11,546 research outputs found

    beadarrayFilter : an R package to filter beads

    Get PDF
    Microarrays enable the expression levels of thousands of genes to be measured simultaneously. However, only a small fraction of these genes are expected to be expressed under different experimental conditions. Nowadays, filtering has been introduced as a step in the microarray preprocessing pipeline. Gene filtering aims at reducing the dimensionality of data by filtering redundant features prior to the actual statistical analysis. Previous filtering methods focus on the Affymetrix platform and can not be easily ported to the Illumina platform. As such, we developed a filtering method for Illumina bead arrays. We developed an R package, beadarrayFilter, to implement the latter method. In this paper, the main functions in the package are highlighted and using many examples, we illustrate how beadarrayFilter can be used to filter bead arrays

    Normalization and Statistical Analysis of Multiplexed Bead-Based Immunoassay Data Using Mixed-Effects Modeling

    Get PDF
    Multiplexed bead-based flow cytometric immunoassays are a powerful experimental tool for investigating cellular communication networks, yet their widespread adoption is limited in part by challenges in robust quantitative analysis of the measurements. Here we report our application of mixed-effects modeling for the normalization and statistical analysis of bead-based immunoassay data. Our data set consisted of bead-based immunoassay measurements of 16 phospho-proteins in lysates of HepG2 cells treated with ligands that regulate acute-phase protein secretion. Mixed-effects modeling provided estimates for the effects of both the technical and biological sources of variance, and normalization was achieved by subtracting the technical effects from the measured values. This approach allowed us to detect ligand effects on signaling with greater precision and sensitivity and to more accurately characterize the HepG2 cell signaling network using constrained fuzzy logic. Mixed-effects modeling analysis of our data was vital for ascertaining that IL-1α and TGF-α treatment increased the activities of more pathways than IL-6 and TNF-α and that TGF-α and TNF-α increased p38 MAPK and c-Jun N-terminal kinase (JNK) phospho-protein levels in a synergistic manner. Moreover, we used mixed-effects modeling-based technical effect estimates to reveal the substantial variance contributed by batch effects along with the absence of loading order and assay plate position effects. We conclude that mixed-effects modeling enabled additional insights to be gained from our data than would otherwise be possible and we discuss how this methodology can play an important role in enhancing the value of experiments employing multiplexed bead-based immunoassays.United States. Army Research Office (Contract W911NF-09-D-0001)National Institutes of Health (U.S.) (NIH P50-GM68762

    A single degree of freedom ‘lollipop’ model for carbon nanotube bundle formation

    Get PDF
    Current carbon nanotube (CNT) synthesis methods include the production of ordered, free-standing vertically aligned arrays, the properties of which are partially governed by interactions between adjacent tubes. Using material parameters determined by atomistic methods, here we represent individual CNTs by a simple single degree of freedom ‘lollipop’ model to investigate the formation, mechanics, and self-organization of CNT bundles driven by weak van der Waals interactions. The computationally efficient simple single degree of freedom model enables us to study arrays consisting of hundreds of thousands of nanotubes. The effects of nanotube parameters such as aspect ratio, bending stiffness, and surface energy, on formation and bundle size, as well as the intentional manipulation of bundle pattern formation, are investigated. We report studies with both single wall carbon nanotubes (SWCNTs) and double wall carbon nanotubes (DWCNTs) with varying aspect ratios (that is, varying height). We calculate the local density distributions of the nanotube bundles and show that there exists a maximum attainable bundle density regardless of an increase in surface energy for nanotubes with given spacing and stiffness. In addition to applications to CNTs, our model can also be applied to other types of nanotube arrays (e.g. protein nanotubes, polymer nanofilaments).National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Award DMR-0819762

    Varying the resolution of the Rouse model on temporal and spatial scales: application to multiscale modelling of DNA dynamics

    Full text link
    A multi-resolution bead-spring model for polymer dynamics is developed as a generalization of the Rouse model. A polymer chain is described using beads of variable sizes connected by springs with variable spring constants. A numerical scheme which can use different timesteps to advance the positions of different beads is presented and analyzed. The position of a particular bead is only updated at integer multiples of the timesteps associated with its connecting springs. This approach extends the Rouse model to a multiscale model on both spatial and temporal scales, allowing simulations of localized regions of a polymer chain with high spatial and temporal resolution, while using a coarser modelling approach to describe the rest of the polymer chain. A method for changing the model resolution on-the-fly is developed using the Metropolis-Hastings algorithm. It is shown that this approach maintains key statistics of the end-to-end distance and diffusion of the polymer filament and makes computational savings when applied to a model for the binding of a protein to the DNA filament.Comment: Submitted to Multiscale Modeling and Simulatio

