709.72

(95.49) (90.43) (99.64) (98.92) (100.00) (99.82) (100.00) (100.00)

Mean 214.8 309.22 279.68 273.81 315.51 286.32 353.36 308.06

(93.53) (93.02) (99.54) (98.83) (100.00) (99.88) (100.00) (99.82)

J30 0 6173.75 6125.11 6107.69 6113.25 6100.99 6117.84 6104.77 6119.92

(84.42) (90.40) (99.28) (99.82) (100.00) (100.00) (99.82) (100.00)

20 2790.08 2786.63 2772.47 2797.91 2778.92 2810.95 2788.66 2823.08

(81.70) (91.49) (98.55) (99.64) (100.00) (99.82) (100.00) (100.00)

40 -994.09 -945.12 -946.05 -894.05 -909.70 -850.19 -875.93 -808.17

(85.87) (91.12) (98.91) (100.00) (100.00) (100.00) (100.00) (100.00)

60 -2100.12 -2075.38 -2030.26 -1997.90 -1976.82 -1933.74 -1925.36 -1874.80

(87.86) (78.99) (99.64) (95.47) (100.00) (98.91) (100.00) (100.00)

80 -2820.72 -2791.24 -2746.76 -2711.66 -2691.67 -2647.61 -2635.55 -2582.33

(89.31) (80.07) (98.73) (95.65) (100.00) (99.46) (100.00) (100.00)

100 -5858.71 -5826.44 -5766.29 -5703.67 -5697.38 -5607.49 -5617.21 -5508.83

(92.21) (81.52) (99.46) (96.74) (100.00) (99.28) (100.00) (100.00)

Mean -744.97 -272.39 -519.17 -344.44 -414.91 -341.33 -359.74 -305.19

(86.89) (85.60) (99.09) (97.89) (100.00) (99.58) (99.96) (100.00)



4.4. Computational Experiments 97

Table 4.8: Average NPV (top) between ABFO and GA for instances in the MMLIB li-
brary when 5000 schedules are used as the stopping criterion . %FEAS is shown in
().

%Deadline

%Neg. 5% 10% 15% 20%

ABFO GA ABFO GA ABFO GA ABFO GA

MMLIB50 0 11027.15 11008.97 10996.76 11007.88 11014.20 11021.31 11030.17 11022.71
(71.48) (84.26) (95.00) (98.15) (98.52) (99.81) (99.81) (100.00)

20 5810.49 5795.87 5798.72 5798.67 5815.84 5815.39 5828.80 5825.73
(70.19) (83.70) (95.00) (97.22) (98.89) (99.81) (99.81) (100.00)

40 1027.78 1017.02 1030.29 1044.05 1050.07 1071.81 1068.70 1096.19
(69.63) (81.30) (95.19) (97.41) (98.89) (99.81) (100.00) (100.00)

60 -1135.39 -1120.45 -1098.35 -1073.95 -1058.91 -1017.49 -1022.14 -960.79
(74.63) (67.22) (95.74) (89.26) (98.89) (97.22) (99.81) (99.63)

80 -4054.01 -4041.39 -3982.96 -3942.37 -3909.06 -3844.64 -3836.76 -3747.00
(78.52) (67.78) (95.56) (89.81) (98.70) (96.67) (99.81) (99.63)

100 -10515.11 -10507.88 -10376.61 -10304.12 -10224.03 -10131.62 -10064.90 -9944.98
(84.26) (72.59) (98.33) (90.00) (99.26) (98.15) (100.00) (99.07)

Mean -458.5 839.20 199.31 655.95 400.72 545.35 493.80 568.48
(74.78) (76.14) (95.80) (93.64) (98.85) (98.58) (99.87) (99.72)

MMLIB100 0 20585.71 20542.29 20336.36 20367.33 20376.90 20418.60 20420.95 20422.45
(57.78) (71.85) (83.89) (93.52) (95.37) (100.00) (98.89) (100.00)

20 12540.41 12449.99 12328.69 12320.26 12345.01 12369.36 12395.03 12396.55
(55.74) (70.93) (83.52) (93.70) (95.74) (99.63) (99.81) (99.81)

40 3956.63 3910.73 3927.86 3900.43 3938.55 3962.74 3967.83 4004.94
(57.59) (68.15) (82.96) (94.07) (95.74) (99.26) (99.07) (100.00)

60 -715.07 -739.05 -691.56 -691.27 -653.10 -617.56 -604.92 -533.77
(60.37) (50.00) (82.96) (77.04) (95.19) (90.74) (99.44) (97.41)

