26,905 research outputs found

    Lessons learnt from design, off-site construction and performance analysis of deep energy retrofit of residential buildings

    Get PDF
    The article introduces the process of deep energy retrofit carried out on a residential building in the UK, using a ‘TCosy’ approach in which the existing building is completely surrounded by a new thermal envelope. It reports on the entire process, from establishing the characteristics of the existing building, carrying out design simulations, documenting the off- site manufacture and on-site installation, and carrying out instrumental monitoring, occupant studies and performance evaluation. Multi-objective optimisation is used throughout the process, for establishing the characteristics of the building before the retrofit, conducting the design simulations, and evaluating the success of the completed retrofit. Building physics parameters before and after retrofit are evaluated in an innovative way through simulation of dynamic heating tests with calibrated models, and the method can be used as quality control measure in future retrofit programmes. New insights are provided into retrofit economics in the context of occupants’ health and wellbeing improvements. The wide scope of the lessons learnt can be instrumental in the creation of continuing professional development programmes, university courses, and public education that raises awareness and demand. These lessons can also be valuable for development of new funding schemes that address the outstanding challenges and the need for updating technical reference material, informing policy and building regulations.Peer reviewedFinal Published versio

    Electrical power grid network optimisation by evolutionary computing

    Get PDF
    A major factor in the consideration of an electrical power network of the scale of a national grid is the calculation of power flow and in particular, optimal power flow. This paper considers such a network, in which distributed generation is used, and examines how the network can be optimized, in terms of transmission line capacity, in order to obtain optimal or at least high-performing configurations, using multi-objective optimisation by evolutionary computing methods

    How enzyme economy shapes metabolic fluxes

    Full text link
    Metabolic fluxes are governed by physical and economic principles. Stationarity constrains them to a subspace in flux space and thermodynamics makes them lead from higher to lower chemical potentials. At the same time, fluxes in cells represent a compromise between metabolic performance and enzyme cost. To capture this, some flux prediction methods penalise larger fluxes by heuristic cost terms. Economic flux analysis, in contrast, postulates a balance between enzyme costs and metabolic benefits as a necessary condition for fluxes to be realised by kinetic models with optimal enzyme levels. The constraints are formulated using economic potentials, state variables that capture the enzyme labour embodied in metabolites. Generally, fluxes must lead from lower to higher economic potentials. This principle, which resembles thermodynamic constraints, can complement stationarity and thermodynamic constraints in flux analysis. Futile modes, which would be incompatible with economic potentials, are defined algebraically and can be systematically removed from flux distributions. Enzymes that participate in potential futile modes are likely targets of regulation. Economic flux analysis can predict high-yield and low-yield strategies, and captures preemptive expression, multi-objective optimisation, and flux distributions across several cells living in symbiosis. Inspired by labour value theories in economics, it justifies and extends the principle of minimal fluxes and provides an intuitive framework to model the complex interplay of fluxes, metabolic control, and enzyme costs in cells