    Quantitative Analysis of Single-Molecule Force Spectroscopy on Folded Chromatin Fibers

    Full text link
    Single-molecule techniques allow for picoNewton manipulation and nanometer accuracy measurements of single chromatin fibers. However, the complexity of the data, the heterogeneity of the composition of individual fibers and the relatively large fluctuations in extension of the fibers complicate a structural interpretation of such force-extension curves. Here we introduce a statistical mechanics model that quantitatively describes the extension of individual fibers in response to force on a per nucleosome basis. Four nucleosome conformations can be distinguished when pulling a chromatin fiber apart. A novel, transient conformation is introduced that coexists with single wrapped nucleosomes between 3 and 7 pN. Comparison of force-extension curves between single nucleosomes and chromatin fibers shows that embedding nucleosomes in a fiber stabilizes the nucleosome by 10 kBT. Chromatin fibers with 20- and 50-bp linker DNA follow a different unfolding pathway. These results have implications for accessibility of DNA in fully folded and partially unwrapped chromatin fibers and are vital for understanding force unfolding experiments on nucleosome arrays

    Traction force microscopy on soft elastic substrates: a guide to recent computational advances

    Get PDF
    The measurement of cellular traction forces on soft elastic substrates has become a standard tool for many labs working on mechanobiology. Here we review the basic principles and different variants of this approach. In general, the extraction of the substrate displacement field from image data and the reconstruction procedure for the forces are closely linked to each other and limited by the presence of experimental noise. We discuss different strategies to reconstruct cellular forces as they follow from the foundations of elasticity theory, including two- versus three-dimensional, inverse versus direct and linear versus non-linear approaches. We also discuss how biophysical models can improve force reconstruction and comment on practical issues like substrate preparation, image processing and the availability of software for traction force microscopy.Comment: Revtex, 29 pages, 3 PDF figures, 2 tables. BBA - Molecular Cell Research, online since 27 May 2015, special issue on mechanobiolog

    BeadArray Expression Analysis Using Bioconductor

    Get PDF
    Illumina whole-genome expression BeadArrays are a popular choice in gene profiling studies. Aside from the vendor-provided software tools for analyzing BeadArray expression data (GenomeStudio/BeadStudio), there exists a comprehensive set of open-source analysis tools in the Bioconductor project, many of which have been tailored to exploit the unique properties of this platform. In this article, we explore a number of these software packages and demonstrate how to perform a complete analysis of BeadArray data in various formats. The key steps of importing data, performing quality assessments, preprocessing, and annotation in the common setting of assessing differential expression in designed experiments will be covered

    Microbead-Based Biosensing in Microfluidic Devices

    Get PDF
    Microbeads are frequently used as a solid support to capture target analytes of interest, such as proteins and nucleic acids, from a biological sample. The integration of microbeads into microfluidic systems for biological testing is an area of growing interest. Such lab-on-chip systems are designed to integrate several functions of a conventional laboratory onto a single chip. As a platform to capture targets, beads offer several advantages over planar surfaces such as large surface areas to support biological interactions (increasing sensitivity), the availability of libraries of beads of various types from many vendors, and array-based formats capable of detecting multiple targets simultaneously (multiplexing). This dissertation describes the development and characterization of microbead-based biosensing devices. A customized hot embossing technique was used to stamp an array of microwells in a thin plastic substrate where appropriately functionalized agarose microbeads were selectively placed within a conduit. Functionalized quantum dot nanoparticles were pumped through the conduit and used as a fluorescent label to monitor binding to the bead. Three-dimensional finite element simulations were carried out to model the mass transfer and binding kinetics on the beads’ surfaces and within the porous beads. The theoretical predictions were critically compared and favorably agreed with experimental observations. A novel method of bead pulsation was shown to improve binding kinetics in porous beads. In addition, the dissertation discusses other types of bead arrays and demonstrates alternative bead-based target capture and detection strategies. This work enhances our understanding of bead-based microfluidic systems and provides a design and optimization tool for developers of point-of-care, lab-on-chip devices for medical diagnosis, food and water quality inspection, and environmental monitoring

    DNA Methylation Arrays as Surrogate Measures of Cell mixture Distribution

    Get PDF
    There has been a long-standing need in biomedical research for a method that quantifies the normally mixed composition of leukocytes beyond what is possible by simple histological or flow cytometric assessments. The latter is restricted by the labile nature of protein epitopes, requirements for cell processing, and timely cell analysis. In a diverse array of diseases and following numerous immune-toxic exposures, leukocyte composition will critically inform the underlying immuno-biology to most chronic medical conditions. Emerging research demonstrates that DNA methylation is responsible for cellular differentiation, and when measured in whole peripheral blood, serves to distinguish cancer cases from controls
    • …
    corecore