80 -7812.10 -7772.00 -7641.58 -7525.79 -7530.55 -7369.58 -7400.50 -7146.15
(64.26) (56.11) (84.81) (80.19) (96.85) (92.04) (99.63) (97.96)

100 -19374.96 -19341.18 -19058.03 -18921.92 -18802.96 -18500.46 -18500.60 -18085.08
(70.19) (58.89) (89.44) (83.33) (98.15) (93.89) (100.00) (99.26)

Mean -2200.15 2696.03 -1143.07 2285.26 223.18 2078.43 1211.43 1905.87
(60.98) (62.65) (84.60) (86.97) (96.17) (95.92) (99.47) (99.07)

MMLIB+ 0 10670.37 12106.02 10664.51 12311.40 10918.75 12470.47 11200.47 12621.05
(53.00) (44.94) (83.15) (82.50) (90.14) (96.64) (84.48) (99.44)

20 5943.97 6856.97 5942.72 7015.80 6182.46 7135.84 6370.01 7256.07
(52.53) (42.22) (84.58) (81.02) (83.92) (96.33) (81.40) (99.41)

40 1322.84 1658.05 1317.11 1762.87 1497.30 1875.57 1591.94 1974.36
(55.78) (39.66) (85.18) (78.46) (79.72) (94.44) (76.75) (98.83)

60 -773.28 -742.65 -732.61 -670.55 -682.36 -567.33 -611.24 -422.56
(57.94) (26.94) (85.72) (54.60) (79.17) (76.27) (75.51) (90.19)

80 -3790.05 -4119.82 -3670.24 -4012.55 -3788.72 -3907.09 -3532.89 -3710.92
(62.74) (28.70) (86.92) (56.14) (79.26) (78.58) (67.72) (92.19)

100 -10159.73 -11051.61 -9995.35 -10775.07 -10146.73 -10504.00 -9561.32 -10215.78
(69.84) (30.31) (84.68) (58.58) (79.32) (80.59) (67.20) (92.87)

Mean -12396 2002.44 -2613 2016.35 -437.80 1669.41 922.41 1470.68
(58.63) (35.46) (85.03) (68.54) (81.92) (87.14) (75.5) (95.49)
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Figure 4.3: Performance of the ABFO algorithm when different operators are used for
the MMLIB50 library.

4.5 Chapter Summary

In this paper, a metaheuristic solution algorithm for solving the multi-mode resource-
constrained project scheduling problem (MRCPSP) with discounted cash flows (MR-
CPSPDC) is proposed. This problem consists of determining a schedule such that the
project is completed, maximizing the project’s net present value (NPV) while comply-
ing with the delivery deadline. The adaptative bacterial foraging optimization (ABFO)
algorithm is a variation of the original bacterial foraging optimization (BFO), which
is a nature-inspired metaheuristic optimization algorithm. We implement a version
of the chemotactic operator based on a double justification of the activities given the
cash flow. This metaheuristic has been tested in the PSPLIB and MMLIB benchmark
datasets available in the literature with promising results. Our ABFO algorithm shows
excellent performance in all tested instances and provides suitable solutions for the
MRCPSP maximizing the NPV.
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Chapter 5

The Reactive MRCPSP

In most real-life projects, the construction, scheduling, and execution of a schedule is a
reactive process, where uncertain events force one to change and reconsider the estab-
lished schedule. In this paper, we present a novel metaheuristic strategy based on bac-
terial foraging optimization to solve a multi-objective reactive scheduling problem. The
performance of the algorithm is measured by the experimental use of a case study. The
experimental result shows that the proposed algorithms can reduce the cost, make the
time elapse and also improve the reliability. In most real-life projects, the construction,
scheduling, and execution of a schedule is a reactive process, in which uncertain events
force to change and reconsider the established schedule. In this paper, we present a
novel metaheuristic strategy based on bacterial foraging optimization to solve a multi-
objective reactive scheduling problem. The performance of the algorithm is measured
by the experimental use of a case study. The experimental result shows that the pro-
posed algorithms can reduce the cost, make the time elapsed and also improve the
reliability.

5.1 Introduction

Uncertainty is one of the most important concerns in the field of project scheduling,
since it generates instability and alterations in the execution of its activities, not achiev-
ing the objectives and if possible, canceling the project. Many research works focus on
finding a schedule for a project that does not take into account uncertainty, a situation
that is unrealistic in a dynamic environment. For an extensive review of the literature
refer to (Erik L. Demeulemeester, 2002) and (Herroelen and Leus, 2004).

