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Summary (English)

The goal of this thesis is to investigate two relevant issues regarding computa-
tional representation and classification of digital multi-media objects. With a
special focus on music, a model for representation of objects comprising multiple
heterogeneous data types is investigated. Necessary to this work are consider-
ations regarding integration of multiple diverse data modalities and evaluation
of the resulting concept representation.
Regarding modelling of data exhibiting certain sequential structure, a number
of theoretical and empirical results are presented. These are results related to
model parameter estimation and the use of sequence models in a classification
scenario. The latter being of importance in various digital multimedia naviga-
tion and retrieval tasks.

In the fields of topic modelling and multi-modal integration, we formulate a
model to describe entities composed of multiple aspects. The particular aspects
considered in the publications are sound, song lyrics, and user-provided meta-
data. This model integrates the diverse data types comprising the objects and
defines concrete unified representations in a joint “semantic” space. Within the
context of this model, general measures of similarity between such multi-modal
objects are investigated.

In the fields of method of moments and sequence modelling, we increase prac-
tical applicability of a certain moment based parameter estimation method for
Hidden Markov models by showing how to use full-length sequences in the esti-
mation process. Consequently, this impacts the quality of the estimated model
parameters.
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Subsequently, we show how to perform time series classification using a com-
posite likelihood formulated from third order moments defined by the Hidden
Markov model. Compared to the conventional likelihood based method, our
contribution is less computationally expensive, while retaining the level of clas-
sification performance.



Summary (Danish)

Denne afhandling undersøger to relevante problemstillinger i forbindelse med
repræsentation og kategorisering af digitale medieobjekter. Med særligt fokus
på musik undersøges et system til repræsentation af objekter udgjort af flere
forskelligartede datatyper. Dette indebærer overvejelser om kombination af he-
terogene data, og om evaluering af den resulterende objekt-repræsentation.
I forbindelse med modellering af sekventielle data præsenteres der en række teo-
retiske og empiriske resultater, der knytter sig til henholdsvis model-estimering
og brugen af sekvensmodeller i forbindelse med kategorisering eller “tagging”.
Sidstnævnte kan facilitere søgning i digitale mediedatabaser.

Inden for emnerne emnemodellering og multimodal integration formulerer vi en
model til at beskrive enheder bestående af flere aspekter, i vores tilfælde lyd,
sangtekst, og metadata indtastet af musikforbrugere.
Dette gøres ved at lade hver enkelt aspekt bidrage til en fælles beskrivelse af
objektet som helhed. Samme model bliver benyttet til at undersøge generelle
mål for similaritet mellem sådanne multi-modale objekter.

Inden for emnerne momentmetoder og tidsserieanalyse viser vi, hvordan det ved
brugen af tredje-ordens momenter til estimation af skjulte Markov-modeller er
muligt at benytte den fulde længde af observerede datasekvenser. Dette bety-
der helt praktisk, at man kan øge præcisionen af estimaterne med samme antal
tilgængelige datasekvenser.
Herefter viser vi, hvordan det er muligt at udføre kategorisering af datasekven-
ser ved hjælp af skjulte Markov-modeller og empiriske tredje-ordens momenter.
Sammenlignet med en traditionel likelihood-baseret metode resulterer vores bi-
drag i reduceret beregningstid ved klassifikation af lange sekvenser.
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Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
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The reader is assumed to possess a basic level of knowledge in the field of
statistics, probability theory and their typical use in machine learning and signal
processing applications. Hence this thesis will not provide details of widely
known concepts and methods, but rather cite relevant literature. The summary
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abstract multimedia concepts.
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Chapter 1

Introduction

We have gradually got used to the vast amount of content made available
through the internet, and people have come to rely heavily on information re-
trieval services such as search engines. Until recently, the ability to find an
item based on an abstract thought described through search query terms has
been confined by whether or not another human being has explicitly provided
a matching description for that particular item.
This issue arises because abstractions form the basis of human understanding
and communication of ideas and thoughts.
Abstractions facilitate reasoning about complex issues without considering all
the details while doing so. Hence, search engine performance is in many cases
limited by the fact that the description of every item in the index has to originate
from a cognitive process. This limitation has escalated with enormous amounts
of multimedia constantly being co-produced and uploaded by people around the
world, who do not care or do not have time to provide proper descriptions in
natural language. Moreover, any natural language description of an abstract
entity will be imperfect due to the mere nature of generality of an abstraction.
A natural question to ask in this situation is whether it is possible to gener-
ate proxies for cognitive representations with little or no human interaction.
This is one of the main questions driving the machine learning research field,
and considerable progress has been made by academia and industry in learn-
ing representations for tasks such as object recognition in images and machine
translation of natural language.
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In this thesis, we use the term “abstraction” to signify a representation of an
entity produced from a combination or grouping of physical measurements or
lower level abstractions, creating a many-to-one mapping between entities at
the lower level and entities at the higher level. Hence, an increase in level of ab-
straction corresponds to an increase in generality and variability and a decrease
in specificity and detail. The inherent polysemy in abstractions is extremely dif-
ficult to represent in a formalised model. This is hardly surprising considering
that ambiguities often lead to misunderstandings in human-to-human commu-
nication.

Tightly coupled with the notion of abstractions is the notion of similarity. The
sense of similarity of abstract concepts at some level of abstraction can define
groups of similar or dissimilar items. A group of items perceived as similar at
one abstraction level might give rise to a new abstract concept representing the
group as a whole at a higher level of abstraction. To formally represent abstract
concepts and measure similarity between them, we can create mathematical
models. The model itself may be described as a set of rules for interaction
between variables, and the values of model parameters can be viewed as the
strengths of these interactions. The question of how to measure similarity is
obviously deeply dependent on the chosen model. Some models might express
certain sequential or spatial structures of interest e.g. when dealing with time
series or image data. Other models might represent objects as entities composed
of un-ordered collections of sub-objects.
Common to all such models is the aim of creating abstract representations com-
prehensible to human beings, hence the value of such systems increases with
their ability to produce output aligned with human cognition.

If we accept the premise that the ultimate goal of modelling is to produce ab-
stractions exhibiting similar properties to human perception of concepts, a limit
likely exists to which level in the hierarchy of abstraction one can expect to rep-
resent using only physical inputs. i.e. excluding any product of human cognitive
processes. This limit is caused by user-provided information not present in the
observed data object, taking part in the production of higher level abstractions,
and it is often referred to as the semantic gap [6]. Fortunately, parts of the se-
mantic gap can be bridged by inclusion of user-specific data such as preference,
descriptions of perception and experience, and categorisation with the purpose
of communication based on a more or less common inter-human understanding
of the terms. User-specific data can be used in various ways to reason and make
decisions. The classical example of models based solely on user preference data
is that of collaborative filtering [7]. In general, supervised learning schemes
are often defined using target variables that are aligned with common human
concepts, and the objective is to predict the values of unobserved target values
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as closely as possible. Unsupervised learning methods seek to construct useful
representations by learning or imposing certain structure on both physical mea-
surements and user provided data. Unsupervised learning is often applied for
exploratory data analysis and modelling of data in cases where an exact task
has not or cannot be defined. Combinations of the two approaches are often
termed semi-supervised learning techniques and usually rely on a few items for
which the target variables are known, and a lot of items for which they are not.
The intuition behind semi-supervised learning is that the labelled items guide
the learned representation, and the unlabelled items improve generalisation per-
formance.

One of the important components of most machine learning techniques and in
particular unsupervised learning, is the transformation of observations into rep-
resentations on higher levels of abstraction. An example of a process increasing
the abstraction level is what is commonly known as feature extraction. Most fea-
ture extraction techniques process physical measurements and represent them in
terms of usually very low level concepts. E.g. when modelling western tonal mu-
sic tracks, a commonly used feature is the abstraction of fundamental frequency,
from which further abstractions such as chords and keys can be modelled [8, 9].

This thesis focuses on a few models for creating representations of abstract en-
tities. It does so in the form of an admixture model, a type of mixture model
allowing for each item to be represented as a convex combination of multiple
components. In contrast, the basic mixture model assumes that each item is
generated by a single component.
The second model considered is the Hidden Markov model which effectively is
a mixture model of sequence data with a dependency structure between neigh-
bouring observations. Both models make use of what is often referred to as
latent variables. Latent variables are unobserved variables assumed to follow
some specific probability distributions making sense from a human perspective,
and consequently they are the main component in obtaining abstract repre-
sentations. Hence abstract entities can effectively be represented by inferred
parameters which in turn can be compared to other items’ parameters accord-
ing to some measure of similarity.

Having formulated a mathematical model believed to enable representation of a
certain type of abstractions, one has to estimate its parameters or make inference
about the parameter distributions. A great variety of methods exists for doing
so ranging from numerical optimisation of heuristic loss functions to methods
with roots in probability theory. In this thesis two different approaches to
parameter learning have been applied. In contribution A, Markov Chain Monte
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Carlo (MCMC) is used to generate samples from the posterior distribution of
the model parameters. In contribution C, a variant of the method of moments
is used for parameter estimation in the Hidden Markov model (HMM).

The contributions of this thesis aim to address some of the sketched issues by
dealing with a few very specific models for representation of abstract concepts.
The treated methods are examples of unsupervised learning used to represent
higher level structure in the data.

To summarise, the contributions of this thesis are as follows. An admixture
model for representation of music tracks using multiple heterogeneous data types
is treated in A. Furthermore, alignment with user-provided data is evaluated and
discussed. C and D treat modelling of temporal structure using Hidden Markov
models and the work builds upon a recently proposed parameter estimation
method based on sub-sequences of length 3 [10]. Contribution C theoretically
justifies application of the method with data sequences of lengths >3 for which
stationarity cannot be assumed, and shows empirical evidence for improved
performance. Contribution D formulates a distance measure between estimated
models and observed sequences for use in model based classification scenarios.
The proposed distance measure is based on a composite likelihood formulated
from third order moments.

The remaining chapters of this thesis consist of specific introductions to the
scientific contributions and their related areas of research. Finally, a conclusion
summarises the key findings.



Chapter 2

Representation of
Multi-Modal Objects

Higher level abstractions are often multi-modal in the sense that they are con-
stituted by heterogeneous collections of other abstract objects. In applications
depending on representations of such entities, we therefore need models describ-
ing the contributions of each of the sub-components and the possible interplay
between them. While a unified representation of multi-modal objects is an
intriguing thought, it is an extremely hard problem to solve because of the
combinatorial nature of the problem. However the idea opens up for oppor-
tunities e.g. to integrate multiple observed object properties with social and
behavioural measurements such as buying- and usage patterns, and utterances
or ratings possibly relating physical objects to human cognitive concepts. This
link to perception is a crucial component in construction of systems designed
with human interaction in mind [11].

Because a measure of similarity is key to form relations between concepts, the
pertinence of a common latent representation is evident for any multi-modal
concept for which a sufficiently large number of people can agree on a general
sense of similarity. In such situations, the multiple views constituting a concept
has to contribute to the common representation. The general question of how to
integrate multiple heterogeneous sources of information for modelling purposes
has been investigated heavily, and with more and more multi-modal data sets
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available, the question is of increasing relevance. Works such as [12] and [13]
give thorough reviews on the variety of methodologies. An important concept is
the level of fusion of the modalities. Early fusion denotes the process of integra-
tion of modalities at the feature level and is often performed by concatenation
of feature vectors, whereas late fusion describes the situation of integration at
the “semantic” (decision) level. Naturally, integration at different levels can be
performed as well and is referred to as hybrid fusion [13].
Given a problem concerning input data consisting of multiple modalities, the
choice of fusion level is important both in terms of performance and model
properties. If features in different modalities live on different time scales or are
otherwise not directly compatible, late fusion is generally easier to implement.
This argument is used in [14] where audio-video integration for classification
with HMMs is investigated. Relying on late integration might however miss
possible correlation structure among features of different modalities. This is
noted by both [15] and [16] who formally link late fusion to the assumption of
conditionally independent modalities. The severity of this effect is obviously
controlled by the modality specific components of the model.
In [17] the features of each modality are transformed non-linearly to presumably
retain their individual distributional properties, while at the same time mak-
ing them compatible with the other transformed modalities, thereby allowing
fusion. In these new representations of the individual modalities, correlations
might still be present and exploited in the construction of a joint representation
of image-text pairs using Deep Boltzmann Machines. Fusion at a common level
as opposed to hybrid fusion, implies that modalities are treated symmetrically
which, depending on the task at hand, can be more or less appropriate in such
multi-modal generative models.

An alternative take on the fusion of transformed modalities is that of fusion of
systems. This view allows fusion to be done in a pipeline or hierarchical fashion
where some of the systems may be constructed independently of the others, and
subsequently be used to guide the remaining systems e.g. by providing prior
beliefs. This fusion of systems approach has recently been applied within music
research, where an instrument detection model was used to guide and automatic
music transcription system [18]. Another example, applied but not limited to
music classification is the idea of Bag of Systems (BoS) presented in [19]. BoS
represents objects as counts of an un-ordered set of prototypes being generative
models themselves.
Interestingly, the traditional pipeline approach: pre-processing → feature ex-
traction → modelling can also be seen as a type of system fusion.

One very intuitive way of describing relations between multiple measurements is
through probabilistic latent variable models (LVM). This class of models allows
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for defining complex conditional dependency structures between observed and
un-observed variables via relatively simple distributional arguments, reasoning
and common sense. One limitation of this kind of model building methodology
is that it only allows for interactions between variables if specifically expressed
by the designer. On the other hand, LVMs are often quite easy to interpret
because of their explicit structure.

