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Abstract

Advances in sensors and imaging technologies are contributing to rapidly expand-

ing data repositories that contain interrelated information from different modal-

ities. The extraction and visualisation of knowledge from these repositories is

a major challenge in the modern, digital world. In the medical domain, im-

ages are routinely acquired for a variety of tasks, including diagnosis and patient

monitoring. Advances in imaging technologies have resulted in devices capable

of acquiring images in multiple dimensions (volumetric and dynamic) as well as

from multiple modalities. One example of a widely used volumetric and multi-

modality image is combined positron emission tomography and computed tomo-

graphy (PET-CT), which presents physicians with complementary functional and

anatomical features and spatial relationships. In clinical practice, PET-CT ima-

ging has already proven its ability to improve cancer diagnosis, localisation, and

staging compared to its single-modality counterparts.

The clinical benefits provided by medical imaging have spurred increases in the

data volume acquired in clinical environments. As such, massive medical imaging

collections offer the opportunity for search-based applications in evidence-based

diagnosis, physician training, and biomedical research. However, conventional

search techniques that operate upon manually assigned textual annotations are

not feasible for the volume of data acquired in modern hospitals. Qualitative text

descriptions are also limited in their capacity to quantitatively describe the rich

information inherent in medical images.

Content-based image retrieval (CBIR) is an image search technique that util-

ises visual features as search criteria. CBIR has already demonstrated benefits for

evidence-based diagnosis, physician training, and biomedical research by allowing

clinical staff to consider relevant knowledge from retrieved cases. The majority

of medical CBIR research has focused on single modality medical images leaving

a clear deficiency in the retrieval of multi-modality images. In particular, images
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like PET-CT offer the ability for retrieval based upon the relationships between

regions in different modalities, such as the location of tumour features (from PET)

in relation to organ features (from CT). The challenge of multi-modality image

retrieval for cancer patients lies in representing these complementary geometric

and topologic attributes between tumours and organs. A secondary challenge

lies in the human aspect of retrieval – effectively communicating the retrieved

results to users and facilitating a better understanding of the similarity between

the query and retrieved multi-modality images.

As such, in this thesis we propose a new graph representation for multi-

modality images. Our representation preserves the spatial relationships between

modalities by emphasising the inherent characteristics of these images that are

used for disease staging and classification. This is done by structurally constrain-

ing the graph based on image features, e.g., spatial proximity of tumours and

organs. We also present a similarity matching algorithm that accounts for dif-

ferent feature sets for graph elements from different imaging modalities. Our ap-

proach prioritises the relationships between a tumour and related organs, while

still modelling patient-specific anatomical variations. Constraining tumours to

related anatomical structures improves the discrimination potential of graphs,

making it easier to retrieve similar images based on tumour localisation.

We also propose a method for defining user interfaces (UIs) that enable ef-

fective human interpretation of retrieved multi-modality images. A set of visu-

alisation and interaction requirements based on the characteristics of PET-CT

images were used to implement a CBIR UI. The UI visualised multiple views of

a single image, displayed abstractions of image data, and provided access to sup-

plementary non-image data. We also defined interactions for visually indicating

the similarities between 3D regions, e.g., similar tumours.

We evaluated our retrieval methodology on three data sets: simulated 2D liver

shape images, simulated 3D lymphoma images, and clinical PET-CT volumes.

Our results demonstrated that our method achieved a high retrieval precision,

especially in three common scenarios: (1) retrieving images with multiple tu-

mours spread across multiple organs, (2) retrieving images with multiple shape

distortions, and (3) retrieving images from a data set with large anatomical and

tumour variations. In particular, our algorithm retrieved images on the basis of

tumour location within organs. The evaluation of our proposed UI design by
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user surveys revealed that it improved the ability of users to interpret and under-

stand the similarity between retrieved PET-CT images. The work in this thesis

advances the state-of-the-art by enabling a novel approach for the retrieval of

multi-modality medical images.
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Chapter 1

Introduction

The extraction and visualisation of knowledge from large, ever-expanding reposit-

ories is a major challenge in the modern, digital world. This thesis addresses this

problem in the domain of medical imaging. In particular, it examines the chal-

lenge of finding relevant data from large collections of modern multi-dimensional,

multi-modality medical images and answers two key questions: how can the char-

acteristics of such images be used for search and how can the relevant data be

interpreted.

1.1 Motivation

Imaging is a fundamental component of modern medicine. Medical images are

used daily for diagnosis [1], treatment planning [2], and assessing a patient’s

response to treatment [3]. The usefulness of medical imaging has spurred re-

volutions in the acquisition technologies utilised as part of clinical workflows. A

variety of imaging technologies are now available for routine use in hospitals, each

with their own benefits for patient management. These revolutionary advances

include scanner-based technologies such as x-rays, magnetic resonance imaging

(MRI), computed tomography (CT), positron emission tomography (PET), and

1
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single photon emission computed tomography (SPECT); optical imaging tech-

nologies such as near infrared spectroscopy; and camera-based technologies like

microscopic imaging, and capsule endoscopy. The latest scanners are also capable

of acquiring multiple image modalities in a single scanning session; examples, of

such devices are the multi-modality PET-CT scanner [4,5] and the newer multi-

modality PET-MR scanner [6]. The advancement of image acquisition techno-

logies has not been limited to the invention of new devices; modern devices are

capable of acquiring images that have a higher resolution than their older coun-

terparts and a larger number of dimensions, e.g., 3D volumetric images and time-

varying 4D images.

As a consequence, a vast amount of image data is acquired daily in modern

hospitals and the volume of data acquired is expanding at an increasing rate. At

the Royal Prince Alfred Hospital in Sydney, the molecular imaging department

acquires about 9000 PET-CT images per year, each consisting of several hundred

images slices; this is in addition to the acquisition of other imaging modalities.