In this chapter, we develop a metaheuristic strategy to solve the multiple-mode
resource-constrained project scheduling problem when considering events that cause
schedule disruptions. We performed validation of our procedure with a case study ex-
amining the possible options that a client and a contractor have when an agreement
must be reached to obtain the best dividends. In our case, we are concerned with
optimizing two objective functions. The first one minimizes the cost of rescheduling
activity and changing its execution mode. The second objective function optimizes the
net present value of a project.
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5.2 Problem description

It is possible that during project implementation, resource levels per period may be
allowed to vary from time to time, but not less than the minimum resource requirement
of any activity in the set of eligible activities. This is in order to allow for lower resource
levels from period to period due to interruptions. In addition, some activities may be
interrupted in their execution and may need to be postponed for completion. Before
scheduling any activity, it is verified that there are no variations in the availability of
resources and changes in their duration. If there are changes, the initial interruption
time Ds and a final interruption time D f must be known. This produces a window
∆ = D f − Ds. This is in order to respond to the interruption and take the necessary
measures. We assume that during the execution of the project, no activity can be started
before its scheduled start. This in order not to start activities earlier than planned. As a
consequence of this constraint, the reactive start times s′i must always be at least as large
as their initial schedule equivalents s′i. In addition, a cost is induced by increasing the
start time of activity i per unit of time through a non-negative weight wi. Additionally,
delaying activities to repair the interrupted schedule may cause changes in the modes
of the activities, which causes a mode change cost ci. If the activity does not change its
mode, the mode change cost is zero. The above can be summarized:

• Before scheduling an activity i, we verify that there are no variations in resource
consumption and duration. If there are changes, rτ

i,m,` → r̂τ
i,m,` and/or di,m → d̂i,m

• Given a schedule S = (s0, s1, . . . , sn+1) and a vector of modes m =

(m0, m1, . . . , mn+1), the objective function cost of resequencing F1 will be mini-
mizing

F1(S) =
n

∑
i=1

wi|s′i − si|+
n

∑
i=1

ci (5.1)

• Each activity is associated with a cash inflow and outflow, respectively ci,in >

0 and ci,out < 0. The discount rate is α > 0 and fi is completion time of the
activity i ∈ V. Here we use following mathematical model based on the PCA
payment model (Vanhoucke, Demeulemeester, and Herroelen, 2001; Leyman and
Vanhoucke, 2016), where we maximize

F2(S) =
n

∑
i=1

(ci,in + ci,out) · e−α fi (5.2)
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subject to fi ≤ f j − dj,mj , ∀(i, j) ∈ E, (5.3)

∑
i∈A(F,M,t)

rτ
i,mi ,k ≤ Rτ

k , k ∈ Rτ , 0 ≤ t ≤ d, (5.4)

n

∑
i=1

rη
i,mi ,`

≤ Rη
` , ` ∈ Rη , (5.5)

fn+1 ≤ δn+1 (5.6)

mi ∈ Mi, i ∈ V (5.7)

fi ∈ int+, i ∈ V (5.8)

Here, A(F, M, t), also called the active set, is a set of real activities which will be
sequenced in time t; M = (mi)i∈V is the mode vector ; F = ( fi)i∈V is a vector of
completion times for each activity and d̄ = ∑

j∈V
max
m∈Mj

dj,m.

The objective function F1 minimizes the rescheduling cost, while F2 maximizes
the NPV of the project by discounting the cash inflows and outflows at the time of
completion of each activity. The constraints represented by equation (5.3) describe the
precedence relationships between activities; equation (5.4) ensures that the availability
of renewable resources is not exceeded in each period, while equation (5.5) ensures
that non-renewable resources are not exceeded throughout the project. The constraints
in equation (5.6) ensure that the project delivery time is met, and those in equation
(5.7) ensure that each activity is assigned only one mode. The constraint in (5.8) states
that the decision variables must be integers. The start and finish dummy activities are
assumed to run only in a single mode of zero duration and do not consume resources.