One of the obstacles to overcome is that data from different modalities are often
of diverse data types, non-synchronous, and come in different quantities for a
single object. This raises the question of how to control the relative weighting
of different modalities. Contribution A applies a latent variable model to obtain
representations of music tracks. The specific model used is a multi-modal vari-
ant of the formerly very popular Latent Dirichlet Allocation model [20]. The
model implements late symmetric fusion of information derived from the music
itself as well as user generated text data and category labels to obtain a joint
semantic space along the lines of [17] and [21].
In the mmLDA model, the influence of each modality is decided by its abun-
dance, and there is no obvious principled way to control this influence. On the
other hand, this very same construction ensures the existence of a representation
of an object even if only a single modality is observed. Related to this ques-
tion, another approach to multi-modal similarity is presented in [22], where a
multi-modal PLSA model is obtained by optimising a combined likelihood of in-
dividual modalities, and used to assess music track similarity. This construction
allows for control of the relative weighting of modalities. The general problem of
modelling multi-modal similarity for music tracks in particular has been investi-
gated multiple times during the last decade. Weston et al. [23] define a multitask
learning problem with joint semantic space of different modalities. This enables
comparison of heterogeneous concepts such as audio, tags and artists in a non-
probabilistic setting. McFee et al. [24] define a unified embedding space based
on kernel matrices of individual modalities. Their algorithm is evaluated on
similarities of music artists, and also shows that some music genre structure is
revealed by the method. Additionally, it is noted that the audio itself is the
weakest of the modalities in terms of artist similarity.

2.1 A Note on Features

To enable meaningful representations of highly abstract concepts in general, the
building blocks necessarily need to contain all the relevant information. For
this reason, representations of music tracks are often created from lower level
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acoustic features including MFCC, chroma and beat structure, believed to cap-
ture information related to timbre, melodic content, and tempo respectively.
This traditional pipeline procedure has previously proven useful in other music
similarity tasks such as cover song identification [25], and this approach is also
followed in contribution A.
It should however be noted that while explicit feature extraction enhances trans-
parency of a model, it can obviously only benefit from the included, well defined
features. Consequently, as a model designer, one can only do so much with a
given set of features. With the resurrection of interest in artificial neural net-
works, so-called end-to-end systems have become increasing popular [26]. One
of the reasons is that the inputs to this type of system are often only slightly
pre-processed versions of original measurements. This enables the modelling
objective to be taken into account from the very beginning of the modelling
process. In principle this type of system should be able to perform task spe-
cific feature extraction, and retain only information relevant to the objective,
but comes at the cost of lost transparency otherwise offered by explicit feature
extraction and selection.

2.2 Multi-Modal Topic Modelling

This section describes a multi-modal version of Latent Dirichlet Allocation
(mmLDA) and its relation to other multi-modal topic models. For simplicity, we
will use the standard concepts known from the topic modelling literature, such
that a corpus refers to a collection of documents, a document refers to an entity
composed of an un-ordered set of words (often referred to as a bag-of-words
representation), a word refers to the smallest object of interest in the modelling
framework, and finally a vocabulary refers to the set of all possible words.

Numerous different ways of incorporating multiple data sources have been pro-
posed in the topic modelling literature. In addition to the works mentioned
earlier in relation to general multi-modality, we now review a few specific ideas.
In the Dirichlet Multinomial Regression Topic Model (DMRTM) Mimno et al.
[27] integrate arbitrary document level metadata with the word content of docu-
ments. Mimno et al. distinguish between downstream and upstream integration.
These terms indicate whether observed metadata variables, according to the gen-
erative process of a model, are generated conditional on the latent variables or
not. The DMRTM model is able to obtain performance similar to that of spe-
cial purpose models: the Author-Topic Model [28] and the Topics-Over-Time
model (TOT) [29]. A newer idea along the same lines is presented in [30] as the
Inverse Regression Topic Model (IRTM). Like DMRTM, the IRTM is proposed
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for modelling document level metadata, but lets the metadata directly affect the
words of the document in contrast to the DMRTM where words and metadata
are conditionally independent given the latent topic variables. While the models
work well for annotation purposes where it makes sense to have an asymmetric
relationship between modalities, we now turn to the more classical symmetrical
multi-modal representation in the context of topic models.
The mmLDA treats all modalities symmetrically and can thus be characterised
as a downstream, conditionally independent model of multi-modal documents.
The model is quite similar to the GM-LDA model described in [31] and in fact
identical to the poly-lingual topic model proposed by Mimno et al. [32], although
their focus is explicitly on modelling multilingual text corpora. For modelling
multimedia objects with the goal of classification and auto-annotation of TV
clips, Putthividhya et al. [33] uses a multi-modal version of un-smoothed LDA,
i.e. no prior distribution is specified for the topic-word distributions. Hence
contribution A broadens the application areas of the smoothed mmLDA model
by modelling collections of more general entities consisting of multiple modali-
ties with assumed correspondence across modalities. Thus we use the mmLDA
to obtain document representations in a joint semantic space and investigate
properties of the induced similarity.
In mmLDA, correspondence of topics across modalities is assumed by letting the
document-topic distribution be shared among modalities. According to [31] this
model structure limits its use for image annotation because its mainly models
the joint distribution of modalities and does not represent conditional probabili-
ties that well. To improve representation of the relationship between modalities,
the Correspondence LDA model is proposed in [31]. This improves modelling of
conditional probabilities, but breaks the symmetric representation of modalities.
The same issue is mentioned by Virtanen et al. [34], who suggest that successful
application of mmLDA is quite dependent on the 1-1 relationship between top-
ics in different modalities implied by the assumptions of shared document-topic
distributions. This point of view is supported by the findings in [32], where mul-
tiple languages constitute the modalities. The approach suggested in [34] is to
provide alternative means of correspondence by allowing topics to be correlated
using the main idea of the Correlated Topic Model (CTM) [35]. Additionally,
one Hierarchical Dirichlet Process (HDP) [36] per modality provides an on/off
switch for each topic’s contribution to the document. This effectively allows
some topics to be private to a few or even a single modality.
In [37] an alternative way to deal with the strong correspondence across modal-
ities is proposed. Here, all documents are split into their modality specific
sub-documents, and a Markov Random Field with edges between modalities of
the original documents is used to model the relationships between modalities.

We now proceed with a formal description of the mmLDA. In the multi-modal
LDA model, a corpus consist of a D documents, containing data from M dif-
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ferent modalities. Each modality has its own vocabulary and hence its own
multinomial topic-word distributions parametrised by Φ(m). Each topic in each
modality is assumed to be a multinomial distribution generated from a Dirichlet
prior with parameters β(m).
A document collection is modelled as being generated by the following steps

• For each modality m

– For each topic k

∗ Draw a multinomial parameter vector φ(m)
k randomly from a Dirichlet

distribution with parameters β(m). This represents the kth topic’s
distribution over words.

• For each document d

– Draw a multinomial parameter vector θd randomly from a Dirichlet distri-
bution with parameters α. This represents the dth document’s distribution
over topics.

– For each modality m

∗ For each word w
(m)
d,n

· Draw the topic z
(m)
d,n from Cat(θd)

· Draw the word w
(m)
d,n from Cat(φ

(m)

z
(m)
d,i

)

The conditional dependencies of mmLDA can be represented as the graphical
model shown in Fig. 2.1.

α θ z w φ β

KN
(m)
d

M
D

θd ∼ Dir(α)

φ
(m)
k ∼ Dir(β(m))

z
(m)
d,n ∼ Cat(θd)

w
(m)
d,n ∼ Cat(φ

(m)

z
(m)
d,n

)

Figure 2.1: Graphical representation of the multi-modal Latent Dirichlet al-
location model showing the conditional dependencies in the joint
distribution. Each circular node represents a real random variable.
The model is represented using plates, describing the presence of
multiple instances of the variables shown in the plate. The num-
ber in the corner of each plate denotes the number of instances of
the variables in the plate. The dark nodes represent variables that
are observed.
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The joint distribution of the random variables in the model can be written as

p(w, z,Φ,Θ|α,B)

= p(Θ|α)
M∏

m=1

p(w(m)|z(m),Φ(m))p(z(m)|Θ)p(Φ(m)|β(m))

=

D∏

d=1

p(θd|α)
M∏

m=1

p(Φ(m)|β(m))

D∏

d=1

M∏

m=1

N
(m)
d∏

n=1

p(w
(m)
d,n |z

(m)
d,n ,φ

(m))p(z
(m)
d,n |θd)

=

D∏

d=1

Dir(θd|α)
M∏

m=1

K∏

k=1

Dir(φ
(m)
k |β(m))

D∏

d=1

M∏

m=1

N
(m)
d∏

n=1

φ
(m)

z
(m)
d,n ,w

(m)
d,n

θ
d,z

(m)
d,n

=

D∏

d=1

Dir(θd|α)
M∏

m=1

K∏

k=1

Dir(φ
(m)
k |β(m))

M∏

m=1

V (m)∏

j=1

K∏

k=1

(φ
(m)
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where Θ = {θd,k}[d=1:D]×[k=1:K], Φ = {φ(m)
k }[k=1:K]×[m=1:M ], V (m) is the size

of the vocabulary of modality m, and φ(m)
k = {φ(m)

k,j }j=1:V (m)

.
As exact inference in this model is computationally intractable, the parame-
ter distributions are approximated using Gibbs sampling. Because the Cate-
gorical parameter variables φ and θ are conveniently assumed to be Dirichlet
distributed, it is relatively straightforward to integrate them out. This results
in what is often referred to as a collapsed likelihood from which the equations
defining a collapsed Gibbs sampler for the model can be derived.

p(z
(m)
d,n = t|w(m)

d,n = b, z\mdn,w\mdn,α,β) ∝
(c
\mdn
m,t,b + βb)(v

\mdn
d,t + αt)

∑V
j=1(c

\mdn
m,t,j + βj)

(2.1)

where cm,t,j is the number of times the word j in mode m has been assigned to
topic t, and vd,t is the number of words in document d that has been assigned
to topic t (across all modalities). The superscript \mdn means that the topic
assignment currently being sampled (at position m, d, n) is not included.

2.2.1 Hyper Parameter Optimisation

The parameters of the Dirichlet priors on θ and φ, α and β respectively, are in
a classical Bayesian setting fixed at some values considered to represent reason-
able prior knowledge of the model parameters. However, as suggested in [38, 39],
when dealing with large data sets, the hyper-parameters in question are very
well-defined, and resorting to direct optimisation of the likelihood is an accept-
able alternative to the more Bayesian approach of hyper-priors. Wallach et al.
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[39] recommend the use of an asymmetrical Dirichlet distribution as prior for θ
and a symmetrical Dirichlet distribution as prior for φ. This allows some topics
to be more prevalent than others, and often results in a topics being dominated
by ubiquitous words1. In contribution A we follow the described suggestions of
regarding choice of prior, and optimise the hyper-parameters using fixed point
iterations due to [40]. For alternative iterative methods we refer to [38].

2.2.2 Model Estimation

In general probabilistic modelling, multiple approaches to approximate param-
eter inference exist. Numerous different inference procedures have been applied
to the plain LDA model including Variational Bayes (VB) [20], expectation
propagation (EP) [41], a collapsed version of VB (CVB)[42], various combina-
tions of (C)VB and (GS/CGS) [43, 44, 45], online VB using mini-batches [46],
Sequential Monte Carlo [47], Method of Moments (MOM) [48], Particle Mir-
ror Descent [49] and collapsed Gibbs sampling (CGS) [50]. In Gibbs Sampling
(GS), which is a variant of Markov Chain Monte Carlo (MCMC), each variable
in the model is sampled from its conditional distribution of the variable given
the values of all other variables. If the model definition allows (as it does in LDA
because of conjugacy), some variables can be integrated out, and application of
GS in this context is referred to as Collapsed Gibbs Sampling.
The results reported in contribution A are produced using CGS.

One of the general drawbacks of using MCMC methods is the often quite lengthy
sampling time. The following works suggest different ideas to reducing the sam-
pling time used for model estimation in LDA in the specific case of CGS.
In [51] it is proposed to decrease the sampling time by only sampling part of
the words in the training data. In [52], Porteous et al. improve performance
by adaptively approximating the normalisation constant for the sampling dis-
tribution. By exploiting structure in the sampling equations and updating the
count variables more effectively than standard collapsed Gibbs sampling, Yao
et al. [53] observe significant speed gains over the naïve Gibbs sampling imple-
mentation. In short, it is proposed to split the sampling probability mass into
three “buckets”, where the size of each bucket is depending on different counts
of assignments of words to topics. Sorting of the buckets and using a 32-bit
encoding of the word-topic counts are the main reasons for the speed-up. The
benefits of the last two methods become more distinct when the number of top-
ics is increased because sparsity in the topic-word counts is exploited. To be
able to produce the results is contribution A in a reasonable amount of time,

1In the text modelling domain, these words are often referred to as stop-words
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we applied the sparse sampling method presented in [53]. Further improvement
might be possible by following the ideas in [54], where GS is used in a setting
where the non-zero probability of a variable being re-sampled is varied in an
online fashion.

2.2.3 Maximum A Posteriori Estimation

For some practical applications it can be convenient to work with point estimates
of model parameters instead full distributions e.g. represented by posterior sam-
ples. In contribution A, we obtained approximate maximum a posteriori (MAP)
point estimates of parameters. Such a MAP estimate was obtained by, after 1950
Gibbs sampling iterations, choosing the sample with the highest marginal like-
lihood among the next 50 iterations.
An alternative approach could have been to consider the use of Iterated Condi-
tional Modes (ICM) to generate the MAP estimate. ICM has previously proven
successful in similar applications in topic modelling using LDA [55] and NMF
[56]. In ICM, the stochastic sampling step of the Gibbs sampler is replace by a
deterministic sampling step; choosing the maximum of the conditional distribu-
tion to be sampled. For the LDA model, the relevant conditional distribution is
a Categorical distribution, which is readily available in an un-normalised form
defined by the counts of assignments of topics to words. Hence the maximum
can be calculated extremely efficiently. The ICM algorithm was not used for
production of the results in [3], but was implemented in a later version of the
mmLDA++ software2.