Another often cited example is the number of images stored by the radiology

department at University Hospital of Geneva over the past decade [7–9]. Di-

gitisation along with the development of picture archiving and communications

systems (PACS) [10] has enabled the storage of these images in ever-expanding

digital repositories. Clinical workflows require that imaging data be accessible for

use by various clinical staff; PACS provides the capability to share data by export-

ing images to physical media, such as compact disks, or transferring them across

a network. In both cases, the Digital Imaging and Communication in Medicine

(DICOM) standard provides the tags necessary for a software system to interpret

and render the image as well as meta-data relating to the acquisition [11], such

as patient names, scanning times and other identifiers.

These large PACS repositories enable physicians to retrieve indexed images

related to a patient, enabling them to consider a patient’s historical image data
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when treating them. Large PACS repositories also provide the opportunity for

image-based diagnosis [12], whereby a physician’s diagnosis of a patient can be

based upon the accumulated knowledge stored in PACS. In addition, PACS can

also be used as a resource for the construction of digital teaching files, allowing

students and residents to be trained according to collections containing images

that are relevant to particular conditions [13]. PACS can also be used for the

analysis of data generated by clinical trials, improving productivity and allowing

the researchers to “do better science” [14].

Using PACS for these objectives introduces the need to search the repository

for images (the targets) that have similar characteristics to a particular image,

referred to as the query. In clinical environments, the selection of similar stud-

ies is primarily based upon topicality, i.e., whether or not the images contain the

same subject matter; judging whether a study is topical is primarily decided upon

using the visual characteristics of the images [15]. However, the search capabil-

ities provided by PACS are based on textual keywords, such as patient names,

identifiers, and image device. The text descriptions limit the search capabilities

of PACS and mean that users must read through clinical reports or already know

the keywords of the target images [16,17]. While text-based PACS search is useful

when clinical staff already know the identifiers and characteristics of the targets,

it is limited for inter-patient comparative studies because it does not consider the

visual properties of the images in the repository. Furthermore, the reliance on

search via text labels is problematic as even the automatically generated DICOM

tags potentially have a high error rate [18].

Labels can be manually assigned to images stored in PACS, such as through

using DICOM structured reporting [19]. Labelling is performed by a domain

expert, e.g., a radiologist with experience in reading a certain type of image. The

expert will first examine the image, potentially in multiple views and dimensions,

and then annotate it based on visual characteristics that the expert considers to be
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important, e.g. location of tumours, anatomical abnormalities, etc. However, this

is generally unfeasible for the large volumes acquired in routine clinical practice.

The time taken to manually label images is also compounded when modern high

resolution, volumetric, and multi-modality images are taken into account. These

images contain vast amounts of information that must be examined and then

accurately labelled. Economic factors also need to be considered; hiring enough

domain experts to label every image would inflate the expenses of hospitals,

which are already under budgetary pressures [20]. Manual labelling is also a

subjective task with a high dependence on the skill, training, experience, and

alertness of the expert labeller [21]. These issues are a severe limitation on the

ability of conventional text-based approaches to searching large medical image

repositories. A different approach is required, one that is automated and provides

a quantitative, non-subjective method of searching medical image repositories.

Content-based image retrieval (CBIR) is an image search technique that com-

plements text-based retrieval through the use of quantifiable image features as

search criterion [21]. Features used by CBIR include shape, texture, colour,

and the spatial arrangement of objects within an image; these features can be

semi-automatically extracted directly from the images, thereby eliminating un-

economical and subjective manual labelling. Unlike classification, CBIR does not

use the features to categorise the image into a known group; instead it finds a

collection of images that have a similar combination of features.

In the medical domain, CBIR has potential applications in evidence-based dia-

gnosis, physician training, and biomedical research [7] through its ability to find

images in repositories that are visually similar to a given query image. Clinical

evaluation has demonstrated that the accuracy of a physician’s diagnosis can be

improved by using a CBIR system to display images similar to the undiagnosed

query; the improvement in diagnostic accuracy was largest for less experienced



CHAPTER 1. INTRODUCTION 5

physicians [22]. CBIR has also been shown to have benefits in radiology edu-

cation [23] by allowing users to retrieve teaching files that consisted of multiple

images of a particular clinical case [24]. Furthermore, other investigations have

concluded that CBIR could positively impact patient care by providing real-time

decision support to physicians [25].

While there have been several advances in medical CBIR of single-modality

images, there is a clear gap in the retrieval of multi-modality medical images

such as PET-CT and PET-MR [9]. In particular current CBIR research does not

utilise complementary information about a patient’s state from multiple imaging

modalities. Medical CBIR methods for single-modality images have been gen-

erally optimised for a particular image modality; the choice of features reflects

the information provided by that modality. Directly extending this approach to

multi-modality images (by simply extracting optimised features for each mod-

ality) does not make use of the greatest asset of such images, the relationships

between the constituent modalities. In the case of PET-CT, these relationship

features are responsible for improving cancer diagnosis, localisation, and staging,

compared to single-modality PET and CT acquired separately [26]. The exist-

ence of these complementary relationships provides the opportunity for retrieval

based on associations between features of either modality, such as the location of

tumours in relation to anatomy. There also exists a gap in the visualisation and

presentation of retrieved data for interpretation by physicians [27]. While a few

studies have tackled this problem, challenges still remain for modern volumetric

and multi-modality images. These images form the most complex challenge for

retrieval interpretation because systems must visualise a volumetric data set while

enabling users to assimilate the relationships between regions in different modal-

ities (i.e., integrate information from multiple volumes). The increasing clinical

utilisation of multi-modality images and the corresponding expansion of medical

image repositories means that there is a clear opportunity for advancements in
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the CBIR of such images.