5.3 Multi-objective optimization for PSP

A multiobjective optimisation problem (MOP) can be formulated as:

min
x∈D

F(x) with f(x) = [ f1(x), f2(x), . . . , fn(x)] (5.9)

where x = (x1, x2, . . . , xn) ∈ Rn is a vector of decision variables (decision vector), F(x)
is the objetive vector, D is the set of feasible solutions, and F(D) ⊂ Rn. A feasible
solution a ∈ D is called efficient if there is no b ∈ D such that fk(b) ≤ fk(a) for all
k = 1 . . . , n and f j(b) < f j(a) for some j. In other words, no solution is strictly better
than a for at least one criterion and not worse in the remaining criteria. If a is efficient
then Y = F(a) is called non-dominated. The set of efficient solutions is DE, the set of
non-dominated vector is YN = F(DE)

Let us define the following important concepts in multiobjective optimization.
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1. Definition 1- Pareto Dominance
Given the feasible solutions x and x′, it is found:

1.1 if fk(x) ≤ fk(x′) for all k = 1, 2, . . . , l and f j(x) < f j(x′) for any j, x will will
be a solution that dominates x′;

1.2 if fk(x′) ≤ fk(x) for all k = 1, 2, . . . , l and f j(x′) < f j(x) for any j, x will be a
solution dominated by x′;

1.3 if f j(x) < f j(x′) for any j e fi(x) > fi(x′) for any i, x and x′ are stated non-
dominated or indifferent.

2. Definition 2- Pareto Optimality
A feasible solution x is named Pareto-optimal (or efficient) if there is no other
feasible solution x′ such as x′ dominates x, that is, a solution x′ such as fk(x′) ≤
fk(x) for all k = 1, 2, . . . , l and f j(x′) < f j(x) for any j.
The set of all Pareto-optimal solutions is termed Pareto-optimal front and as a
result of the defined concepts, all the solutions that belong to the Pareto-optimal
front are non-dominated (indifferent).
In all the algorithms proposed in this work the criterion of the Pareto Dominance
was used, as described in this section, to assess the solutions generated along
with its iterations and to determine the set of non-dominated solutions, denoted
by D′, to be returned by the algorithms.

5.4 Multi-objetive Bacterial Foraging Optimization

The results of single-objective project scheduling (PS) problems are usually expressed
in terms of deviations from target values compared to the optimum if it exists or to
the best bounds otherwise. However, multi-objective results should be given special
attention as the comparison methodologies are numerous.

Since BFO algorithms can solve single-objective optimization problems, shown in
chapter 4. We are inspired to solve multiobjective optimization problems with BFO
algorithms because of Ballestín and Blanco, 2011 and Niu et al., 2013. However, the
purpose of multiobjective optimization problems is to find all solutions that satisfy
several objective functions simultaneously. Since different decision-makers have dif-
ferent ideas about the objective functions, it is not easy to choose a unique solution for
a multiobjective optimization problem without interacting with the decision-makers.
Therefore, all we can do is to show the set of Pareto-optimal solutions to the decision-
makers. The main goal of multi-objective optimization problems is to obtain a non-
dominated front that is close to the true Pareto front. In this paper, a total rescheduling
bacterial foraging multiobjective optimization (MBFO) with integration between the
health ordering approach and the Pareto dominance mechanism is proposed to solve
multiobjective problems. The goal is to provide the decision-maker with a good set of
efficient solutions concerning two objectives. The first objective is the maximization
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of the net present value of the project, and the second is a minimization of the outage
measure. The details of the new BFO-based optimization algorithm are presented in
the following sections.

5.4.1 Description of Multi-objective Bacterial Foraging Optimization

We will use the description of the GBFO metaheuristic presented by Passino, 2010.
We define a chemotactic step to perform a turn or swim. Let j be the index for the
chemotactic step. Let k be the index for the reproduction step and l be the index for the
elimination-dispersion step. Let us define

P(j, k, l) = {θi(j, k, l)|i = 1, 2, . . . , S}

represents the position of each member in the colony of the S bacteria at the j−th
chemotactic step, k−th repoduction step, and l−th elimination-dispersion step. Let Nc

be the lifetime of the bacteria, measured by the number of chemotactic steps they take
during their lifetime. Let C(i) > 0, i = 1, 2, . . . , S denotes a basic chemotactic step
size that we will use to define the length of steps during runs. To represent a drop, a
random direction of unit length is generated, say ϕ(j); this will be used to define the
direction of motion after a drop. In particular, we let

θi(j + 1, k, l) = θi(j, k, l) + C(i)ϕ(j) (5.10)

such that C(i) is the step size taken in the random direction specified by the twist. If
at Xi(j + 1, k, l) the cost J(i, j + 1, k, l) is better(worse) than Xi(j, k, l), then another step
size C(i) is taken in this same direction, and again, if that step resulted in a position
with a better cost value than in the previous step, another step is taken. This form
of swimming is continued as long as it continues to reduce the cost, but only up to a
maximum number of steps, Ns. This represents that the bacterium will tend to keep
moving if it moves toward increasingly favorable environments.