    Robust optimisation of urban drought security for an uncertain climate

    Get PDF
    Abstract Recent experience with drought and a shifting climate has highlighted the vulnerability of urban water supplies to “running out of water” in Perth, south-east Queensland, Sydney, Melbourne and Adelaide and has triggered major investment in water source infrastructure which ultimately will run into tens of billions of dollars. With the prospect of continuing population growth in major cities, the provision of acceptable drought security will become more pressing particularly if the future climate becomes drier. Decision makers need to deal with significant uncertainty about future climate and population. In particular the science of climate change is such that the accuracy of model predictions of future climate is limited by fundamental irreducible uncertainties. It would be unwise to unduly rely on projections made by climate models and prudent to favour solutions that are robust across a range of possible climate futures. This study presents and demonstrates a methodology that addresses the problem of finding “good” solutions for urban bulk water systems in the presence of deep uncertainty about future climate. The methodology involves three key steps: 1) Build a simulation model of the bulk water system; 2) Construct replicates of future climate that reproduce natural variability seen in the instrumental record and that reflect a plausible range of future climates; and 3) Use multi-objective optimisation to efficiently search through potentially trillions of solutions to identify a set of “good” solutions that optimally trade-off expected performance against robustness or sensitivity of performance over the range of future climates. A case study based on the Lower Hunter in New South Wales demonstrates the methodology. It is important to note that the case study does not consider the full suite of options and objectives; preliminary information on plausible options has been generalised for demonstration purposes and therefore its results should only be used in the context of evaluating the methodology. “Dry” and “wet” climate scenarios that represent the likely span of climate in 2070 based on the A1F1 emissions scenario were constructed. Using the WATHNET5 model, a simulation model of the Lower Hunter was constructed and validated. The search for “good” solutions was conducted by minimizing two criteria, 1) the expected present worth cost of capital and operational costs and social costs due to restrictions and emergency rationing, and 2) the difference in present worth cost between the “dry” and “wet” 2070 climate scenarios. The constraint was imposed that solutions must be able to supply (reduced) demand in the worst drought. Two demand scenarios were considered, “1.28 x current demand” representing expected consumption in 2060 and “2 x current demand” representing a highly stressed system. The optimisation considered a representative range of options including desalination, new surface water sources, demand substitution using rainwater tanks, drought contingency measures and operating rules. It was found the sensitivity of solutions to uncertainty about future climate varied considerably. For the “1.28 x demand” scenario there was limited sensitivity to the climate scenarios resulting in a narrow range of trade-offs. In contrast, for the “2 x demand” scenario, the trade-off between expected present worth cost and robustness was considerable. The main policy implication is that (possibly large) uncertainty about future climate may not necessarily produce significantly different performance trajectories. The sensitivity is determined not only by differences between climate scenarios but also by other external stresses imposed on the system such as population growth and by constraints on the available options to secure the system against drought. Recent experience with drought and a shifting climate has highlighted the vulnerability of urban water supplies to “running out of water” in Perth, south-east Queensland, Sydney, Melbourne and Adelaide and has triggered major investment in water source infrastructure which ultimately will run into tens of billions of dollars. With the prospect of continuing population growth in major cities, the provision of acceptable drought security will become more pressing particularly if the future climate becomes drier. Decision makers need to deal with significant uncertainty about future climate and population. In particular the science of climate change is such that the accuracy of model predictions of future climate is limited by fundamental irreducible uncertainties. It would be unwise to unduly rely on projections made by climate models and prudent to favour solutions that are robust across a range of possible climate futures. This study presents and demonstrates a methodology that addresses the problem of finding “good” solutions for urban bulk water systems in the presence of deep uncertainty about future climate. The methodology involves three key steps: 1) Build a simulation model of the bulk water system; 2) Construct replicates of future climate that reproduce natural variability seen in the instrumental record and that reflect a plausible range of future climates; and 3) Use multi-objective optimisation to efficiently search through potentially trillions of solutions to identify a set of “good” solutions that optimally trade-off expected performance against robustness or sensitivity of performance over the range of future climates. A case study based on the Lower Hunter in New South Wales demonstrates the methodology. It is important to note that the case study does not consider the full suite of options and objectives; preliminary information on plausible options has been generalised for demonstration purposes and therefore its results should only be used in the context of evaluating the methodology. “Dry” and “wet” climate scenarios that represent the likely span of climate in 2070 based on the A1F1 emissions scenario were constructed. Using the WATHNET5 model, a simulation model of the Lower Hunter was constructed and validated. The search for “good” solutions was conducted by minimizing two criteria, 1) the expected present worth cost of capital and operational costs and social costs due to restrictions and emergency rationing, and 2) the difference in present worth cost between the “dry” and “wet” 2070 climate scenarios. The constraint was imposed that solutions must be able to supply (reduced) demand in the worst drought. Two demand scenarios were considered, “1.28 x current demand” representing expected consumption in 2060 and “2 x current demand” representing a highly stressed system. The optimisation considered a representative range of options including desalination, new surface water sources, demand substitution using rainwater tanks, drought contingency measures and operating rules. It was found the sensitivity of solutions to uncertainty about future climate varied considerably. For the “1.28 x demand” scenario there was limited sensitivity to the climate scenarios resulting in a narrow range of trade-offs. In contrast, for the “2 x demand” scenario, the trade-off between expected present worth cost and robustness was considerable. The main policy implication is that (possibly large) uncertainty about future climate may not necessarily produce significantly different performance trajectories. The sensitivity is determined not only by differences between climate scenarios but also by other external stresses imposed on the system such as population growth and by constraints on the available options to secure the system against drought. Please cite this report as: Mortazavi, M, Kuczera, G, Kiem, AS, Henley, B, Berghout, B,Turner, E, 2013 Robust optimisation of urban drought security for an uncertain climate. National Climate Change Adaptation Research Facility, Gold Coast, pp. 74

    A hybrid and integrated approach to evaluate and prevent disasters

    Get PDF

    The agricultural policy simulator (AgriPoliS): an agent-based model to study structural change in agriculture (Version 1.0)