1.2 Aims and Objectives

The overall aim of the research presented in this thesis is to design a framework

for the content-based image retrieval of multi-modality medical images. The

framework will exploit the complementary characteristics of the different image

modalities to provide image search capabilities on the basis of tumour localisation.

Achieving this overall aim will require the fulfilment of the following specific

objectives:

1. The creation of an image feature representation scheme that indexes fea-

tures from multiple modalities as well as the relationships between them.

The representation scheme will be designed to emphasise tumour localisa-

tion in relation to anatomy.

2. The derivation of an image similarity measurement algorithm, designed

specifically for the new image representation. The algorithm will consider

the complementary features in each individual modality.

3. The development of a retrieval interpretation technique that enables users

to better understand the similarity between the query and the retrieved

images.

1.3 Contributions of this Thesis

In this thesis, we propose a novel framework for the CBIR of multi-modality

medical images that exploits the complementary characteristics of the different

image modalities to introduce new search capabilities in clinical environments.
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Our framework allows for multi-modality image retrieval on the basis of tumour

location relative to anatomy. Our contributions lie in four major areas:

1. Image Representation

We define a novel graph-based representation for multi-modality images,

called the Complete Anatomy Proximal Pathology (CAPP) graph, that is

able to denote features unique to different modalities while maintaining

spatial relationships across modalities. The CAPP graph represents the

localisation of disease (from one modality) in relation to anatomy (from an-

other modality) by constraining tumours to spatially related organs using

the geometric and topological features used by clinical cancer classification

and staging guidelines. It achieves this representation by indexing comple-

mentary features from different modalities as well as spatial relationships

between regions of interest (ROIs) in different modalities. Our definition of

the CAPP graph allows both 2D and 3D multi-modality medical images to

be represented.

2. Similarity Measurement

We derive an algorithm for comparing multi-modality images using two cri-

teria: the similarity of image features of elements within the same modality,

and the similarity of the disease localisation in each image (i.e., relation-

ships between anatomy and tumours extracted from different modalities).

Our algorithm, an adaptation of the graph edit distance, accounts for com-

plementary feature sets for different image modalities and also prevents

incorrect mappings between graph elements representing ROIs extracted

from different modalities.

3. Retrieval Interpretation

We present a retrieval visualisation and interpretation system for multi-

modality images by designing a user interface (UI) that was capable of
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displaying multiple volumetric PET-CT images efficiently through a com-

bination of preprocessing and a rapid load-on-demand approach. Our UI

visualises abstractions of clinical PET-CT images to summarise the often

complex relationships between tumours and anatomy in each image. We

also define interactions for visually-driven image interpretation by exploit-

ing the outputs of our graph comparison algorithm.

4. Multi-Modality Feature Normalisation

We propose a graph feature normalisation scheme to ensure that features

with large ranges do not create a bias towards a particular image feature in

our retrieval algorithm. The feature normalisation is based upon the dis-

tribution of actual feature values in the data set. We normalise features for

different modalities separately, ensuring that the normalised value reflects

the distribution of a feature within a particular modality.

1.4 Thesis Structure

The remainder of this thesis is structured as follows.

Chapters 2–4 orient the reader by providing the background knowledge ne-

cessary to understand the rest of the thesis. Chapter 2 presents an overview of

medical imaging and image processing within this domain. Chapter 3 presents

an overview of state-of-the-art approaches in CBIR, especially in the medical do-

main. Chapter 4 provides the reader with a background in graphs, graph-based

representations of visual data, and graph similarity calculations.

Chapters 5–9 contain the detailed contributions of the thesis. An overview

of our graph based framework is given in Chapter 5. In Chapter 6 we describe

the algorithms used to construct CAPP graphs from multi-modality images, the

method by which we normalised the image features, and our algorithm for meas-

uring the similarity of multi-modality images, based upon the similarity of their
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graph structures. The evaluation of our retrieval methodology is presented in

Chapter 7. Our retrieval interpretation and visualisation scheme is described in

Chapter 8 and evaluated in Chapter 9.

Chapter 10 discusses the capabilities of this research and indicates directions

for future investigation. Finally, Chapter 11 summarises the contributions of this

thesis.

1.5 Key Terms

The following terms and abbreviations are used throughout this thesis.

Attributed Relational Graph (ARG)

A graph structure where the vertices and edges have been assigned sets of

attributes. The attributes for a vertex describe properties of that vertex.

Edge attributes describe relationships between the connected vertices.

Axial Plane

An imaginary horizontal plane or cross-section that ranges between the

superior (top) and the inferior (bottom) part of the body. It is perpendicular

to the coronal and sagittal planes. Also known as the transverse plane.

Computed Tomography (CT)

A medical imaging procedure that computes a greyscale volumetric image

using a set of 2D x-rays acquired around a single rotational axis. A CT

image is a set of 2D slices or tomograms that form a 3D volume.

Content-Based Image Retrieval (CBIR)

An image search technique where the search is based on image features,

such as shape, colour, texture, and the spatial arrangement of objects.
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Coronal Plane

An imaginary vertical plane or cross-section that ranges between the an-

terior (front or ventral) and the posterior (back or dorsal) part of the body.

It is perpendicular to the axial and sagittal planes. Also known as the

frontal plane.

Digital Imaging and Communication in Medicine (DICOM)

An international standard for managing and transmitting or receiving med-

ical images.

Multi-modality images

Medical images of the same body region acquired with different techniques

or modalities. In this thesis, we limit ourselves to multi-modality images

acquired by a single hybrid scanner that also co-aligns the two modalities.