2.2.4 Multi-Modal Similarity Revisited

One way to analyse the latent representation induced by a model, and thereby
what similarity calculations are based on, is to measure the alignment of the
presence of particular words to the topic representation. The alignment between
a specific word λ in a modality not included in the model estimation process
and the grouping defined by the model in terms of topics, is measured using
the average Normalised Mutual Information across all documents (avgNMI).
Specifically, we let p(ωλ = 0|z = k) = 1− p(ωλ = 1|z = k) = 1− φ∗k,λ where the
asterisk denotes a parameter point estimate, and ωλ is an indicator variable for
the occurrence of λ. For a specific document d, the mutual information between

2The mmLDA++ software is available for download at http://people.compute.dtu.dk/
rast/

http://people.compute.dtu.dk/rast/
http://people.compute.dtu.dk/rast/
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the presence of λ and the topic variable z is then

MI(ωλ, z|d) = KL (p (ωλ, z|d) ‖p (ωλ|d) p(z|d))

=
∑

i∈{0,1}

K∑

k=1


p (ωλ = i|z = k) p(z = k|d) log p (ωλ = i|z = k)

K∑
k′=1

p (ωλ = i|z = k′) p(z = k′|d)




It is of course possible to assess the uncertainty of the avgNMI for λ by repeti-
tion of the calculation for multiple samples from the Gibbs chain. For the results
presented in contribution A, a single sample considered the MAP estimate was
used.
In contribution A we suggested to evaluate the latent grouping defined by a
model estimated using only audio features and lyrics for the set of training
songs. This was done by measuring the alignment, as measured by avgNMI,
between the model and the user provided tags, which was considered the single
available modality best describing expressed human perception of the music.
The results showed that the user provided tags best aligned with the model rep-
resentation were mainly names of music genres. This means that the mmLDA
model is able find structure in just the audio and the lyrics that to some de-
gree aligns with highly abstract concepts often used to communicate music taste
among humans.
To illustrate an application of the music track representation obtained from the
mmLDA model in contribution A, the classical task of genre-classification was
performed using both tags, lyrics, and audio modalities from the Million Song
Data set (MSD) [57, 58]. The MSD is benchmark data set of songs which
includes audio features from the.echonest.com API and metadata regarding
artists, lyrics, tags and user-song play counts. Because of its comprehensive-
ness it has been used to evaluate numerous MIR tasks such as a multi-modal
approach to artist identification [59], and artist, genre and key recognition using
convolutional neural networks [60].
Music genre classification is a popular problem in the MIR community [61], and
the fact that music genres are abstract and subjective makes the classification
task interesting but also a very hard. Ambiguities arise from the generality
induced by high level abstractions, and the need for consideration of both the
music and the listeners seems obvious in order to successfully predict music
genre.
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2.3 Measuring Similarity by Correlations

One issue with intractable latent variable models is that parameter estimates
obtained via approximate inference techniques are likely to represent local min-
ima of the objective function. This necessarily affects the measure of similarity
implied by the model parameters. Furthermore, how to actually calculate simi-
larities using parameter point estimates can be addressed in various ways. These
questions, stated in the context of the mmLDA model, are the main drivers for
the work described in contribution B. Several ways to measure similarity be-
tween two documents A and B in the LDA model have been proposed, of which
most only consider the related document-topic distributions θA and θB . For an
image retrieval task, Hörster et al. [62] compare cosine distance (2.2), `1-norm
(2.3), Jensen-Shannon divergence (2.4) and a measure based on the likelihood
of the topic distribution of one document given contents of the other document
(2.6). The distances/similarities are evaluated by human scoring of retrieval
results, and in that particular study, the likelihood based measure is preferred
in terms of quality. This seems sensible as none of the competing measures
consider the estimated topic-word distributions Φ. With the purpose of visual-
ising topic models, Chaney et al. [63] propose to use (2.5) to describe document
similarity.

cos(A,B) =
θ>AθB
‖θA‖‖θB‖

(2.2)

`1(A,B) =

K∑

k=1

∣∣θAk − θBk
∣∣ (2.3)

JS(A,B) =
1

2

(
KL

(
θA,

θA + θB
2

)
+KL

(
θB ,

θA + θB
2

))
(2.4)

CB(A,B) =

K∑

k=1

|log(θAk)− log(θBk)| (2.5)

LL(A,B) =
log p(wA|θsB ,Φs)
∑M
m=1N

(m)
A

(2.6)

To assess the stability of defined document similarities across multiple point
estimates the correlation between similarity matrices can be calculated. Con-
tribution B applies Spearman’s rank correlation rs, as the preservation of rank-
relations seems sensible and consideration of only linear correlation might be
too restrictive. Figure 2.2 illustrates the stability of the different similarity and
distance measures listed above. It is clear that the likelihood is superior to the
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others. This emphasises the importance of including the topic-word distribu-
tions in the distance measure.

32 128 512
0
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r s

All modalities

LL
KL
CB
cos

Figure 2.2: Mean and standard deviations of Spearman correlations between
all pairs of similarity matrices resulting from 5 random re-
initialisations, using 10-fold cross validation. Models are estimated
from all modalities considered in contribution B. The differences
in correlations suggest that the choice of similarity method is an
important issue, and that the likelihood based method as expected
seems superior.

The modalities considered in the models of contribution B are listed below and
represent both very low level features of the audio, a textual dimension of the
tracks via the lyrics, and information provided by music consumers. Together
they provide information derived directly from the music tracks, and information
related to the tracks through cognitive and sociological processes [64].

• Open vocabulary tags provided by the users of the service last.fm.

• Track lyrics provided by musiXmatch.com.

• Editorial artist tags provided by allmusic.com.

• Artist tags provided by the MusicBrainz project.

• User listening history provided by the.echonest.com

• Genre and style tags provided by allmusic.com

• Various audio features from the.echonest.com
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The given audio features are continuous and to include them in the mmLDA
model, some kind of discretisation is needed to obtain an audio word representa-
tion [65, 66, 67, 68]. The presented results rely on k-means clustering of timbre,
chroma, loudness and tempo features obtained via a now-closed audio analyzer
API provided by the.echonest.com.

In contribution B, also correlations between similarity matrices based on differ-
ent modalities are calculated. This should be seen as yet another way to measure
alignments between the similarities defined by different modalities. Our paper
states that there is a significant positive correlation between the similarities de-
fined by the audio modality alone and the similarities defined by the remaining
non-audio modalities. The relevance of this result is however questionable as
the correlation is very close to 0.
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Chapter 3

Time Series Modelling and
Classification with Hidden

Markov Models and
Method of Moments

While the topic model in the previous section used a bag-of-words representa-
tion of documents, we now turn to modelling of data that exhibit sequential
structure. This discipline is therefore often referred to as time series modelling
and explicitly encode system dynamics in the model parameters. Problems
where the ordering of observations is important to the end goal have numerous
times been approached with models possessing the ability to describe progres-
sion. This includes general control theory, human activity recognition, chord
progression in polyphonic music, and weather forecasting just to mention a few.
Time series models seek to represent abstract entities by estimating parameters
related to dynamical properties of the data. Hence time series modelling can
be a valuable tool for comparing and grouping sequential data. Recently, recur-
rent artificial neural network architectures such as the LSTM [69] have become
increasingly popular and are widely used in e.g. speech recognition [70, 71] and
natural language processing [72, 73]. We will however limit this discussion to
one of the more classical probabilistic approaches to sequence modelling, the
Hidden Markov model, as this is the main topic of contributions C and D.
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3.1 The HMM and its Estimation by Method of
Moments

In the Hidden Markov Model, observed data is assumed to be generated condi-
tional on an underlying sequence of unobserved discrete state variables denoted
zn ∈ [1 : S], n ∈ [1 : N ],, and that there is a dependency structure between
these latent state variables at the different time-steps. The term Markov is due
to a restriction in this dependency structure, such that given the value of a par-
ticular state variable, the state variable at the next time step is conditionally
independent of all previous state variable and observations:

p(zn+1|xn, zn) = p(zn+1|zn, zn−1, . . . , z1) = p(zn+1|zn) (3.1)

The dependency structure of observed variables are as follows: Given the current
state, the current observation is conditionally independent of all previous state
variables and observations:

p(xn|xn−1, zn) = p(xn|zn) (3.2)

This process can be illustrated using a graphical model such as the one shown
in Fig. 3.1

z1 z2 z3 · · ·

x1 x2 x3 · · ·

Figure 3.1: Graphical representation of the Hidden Markov Model

The dynamic behaviour of the model is expressed through a transition probabil-
ity matrix T ∈ RS×S where the ith column represents a categorical distribution
describing the probability of transitioning from state i to any of the S states,
see (3.1). To start the process, an initial distribution over states usually de-
noted π(1) ∈ RS is defined. For simplicity we limit this presentation to the
discrete HMM, such that the probabilities of observations can be represented
by a stochastic matrix O ∈ RK×S . The ith column of O then fully describes
the probability of observing any of the K symbols if the current state is i, see.
(3.2).
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A common way to estimate the parameters in the HMM is using the maximum
likelihood principle either via direct optimisation using standard constraint op-
timisation tools [74] or the more common choice in the field of machine learning,
the Expectation-Maximisation (EM) algorithm (also known as Baum-Welch in
the specific case of HMM) [75]. Obviously, it is also possible to take a more
Bayesian approach and provide prior information for the model parameters.
This line of thought has been explored by Goldwater et al. [76] for Part-of-
Speech tagging. Using ideas from Approximate Bayesian Computation (ABC)
and method of moments for HMM estimation, which is also trated in this the-
sis, Bonnevie et al. [77] suggest a method for fast sampling of posterior HMM
parameters in a large data setting.
Recently, another estimation method has gained attention specifically within
latent variable modelling, hence including (ad-)mixture models and Hidden
Markov Models. The general idea of the method is to relate model parame-
ters to empirical data moments through a set of equations, which is why it is
often termed the Method of Moments (MOM). The original idea is quite old,
dating back to Karl Pearson [78].

Traditionally, application of MOM depended on estimates of moments of the
same order as the number of parameters to be estimated. For more complex
models, this limited the applicability of the method, because of the increased
uncertainty of higher order moment estimates. The recent interest in the field
seems to be driven by convergence proofs involving spectral decomposition of
quantities related to moments of relatively low order [79]. Specifically for the
HMM, the common starting point seems to be an observable operator formu-
lation due to Jaeger et al. [80]. Later Hsu et al. [81] show how to calculate
likelihoods under the HMM without recovering the traditional parametrisation
presented above. An algorithm for recovery of the parameters T and O is
subsequently given in [10]. Both methods rely on spectral decomposition of
quantities calculated from empirical third order moments subject to the mild
conditions of rank(O) = rank(T ) = S. The moments considered in this context
are expectations of the first three consecutive observations of sequences (3.3).

P1,2,3 = E [x1 ⊗ x2 ⊗ x3] xi ∈ RK (3.3)

P1,3,2(η) = E[(x1 ⊗ x3)〈η,x2〉] η ∈ RK (3.4)

While the above-mentioned works apply spectral decompositions to expressions
involving matrix “slices” of (3.3), defined in (3.4), also methods directly applying
orthogonal tensor decompositions have been proposed and seems to dominate
the field [82]. Very recent work proves learnability of over-complete models [83]
which was not covered by previous methods.

Some variations and extensions of the results for basic HMMs have been inves-
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tigated in [84] (reduced-rank HMM), [85] (mixture of HMMs), and [86] (con-
trastive learning of HMMs). For the specific estimation algorithms and their
convergence properties we refer to the original works [81, 10]. One apparent
limitation of cited methods is the restriction to use only the first three ob-
servations in a number of i.i.d. HMM data sequences. The main reason for
this limitation seems to be avoidance of unnecessarily complicated convergence
proofs also considering correlation between triplets in the sequences. It is how-
ever not obvious if the framework is valid for non-stationary sequences of lengths
greater than three. This matter is handled in contribution C where it is shown
that the algorithms remain valid when using expectations of moments across all
time steps. This shows not only to be true for assumed stationary HMMs, but
also for ergodic non-stationary HMMs.

3.2 Sequence Similarity via HMM Classification

While the previous section dealt with estimation of model parameters in the
Hidden Markov Model, this section turns to an application leveraging the ob-
tained abstract representation of the dynamics in observed sequence data. The
problem of calculating similarities between time series and hence also represent
groups of data sequences exhibiting similar intra-group dynamics has often been
treated with the use of HMMs. Grouping of data can often be divided into the
two main areas; clustering and classification. In a classification problem a set
predefined classes exist, the goal is to be able to classify unseen data correctly.
In classical model based classification this translates into finding good represen-
tatives of the given classes. This is typically done by estimating class conditional
models using exemplar data for which the class label is known. In clustering,
we also assume the existence of groups (clusters) of data, but in contrast to
classification, there are no predefined labels. This adds to the complexity of
clustering by also requiring discovery of a partitioning of data. Early work in
sequence clustering using HMMs includes [87, 88, 89] which has laid ground
for later work formulating embedding procedures for sequence data [90]. More
recently, spectral clustering using probability product kernels (PPK) for HMMs
was explored in [91]. In the classification setting, some of the early work was
done by Lawrence Rabiner [75] with applications to speech recognition. Ad-
ditionally, HMM based classification has be applied in diverse fields such as
software virus detection [92], 2D object shape classification [93] and symbolic
folk music classification [94].