During movements, bacteria release attractant and repellent factors to send signals
to other bacteria to cluster together or move away, provided they obtain a nutrient-
rich environment or avoid the noxious environment. Bacteria-to-bacteria attraction and
repellent effects are denoted by:

Jcc(θ, P(j, k, l)) =
S

∑
i=1

Jcc(θ, θi(j, k, l))

S

∑
i=1

[
−dattract exp

(
−wattract

p

∑
m=1

(θm − θi
m)

2

)]

+
S

∑
i=1

[
hrepelent exp

(
−wrepelent

p

∑
m=1

(θm − θi
m)

2

)] (5.11)
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where Jcc(θ, P(j, k, l)) is the cost function value to be added to the actual cost function to
be minimized to present a time varying cost function, S is the total number of bacteria,
p is the number of parameters to be optimized which are present in each bacterium,
and dattract, wattact, hrepelent and wrepelent are different coefficients that are to be chosen
properly.

We highlight that Jcc(X, P(j, k, l)) is the value of the total time-varying cost for the
bacterium X to be added to the cost function to be optimized, resulting in the initial
cost with swarming effect given by:

Jsw(X, j, k, l) = J(X, j, k, l) + Jcc(X, P(j, k, l)) (5.12)

After the chemotactic step, the reproduction-crossover step begins. Consider the
number of replicates to be performed. For convenience, it will be assumed that S is a
positive integer divisible by the value of 5.12. Let be

Sr =
S
2

(5.13)

is the number of members of the population that have had sufficient nutrients to
have the crossover operator applied to them.

Finally, let Ned be the number of elimination-scattering events, and for each
elimination-scattering event, each bacterium in the population undergoes elimination-
scattering with probability Ped. This helps to keep track of the sudden change in the
environmental condition, which may affect the life of the bacteria, so a new set of bac-
teria can be introduced into the search domain.

5.4.2 MBFO algorithm

Below is a step-by-step description of the MBFO, Niu et al., 2013:

Step 1 Initialing parameters p, S, Nc, Ns, Nre, Ned, Ped, C(i) with i = 1, 2, . . . , S, θi where,

p: Dimension of the search space;

S: The number of bacteria;

Nc: Chemotaxis steps;

Ns: Swim steps;

Nre: Reproductive steps;

Ned: Elimination and dispersal steps;

Ped: Probability of elimination;

C(i): The run-length unit during each run or tumble;

Step 2. Elimination-dispersal loop: l = l + 1.
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Step 3. Reproduction loop: k = k + 1.

Step 4. Chemotaxis loop: j = j + 1.

a. For i = 1, 2, . . . , S, take a chemotactic step for bacteria i as follows.

b. Compute two fitness functions J1(i, j, k, l) y J2(i, j, k, l)

c. Let Jlast1 = J1(i, j, k, l), Jlast2 = J2(i, j, k, l) to save the value since we may find
better value via a run.

d. Tumble: Generate a random vector ∆(i) ∈ Rn with each element ∆m(i) ∈
[−1, 1], m = 1, 2, . . . , S.

e. Move: Update of the position with

θi(j + 1, k, l) = θi(j, k, l) + C(i) · ∆(i)√
∆T(i)∆(i)

. (5.14)

c(i) is the length of unit walk and ∆(i) is the direction angle of the jth step.

f. Compute each fitness function Jt(i, j + 1, k)(t = 1, 2) as Equation 5.11 and
5.12 with θi(i, j + 1, k, l).

g. Swim:

i) Let m = 0 (counter for swimm length)

ii) While m < Ns (if have not climbed down too long)
Let m = m + 1.
If J1(i, j + 1, k, l) < Jlast1, let Jlast1 = J1(i, j + 1, k, l)
If J2(i, j + 1, k, l) < Jlast2, let Jlast2 = J2(i, j + 1, k, l)
Then another step of size C(i) in this same direction will be taken as
Equation 5.14 and use the new generate θi(i, j + 1, k, l) to compute the
Jlasti = Ji(i, j + 1, k, l), (i = 1, 2).
Else, sea m = Ns. This is the end of the while statement.

h. Go to next bacterium (i + 1). If i 6= S (i.e. go to (b)) to process the next
bacterium).