PET-CT

A multi-modality medical imaging procedure that sequentially acquires

anatomical CT images and functional PET images. Also referred to as

PET/CT.

Picture Archiving and Communication System (PACS)

A system that acts as a database for digitised medical images. The images

can be accessed over a network using PACS workstations.

Positron Emission Tomography (PET)

A functional medical imaging procedure that constructs greyscale volumet-

ric images by detecting a positron-emitting radiotracer that has been in-

troduced into the subject’s body. A PET image is a set of 2D slices or

tomograms that form a 3D volume.

Region of Interest (ROI)

A group of pixels in an image that share some similarities or are relevant
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as a set, e.g., the collection of pixels that completely encapsulate an object

in the image.

Sagittal Plane

An imaginary vertical plane or cross-section that ranges between the left

and the right part of the body. It is perpendicular to the axial and coronal

planes.

Standard Uptake Value (SUV)

A value for measuring the uptake of PET radiotracers by normalising the

original voxel intensities based on PET acquisition parameters, such as dose

and time, and subject data, such as mass.

User Interface (UI)

The part of a computer program displayed on a screen that presents users

with information and allows them to interact with the program. Most

modern UIs are graphical in nature with components such as buttons used

for user interaction.

Volume of Interest (VOI)

A 3D region of interest, comprising a group of voxels (3D pixels).



Chapter 2

Medical Imaging and Image

Processing

The acquisition of image data is a routine part of modern patient care. A variety

of different imaging techniques are used as part of the clinical workflow, with each

technique having advantages in different clinical domains and providing insight

into different aspects of a patient’s condition. This chapter provides an overview

of medical imaging and image processing techniques, with a focus on the images

and techniques relevant to the research in this thesis.

2.1 Definitions

We begin by defining several terms. An image is a collection of picture elements,

called pixels. A 3D image can also be referred to as a volumetric image or volume,

and comprises a collection of 3D pixels, called voxels. Each pixel or voxel also

has a value; in greyscale images this value represents the intensity of the pixel,

while in colour images this value can be a set of intensities for the red, green, and

blue (RGB) channels.

The pixel resolution of an image refers to the number of pixels in the image;

12
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Figure 2.1: The pixel and spatial resolution of images: (a) is a 2D image with a
pixel resolution of 8 × 7 and a spatial resolution of 0.5cm × 0.5cm and (b) is a
3D image with a voxel resolution of 8× 7× 3 and a spatial resolution of 1.0mm
× 2.0mm × 2.5mm.

this can be represented as a single number or by the number of pixels per di-

mension. For example, the pixel resolution of a 2D image with 2,304,000 pixels

is 2.3 megapixels or 1920× 1200 pixels (width × height). The spatial resolution

of an image refers to size of the detail captured by each pixel. For example, if

a volume has a spatial resolution of 1.00mm × 1.00mm × 2.00mm then each

voxel in that volume depicts a region with volume 2.00mm3 (1.00mm × 1.00mm

× 2.00mm). Images with higher spatial resolutions are capable of depicting finer

details. Contrast resolution refers to the range of distinct intensities that can be

distinguished in an image. A low contrast resolution means that objects with

similar but not identical intensities will be difficult to distinguish.

Figure 2.1 depicts an example of a 2D image and a 3D image, envisioned as

2D and 3D arrays or grids, respectively. The 2D image (Figure 2.1(a)) has a

pixel resolution of 8×7 and a spatial resolution of 0.5cm × 0.5cm. The 3D image

(Figure 2.1(b)) has a voxel resolution of 8 × 7 × 3 and a spatial resolution of

1.0mm × 2.0mm × 2.5mm.

A region of interest (ROI) is collection of pixels that represent an area in

an image that holds some importance for a particular application or domain.
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Figure 2.2: The region of interest in an image.

Similarly, a volume of interest (VOI) is a collection of voxels representing some

important structure. Figure 2.2 depicts an image with two ROIs. Each pixel

inside one of the blue shapes is part of that ROI.

2.2 Single Modality Medical Imaging

Single modality medical imaging refers to the “traditional” form of imaging pro-

cedures undergone by patients. Every single modality image acquisition produces

one type of image, which can potentially be a volume. If multiple types of images

are required then different imaging procedures are performed by different scanners

during different sessions. Alignment of scans are performed either mentally or,

recently, using software to perform image registration (covered in Section 2.4.2).

This section will describe several common single modality imaging techniques.

2.2.1 X-ray Imaging

X-ray imaging, also known as radiography, is a medical imaging technology that

produces 2D images of the human anatomy. Radiography works by projecting

a beam of x-rays through the subject, some of which are absorbed by the body,

and detecting the rays that pass through. Since anatomical structures absorb
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(a) Axial slice 98 (b) Axial slice 139 (c) Axial slice 182

Figure 2.3: Three CT tomograms (slices) from the same volume.

varying amounts of the radiation, the detector is able to produce a 2D image of

the structures in the body. X-rays have seen widespread use in the assessment of

fractures [28], the detection of third molars (wisdom teeth) in panoramic dental

images [29], and breast cancer screening (mammography) [30]. Modern computed

tomography scanners (see Section 2.2.2) also rely upon x-rays for imaging the hu-

man body. However, the superimposition of adjacent structures in x-ray imaging

and the loss of morphologic image information, such as the 3D arrangement of

structures, reduces diagnostic sensitivity and specificity [31].

2.2.2 Computed Tomography

Computed tomography (CT) is a medical procedure that computes a greyscale

volumetric image using a set of 2D x-rays acquired around a single rotational

axis [32]. A CT image takes the form of a set of 2D slices or tomograms that

form a 3D volume. Unlike the traditional x-ray imaging described in Section 2.2.1,

the images produced by CT scanners do not superimpose structures on each

other. CT scanners are also capable of capturing images with very high spatial

resolutions, potentially less than 1mm per dimension.