    Get PDF
    A central criticism common to agricultural economic modelling approaches for policy analysis is that they do not adequately take account of a number of characteristic factors of the agricultural sector. This concerns aspects like the immobility of land, heterogeneity of farms, interactions between farms, space, dynamic adjustment processes as well as dynamics of structural change. In brief, modelling the complexity of the system has not been at the centre of interest. In terms of modelling complex economic systems, an agent-based modelling approach is a suitable approach to quantitatively model and understand such systems in a more natural way. In the same way, this applies to the modelling of agricultural structures. In particular, agent-based models of agricultural structures allow for carrying out computer experiments to support a better understanding of the complexity of agricultural systems, structural change, and endogenous adjustment reactions in response to a policy change. This paper presents the agent-based model AgriPoliS (Agricultural Policy Simulator) which simultaneously considers a large number of individually acting farms, product markets, investment activity, as well as the land market, and a simple spatial representation. The ultimate objective of AgriPoliS is to study the interrelationship of rents, technical change, product prices, investments, production and policies, structural effects resulting from these, the analysis of the winners and losers of agricultural policy as well as the costs and efficiency of various policy measures. -- G E R M A N V E R S I O N: Ein oft genannter Kritikpunkt an vielen agrarökonomischen Politikanalysemodellen ist, dass diese nur ungenĂŒgend Bezug nehmen auf Aspekte wie die ImmobilitĂ€t von Boden, HeterogenitĂ€t der Akteure, Interaktionen zwischen Betrieben, rĂ€umliche BezĂŒge, dynamische Anpassungsprozesse und Strukturwandel. Kurz, die Modellierung komplexer WirkungszusammenhĂ€nge steht weniger oder nicht im Zentrum des Interesses. Agentenbasierte Modelle stellen einen Weg dar, das VerstĂ€ndnis komplexer ökonomischer ZusammenhĂ€nge zu verbessern bzw. zu quantifizieren. Insbesondere erlauben sie die DurchfĂŒhrung von einer Vielzahl von Computerexperimenten, mit denen Fragestellungen wie der Zusammenhang zwischen Politikmaßnahmen und Strukturwandel untersucht werden können. Basierend darauf, stellt dieser Beitrag das agentenbasierte Modell AgriPoliS (Agricultural Policy Simulator) vor. AgriPoliS ist ein rĂ€umlich-dynamisches Modell einer Agrarstruktur, in dem eine Vielzahl individuell abgebildeter landwirtschaftlicher Unternehmen in einer vereinfacht dargestellten Agrarregion agiert und beispielsweise um begrenzt verfĂŒgbare landwirtschaftliche FlĂ€chen konkurriert.Agent-based systems,Multi-agent systems,Policy analysis,Structural change,Simulation,Agentenbasierte Systeme,Politikanalyse,Multi-Agentensysteme,Strukturwandel,Simulation

    The Regional Multi-Agent Simulator (RegMAS): an open-source spatially explicit model to assess the impact of agricultural policies

    Get PDF
    RegMAS (Regional Multi Agent Simulator) is an open-source spatially explicit multi-agent model framework specifically designed for long-term simulations of the effects of policies on agricultural systems. Using iterated conventional optimisation problems as agents’ behavioural rules, it allows for a bidirectional integration between geophysical and social models where spatially-distributed characteristics are taken into account in the programming problem of the optimising agents. With RegMAS it is possible to simulate the local specific response to a given policy (or scenario), where policies, together with macro and regional characteristics, are read into the program in specially formatted spreadsheets and standard GIS files. The paper presents the model logic and structure and describes its functioning by applying it to a case-study, where RegMAS results are compared with conventional agent-based modelling to demonstrate the advantages of spatial explicitness. The simulation refers to the impact of the recent “Health Check” of the CAP on farm structures, income and land use in a hilly area of a central Italian region (Marche).Agent-Based Modelling; Mathematical Programming; Explicit Spatial Analysis; Common Agricultural Policy

    Towards A Comprehensive Framework For Technology Selection And Capacity Planning For Sustainable Manufacturing

    Get PDF
    Technology mixed perspective, as a combination of two functions of ‘Technology Selection’ and ‘Capacity Planning’, is not usually addressed in the research literature. Yet, the importance of integrated decisions at such strategic level is evident. The overall aim of this paper is to develop a framework for combined ‘technology selection’ and ‘capacity planning’ in manufacturing sector. The approach will also incorporate the multiperspective concept of sustainability, while taking uncertainties into account
    • 

    corecore