Step 5 If j < Nc, go to step 3. In this case continue chemotaxis since the life of the bacteria
is not over.

Step 6 Reproduction:

a) For the given k and l, and for each i=1,2,. . . ,S, let Jhealth be the health of the
ith bacteria. The bacteria are sorted i nthe order of ascending values.

Jhealth1 =
Nc+1

∑
j=1

J1(i, j, k, l)

Jhealth2 =
Nc+1

∑
j=1

J2(i, j, k, l)

(5.15)
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b) The bacteria with the highest Jhealth values also dominated die, and the other
non-dominated bacteria with best Jhealth values reproduce. The number of
the die individuals is no more than Sr then copy the best bacteria in order of
keeping the group number unchangeable.

Step 7 If k < Nre go to step 2. In this case, the number of specified reproduction steps is
not reached and start the next generation in the chemotactic loop.

Step 8 Elimination-dispersal: For i = 1, 2, . . . , S, with probability Ped, eliminate and dis-
perse each bacterium, which results in keeping the number of bacteria in the pop-
ulation constant. To do this, if a bacterium is eliminated, simply disperse one to
a random location on the optimization domain. If l < Ned, then go to step 2;
otherwise end.

5.5 Methodology for solving reactive scheduling in MR-

CPSP

Before starting the project, a complete analysis of the project network is proposed: du-
ration of the activities, modes of execution, availability of resources (renewable and
non-renewable), deadline, costs for rescheduling activities, costs for changing the mode
of execution, cash flow in the activities, etc. From the results of the analysis, the client
and contractor will be able to know a baseline schedule for the project, the total esti-
mated cost of the project, the minimum amount needed per period for the activity to be
executed in that period, and the completion time. For uncertainty events that produce
disruptions, (Le Chang and Prokopenko, 2017) shows that a Nash equilibrium between
the client and contractor when project delays occur is obtained when:

• The client grants an extension and the contractor does not take corrective action.

• The client does not grant an extension and the contractor must take corrective
action.

With the first option, project abandonments can be reduced and the objective for
the client is to avoid interruptions and scheduling activities in a way that minimizes the
objectives 5.1 and 5.2. For the second option, where no rollover is granted, it becomes
a much more difficult multi-objective problem to solve. In our case, we will only solve
the first case.

Consider the following pseudocode to minimize the project completion time ini-
tially:

Step 1. Write project data: list of activities, durations, execution modes, resource con-
sumption, costs, cash flow, precedence relationships, etc.

Step 2. We use the memetic algorithm to find a solution that minimizes the project dura-
tion.
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Figure 5.1: Gantt chart and consumption of resources

Activities 1 2 3 4 5 6 7 8 9 10

ci,in(ci,out) 227 426 -127 323 -263 344 250 -469 -228 -25
ci,m 1 5 1 4 1 1 4 3 1 2
wi 2 1 2 2 5 1 7 4 8 10

Table 5.1: Rescheduling costs and cash flow

Step 3. We make the Gantt chart and set a deadline with the MA solution as the comple-
tion date.

Step 4. If interruptions are established in the project, the ABFO is executed by varying
the deadline by 5, 10, 15 and 20 percent. If the possible interruptions lead to not
meeting the deadline, the project is not executed. Otherwise, the contractor has
a wider margin for scheduling the project, optimizing the net present value and
avoiding or rescheduling interruptions.

5.6 Experiments

For the validation of the proposed solution method, one experiment was used: the
project data from the PSPLIB library Table 3.2, denoted by j1037_2.mm. Figure 5.1, a)
shows the Gantt chart with a duration of 27 units and part b) and c) the consumption
of renewable resources.

Consider the Table 5.1, which shows the positive and negative cash flows of the
activities, to calculate the NPV. In addition, we observe the wi values that correspond
to the weights for rescheduling activity i. The values ci,m correspond to the cost of
changing mode when the interruption occurs, in order to consume less resources.
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Figure 5.2: Duration disruption

5.6.1 Interruption of duration

Suppose that during the execution of an activity i with duration di,m, such that m ∈ Mi;
an interruption occurs, altering the activity and failing to execute it during a period
of time between Ds and D f , where si <= Ds and D f < fi = si + di,m. In Figure 5.2,
we observe the execution of the activities partially before the interruption of activity
i = 7, for which there is an interruption at t = 14, with a duration of two units, i.e.,
activity 7 will finish in 17-time units. Running the MBFO algorithm we calculated the
NPV=499.36 and a rescheduling cost of 48 units. Running the MBFO algorithm with a
10% increase in deadline, we find a schedule with NPV = 499.36 and a rescheduling
cost of 48 units, see Figure 5.3.