Three axial (top-to-bottom) slices from a single CT volume are shown in

Figure 2.3. The differences in voxel intensities can be clearly seen by the high

intensity grey values of the bones in Figure 2.3(a), the low intensity of the air

within the lungs in Figure 2.3(b), and the intensity of the soft tissues (liver,
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spleen, etc.) in Figure 2.3(c).

CT images are primarily used for the detection and analysis of anatomical

conditions, such as airway analysis in patients suffering from obstructive sleep

apnea [33] or assessing emphysema [34]. They are also used for measuring tumour

growth [35] and determining the growth rates of lung nodules [36]. However,

benign or malignant tumours cannot be easily differentiated on the basis of CT

images alone and a different procedure, such as a biopsy or positron emission

tomography (see Section 2.2.3), is usually required.

2.2.3 Positron Emission Tomography

Positron emission tomography (PET) is a functional medical imaging procedure

that constructs greyscale volumetric images by detecting a positron-emitting ra-

diotracer that has been introduced into the subject’s body [37]. In this thesis,

we only consider PET images that use the commonly utilised radiotracer 18F-

Fluorodeoxyglucose (FDG).

Voxel intensity in an FDG-PET image indicates the glucose metabolism at

that location in the body; this is useful for characterising the nature of lesions be-

cause malignant tumours appear as regions with abnormally high intensities [38].

For this reason FDG-PET images have a diagnostic and prognostic accuracy

between 80-90%, making them better at detecting malignant cancers compared

to anatomical imaging modalities like CT [39]. However, these images have a low

spatial resolution and are unable to capture fine details and have a lower signal-

to-noise ratio than modalities like CT [40]. There is also insufficient anatomical

information in PET for the accurate localisation of lesions [39].

Furthermore, the voxel values in PET images do not naturally correspond

to a physical characteristic (unlike CT voxel values, which are related to the

x-ray absorption of different materials). This makes the comparison of PET

values across studies unreliable, even if the scans are of the same patient [41].
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(a) Coronal view. (b) Sagittal view.

Figure 2.4: Slices from different planes of the same PET volume.

The standard uptake value (SUV) is a value for measuring the uptake of PET

radiotracers by normalising the original voxel intensities based on PET acquisition

parameters, such as dose and time, and subject data, such as mass or weight.

Figure 2.4 shows two slices from an FDG-PET scan. Figure 2.4(a) is a slice

from the volume when viewed in the coronal (front-to-back) plane. The two

regions of high intensity indicated by the blue arrows are tumours. All other high

intensity regions correspond to areas with natural high glucose metabolism, e.g.

the brain. Figure 2.4(b) shows the image in the sagittal (side-to-side) plane. The

tumours are not visible from the position from which this slice was taken. These

views were selected to show the variation of PET voxel intensity across the body.

2.2.4 Magnetic Resonance Imaging

Magnetic resonance (MR) imaging is a procedure that constructs an image by

detecting the atomic nuclei in the body that have rotating magnetic fields due to

interactions with the powerful magnetic field produced by the scanner [42]. MR

imaging is non-ionising. In addition, MR images have a better contrast resolution
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(a) Axial view. (b) Coronal view.

Figure 2.5: T2 weighted brain MR image slices.

than CT images and are therefore able to distinguish tissues that are similar but

not identical. Different tissue types can be emphasised by varying acquisition

parameters, e.g., the pulse sequences, to obtain MR images with different image

contrasts (e.g. T1 or T2 weighted scans etc.). Other variants include diffusion

MR, which measures the diffusion of water molecules in various tissues, as well

as functional MRI, which captures dynamic neural activity.

Figure 2.5 shows two T2 weighted MR image slices of the brain. The contrast

resolution of the images is visually quite clear from the different levels of grey in

both the axial slice (Figure 2.5(a)) and the coronal slice (Figure 2.5(b)).

2.3 Multi-Modality Medical Imaging

Multi-modality imaging refers to the acquisition of different types (modalities)

of images of the same body region. While this sort of imaging can be provided

by imaging acquisitions from multiple single-modality imaging devices, in this

thesis we only consider multi-modality images acquired by a single scanner during

a single session. These images are hardware co-aligned by the scanner. This

subsection describes the multi-modality medical imaging modalities relevant to

this thesis.
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(a) Greyscale PET (b) Greyscale CT (c) Fused PET-CT

Figure 2.6: A PET-CT image.

2.3.1 PET-CT

PET-CT is the sequential acquisition of CT and PET volumes in the same scanner

during the same imaging session [4,5]. The two volumes acquired by the scanner

have different pixel, spatial, and contrast resolutions. Figure 2.6 shows the axial

images acquired from a combined PET-CT scanner. Figures 2.6(a) and 2.6(b) are

the PET and CT images, respectively. Figure 2.6(c) depicts the fusion of these

images after scanner parameters have been used to transform them into the same

coordinate space.

Combined PET-CT scanners offer considerable advantages over their single

modality counterparts. The total image acquisition time is significantly shorter

leading to better instrument utilisation and a higher patient throughput [26]. Fur-

thermore, studies have shown that PET-CT is more sensitive than either PET

or CT performed alone, and that the CT scan adds sensitivity to the PET im-

age [43]. Overall, PET-CT provides improved tumour diagnosis, localisation, and

staging, compared to single modality PET or CT [26,43]. The clinical usefulness

of PET-CT and the trends in PET adoption indicate that in the very near future

all PET studies will be in the form of PET-CT images [39,44].