In a model based classification setting where each class prototype is an HMM,
data sequences can be assigned to classes based on how well they represent the
particular class according to a specific cost function. Due to the probabilistic
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nature of the model, the cost function is often chosen to be the negative log-
likelihood of the model parameters given the data. However, inspired by the
advances in parameter estimation using MOM, contribution D proposes to use
a cost function based on third order moments and triplets of observations. The
presented idea is inspired by the use of third order moments as a kind of suf-
ficient statistics for HMM estimation in the MOM framework. In contribution
D, we show how the Kullback-Leibler divergence can be used to derive a cost
function relating model parameters to an observed data sequence. This is done
by representing the HMM in terms of its third order moments at every time
step:

Pn,n+1,n+2(·, k, ·) = O diag(T n−1π(1))T> diag(O(k, ·))T>O> k ∈ [1;K]
(3.5)

Further analysis reveals that the proposed cost constitutes a composite likeli-
hood of the HMM re-parametrised in the form of moments. A composite like-
lihood is a product of likelihoods due to sub-components of the data [95], and
generalises the term pseudo-likelihood, specifically used for conditional compo-
nent likelihoods [96], to also include marginal component likelihoods.
The proposed distance score (3.6) collects the elements of the third order mo-
ments based on model parameters M = {π(1),T ,O} (3.5) that correspond to
the observed triples in the sequence x at each time step.

D(x,M) =
1

N − 2

N−2∑

n=1

− log
(
Pn,n+1,n+2(x

(n), x(n+1), x(n+2))
)

(3.6)

Using the described composite likelihood method for classification of time se-
ries data, we are able to obtain results equal to the likelihood based method in
terms of quality, but at a reduced computational complexity of O(N) per class
compared to O(NS2) for the classical method.
While the described approach seems to perform well, the memory requirements
of a naïve implementation grows with the lengths of the sequences to be clas-
sified. This can be handled by assuming stationarity after a certain number of
time steps. The approximation is controlled by specifying a maximum allowed
total variation distance between the initial state distribution and the stationary
state distribution, which can be converted into an upper bound on the conver-
gence time to approximate stationarity.
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Chapter 4

Summary & Conclusions

With the overall aim to investigate possible representations of abstract concepts
in a way that can assist humans by improving search experience and facilitating
navigation of large scale multimedia content databases, this thesis treated two
latent variable models.

The problem of representation of multi-modal concepts was treated by inte-
gration of the diverse information of different modalities using a multi-modal
version of the Latent Dirichlet Allocation topic model. This resulted in con-
crete approximate representations of abstract concepts. The model was applied
to represent music tracks composed of song lyrics, audio content and user pro-
vided tags. The obtained representation from using only the lyrics and audio
modalities was evaluated by measuring the alignment with the tag modality.
Finding that the best aligned tags are dominated by common western music
genres and styles suggests that the latent representation, defined in an unsuper-
vised manner, may to some degree be an acceptable proxy for certain “cognitive”
aspects of music.
Applied to classification tasks of music genre and style, as expected, represen-
tations based on all three modalities performed best. Combining audio features
and lyrics improved classification results compared to using either of the two.
The question of measuring similarity between multi-modal concepts was further
investigated in contribution B, where different ways of defining similarity specif-
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ically in topic models were evaluated.
Returning to the issues of modern information retrieval, the presented results
indicate the viability of the mmLDA model as a means to assess similarity be-
tween abstract concepts comprising heterogeneous data types. This is done by
integration of the different modalities into unified computational representa-
tions. These representations potentially improves peoples’ experiences of music
navigation and retrieval.

The problem representing data exhibiting sequential structure was treated us-
ing the well known Hidden Markov model. Two aspects regarding such systems
were investigated, namely parameter estimation and classification by measuring
similarity.
The first result described in detail in contribution C regarded improving the
practical applications of a recently proposed parameter estimation method based
on third order moments. While not limited to the case of a stationary HMM,
the main finding was a proof of validity of using empirical expectations of third
order moments across time steps.
The second result was related to the practical application of computational sys-
tems for classification of sequence data. The main idea of contribution D was an
alternative distance score for describing relationships between models and se-
quences. The proposed distance score was a composite likelihood of a sequence
of third order moments derived from the HMM. While retaining classification
performance the proposed method showed less costly than exact likelihood cal-
culations in terms of computational complexity.
This result has the potential to expand certain application areas of HMM based
classification by increasing computational feasibility for large collections of data
to be classified.
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ABSTRACT

A fundamental and general representation of audio and mu-
sic which integrates multi-modal data sources is important for
both application and basic research purposes. In this paper
we address this challenge by proposing a multi-modal ver-
sion of the Latent Dirichlet Allocation model which provides
a joint latent representation. We evaluate this representation
on the Million Song Dataset by integrating three fundamen-
tally different modalities, namely tags, lyrics, and audio fea-
tures. We show how the resulting representation is aligned
with common ’cognitive’ variables such as tags, and provide
some evidence for the common assumption that genres form
an acceptable categorization when evaluating latent represen-
tations of music. We furthermore quantify the model by its
predictive performance in terms of genre and style, providing
benchmark results for the Million Song Dataset.

Index Terms— Audio representation, multi-modal LDA,
Million Song Dataset, genre classification.

1. INTRODUCTION

Music representation and information retrieval are issues of
great theoretical and practical importance. The theoretical
interest relates in part to the close interplay between audio,
human cognition and sociality, leading to heterogenous and
highly multi-modal representations in music. The practical
importance, on the other hand, is evident as current music
business models suffer from the lack of efficient and user
friendly navigation tools. We are interested in representations
that directly support interactivity, thus representations based
on latent variables that are well-aligned with cognitively (se-
mantic) relevant variables [1]. User generated tags can be
seen as such ’cognitive variables’ since they represent deci-
sions that express reflections on music content and context.

This work was supported in part by the Danish Council for Strategic Re-
search of the Danish Agency for Science Technology and Innovation under
the CoSound project, case number 11-115328. Bob L. Sturm, Aalborg Unin-
versity Copenhagen is acknowledged for suggestion of relevant references in
music interpretation.

Clearly, such tags are often extremely heterogenous, high-
dimensional, and idiosyncratic as they may relate to any as-
pect of music use and understanding.

Moving towards broadly applicable and cognitively rele-
vant representations of music data is clearly contingent on the
ability to handle multi-modality. This is reflected in current
music information research that use a large variety of repre-
sentations and models, ranging from support vector machine
(SVM) genre classifiers [2]; custom latent variable models
models for tagging [3]; similarity based methods for recom-
mendation based on Gaussian Mixture models [4]; and latent
variable models for hybrid recommendation [5]. A significant
step in the direction of flexible multi-modal representations
was taken in the work of Law et al. [6] based on the proba-
bilistic framework of Latent Dirichlet Allocation (LDA) topic
modeling. Their topic model representation of tags allows
capturing rich cognitive semantics as users are able to tag
freely without being constrained by a fixed vocabulary. How-
ever, with a strong focus on automatic tagging Law et al. re-
frained from developing a universal representation - symmet-
ric with respect to all modalities. A more symmetric represen-
tation is pursued in recent work by Weston et al. [7]; however,
without a formal statistical framework it offers less flexibility,
e.g., in relation to handling missing features or modalities.
This is often a challenge encountered in real world music ap-
plications.

In this work we pursue a multi-modal view towards a
unifying representation, focusing on latent representations
informed symmetrically by all modalities based on a multi-
modal version of the Latent Dirichlet Allocation model. In
order to quantify the approach, we evaluate the model and
representation in a large-scale setting using the million song
dataset (MSD) [8], and consider a number of models trained
on combinations of the three basic modalities: user tags (top-
down view), lyrics (meta-data view) and content based audio
features (bottom-up view). First, we show that the latent
representation obtained by considering the audio and lyrics
modalities is well aligned—in an unsupervised manner - with
’cognitive’ variables by analyzing the mutual information



between the user generated tags and the representation itself.
Secondly, with knowledge obtained in the first step, we eval-
uate auxiliary predictive tasks to demonstrate the predictive
alignment of the latent representation with well-known hu-
man categories and metadata information. In particular we
consider genre and styles provided by [9], none of which is
used to learn the latent semantics themselves. This leads to
benchmark results on the MSD and provides insight into the
nature of generative genre and style classifiers.

Our work is related to a rich body of studies in music
modeling, and multi-modal integration. In terms of non-
probabilistic approaches this includes the already mentioned
work of Weston et al. [7]. McFee et al. [10] showed how
hypergraphs (see also [11]) can be used to combine multiple
modalities with the possibilities to learn the importance of
each modality for a particular task. Recently McVicar et al.
[12] applied multi-way CCA to analyze emotional aspects of
music based on the MSD.

In the topic modelling domain, Arenas-Garcı́a et al. [13]
proposed multi-modal PLSA as a way to integrate multiple
descriptors of similarity such as genre and low-level audio
features. Yoshii et al. [5, 14] suggested a similar approach for
hybrid music recommendation integrating subject taste and
timbre features. In [15], standard LDA was applied with au-
dio words for the task of obtaining low-dimensional features
(topic distributions) applied in a discriminative SVM classi-
fier. For the particular task of genre classification et al. [16]
applied the pLSA model as a generative genre classifier. Our
work is a generalization and extension of these previous ideas
and contributions based on the multi-modal LDA, multiple
audio features, audio words and a generative classification
view.

2. DATA & REPRESENTATION

The recently published million song dataset (MSD) [8] has
highlighted some of the challenges in modern music informa-
tion retrieval; and made it possible to evaluate top-down and
bottom-up integration of data sources on a large scale. Hence,
we naturally use the MSD and associated data sets to evalu-
ate the merits of our approach. In defining the latent seman-
tic representation, we integrate the following modalities/data
sources.

The tags, or top-down features, are human annotations
from last.fm often conveying information about genre and
year of release. Since users have consciously annotated the
music in an open vocabulary, such tags are considered an ex-
pressed view of the users cognitive representation. The meta-
data level, i.e., the lyrics, is of course nonexistent for for ma-
jority of certain genres, and in other cases simply missing
for individual songs which is not a problem for the proposed
model. The lyrics are represented in a bag-of-words style,
i.e., no information about the order in which the terms occurs
is included. The content based or bottom up features are de-

Fig. 1: Graphical model of the multi-modal LDA model

rived from the audio itself. We rely on the Echonest feature
extraction1 already available in for the MSD, namely timbre,
chroma, loudness, and tempo. These are orginally derived in
event related segments, but we follow previous work [17] by
beat aligning all features obtaining an meaningful alignment
with music related aspects.

In order to allow for practical and efficient indexing and
representation, we abandon the classic representation of using
for example a Gaussian mixture model for representing each
song in its respective feature space. Instead we turn to the so-
called audio word approach (see e.g. [18, 19, 3, 17]) where
each song is represented by a vector of counts of (finite) num-
ber of audio words (feature vector). We obtain these audio
words by running a randomly initiated K-means algorithm on
a 5% random subset of the MSD for timbre, chroma, loudness
and tempo with 1024, 1024, 32, and 32 clusters, respectively.
All beat segments in a all songs are then quantized into these
audio words and the resulting counts, representing the four
different audio features, are concatenated to yield the audio
modality.

3. MULTI-MODAL MODEL

In order to model the heterogeneous modalities outline above,
we turn to the framework of topic modeling. We propose to
use a multi-modal modification of the standard LDA to repre-
sent the latent representation in a symmetric way relevant to
many music applications. The multi-modal LDA, mmLDA,
[20] is a straight forward extension of standard LDA topic
model [21], as shown in Fig. 1. The model and notation is
easily understood by the way it generates a new song by the
different modalities, thus the following generative process de-
fines the model:
• For each topic z ∈ [1;T ] in each modality m ∈ [1;M ]

Draw φ
(m)
z ∼ Dirichlet(β(m)).

This is the parameters of the zth topic’s distribution over vo-
cabulary [1;V (m)] of modality m.

• For each song s ∈ [1;S]

– Draw θs ∼ Dirichlet(α).
This is the parameters of the sth song’s distribution
over topics [1;T ].

– For each modality m ∈ [1;M ]

∗ For each word w ∈ [1;Nsm]

· Draw a specific topic z(m) ∼ Categorical(θs)

· Draw a word w(m) ∼ Categorical(φ(m)

z(m))

1http://the.echonest.com
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Fig. 2: Normalized average mutual information (avgNMI) be-
tween the latent representation defined by audio and lyrics for
T = 128 topics and the 200 top-ranked tags. avgNMI is com-
puted on the test set in each fold. The popularity of each tag
is indicated in parenthesis.

A main characteristic of mmLDA is the common topic pro-
portions for all M modalities in each song, s, and separate
word-topic distributions p(w(m)|z) for each modality, where
z denotes a particular topic. Thus, each modality has its own
definition of what a topic is in terms of its own vocabulary.

Model inference is performed using a collapsed Gibbs
sampler [22] similar to the standard LDA. The Gibbs sam-
pler is run for a limited number of complete sweeps through
the training songs, and the model state with the highest model
evidence within the last 50 iterations is regarded as the MAP
estimate. From this MAP sample, point estimates of the topic-
song distribution, p̂(z|s), and the modality, m, specific word-
topic distribution, p̂(w(m)|z), can be computed based on the
expectations of the corresponding Dirichlet distributions.

