8,257 research outputs found

    A graph-based approach for the retrieval of multi-modality medical images

    Get PDF
    Medical imaging has revolutionised modern medicine and is now an integral aspect of diagnosis and patient monitoring. The development of new imaging devices for a wide variety of clinical cases has spurred an increase in the data volume acquired in hospitals. These large data collections offer opportunities for search-based applications in evidence-based diagnosis, education, and biomedical research. However, conventional search methods that operate upon manual annotations are not feasible for this data volume. Content-based image retrieval (CBIR) is an image search technique that uses automatically derived visual features as search criteria and has demonstrable clinical benefits. However, very few studies have investigated the CBIR of multi-modality medical images, which are making a monumental impact in healthcare, e.g., combined positron emission tomography and computed tomography (PET-CT) for cancer diagnosis. In this thesis, we propose a new graph-based method for the CBIR of multi-modality medical images. We derive a graph representation that emphasises the spatial relationships between modalities by structurally constraining the graph based on image features, e.g., spatial proximity of tumours and organs. We also introduce a graph similarity calculation algorithm that prioritises the relationships between tumours and related organs. To enable effective human interpretation of retrieved multi-modality images, we also present a user interface that displays graph abstractions alongside complex multi-modality images. Our results demonstrated that our method achieved a high precision when retrieving images on the basis of tumour location within organs. The evaluation of our proposed UI design by user surveys revealed that it improved the ability of users to interpret and understand the similarity between retrieved PET-CT images. The work in this thesis advances the state-of-the-art by enabling a novel approach for the retrieval of multi-modality medical images

    The Most Influential Paper Gerard Salton Never Wrote

    Get PDF
    Gerard Salton is often credited with developing the vector space model (VSM) for information retrieval (IR). Citations to Salton give the impression that the VSM must have been articulated as an IR model sometime between 1970 and 1975. However, the VSM as it is understood today evolved over a longer time period than is usually acknowledged, and an articulation of the model and its assumptions did not appear in print until several years after those assumptions had been criticized and alternative models proposed. An often cited overview paper titled ???A Vector Space Model for Information Retrieval??? (alleged to have been published in 1975) does not exist, and citations to it represent a confusion of two 1975 articles, neither of which were overviews of the VSM as a model of information retrieval. Until the late 1970s, Salton did not present vector spaces as models of IR generally but rather as models of specifi c computations. Citations to the phantom paper refl ect an apparently widely held misconception that the operational features and explanatory devices now associated with the VSM must have been introduced at the same time it was fi rst proposed as an IR model.published or submitted for publicatio

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Modelling Digital Media Objects

    Get PDF

    Evaluation campaigns and TRECVid

    Get PDF
    The TREC Video Retrieval Evaluation (TRECVid) is an international benchmarking activity to encourage research in video information retrieval by providing a large test collection, uniform scoring procedures, and a forum for organizations interested in comparing their results. TRECVid completed its fifth annual cycle at the end of 2005 and in 2006 TRECVid will involve almost 70 research organizations, universities and other consortia. Throughout its existence, TRECVid has benchmarked both interactive and automatic/manual searching for shots from within a video corpus, automatic detection of a variety of semantic and low-level video features, shot boundary detection and the detection of story boundaries in broadcast TV news. This paper will give an introduction to information retrieval (IR) evaluation from both a user and a system perspective, highlighting that system evaluation is by far the most prevalent type of evaluation carried out. We also include a summary of TRECVid as an example of a system evaluation benchmarking campaign and this allows us to discuss whether such campaigns are a good thing or a bad thing. There are arguments for and against these campaigns and we present some of them in the paper concluding that on balance they have had a very positive impact on research progress

    Case Based Representation and Retrieval with Time Dependent Features

    Full text link
    Abstract. The temporal dimension of the knowledge embedded in cases has often been neglected or oversimplified in Case Based Reasoning sys-tems. However, in several real world problems a case should capture the evolution of the observed phenomenon over time. To this end, we propose to represent temporal information at two levels: (1) at the case level, if some features describe parameters varying within a period of time (which corresponds to the case duration), and are therefore collected in the form of time series; (2) at the history level, if the evolution of the system can be reconstructed by retrieving temporally related cases. In this paper, we describe a framework for case representation and retrieval able to take into account the temporal dimension, and meant to be used in any time dependent domain. In particular, to support case retrieval, we provide an analysis of similarity-based time series retrieval techniques; to support history retrieval, we introduce possible ways to summarize the case content, together with the corresponding strategies for identifying similar instances in the knowledge base. A concrete ap-plication of our framework is represented by the system RHENE, which is briefly sketched here, and extensively described in [20].
    corecore