The value of PET-CT arises from its ability to present complementary ana-

tomical (CT) and functional (PET) information. The spatial co-alignment of the
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two modalities performed by the scanner enables a physician to see the relation-

ship between the anatomical and functional information, such as whether a lung

tumour is invading an adjacent structure. An essential challenge of PET-CT

image processing research is capitalising on these complementary features and

spatial relationships.

2.3.2 PET-MR

PET-MR is the simultaneous acquisition of MR and PET volumes in the same

scanner, during one imaging session, and without sacrificing the image quality

of either modality [6]. MR does not use ionising radiation meaning that PET-

MR can be used in situations where radiation exposure is a concern, such as

serial studies. Furthermore, MR images have a higher contrast resolution when

compared to CT, thereby enabling even better soft tissue definition than was

possible with PET-CT [45]. PET-MR has great potential for brain research and

for assessing and translating new treatments into clinical application [46].

2.4 Image Processing

This subsection describes several categories of image processing algorithms. We

focus on fully or semi-automatic processes, even when completely manual ap-

proaches are possible. Our attention will be on those processes that are necessary

for understanding the later chapters of this thesis.

2.4.1 Segmentation

Segmentation is the process by which the pixels or voxels of an image are parti-

tioned into different regions that share specific characteristics [47]. It is generally

used to identify boundaries, regions, or individual objects within an image. Other
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(a) CT image. (b) Lung segments.

Figure 2.7: Segmenting a chest CT image using [48] with smoothing.

image processing algorithms can then be applied to the different segmented ROIs

individually instead of being applied to the entire image.

Pixel analysis is a core component of image segmentation. Common segment-

ation approaches include: pixel thresholding [48, 49], region growing [50], edge

detection [51], fuzzy clustering [52], graph cuts [53], and statistical shape model-

ling [54]. The segmentation algorithms used in this thesis are mainly thresholding

and region growing. Thresholding separates pixels into groups that have similar

characteristics, such as colours or intensities. Region growing analyses the neigh-

bouring pixels of one or more seed points (with the initial points usually selected

manually) and recursively expands a region while the neighbouring pixels share

common properties.

Figure 2.7 depicts an example of image segmentation. A well-established it-

erative thresholding algorithm [48] combined with smoothing has been applied

to the original chest CT image (Figure 2.7(a)) to segment the two lungs (Fig-

ure 2.7(b)) from the surrounding soft tissue, mediastinum, ribs, and other ana-

tomical structures.

2.4.2 Registration

Registration is the process of transforming two images of the same scene or object

into the same coordinate space [55]. It is used to integrate information from

images acquired from different devices, from different viewpoints, or at different
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(a) Source image. (b) Target image. (c) Registered image.

Figure 2.8: Registering two CT images. The source image (a) has been trans-
formed into the coordinate space of the target image (b) using non-rigid b-spline
registration [57], producing the transformed image (c).

times. A transformation matrix that maps pixels between the images is generated

during the procedure. Registration is an optimisation process that attempts to

maximise the similarity of corresponding parts of the two images while minimising

the degree of transformation applied.

Registration algorithms fall into several categories. Rigid or linear registration

algorithms apply global transformations to align pixels in the entire source image

to the target image, while non-rigid algorithms are elastic and allow independent

local morphing of different parts of the image [56]. They are useful for medical

image analysis where it is important to register different structures independently

between images.

Figure 2.8 depicts two images registered using non-rigid b-spline registration

(implemented in the Elastix toolbox [57]). The source image (Figure 2.8(a)) has

been transformed to the coordinate space of the target image (Figure 2.8(b)); the

result is depicted in Figure 2.8(c).
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2.4.3 Visualisation

Visualisation refers to the process by which images are displayed. The simplest

form of visualisation is rendering an image ‘as is’, without any transformations

to emphasise any particular aspect. More complex visualisations create a trans-

formed version of the original image data to highlight a certain component of the

image or to meet technical limitations. One example of the former is applying

colour look up tables (LUTs) to greyscale images enabling different parts of the

images to be distinguished by colour as opposed to grey-level intensity. An ex-

ample of the latter is capturing a certain point of view in a 3D scene to enable

its display on a computer monitor, a 2D surface.

There are several common medical imaging visualisation techniques. Transfer

functions [58] create a mapping between voxel intensities, colour, and opacity,

thereby applying a level of transparency to voxels of a particular intensity, al-

lowing structures inside the volume to be rendered instead of just the surface of

the volume. Direct volume rendering [59] is a method that projects a 3D volume

into 2D view given a specific viewpoint, by considering the voxel intensities, col-

ours, and opacities as specified by transfer functions. A specific form of volume

rendering, maximum intensity projection (MIP), displays the voxels in the image

that have the highest intensities from a particular viewpoint [60] but sacrificing

depth information in the process.



Chapter 3

Content-Based Image Retrieval

This chapter provides an overview of content-based image retrieval. We present

a survey of the current state-of-the-art, with a focus on its application to the

medical domain, and identify the gaps in existing technologies.

3.1 Measuring Image Similarity

What Renaissance paintings are similar to da Vinci’s Mona Lisa? Raphael’s

Portrait of a Young Woman with a Unicorn is certainly one possibility. As seen

in Figure 3.1, the paintings share a number of similarities: they are both portraits

of women, the background in each painting features a landscape with mountains,

and each of the women is dressed in Renaissance fashion. Yet to the human eye,

the images are undeniably not the same: the Mona Lisa has darker colours, the

landscape features a winding road, the subject is not wearing a pendant, and she

is not holding a unicorn! If similarity was based on colour alone, then Raphael’s

Portrait of a Man could be considered similar to the Mona Lisa. However, other

elements of the painting are quite different: much of the background landscape

is not visible, the subject is facing directly forward, and, perhaps most obvious

of all, the subject is male!