Evaluation of model performance on a unknown test song,
s∗, is performed using the procedure of fold-in [23, 24] by
computing the point estimate of the topic distribution, p̂(z|s∗)
for the new song, by keeping the all the word-topic counts
fixed during a number of new Gibbs sweeps. Testing on a
modality, not included in the training phase, requires a point
estimate of the word-topic distribution, p(w(m∗)|z), of the
held out modality, m∗, of the training data. This is obtained
by fixing the song-topic counts while updating the word-topic
counts for that specific modality. This is similar to the fold-in
procedure used for test songs.

4. EXPERIMENTAL RESULTS & DISCUSSION

4.1. Alignment

The first aim is to evaluate the latent representation’s align-
ment with a human ’cognitive’ variable, which we previously
argued could be the open vocabulary tags. We do this by in-
cluding only the lower level modalities of audio and lyrics
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(b) Style

Fig. 3: Classification accuracy for T ∈ {32, 128, 512}. Dark
blue: Combined model; Light Blue: Tags; Green: Lyrics;
Orange: Audio; Red: Audio+Lyrics.

when estimating the model. Then the normalized mutual in-
formation between a single tag and the latent representations,
i.e., the topics, is calculated for all the tags.

Thus for a single tag, wi
(tag) we can compute the mutual

information between the tag and the topic distribution for a
specific song, s as:

MI
(
wi

(tag), z|s
)
= (1)

KL
(
p̂
(
wi

(tag), z|s
)
||p̂
(
wi

(tag)|s
)
p̂ (z|s)

)
,

where KL(·) denotes the Kullback-Leibler divergence. We
normalize the MI to be in [0; 1], i.e,

NMI
(
wi

(tag), z|s
)
= 2

MI
(
wi

(tag), z|s
)

H
(
wi

(tag)|s
)
+H (z|s) ,

where H(·) denotes the entropy. Finally, we compute the
average over all songs to arrive at the final measure of
alignment for a specific tag, given by avgNMI(wi

(tag)) =
1
S

∑
s NMI

(
wi

(tag), z|s
)
.

Fig. 2 shows a sorted list of tags, where tags with high
alignment with the latent representation have higher average
NMI (avgNMI). It is notable that the combination of the au-
dio and lyrics modality, in defining the latent representation,
seems to align well with genre-like and style-like tags. On the
contrary, emotional and period tags are relatively less aligned
with the representation. Also note that the alignment is not
simply a matter of the tag being the most popular as can
be seen from Fig. 2. Less popular tags are ranked higher
by avgNMI than very popular tags, suggesting that some are
more specialized in terms of the latent representation than
others.

The result gives merit to the idea of using genre and styles
as proxy for evaluating latent representation in comparison
with other open vocabulary tags, since we - from lower level
features, such as audio features and lyrics - can find latent
representations which align well with high-level, ’cognitive’
aspects in an unsupervised way. This is in line with many
studies in music informatics on western music (see e.g. [25,
26, 27]) which indicate coherence between genre and tag cat-
egories and cognitive understanding of music structure. In
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Fig. 4: Dark blue: Combined model, Light Blue: Tags, Green: Lyrics, Orange: Audio, Red: Audio+Lyrics, genre, T = 128.
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Fig. 5: Confusion matrices for genre and 128 topics. The color level indicates the classification accuracy.

summary, the ranking of tag alignment using our modeling
approach on the MSD provides some evidence in favor of
such coherence.

4.2. Prediction

Given the evidence presented for genre and style being the
relatively most appropriate human categories, our second aim
is to evaluate the predictive performance of the multi-modal
model for genre and style, and we turn to the recently pub-
lished extension of the MSD [9] for reference test/train splits
and genre and style labels. In particular, we use the balanced
splits defined in [9].

For the genre case, this results in 2000 labeled examples
per genre and 15 genres, thus resulting in 30, 000 songs. We
estimate the predictive genre performance by 10-fold cross-
validation. Fig. 4 shows the per-label classification accuracy
(perfect classification equals 1). The total genre classification
performance is illustrated in Fig. 3a. The corresponding re-
sult for style classification, based on a total of 50, 000 labeled
examples, is shown in Fig. 3b. Both results are generated us-
ing T = 128 topics, 2000 Gibbs sweeps and predicting using
the MAP estimate from the Gibbs sampler.

We first note that the combination of all modalities per-
forms the best and significantly better than random as seen
from Fig. 3, which is encouraging, and support the multi-
modal approach. It is furthermore noted that the tag modality
is able to perform very well. This indicates that despite the
possibly noisy user expressed view, the model is able to find
structure in line with the taxonomy defined in the reference
labels of [9]. More interesting is perhaps the audio and lyric
modalities and the combination of the two. This shows that
lyrics performs the worst for genre, possibly due to the miss-
ing data in some tracks, while the combination is significantly

better. For style there is no significant difference between au-
dio and lyrics.

Looking at the genre specific performance in Fig. 4 we
find a significant difference between the modalities. It ap-
pears that the importance of the modalities is partly in line
with the fundamentally different characteristics of each spe-
cific genre. For example ’latin’ is driven by very characteris-
tic lyrics. Further insight can be obtained by considering the
confusion matrices which show some systematic pattern of er-
ror in the individual modalities, whereas the combined model
shows a distinct diagonal structure, highlighting the benefits
of multi-modal integration.

5. CONCLUSION

In this paper, we proposed the multi-way LDA as a flexible
model for analyzing and modeling multi-modal and hetero-
geneous music data in a large scale setting. Based on the
analysis of tags and latent representation, we provided evi-
dence for the common assumption that genre may be an ac-
ceptable proxy for cognitive categorization of (western) mu-
sic. Finally, we demonstrated and analyzed the predictive per-
formance of the generative model providing benchmark result
for the Million Song Dataset, and a genre dependent perfor-
mance was observed. In our current research, we are looking
at purely supervised topic models trained for, e.g. genre pre-
diction. In order to address truly multi-modal and multi-task
scenarios such as [7], we are currently pursuing an extended
probabilistic framework that include correlated topic models
[28], multi-task models [29], and non-parametric priors [30].
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Abstract

Calculating similarities between objects defined by many heterogeneous data
modalities is an important challenge in many multimedia applications. We use a
multi-modal topic model as a basis for defining such a similarity between objects.
We propose to compare the resulting similarities from different model realizations
using the non-parametric Mantel test. The approach is evaluated on a music dataset.

1 Introduction

Calculating similarity between objects linked to multiple data sources is more urgent than ever. A
prime example is the typical multimedia application of music services where users face a virtually
infinite pool of songs to choose from. Here choices are based on many different information sources
including the audio/sound, meta-data like genre, and social influences [1], hence, attempts of modeling
the geometry of music navigation have taken on a multi-modal perspective. In fusing heterogeneous
modalities like audio, genre, and user generated tags it is both a challenge to establish a combined
model in a ’symmetric’ manner so that one modality do not dominate others and it is challenging to
evaluate the quality of the resulting geometric representation. Here, we focus on the latter issue by
testing the consistency of derived inter-song (dis-)similarity by means of direct comparison between
similarities using the Mantel permutation test.

Topic models have previously been used to infer geometry in the image and music domain, e.g. by [2]
combining audio features and listening histories. In [3] images and tags were analyzed, also by means
of a multi-modal topic model. In [4] music similarity is inferred with a nonparametric Bayesian
model, and [5] describe multiple multi-modal extensions to basic LDA models and evaluate the
models on an image information retrieval task. Furthermore, topic model induced similarities among
documents have been put to use in a navigation application [6], and different similarity estimates are
also discussed in relation to a content-based image retrieval problem [7].

2 Model & Inference

To be able to measure similarities between objects, a representation of these objects is needed. In this
work we use a version of Latent Dirichlet Allocation that incorporates multiple sources of information
into a joint object representation similar to [5]. In [8], this model was applied to a multilingual corpus.
Each object is represented by a multinomial distribution over topics which is common for all of
the modalities composing the object. Each topic is defined by a set of multinomial distributions
over features, each of which is defined on the vocabulary specific for a modality. To explain the
characteristics of the model, the assumed generative process for objects is outlined in figure 1
together with a graphical representation of the model. The difference from a number of individual
LDA models, each defined on a separate modality, is that each object is described by a single,
shared distribution over topics, which potentially induces strong dependencies between the feature
distributions representing the same topic in the individual modalities.

1



• For each topic indexed by t ∈ [1;T ] in each modality indexed
by m ∈ [1;M ]

Draw φ
(m)
t ∼ Dirichlet(β(m))

This is the parameters of the tth topic’s distribution over
vocabulary [1;V (m)] of modality m.

• For each document indexed by d ∈ [1;D]

– Draw θd ∼ Dirichlet(α)
This is the parameters of the dth documents’s distribu-
tion over topics [1;T ].

– For each modality m ∈ [1;M ]

∗ For each word w in the mth modality of document
d
· Draw a specific topic z(m) ∼ Categorical(θd)

· Draw a word w(m) ∼ Categorical(φ(m)

z(m))

(a) Generative process

D

d

(b) The multi-modal Latent Dirich-
let Allocation model represented as
a probabilistic graphical model.

Figure 1

Performing inference in the model amounts to estimation of the posterior distributions over the latent
variables. We use a Gibbs sampler inspired by the sparsity improvements proposed by [9]. For
evaluation (see section 4), we use point estimates θs and φs derived from a sample zs from the
Markov chain, by taking the expectations of the respective posterior Dirichlet distributions defined by
zs. In this work we choose the state of the chain with the highest model evidence within the last 50
out of 4000 iterations. Hyper-parameters are optimized using fixed point updates [10, 11]. The prior
on the document topic distributions is an asymmetric Dirichlet with parameter α, and the priors over
the vocabularies of the respective modalities are symmetric Dirichlet distributions with parameters
β(m).

3 Similarities in Topic Models

As already hinted, there are many ways to define and calculate similarities in topic models; both
between topics and documents. In this paper we focus on the latter. Most methods in literature
are based solely on the distributions of topics in the documents, θ, e.g. [4] measures the Kullback-
Leibler divergence between two such distributions, while [7] also mentions inner products and cosine
similarities as candidates. With focus on visualization, [6], introduces the yet another dissimilarity
measure based on topic proportions. [7] promotes a measure based on the predictive likelihood of the
document contents, and this approach is the basis of the method chosen here; The similarity of two
documents A and B is given by the mean per-word log-likelihood of the words of document A given
the topic distribution of document B (and the vocabulary distributions).

log p(wA|θs
B ,φ

s)
∑M

m=1 N
(m)
A

, where p(wA|θs
B ,φ

s) =

M∏

m=1

N
(m)
A∏

i=1

T∑

t=1

(φ
(m)

t,w
(m)
Ai

)
>
θt,B (1)

We use this approach to calculate a non-symmetric similarity matrix between all objects in the
held-out cross-validation fold, for which the topic proportions have been estimated using “fold-in”.
1 While this similarity measure is more computationally demanding than e.g. the KL-divergence,
when the number of topics T used in the model increases, it might happen that some topics have
vocabulary distributions that are very alike and only differ on a few words. Thus two documents with
mainly the same type of content may have large proportions of different topics, causing them to be
very dissimilar according to a topic proportion based measure. For a non-parametric topic model
such as [4], this might not be a large concern, however, for parametric topic models, this should be
taken into consideration. Generally, most of the discussed similarity measures are not proper metrics

1For the few held-out documents that do not contain any words in the modalities used for model estimation,
we chose to simulate a uniform distribution of words in such an empty document by one occurrence of every
word in the vocabulary.
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in the geometric sense, but for (dis-)similarity purposes the exact properties might not be important,
depending on the application.

Comparing Similarities - the Mantel test
An important aspect of this work is the ability to assess the relations between different similarities
induced by models estimated from multiple, possibly different, heterogeneous data sources. To
compare such similarities we look at the correlation between the defined similarities. For testing
the significance of the correlations we can apply a Mantel style test [12]. The Mantel test is a
non-parametric test to assess the relation between two (dis-)similarity matrices. The null hypothesis
is that the two matrices are unrelated, and the null distribution is approximated by calculating the
test statistic for a large number of random permutations of the two matrices (excluding the diagonal
elements); permuting rows and columns together to maintain the distribution of (dis-)similarities for
each object. In this work we use Spearman’s correlation coefficient as the test statistic.

4 Experimental Results: Music Similarity

In this preliminary study we examine induced similarities in a subset of the Million Song Dataset [13],
consisting of 30.000 tracks with equal proportions of 15 different genres. Each track is composed
of data from a number of different sources: Open vocabulary tags from users (last.fm), Lyrics
(musiXmatch.com), Editorial artist tags (allmusic.com), Artist tags (musicBrainz), User listening
history (echonest), Genre and style (allmusic), and Audio Features (echonest). All modalities—
besides the audio features—are naturally occurring as counts of words and for the audio we turn
to an audio word approach, where the continuous features are vector quantized into a total of 2144
words. For this pilot study we estimate topic models on combinations of groups of modalities from
the mentioned list, respectively consisting of the first 5, the genre and style labels, and the audio.
To be able to assess the model stability of the similarities, we estimate each model five times from
different random initialisations of the Markov chain. This is done for every training set of a 10-fold
cross-validation split. The correlations between all combinations of the 5 similarity matrices resulting
from each held-out fold are then calculated, and the resulting distributions of correlation coefficients
are shown in figure 2a. Figure 3a shows the distributions of correlations between similarities based
on audio and on the larger modality group. The correlations are evidently much smaller than for
identical models, but a Mantel test with 100 permutations suggest that the null hypothesis of no
correlation can be rejected at a significance level of at least 1% for all three model complexities.