5.6.2 Disruption of resources

We will now consider an interruption of a renewable resource kτ . For this outage we
must make some assumptions:

• In a time window [Ds, D f ], the resource k ∈ Rτ decreases in ∆k units.

• Rτ
k − ∆τ

k ≥ min
i∈Eleg

{min
m∈Mi

{rτ
i,m,k}}.

• When activities are interrupted, they must be carried out where they were at the
time of interruption.

Suppose that after the execution of activity 6, we have an interruption of resource
1, between Ds = 12 and D f = 14. Such an interruption drops the resource availability
by 6 units. That is to say, Rτ

1 − ∆τ
1 = 12 − 6 = 6 > min{rτ

4,3,1, rτ
7,1,1, rτ

10,2,1}. This
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Figure 5.3: Duration disruption with 10% deadline

interruption can be seen in Figure 5.4. It can be seen in Figure 5.5 with a deadline
percentage increased by 20%, the NPV = 519.78 and a rescheduling cost of 58 units.

5.6.3 Performance metric

In order to have quantitative performance of our algorithm, first we consider two met-
rics for spacing and diversity of nondominated Pareto solutions and then we report the
results of our algorithm.

Spacing (sp)

Schott, 1995 proposed this metric to measure how well the solutions are dis-
tributed.This metric measures the (distance) variance of neighboring vectores in non
dominated vectores and it is definded as:

sp =
1

n− 1

√
n

∑
i=1

(d̄− di)2 (5.16)

where di = min
1≤j≤n

{|Fi
1 − Fj

1| + |Fi
2 − Fj

2|}, i, j = 1 . . . , K and K is the number of non-

dominated solutions generated by the algorithm. In the case of d̄ is the mean of all dj.
A smaller sp value corresponds to better algorithm performance and a value of zero for
this metric shows that all non-dominant solutions found are equidistant.
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Figure 5.4: Disruption of resources
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Figure 5.5: Disruption of resources with 20% deadline
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Costo NPV Deadline CashFlow Feasible
85 -1.0317 0.15 0 1

172 -5.12094 0.15 0 1
192 -2319.45 0.15 0 1
149 -55.4905 0.2 0 1
252 -2319.45 0.2 0 1
138 -1263.82 0.15 0.2 1
162 -1268.91 0.15 0.2 1
162 -1268.91 0.2 0.2 1
189 -1269.04 0.2 0.2 1

88 -522.655 0.15 0.4 1
112 -530.092 0.15 0.4 1
138 -522.655 0.2 0.4 1
162 -530.092 0.2 0.4 1
885 -530.092 0.15 0.6 1

78 -522.655 0.2 0.6 1
102 -530.092 0.2 0.6 1
120 -355.588 0.2 0.6 1
192 -501.974 0.2 0.6 1
211 -506.033 0.2 0.6 1
231 -510.071 0.2 0.6 1
888 -77.6447 0.15 0.8 1
912 -85.0818 0.15 0.8 1
521 -77.6447 0.2 0.8 1
545 -85.0818 0.2 0.8 1
122 2468.12 0.15 1 1
135 2288.99 0.15 1 1
244 2228.54 0.2 1 1

Table 5.2: Pareto front with % deadline and % CashFlow for feasible solutions

Maximum dispersion (md)

According to Zitzler and Thiele, 1998, the maximum dispersion is used to measure the
diversity of the non-dominated front obtained. This metric is defined as

md =
√
|Fmax

1 − Fmin
1 |+ |Fmax

2 − Fmin
2 | (5.17)

where Fmax
i , Fmin

i represent the maximum respectively minimum value for the objective
functions.

In the Table 5.2, 5.3 we show the algorithm measure considering the previously
described metrics. For which, the measure sp is maximum 31.01 and for md we have a
maximum value of 49.85, which is a quite high value considering the number of values
on the Pareto frontier.
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%Neg No. of non-dominated solutions sp md
0 5 6.39 49.853
20 4 0.438 7.49
40 4 0.24 9.65
60 5 37.01 17.53
80 2 0 5.6
100 3 6.12 19.015

Table 5.3: Result of number of solutions not mastered and performance measures.