24
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(a) The Mona Lisa (b) Portrait of a Young
Woman with a Unicorn

(c) Portrait of a Man

Figure 3.1: Renaissance art.

What if the question asked us to rank Raphael’s paintings by their similarity

to the Mona Lisa? An objective answer to this question could be obtained if

every element of these images could be quantitatively measured and compared.

In this case the old adage “a picture is worth a thousand words” holds true;

the amount of information encoded by images is so high that it is impractical to

describe it all manually. The problem of measuring the information in images is

magnified if the scope of our earlier question is increased to all Renaissance art,

let alone all art produced in the history of mankind.

3.2 Content-Based Image Retrieval

Content-based image retrieval (CBIR) is an image search technique that does not

rely upon the use of manually assigned annotations. Instead, CBIR complements

text-based retrieval through the use of quantifiable and objective image features

as the search criterion. The features used by CBIR include, but are not lim-

ited to, colour, texture, shape, and the spatial arrangement of ROIs within the
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images [21]. These features can be automatically or semi-automatically extrac-

ted directly from the images, thereby eliminating uneconomical and subjective

manual labelling. Essentially, CBIR measures the similarity of two images based

on the similarity of the properties of their visual components, e.g. similarity

based on colour distribution. CBIR’s non-reliance on labels has made it ideal for

large repositories where it is not feasible to manually assign keywords and other

annotations. The objective features used by CBIR mean that it is also possible

to show not only what images are similar but also to explain why they are con-

sidered to be similar in a non-subjective manner. The what is essentially the set

of retrieved images and is provided by every CBIR algorithm.

The major challenges for CBIR include the application-specific definition of

similarity (based on users’ criterion), extraction of image features that are relevant

to this definition of similarity, and organising these features into indices for fast

retrieval from large-scale repositories [21,61–63]. The choice of features becomes

a critical task when designing a CBIR system because it is closely related to the

definition of similarity. Features fall into several categories. General-purpose fea-

tures can be extracted from almost all images but are not necessarily appropriate

for all applications, e.g., colour is inappropriate for greyscale images. Application-

specific features are tuned to a particular problem and describe characteristics

unique to a particular problem domain; they are semantic features intended to

encode a specific meaning [21]. Global features capture the overall characteristics

of an image but fail to identify important visual characteristics if these character-

istics occur in only a relatively small part of an image. Local features describe the

characteristics of a small set of pixels (possibly even one pixel), i.e. they represent

the details. In recent years, there has been a shift towards the use of local features

largely driven by the belief that most images are too complex to be described in

a general manner; however, the combination of local and global features remains

an area of investigation for practical computer vision applications [63].
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An underlying assumption of most CBIR systems is that the chosen image

features used are sufficient to describe the image accurately. The choice of image

features must therefore be made to minimise two major limitations: the sensory

gap and the semantic gap [21]. The sensory gap is the difference between the

object in the world and the features derived from the image. It arises when

an image is noisy, has low illumination, or includes objects that are partially

occluded by other objects. The sensory gap is further compounded when 2D

images of physical 3D objects are considered; some information is lost as the

choice of viewpoint means an object may occlude part of itself. The semantic

gap is the conflict between the intent of the user and the images retrieved by

the algorithm. It occurs because CBIR systems are unable to interpret images;

they do not understand the ‘meaning’ in the images in the same way that a

human does, i.e., CBIR is performed on the basis of image features not image

interpretations.

The large volume of modern image repositories and high feature dimension-

ality of images has also contributed to challenges in efficient real-time retrieval.

In many cases, it is no longer viable to compare a query to every element of

the data set. Efficient indexing schemes are necessary to store and partition the

data set so it can be accessed and traversed quickly, without needing to visit or

process irrelevant data; alternatively, the search space can be pruned by using

only a subset of the features or applying weights to features [63]. The large data

volumes also mean that exact search paradigms, which look for images in the

data set that exactly satisfy all query criteria, may no longer be viable. This

has led to the rise of approximate search schemes, which rank the images in the

data set according to how well they satisfy the search criterion [21]. Perhaps

the most well-known approximate scheme is k-nearest-neighbour search, which

retrieves the k most similar (highly ranked) images as measured by distance from

the query in the feature space.
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It is possible that some images retrieved by approximate search paradigms will

fail to meet the expectations of the users. Precision and recall are two quality

measures defined to calculate the accuracy of an approximate search paradigm.

Precision refers to the proportion of retrieved images that are relevant, i.e., the

proportion of all retrieved images that the user was expecting. Recall is the

proportion of all relevant images that were retrieved, i.e., the proportion of similar

images in the data set that were actually retrieved. The ideal case would be a

retrieval system that achieves both 100% precision and recall. The reality is that

most existing algorithms fail to find all similar images, and many of the retrieved

images contain dissimilar images or false positives.

Early examples of CBIR use include IBM’s Query By Image Content (QBIC)1

system [64], used to search for famous artworks, as well as the Virage frame-

work [65] and Photobook [66]. More recently, Google Search by Image2 used the

points, colours, lines, and textures in images uploaded by users to find similar

images [67]. This recent development means that CBIR is a technology that is

available to the masses.