5 Discussion & Conclusion

The issue of stability is relevant for similarities induced by topic models using approximate inference
techniques. The correlations between similarities from identical but randomly initialized models,
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can be used as a tool to gain some insight into this matter. From the preliminary results on the
music example we find the induced similarities (fig. 2) to be highly stable. Furthermore, inspecting
the similarities obtained from different data types; figure 3, we observe that while the audio model
in itself does not seem to provide higher intra- than inter-genre similarity, it is still significantly
positively correlated to the other modality group which does possess some discriminative power in
terms of genre labels. Moreover, it seems that an increasing number of topics causes the correlation
between similarities from models estimated on different modality groups to decrease. We speculate
that this is linked to the specific topic model variant, for which [5] also note that the model describes
the joint distribution of different modalities well, but does not model the relations between them.

In conclusion, we have proposed the multi-modal LDA as a method to define similarities in multimedia
applications with multiple heterogeneous data sources based on the predictive-likelihood. This was
extended with the Mantel test allowing direct evaluation of the consistency and correspondence of
the resulting similarities.
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Spectral Learning of Hidden Markov Models in
Non-stationary Data
Rasmus Troelsgaard and Lars Kai Hansen

Abstract—In this letter we estimate the parameters of Hidden
Markov Models via spectral estimation using empirical third
order moments based on full sequences. Recently, parameter
estimation techniques based on the method of moments have been
proposed for Hidden Markov Models. These methods were either
restricted to estimation based on the first three observations in
the observed data sequences or forced to assume that the hidden
Markov chain’s initial state was drawn from the stationary
distribution. We propose a method for estimation of moments
involving all observed data without assumed stationarity. The
scheme is based the observation that the specific formulations
of the original methods remain valid when applied to averages
of moments with different initial distributions, hence different
positions in the observed sequences. The potential gains are
illustrated in a set of numerical experiments.

Index Terms—Method of Moments, Spectral Estimation, Hid-
den Markov Model

I. INTRODUCTION

SPECTRAL methods for parameter estimation in statistical
latent variable models have gained great interest in the

signal processing community. This includes work on the Hid-
den Markov model (HMM)[1], [2], reduced-rank HMM [3],
mixture of HMMs [4], discriminative training of HMMs [5],
overcomplete latent variable models [6], [7], and on the use of
spectral algorithms as a means to initialisation of maximum
likelihood methods [8]. Additional perspectives on spectral
methods for time series models were provided in [9], where the
estimation problem is turned into a regularized optimisation
problem involving functions over strings represented as Hankel
matrices.
The main tools of spectral learning are matrix factorization
techniques. In the particular case of the HMM, the model
parameters can be recovered by applying the singular value
decomposition to certain empirical third order moments of
the data and performing basic linear algebra. The methods are
valid under mild rank conditions. [1], [2] require full column
rank of observation and transition matrices, while [3] enables
estimation of models with lower rank than number of states.
The surge in the field of spectral learning has been fed by
proofs of global convergence and low computational com-
plexity. For convenience, the theoretical work make additional
assumptions that formally constrain estimators to be based on
the first three observations from the data sequences. The lim-
itation to the first triplet simplifies the proven bounds because
observed triplets in this case can be regarded i.i.d. and the

Rasmus Troelsgaard and Lars Kai Hansen are with the Department of Ap-
plied Mathematics and Computer Science, Technical University of Denmark,
Lyngby, Denmark

correlation of triplets due to serial correlation can be ignored.
While this is useful from a theoretical point of view relatively
few papers discuss these constraints. [1] states that all available
data in principle ought to be used, and [3] mentions that by
assuming stationarity it is possible to form moments from
as little as a single observed sequence. However, for most
applications, the stationarity assumption is not suitable, hence
we are left with the engineering issue: How can the spectral
estimation method can be applied to general HMM problems
and how can we use all observed triplets? In this letter we
establish such tools to take advantage of full set of observed
data sequences without assuming stationarity. We focus on
the particular spectral estimation framework of [2] although
the presented results are equally valid for all presentations
sharing the same components of third order moments and
spectral decompositions. Our work could in colloquial terms
be regarded as improving the “practical statistical efficiency”
of the existing method of [2].

II. HIDDEN MARKOV MODELS AND SPECTRAL
ESTIMATION

This section briefly recapitulates definitions and model
formulations necessary for description and further analysis of
the use of empirical moments for estimation of parameters in
a Hidden Markov Model.

A. Hidden Markov Models

The Hidden Markov Model is a widely used probabilistic
latent variable model for sequence data, where observations
are drawn from distributions conditioned on unobserved
states. The unobserved states are assumed to form a Markov
chain. We parametrize the HMM as follows:

T ∈ RS×S : Transition probability matrix
Tg,h = P (zn = g|zn−1 = h) n ≥ 2

O ∈ RK×S : Observation probability matrix
Oh = E[xt|zn = h] n ≥ 1

π(1) ∈ RS : Initial state probability vector
π

(1)
h = P (z1 = h)

for g, h ∈ {1, 2, · · · , S}.
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B. Spectral Learning of HMM Parameters

Following [2], we define the second and third order mo-
ments as:

Pn,n+2 = E[xn ⊗ xn+2] (1)
Pn,n+2,n+1 = E[xn ⊗ xn+2 ⊗ xn+1] (2)

And let the third order moment Pn,n+2,n+1 act as a linear
operator on the vector η ∈ RK :

Pn,n+2,n+1(η) = E[(xn ⊗ xn+2)〈η,xn+1〉] (3)

where 〈·, ·〉 denotes the standard inner product.
Let π(n) = T n−1π(1) denote the expectation of the state
distribution at time n > 0, then for n ∈ {1, 2, . . . , N − 2}
(3) is related to the Hidden Markov model parameters by:

Pn,n+2,n+1(η) = Odiag(π
(n))T>diag(η>O)T>O> (4)

Similarly, the second order moments are related to the model
parameters by

Pn,n+2 = Odiag(π(n))T>T>O> (5)

The procedure described in [2] is based on eigendecompo-
sitions of the following observable operator.

B1,3,2(η) = (U>1 P1,3U3)
−1U>1 P1,3,2(η)U3 (6)

= (T>O>U3)
−1diag(η>O)(T>O>U3)

provided that T and O have column rank S, and U1 ∈ RK×S

and U3 ∈ RK×S are matrices of orthonormal column vec-
tors such that O>U1 and T>O>U3 are invertible. Thus
by replacing P1,3 and P1,3,2 with emperical estimates P̂1,3

and P̂1,3,2, the eigendecomposition of (6) can then be used
to recover the HMM parameters following the procedure of
[2]. In practical applications, for convenience U1 and U3

are chosen to be the left and right singular vectors of P̂1,3

respectively, corresponding to the S largest singular values.
Note, by letting the columns of O represent state-

conditional expectations, the above formulation supports both
disctrete and continous observations [2], [10]. E.g. P (xn|zn)
could be assumed to be a Poisson, Gaussian, or multinomial
distribution.

III. USING AVERAGES OF MOMENTS

We now present the main result of our letter, namely a
simple proof that even without assuming stationarity, one can
exploit all observations in a given set of sequences assumed
to stem from the same HMM.

Condition 1.
∑N−2

n=1 diag(π
(n)) has rank S

Condition 1 can be met in the following three ways.
1) π(1)

i > 0 ∀ i ∈ {1, 2, . . . , S}
2) Ti,j > 0 ∀ i, j ∈ {1, 2, . . . , S} and N > 1
3) ergodicity of the Markov chain and that N ≥ S

1) seems a bit restrictive as it prevents us from dealing with
HMMs certain to start in a particular state. 3) which is the
least restrictive, both π(1) and T are allowed to contain zeros
as long as T is ergodic. In the worst case of a maximally

sparse π(1) (one-hot) and a sparse, yet ergodic T , π(n) will
become increasingly dense for each multiplication by T .

Theorem 1. Assume Condition 1. Let P̃1,2,3 =
1

N−2
∑N−3

n=0 Pn+1,n+2,n+3 denote the sum over expectations
of all triples in a sequence, then the observable operator
B̃1,3,2(η) = U>c P̃3,1,2(η)Ua(U

>
c P̃3,1Ua)

−1 can be used
to estimate model parameters O and T via the method
described in [2].

We can regard P̃1,2,3 ∈ RK×K×K as a linear operator on a
vector η defined in the same way as P1,2,3(η).
Theorem 1 states a result for a single sequence, but it is just
as valid for multiple sequences (assumed to be generated by
the same model).

Proof of Theorem 1.

P̃1,3,2(η) =
1

N − 2

N−3∑

n=0

E[(xn+1 ⊗ xn+3)〈η,xn+2〉]

=
1

N − 2

N−3∑

n=0

Odiag(π(n+1))T>diag(η>O)T>O>

= O

(
1

N − 2

N−3∑

n=0

diag(π(n+1))

)
T>diag(η>O)T>O>

P̃1,3 =
1

N − 2

N−3∑

n=0

E[(xn+1 ⊗ xn+3)]

=
1

N − 2

N−3∑

n=0

Odiag(π(n+1))T>T>O>

= O

(
1

N − 2

N−3∑

n=0

diag(π(n+1))

)
T>T>O>

B̃3,1,2(η) = U
>
c P̃3,1,2(η)Ua(U

>
c P̃3,1Ua)

−1

= U>c OT diag(η
>O)(U>c OT )

−1 ×

U>c OTT

(
1

N − 2

N−3∑

n=0

diag(π(n+1))

)
O>Ua ×

(
U>c OTT

(
1

N − 2

N−3∑

n=0

diag(π(n+1))

)
O>Ua

)−1

= (U>c OT )diag(η
>O)(U>c OT )

−1 (7)

(7) has the same form as (6) and can thus be used to recover
the HMM parameters as described in [2].

Condition 1 ensures that P̃a,c is invertible.

IV. EMPIRICAL EVALUATION/SIMULATION

To illustrate the potential improvements of using all data,
we conduct a simulation study using Hidden Markov models
with discrete observations.
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The experiment illustrates how the empirical moment esti-
mates as described in table I, perform under various combina-
tions of parameters influencing the difficulty of the estimation
problem.

Table I
DESCRIPTIONS OF THE THREE TYPES OF EMPIRICAL MOMENTS USED IN

THE EXPERIMENT.

(1, 2, 3) Third order moments are estimated from first triplet in all
of the Nc sequences.

(full) Third order moments are estimated from the full se-
quences using only the first Nc triplets. Let Nfull de-
note the number of sequences used for the estimation.
This quantity is roughly Nc

l
when sequence lengths are

∼ Pois(l).

(1, 2, 3Nfull ) Third order moments are estimated from the first triplet
from Nfull sequencess.

We now define a scalar quantity to quantify how well a par-
ticular empirical third order moment estimates the parameters
of a particular HMM. Let M be an HMM. Let P̂1,3 and P̂1,2,3

be particular second and third order moments calculated from
a finite set of sequences generated by M . Let U3 be the matrix
of right singular vectors of P̂1,3 corresponding to the S larges
singular values, then according to (6)

η>O = diag
(
(T>O>U3)B1,3,2(η)(T

>O>U3)
−1) (8)

From the empirical observable operator

B̂1,3,2(η) = (U>1 P̂1,3U3)
−1U>1 P̂1,η,3U3 (9)

we can compute a related quantity

w(η) = diag
(
(T>O>U3)B̂1,3,2(η)(T

>O>U3)
−1
)

(10)

We calculate each of these quantities for all columns of
H = [η1,η2, · · · ,ηS ] and construct the matrix W =
[w(η1),w(η2), · · · ,w(ηS)]

>.
We now define the scalar quantity of interest as the normalized
Frobenius norm of the difference between the eigenvalues of
the model and eigenvalues produced by the empirical moments

D(H>O,W ) =

∥∥H>O −W
∥∥

Fro

‖H>O‖Fro + ‖W ‖Fro
. (11)

The quantity is bounded between 0 and 1 for interpretation.
The difficulty of the estimation problem is controlled by the

number of observed sequences Nc, by Tdiag which determines
the Markov chain’s mixing, and finally the size of the latent
space S.
The transition matrix T is constructed from a stochastic matrix
P ∈ RS×S with uniformly distributed elements by:

T =
1

1 + Tdiag
(P + IsTdiag)

Varying Tdiag, is a way of controlling the auto correlation
and thereby also the convergence time of the Markov chain.
High values of Tdiag result in higher correlation between
neighbouring observations, which means a lower ‘effective’
sample size. In order to relate the results to the convergence
times of the Markov chains, we also report an upper bound for

the half-life on the total variation distance from the stationary
distribution. We can derive this bound from the error bound
given by [11, Theorem 2.7]. The bound depends on β1, which
denotes the second largest eigenvalue of the multiplicative
reversibilization of T :

M(T ) = T T̃ (12)

where
T̃j,i =

π̂jTi,j

π̂i
(13)

The resulting upper bound on the total variation half-life is

t 1
2
≤ −2 log 2

log β1
(14)

A. Simulation Results

For each combination of Nc, Tdiag and S, we construct an
HMM with K = 10 and generate Nc sequences with random
lengths ∼ Pois(30).
From the generated sequences we form the three different
empirical third order moments (table I) and compare their
performaces in terms of (11).
Figure 1 summarizes the results of 500 repetitions of the de-
scribed experiment. The structure of transition matrices ranges
from uniform to very diagonal, and the number of observed
sequences ranges from 10 to 104. The model complexity is
varied by performing the experiment for S ∈ {2, 5}.
Mean values of t 1

2
and standard deviations hereof, calculated

from the randomly generated HMMs, are listed in Table II.
We note a generaly improved performance for both

increasing number of observations and lower model
complexity. The other obvious feature of the results in Fig.
1 is that the performances of (1, 2, 3) and (full) are very
similar and in all cases they clearly outperform (1, 2, 3Nfull).
Fig. 1 demostrates that observations beyond the first triplet
can contain critical information about the HMM parameters.
Looking more closely at the performance as t 1

2
increases, we

observe that (1, 2, 3) and (1, 2, 3Nfull) generally improve due
to the ‘easier’ estimation problem (see [2] for errors bounds),
while the performance of (full) actually starts to decrease
when t 1

2
gets beyond 30 (mean sequence length). This is an

illustration of decreased effective sample size due to auto
correlation in the Markov chains.