5.7 Chapter Summary

Project delays, cancellations or interruptions are the worst-case scenarios a project man-
ager can handle. In this chapter we develop a new bacterial foraging optimization
(BFO) approach to multiobjective optimization, called multiobjective bacterial foraging
optimization (MBFO). The objectives in multiobjective bacterial foraging optimization
are to minimize the cost of rescheduling and maximize the net present value. The main
goal of MBFO is to integrate with reactive scheduling to find a non-dominated upper
front, trying to close to the true Pareto front. Changes in the deadlineand cashflow are
guaranteed to find feasible solutions. We performed our experiment with a very pop-
ular project from the PSPLIB library to refine our algorithm. Our results show that
resource interruptions yield higher solution complexity for projects that consider inter-
ruptions. It is worth noting that reactive scheduling problems are an important field
for research and development of new methods. and development of new methods.
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Chapter 6

Discussions and conclusions

The last chapter of this thesis illustrates an argumentation of the results obtained in the
course of the research and the subsequent analysis performed; the narrative is based on
the original aims and objectives of the study and considers the implications, limitations,
and contribution to knowledge. Recommendations for future research, the importance
of reactive scheduling in projects as an approach to deal with uncertainty, and the prob-
lem of scheduling projects with limited multiple-mode resources are demonstrated and
explained. for this, it is necessary to analyze the behavior and characteristics of the
projects to be scheduled. Reactive scheduling refers to a whole plan that goes from
the beginning of the scheduling of an initial baseline schedule to dealing with differ-
ent interruptions that cause analysis and control of the project, to then provide a final
schedule to execute it.

The present research works with the multiple-mode resource-constrained project
scheduling problem taking into account uncertain events once the scheduling of activi-
ties is initiated. For this purpose, a taxonomy and a literature review were developed to
describe and reduce the complexity of identifying studies related to the research. This
review groups and classifies previous works. On the other hand, a memetic algorithm
was designed, coded, and compared to solve the MRCPSP with an objective function
to minimize the project duration. For the MRCPSP with an objective function to max-
imize the net present value, an algorithm based on bacterial foraging was presented
and with this same idea, a multiobjective BFO was developed to minimize the cost of
rescheduling and to maximize the net present value.

For the MRCPSP problem with makespan minimization, the memetic algorithm,
combines evolutionary algorithms, local search (LS), and variable neighborhoods
search (VNS), which is a generalization of the uniform crossover operator, and a mu-
tation operator used to minimize the consumption of non-renewable resources. We
developed an operator that combines the exploration of VNS by changing the list of ac-
tivities with time improvement provided by multi-mode justification. Separately, these
approaches have contributed to high-quality solutions to large problems. The MRCP-
SPDC which considers the project’s NPV and uses a PAC payment model as the objec-
tive function. The interaction between the execution time and cash inflows or outflows
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is dynamic. Finding a balance between time/cost has been a priority for project man-
agers. For this, it is necessary to have tools that help managers and engineers to make
decisions. Here we proposed an adaptative bacterial foraging optimization (ABFO) al-
gorithm for such purpose. In this algorithm, we implemented the chemotaxis, swarm-
ing, crossover and mutation operators that explore and exploit the solution space to
consider the positive and negative cash flow of the activities. Finally, the MBFO algo-
rithm is a novel algorithm that uses the chemotaxis and swarming operators to find
a feasible schedule for randomly presented interruptions. By integrating these three
concepts, the methodology for reactive scheduling can be built.

For each algorithm, we performed a robust design using the PSPLIB and MMLIB
test libraries. For the MA case, as the ABFO in terms of quality and capacity is quite
good, being able to achieve excellent results on ensembles with a larger number of ac-
tivities. The results can be further improved as more time and computational capacity
becomes available. The MBFO was run with an experiment, where different metrics
were applied to compare the non-dominated solutions and we report their results.

It would be pertinent to create a neural network for project scheduling problems
with risk assessment components. For the case of the evaluated algorithms, increase
the number of objective functions and have different evaluation criteria. For this, it
is necessary to implement several strategies based on metaheuristics, hyper-heuristics,
and matheuristic, considering several uncertain events, to adjust the problem more to
reality.

Future research will focus on MRCPSP with reactive scheduling applied to differ-
ent scenarios. For example, the assignment of vessels to berths in ports, the competitive
game between client and contractor in project execution, supply chain planning, and
the integration of different tools to commercial software. Generally, these scenarios
have a larger number of activities and resources, which can lead to an increase in the
complexity of the problem. Therefore, more research is needed in the application of
MRCPSP and its various solution strategies.
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