Table II
t 1
2

CORRESPONDING TO FIG. 1. MEAN±STD. DEV.

S Tdiag

0 1 10 100

2 0.66± 0.03 1.23± 0.05 9.36± 0.51 86.60± 2.86
5 0.78± 0.01 1.52± 0.01 9.96± 0.07 93.69± 0.54

V. CONCLUSION

We provided a proof that certain spectral estimation schemes
can take advantage of all observed triplets for general Hidden
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Figure 1. Normalized Frobenius norm of differences between eigenvalues of the model-based and the empirical observable operator (11). The height of a
bar represents the mean value of D(H>O,W ) (11) calculated from 500 repetitions of the experiment. Each errorbar denotes the standard deviation of the
estimated mean value. For Nc = 10 error values for (1, 2, 3Nfull ) are missing due to the fact that none of 500 empirical second order moments had rank S
because they were calculated from the first three observations in a single chain.

Markov model parameter estimation. A simulation demon-
strated that performance is generally improved by this mech-
anism.
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Abstract

Model based classification of sequence data using a set of Hidden Markov models is a

well known technique. The involved score function, which is often based on the class-

conditional likelihood, can however be computationally demanding, especially for long

data sequences. Inspired by recent theoretical advances in spectral learning of Hidden



MarkovModels, we propose a score function based on third ordermoments. In particular

we propose to use the Kullback-Leibler divergence between theoretical and empirical

third order moments for classification of sequence data with discrete observations. The

proposed method provides lower computational complexity at classification time than

the usual likelihood based methods.

In order to demonstrate the properties of the proposed method, we perform classification

of both synthetic data, and empirical data from a human activity recognition study.

1 Introduction

Classification and clustering of sequences into categories is essential to human inter-

pretation of the data. Different methodologies have been proposed to deal with this

problem, and (Xing, Pei, & Keogh, 2010) gives a brief and general overview of the

field, including model based classification. The general approach in model based clas-

sification is to represent each class by a generative model, hence there are two main

components in a model based classification system; the first is the formulation of the

statistical model representing each of a given set of classes, and the second is a measure

of distance between observed data and models. For probabilistic models, the obvious

and common choice is to use a distance measure derived from the class-conditional

likelihoods.

Each model is estimated using a set of exemplar data sequences (training set) repre-

senting a specific class. Hence the problem can be stated as follows: Given L trained

models and a held out, observed sequence of length N , find the model that best fits the
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observation. One classical approach to this problem is to use the (log-)likelihood of each

class-conditional model given the test sequence as a score for the model-sequence pair.

Usually the test sequence is assigned to the class model for which the (log-)likelihood

is the highest.

In this letter we consider class-conditional model based classification for sequential data

using Hidden Markov models.

Classification using Hidden Markov models in particular has previously been applied

in a variety of contexts. (Oates, Firoiu, & Cohen, 1999) takes the classical model

based approach to clustering of sequence data using one HMM per cluster. An original

HMM based representation of images is explored in (Mouret, Solnon, & Wolf, 2009).

In (Wong & Stamp, 2006) HMMs are used to represent software virus families, and a

log-likelihood threshold is used for binary classification of benign software vs. malware.

Another practical example is found in (Wang, Mehrabi, & Kannatey-Asibu, 2002) where

HMM based classification is applied for tool wear monitoring in industrial machinery.

In (Bicego, Murino, & Figueiredo, 2004), the similarities between sequences and mod-

els are used as features in a discriminatively trained classifier. One HMM is estimated

for each training example, and all sequences are the embedded in the space of estimated

HMMs using log-likelihood. This line of thought is also explored in (García-García,

Emilio, & Díaz-de-María, 2009), where a KL-divergence based similarity measure is

proposed.

Recently, methods based on spectral decomposition of observed data moments have

been developed for parameter estimation in models for sequential data (Hsu, Kakade,

& Zhang, 2012; Anandkumar, Hsu, & Kakade, 2012). While these methods provide
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exciting results regarding both global convergence and computational complexity of the

parameter estimation problem, the complexity of likelihood calculations which is of

particular interest when performing model based sequence classification is unchanged.

In settings where the amount of data to be classified is vast, and time spent on model

estimation is of minor importance, we find ourselves in the need for a fast approximation

to the likelihood that do not require the calculation of matrix products for every obser-

vation in a given sequence. The advances in spectral learning using moments enables

us to view the third order moments as sufficient statistics under the model assumptions

of (Hsu, Kakade, & Zhang, 2012; Anandkumar, Hsu, & Kakade, 2012). Based on

this interpretation, we propose a simple framework for classification of sequences of

discrete observations, using only observed third order moments. The distance measure

we propose to substitute for likelihood calculations is based on Kullback-Leibler diver-

gence between empirical and theoretical third order moments, and we show that it has

lower computational complexity at classification time, while achieving indistinguishable

performance.

This rest of this letter is organised as follows. Section 2 introduces the proposed

distances score in the context of both stationary and non-stationary HMMs, and relates

it to a particular composite likelihood. Next, we compare the computational complexity

of the proposed method to the likelihood based approach. Finally a upper bound on the

convergence time of a Markov chain is exploited to reduce memory requirements for

the proposed method. Section 3 sketches an approach to sequence embedding wherein

the distance score for sequence-model pairs plays a central role. In sections 4 and 5 we

present classification results of both simulated and real world data sets respectively.
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2 KL-Divergence Of Third Order Moments

In this section we use the interpretation of third order moments as sufficient statistics to

develop a distance measure defined directly in terms of these moments.

The main idea is to utilise the third order moments of observed discrete sequences as

multinomial probability distributions. Because the third order moments in the general

case are dependent on the initial state distribution π(1) we start by describing the

simplified case of assumed stationarity of the HMM (π(1) = π̂).

2.1 Stationary Markov Processes

Let P̄1,2,3 be the empirical third order moment of the observed sequence, and let P1,2,3

be the corresponding theoretical third order moment due to model parameters.

P1,2,3(·, k, ·) = O diag(π̂)T> diag(O(k, ·))T>O> k ∈ [1, K]

We can then use theKL-divergence ofP1,2,3 from P̄1,2,3 asmeasure of difference between

a model and an observed sequence.

KL(P̄1,2,3‖P1,2,3) =
K∑

i=1

K∑

j=1

K∑

k=1

P̄1,2,3(i, j, k) log
P̄1,2,3(i, j, k)

P1,2,3(i, j, k)

Note that this is also valid in the non-stationary case, if observations from a suitable

burn-in period are discard (see section 2.5). This however, requires that the length of

the test sequence is at least as long as the maximum convergence time of the all class

models, which might limit the practical usefulness of the method.

With the aim to avoid discarding burn-in data for classification in the non-stationary

case, we now present the main contribution of this letter.
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2.2 Non-stationary Markov Processes

If stationarity cannot be assumed, the expectation of the state distribution changes along

the underlying Markov chain. Hence we have to consider the third order moments for

each triplet in the observed sequence separately. Let P̄n,n+1,n+2 be the empirical third

order moment of the triplet starting at position n in the sequence, and let Pn,n+1,n+2 be

the corresponding theoretical third order moment due to model parameters

Pn,n+1,n+2(·, k, ·) = O diag(T n−1π(1))T> diag(O(k, ·))T>O> k ∈ [1, K]

We can then for an arbitrary position n calculate the KL-divergence of Pn,n+1,n+2 from

P̄n,n+1,n+2:

KL(n) = KL(P̄n,n+1,n+2‖Pn,n+1,n+2)

=
K∑

i=1

K∑

j=1

K∑

k=1

P̄n,n+1,n+2(i, j, k) log
P̄n,n+1,n+2(i, j, k)

Pn,n+1,n+2(i, j, k)
(1)

Each KL(n) can then interpreted as a cost describing how well P̄n,n+1,n+2 approximates

the theoretical third order moment of that particular triplet Pn,n+1,n+2.

Note that in the typical classification scenario, the cost is calculated for a single sequence

x = {x(1), x(2), . . . , x(N)}. Thus for any given n ∈ {1, 2, . . . , N − 2}, (1) reduces

to − log
(
Pn,n+1,n+2(x

(n), x(n+1), x(n+2))
)
. To obtain a cost using the full sequence,

we calculate the arithmetic mean across all triplets, which is exactly equivalent to

considering the joint discrete probability distribution of all triplets in the sequence.

1

N − 2

N−2∑

n=1

KL(n) =
1

N − 2

N−2∑

n=1

− log
(
Pn,n+1,n+2(x

(n), x(n+1), x(n+2))
)

(2)

The described procedure requires the calculation of powers of T up to theN th power (N

being the length of the observed candidate sequence), which can be demanding in terms
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of memory. However, theMarkov chain converges to its stationary distribution, and for a

given allowed distance ε from this stationary distribution it is possible to derive a bound

on the convergence time for the chain. This can be exploited to limit the maximum

power of T to calculate. In section 2.5 such a convergence time bound is derived.

Let ci,j,k ≥ 0 be the number of occurrences of the triplet (i, j, k) in the stationary part

of the sequence x, and let cs =
∑K

i

∑K
j=1

∑K
k=1 ci,j,k be the number of triplets beyond

the convergence time. We then simply calculate the KL-divergence from the stationary

distribution and use the weighted arithmetic mean.

1

N − 2

N−2−cs∑

n=1

KL(n) +
cs

N − 2
KLstationary

=
1

N − 2

N−2−cs∑

n=1

− log
(
Pn,n+1,n+2(x

(n), x(n+1), x(n+2))
)

+
cs

N − 2

K∑

i=1

K∑

j=1

K∑

k=1

ci,j,k
cs

log

ci,j,k
cs

P̂1,2,3(i, j, k)

=
1

N − 2

N−2∑

n=1

− log
(
Pn,n+1,n+2(x

(n), x(n+1), x(n+2))
)

+
1

N − 2

K∑

i=1

K∑

j=1

K∑

k=1

ci,j,k log
ci,j,k
cs

(3)

where P̂1,2,3 denotes the stationary third order moment. We observe that (3) is just

(2) plus the additional term on the last line of (3), which is due to the Shannon entropy

of the empirical stationary third order moment.

2.3 Interpretation as Composite Likelihood

An empirical moment estimated from a single triplet is clearly a very crude approxima-

tion, and contrast the usual practice of method of moments, where averaging over a huge

number of samples is exploited. The intuition behind using the 1-sample approximations
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along the chain is that each of the terms KL(n) = − log (Pn,n+1,n+2(i, j, k)) on average

is lower for a matching pair of sequence and model than for non-matching pairs.

Furthermore, by viewing the model-based third order moments along a Markov chain as

a re-parametrisation of the HMM, when disregarding the entropy term, (3) corresponds

to a negative per-sample composite log-likelihood of this model given the observations

(triplets). The pseudo-likelihood was introduced in (Besag, 1975) as a product of pos-

sibly correlated local conditional likelihood terms. Later, under the term composite

likelihood, (Lindsay, 1988) generalised the concept to also include marginal likelihood

terms of sub-components. This interpretation of the KL-divergence based distance

further justifies the proposed approach. Based on the above analysis, we propose the

following distance measure for model based classification using HMMs:

D(x,M) =
1

N − 2

N−2∑

n=1

− log
(
Pn,n+1,n+2(x

(n), x(n+1), x(n+2))
)

(4)

2.4 Computational Complexity

We will now compare the computational complexity of the proposed method and the

classical likelihood based approach. The cost of estimating the L class HMMs is

disregarded as we focus solely on the classification step.

We start be examining the total complexity of scoring a single observed sequence by L

estimated models. The likelihood calculations scale with O(LNS2) thus we obtain a

mean per-class complexity of O(NS2).

In the stationary case, the third order moment of the test sequence can be calculated in

O(N), and because it is independent of the number of classes it has to be calculated
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only once. Comparison of the third order moment of a test sequence to moments of

all the trained class models take O(min(N,K3)L). Here it is exploited that the cost

function only depends on the N triplets that are actually observed. This means that

in the stationary case, the total computational complexity of the moment comparison

becomesO(min(N,K3)L+N), andO(min(N,K3)+ N
L

) for the per-class complexity.

In the non-stationary case we have to consider all triplets in the test sequence separately

resulting in a total complexity ofO(NL), and per-class complexityO(N). This analysis

shows that the classification task in theory can be performed faster when using third

order moments compared to the classical likelihood approach.

Although the computational complexity remains unchanged, the memory requirements

will of course increase compared to the stationary situation as we have to store third

order moments for all possible positions in a chain (in theory infinitely many). Section

2.5 outlines a method to limit the amount of required memory based on an upper bound

on the convergence time of a Markov chain (to the stationary distribution).

2.5 Estimating Convergence Time for a Markov Chain

This section describes how to calculate a upper bound on the convergence time of an

ergodic Markov chain given an upper bound on the total variation distance a any given

time instance t. We begin by stating a bound for the slightly simpler case of a reversible

Markov chain, and then proceed to the more general case of a non-reversible chain.

The convergence time of a reversible irreducible Markov chain with transition prob-

ability matrix T and stationary distribution π̂ can be bounded using an upper bound
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on the relative point-wise distance ∆(t). This quantity is larger than the total variation

distance ∆(t) = maxi,j

∣∣∣T
t
i,j

π̂i
− 1
∣∣∣ for which the following bound exists: ∆(t) ≤ β1(T )t

π̂min

where β1(·) denotes the second largest eigenvalue (Durrett, 2007, p. 161).

For a the general non-reversible Markov chain a similar result exists for the multiplica-

tive reversibilisation of T ,M(T ) = T T̃ , where T̃j,i =
π̂jTi,j

π̂i
(Fill, 1991).

Let X 2
0 =

∑S
x=1

(π
(1)
x −π̂x)2

π̂x
, then according to (Fill, 1991) the upper bound on the total

variation distance at time step t is

∥∥T tπ(1) − π̂
∥∥

tv =
1

2

S∑

x=1

∣∣(T tπ(1))x − π̂x
∣∣ ≤ (β1(M(T )))

t
2

2
X0

from which we can construct a upper bound on t given an acceptable total variation

distance ε ∈ [0,min
(
1, X0

2

)
]:

ε ≤ (β1(M(T )))
t
2

2
X0

⇐⇒ t ≤ 2
log
(

2ε
X0

)

log β1 (M(T ))
(5)

2.6 Exploiting Approximate Convergence

We now show an example of how classification performance can be affected by the size

of ε.

We illustrate the effect by analysing a synthetic 5-class problem using KL-divergence

as the distance score in the classifier (as described in section 2.2). For the purpose of

illustration, all class models share parameters T ans S but differ by their initial distri-

butions π(1). Thus all class conditional models have identical stationary distributions

and identical stationary third order moments. We assess the classification performance

using the well-known F1-measure. Figure 1 shows how the classification performance
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decreases when the accepted distance to the stationary distribution is increased.
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Figure 1: Classification performance using KL divergence as a function of ε. (grey)

repetitions of the experiment, (black) mean classification score of the repetitions.
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Figure 2: Classification performance using KL divergence as a function of ε. This plot

shows the performance relative to using ε = 10−20 (not assuming convergence). (grey)

repetitions of the experiment, (black) mean classification score of the repetitions.

3 “Embedding” Sequences for Classification

To improve on the classical model based classification approach, several authors have

suggested to “embed” the observed test sequences in a space spanned by the train-

ing sequences (García-García, Emilio, & Díaz-de-María, 2009; Bicego, Murino, &

Figueiredo, 2004). An arbitrary discriminatively trained classifier can then be applied

leveraging this new representation of sequences.

The main idea is to estimate a model for each training example and the embedding
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then defined from the model-sequence distance score to all pairs of training examples.

Similar to the work in (García-García, Emilio, & Díaz-de-María, 2009), for a single

sequence we normalise its scores relating it to the training sequences, such that it sums

to 1. This allows us to use the Jensen-Shannon divergence as the similarity score in the

embedding space. Given a test sequence to be classified, one has to evaluate the distance

score for all trained models. Hence the distance score remains a central component of

the classification procedure. The procedure is described in Algorithm 1 in Appendix B.

We include this classification strategy to provide an alternative evaluation of the

proposed KL-divergence based distance score. For the results presented in sections

4 and 5, we used a K-nearest-neighbour classifier where K was chosen via 5-fold

cross-validation on the training sequences.

4 Classification of Simulated Time Series

This section seeks to illustrate how the proposed KL-divergence based score, D, com-

pares to the negative log-likelihood, `, under different simulated conditions such as

lengths of the observed sequences, diagonality of the transition matrices, and how in-

terrelated the class-conditional models are.

For estimation of the class-conditional models we rely on the classical Baum-Welch/EM

algorithm (Baum, Petrie, Soules, &Weiss, 1970; Dempster, Laird, & Rubin, 1977). Al-

though alternatives such as spectral estimation techniques presented by (Anandkumar,

Hsu, & Kakade, 2012; Anandkumar, Ge, & Hsu, 2014; Troelsgaard & Hansen, 2016) in

12



principle could be used as well, in order not to unintentionally favour the moment based

classification scheme the likelihood based estimation is preferred.

The number of symbols in the training and test sequences are ∼ Poisson(N̄), N̄ ∈

{10, 50, 200, 1000}. The numbers of training and test sequences per class are fixed at

30 and 50 respectively.

The diagonality is controlled by the parameter Tdiag ∈ ]0, 1[. ρ ∈ ]0; 1] controls the

variance of the elements of T , and is used as a means to generate sets of more or

less interrelated HMMs. For a detailed description of the construction of the synthetic

HMMs used in these classification experiments, we refer the reader to Appendix A.

We consider a synthetic classification problem with L = 5 classes, where each class-

conditional model is a S = 4 state HMM with K = 15 discrete observation symbols

4.1 Results

The performance is reported in terms of the F1-measure. The reported evaluation

quantities are mean values over all classes. Each experiment was repeated 20 times to

quantify variation in performance. The error bars denote the standard deviations of the

estimated mean values.

Figure 3 shows how classification performance is improved by longer observed

sequences. Furthermore, class-conditional models closer to each other are harder to

distinguish between. These observations hold for both `, and D. The performances of

the twomethods are virtually indistinguishablewith the exception that for long sequences

(N̄ & 1000) and class-conditional models quite close to each other (ρ . 0.05), D seem

13



to be superior. To better illustrate the minor differences, Fig. 4 shows the mean of the

pairwise relative performances relative to `. Hence the results for ` are constant at 1.

In total we performed 428 experiments with different combinations of parameters. With

the null-hypothesis that F1(`) ≥ F1(D) we can calculate p-values for the experiment

by applying Bonferroni correction to paired-samples binomial sign tests. Hence we

calculate the probability of observing the experiment results or more extreme results

under the null-hypothesis. For a couple of the classification problems with low values

of ρ shown in the lower plots of Fig. 4 (N̄ = 1000 , Tdiag ∈ {0.25, 0.7, 0.95}) we find

(corrected) p-values in the range [0.0008, 0.0327] indicating that the null-hypothesis is

very unlikely for these particular classification problems.

For the null-hypothesis F1(`) ≤ F1(D), The 3 lowest obtained p-value were 0.0620,

0.1722, and 0.3118 indicating no general tendency to rejecting the null-hypothesis.

In summary, the statistical tests indicate that using D as the distance score in HMM

based classification of sequence data provides equally good results compared to the

classical likelihood score `.

4.2 Classification Results for Sequence Embedding

Using the sequence embedding procedure described in 3 we now compare performance

to the classical model-based approach. Figure 5 shows that ` andD perform equally well

in all the synthetic classification problems. Furthermore, we observe that the embedding

improves performance slightly formoderate to long sequences (N̄ ∈ 50, 200, 1000)when

class-conditional models are quite different and have a dominating diagonal structure

(Tdiag = 0.95). On the contrary, the embedding seems to have a negative impact on

14



performance under the conditions of more interrelated class-conditional models and

less diagonal transition matrices. These performances of ` and D for high values of ρ

are significantly better than without the embedding cf. the significance test in previous

section.

Fig. 6 shows the time spent on classification relative to the time of `. The figure clearly

illustrates the gains of the reduced computational complexity of using D over `, for

everything but very short sequences.

4.3 Conclusion of Experiment with Simulated Data

For short sequences, using the classical log-likelihood approach is both faster and

more accurate in terms of F1 score. For increased sequence lengths in addition to

being faster, the performance of the KL-divergence based method catches up and under

certain conditions even seems to outperform the log-likelihood approach. Embedding

test sequences in the space of training sequences seems to be most beneficial for long

sequences (& 50) as long as class-conditional models are quite dissimilar.

5 Classification of Human Activities

We now turn to application of the proposed method on non-simulated sequence data.

We use the UCI HAR benchmark data set (Anguita, Ghio, Oneto, Parra, & Reyes-Ortiz,

2013), which is a human activity recognition data set consisting of inertial measurements

from a waist-mounted mobile device during 6 different activities. We perform 5-fold

cross-validation on the training set (21 persons) for finding optimal number of states S,
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for each class. Table 1 shows the class labels and the optimal number of hidden states

for each of the six classes. As input we used body acceleration and angular velocity, and

all variables were scaled to unit variance, whitened and quantised into 50 “symbols”

using K-means clustering (Elkan, 2003).

In this experiment we assume that the boundaries of activities are known in advance

such that every training and test sequence only contains data from a single activity. Thus

the task is to provide a label for each test segment.

Table 1: Optimal number of hidden states obtained via 5-fold cross validation on the

training data set.

WALKING 13

WALKING-UPSTAIRS 6

WALKING-DOWNSTAIRS 4

SITTING 4

STANDING 3

LAYING 3

Using the values in table 1, we estimated one HMM per class using the full training

set, and then classified the sequences corresponding to the 9 left-out persons. The confu-

sion matrix shown in Table 2 is obtained from 80 random repetitions of the experiment.

Thus variation in results are due to random initialisations of HMM parameters and of

cluster centres in the quantisation process.

The mean (micro-averaged)F1 scores for ` and D respectively, are 1
80

∑80
i=1 F1(`

(i)) =
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0.8152 and 1
80

∑80
i=1 F1(D(i)) = 0.8303. Although these two numbers seem very close,

both distance scores are applied to the same test-data and class-conditional models at

each random repetition. Hence we are dealing with paired-samples of F1 which enables

us to evaluate the pairwise differences instead of two separate measures.

Table 2: Mean confusion tables from 80 repetitions of the UCI HAR classification task.

15.71 0.74 1.55 0 0 0

0.13 21.65 1.23 0 0 0

0.15 0.38 24.48 0 0 0

0 0 0 11.43 3.05 3.53

0 0 0 3.25 11.11 3.64

0 0 0 2.23 2.33 13.45

(a) Distance score: `

15.8 0.88 1.33 0 0 0

0.06 22.04 0.9 0 0 0

0.1 0.24 24.66 0 0 0

0 0 0 11.44 3.98 2.59

0 0 0 3.61 12.66 1.73

0 0 0 2.29 2.68 13.04

(b) Distance score: D , ε = 0.0001

5.1 Paired-Samples Binomial Sign Test

To assess whether the difference is significant, we perform a one-sided paired samples

sign test with the null-hypothesis F1(`) ≥ F1(D) and the alternative hypothesis that

F1(`) ≤ F1(D). The number of pairs where F1(`
(i)) < F1(D(i)) is 49, and the opposite

is 12. This results in a p-value of 9.85 · 10−7 i.e. the probability of observing 12 or less

negative differences if the null hypothesis is true. The result of this test suggests that D

performs slightly better than ` for this particular classification problem.
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6 Conclusion

We have proposed a new distance score for use in HiddenMarkov model-base classifica-

tion problems, dominated by long sequences of discrete observations. The score is based

on expectations of triplets along a Markov chain, and can be interpreted as a composite

likelihood for a moment-based Hidden Markov model representation. We show how

the memory requirements of the proposed method can be controlled by considering the

convergence time of Markov chains. Finally, we show that the proposed score performs

at least on par with the commonly used likelihood-based score, but at a substantially

reduced computation time in classification of long data sequences.
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Figure 3: This figure shows how the performances of ` andD vary for different amounts

of diagonality, and the parameter ρ. The results are reported in terms of F1 using

ε = 0.001 in the calculation of the bound on the convergence time.
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Figure 4: This figure shows how the relative performances of ` and D vary for different

amounts of diagonality, and the parameter ρ. See Fig. 3 for absolute performance. The

results are reported in terms of F1 relative to the score of `. In the calculation of the

bound on the convergence time we set ε = 0.001
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Figure 5: Relative performance when using sequence embedding for classification. The

presented results are conditioned on ε = 0.001 and Tdiag = 0.95 .
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that the embedding procedure is quite costly because of the higher number of model

estimations and cost evaluations.
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A Construction of Synthetic HMMClassification Prob-

lems

Each column in the transition matrices are constructed by a single draw from a Dirichlet

distribution with base measure α =
∑S

j=1 αj and concentration parameter σ. To be

able to control the diagonal structure of the transition matrices, the distribution of the

ith column, Ti, is sampled from Dirichlet distribution with base measure given by

αj =





Tdiag j = i

1−Tdiag
S−1 j 6= i

where Tdiag ∈ ]0, 1[

The interpolation parameter ρ ∈ ]0, 1] controls the variance of the simulatedmultinomial

elements. We let ρ determine the relative size of the variance to a maximum variance

vmax which is determined by a given minimal concentration parameter σmin.

Even though the variances of diagonal- and off-diagonal elements in general are different,

the relation between σ and ρ is independent of the base measure, and is given by

σ =
σmin + 1

ρ
− 1

In the current experiment, the columns of T are generated using σmin = S. Hence, the

set of most unrelated models are drawn using σ = S which is obtained by setting ρ = 1,

and for ρ→ 0, the Dirichlet distribution becomes the Dirac delta function: δ(α)
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B Embedding Algorithm

Algorithm 1 Classification via sequence embedding
Input: Training and test sequences: {x1,x2, . . . ,xNtrain} and {x̄1, x̄2, . . . , x̄Ntest}. Training

labels: (y1, y2, · · · , yNtrain). Distance score function D(x,M) relating a sequence x to a

modelM. Classification algorithm C.

Output: Test labels: (ȳ1, ȳ2, · · · , ȳNtest)

for i = 1 to Ntrain do

Estimate an HMMMi from xi

end for

for i = 1 to Ntrain do

for j = 1 to Ntrain do

Calculate D(xi,Mj)

end for

end for

TrainC using the distance scores of the training sequences for all estimated models as features

and (y1, y2, · · · , yNtrain) as labels

for i = 1 to Ntest do

for j = 1 to Ntrain do

Calculate D(x̄i,Mj)

end for

ȳi = C(x̄i)

end for
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