In recent years, a paradigm shift has changed the focus of CBIR research to-

wards application-oriented, domain-specific technologies that would have greater

impact on daily life [63]. Due to advancements in acquisition technologies, on-

going CBIR research has moved towards images with more dimensions, with an

aim towards increasing image understanding. Modern medical imaging is one

such domain, where the retrieval of multidimensional and multi-modality images

from repositories of diverse data has potential applications in diagnosis, training,

and research [7]. The contents of medical images exhibit complex characteristics:

there is a high variability in the detail of anatomical structures across patients,

misalignment of structures can occur in volumetric and multi-modality images,

1http://wwwqbic.almaden.ibm.com/
2Click the camera icon in the search bar on http://images.google.com/ .
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some imaging modalities suffer from low signal-to-noise ratios, and occlusion of

structures is a common occurrence. In addition, there can be large variability

even among patients with the same health condition [68]. It is essential that the

characteristics of particular medical images be taken into account when designing

CBIR systems for them.

Most CBIR frameworks, even those for medical images, follow similar sequence

of processes. Visual features are extracted from the images and indexed for

searching. A similarity measurement algorithm is defined to compare a query with

the indexed images. The measurements can then be used to rank the images in

order of similarity, or can be used to classify the images as ‘similar’ or ‘not similar’.

This ranking is then displayed to the user. In many cases, the integration of user

feedback allows further refinement of the results to overcome the semantic gap.

The following surveys provide detailed overviews of general CBIR frameworks

and components: [21, 61–63]. We provide a brief overview of research in these

processes in the following subsections.

3.2.1 Features and Representations

Visual feature extraction is the process by which an image is analysed and the

properties of its contents are measured, and forms the foundation upon which

CBIR stands [62]. The features used for CBIR are generally dependent upon the

specific domain and for a particular aim [17]. These features can either be global

(calculated from the entire image) or local (calculated from specific ROIs). Image

segmentation (see Section 2.4.1) is generally used to define the ROIs for local

feature calculation. The representation of a particular image is closely related to

the features that need to be represented.

The use of colour features have been attributed to the three-dimensional do-

main it offers compared to the single dimension of grey-level images [21]. Colour



CHAPTER 3. CONTENT-BASED IMAGE RETRIEVAL 30

features are relatively robust to background complications, and are independ-

ent to image size and orientation [62]. Colour information can be represented

by colour histograms [69], colour moments [70], and several other approaches

(see [21, 62,71]).

Texture is an innate property of almost all surfaces, containing information

about the structural arrangement of these surfaces and their relationships to other

surfaces. The most common and widely used texture features are the Haralick

texture features [72] extracted from a pixel co-occurrence matrix. While originally

intended for 2D images, 3D Haralick features can be extracted by calculating the

co-occurence matrix in the thirteen unique orientations [73]. Texture can also be

extracted from the coefficients of wavelet transforms [74,75].

Shape features capture the geometric details within the image [62]. The seven

Hu moments [76] are invariant for transformations and as such are ideal for situ-

ations where shapes may be rotated, translated, or have varying scales in different

images. Other methods describe shapes in reference to the boundary, e.g., shock

graphs [77] represent the perturbation of the shape boundary. Two approaches

for 3D object retrieval were proposed in [78] based on object surface curvature,

and correlograms of the objects from different viewpoints. The study also pro-

posed a decomposition of 3D objects into a set of components, enabling 3D object

retrieval based on individual or sets of parts. A review of 3D shape descriptors

used for retrieval can be found in [79].

The structure or layout of an image can be represented by the relationships

between entities, often in the form of graphs, trees, or hierarchies. These struc-

tures can also index other features (colour, texture, etc.) while enabling the

representation of relationships such as spatial arrangements [80], or hierarchical

ordering [81, 82]. When objects are adjacent, the intensity profile of the local

neighbourhood of tumours can also provide relationship features [83]. Other

methods for representing spatial relationships include the use of triangular spatial
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relationships (angles between groups of entities) [84], matrices indicating the rel-

ative cardinal or ordinal (compass) directions of objects [85], and complex strings

for detailing the topological and geometric interactions between objects [86].

3.2.2 Similarity Measurement

The similarity of two images is essentially a decision problem that interprets the

differences between the feature sets of individual images [21]. In many cases,

the similarity functions, and optimisations such as weights, depend on the do-

main for which the CBIR framework is being designed. The result of similarity

measurement can either be a ranking of images based upon the degree of corres-

pondence with the query image, or a binary classification (similar or dissimilar

to the query).

When the features are in a vector space, such as in the case of the Haralick

texture features, the measurement can occur from the distance function Dp as

follows:

Dp (Q,S) =

[
N∑
i=1

(qi − si)p
] 1

p

(3.1)

where Q and S are a query and data set feature vector, respectively; N is the

length of the vectors Q and S; qi and si are i-th feature values in the vectors

Q and S, respectively; and, p is the order of the equation. D1 and D2 are the

Manhattan (city-block) and Euclidean distances, respectively. When individual

features are given weights, this function changes to:

Dp (Q,S,W) =

[
N∑
i=1

wi (qi − si)p
] 1

p

(3.2)

where W is a vector of weights, and wi is the i-th element of W (and thus the

weight of the i-th feature in Q and S).

There is a danger that features with large ranges or values can have a greater
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impact on similarity measurement, i.e., if x >> y > 0 then a feature with the

range [0, x] can potentially have a greater impact on the similarity measure than

a feature with the range [0, y]. Normalisation is a form of weighting that equalises

the contribution of each feature to the similarity function, resulting in a measure

that is not inherently biased towards a particular feature. Numerous feature

normalisation schemes for image retrieval applications are presented in [87].

Structural features are measured by comparing the differences in the organ-

isation of the relationships between ROIs. Essentially such similarity methods

attempt to create a mapping between elements of two structures, e.g., ROI A in

image I corresponds to ROI B in image J . Relaxation labelling [88] iteratively

assigns labels to structures based on a set of probabilities derived from contextual

constraints. Graph isomorphism methods [89, 90] attempt to find a correspond-

ence between elements in the query and data set graphs (see Section 4.3 for

further details).

A similarity measure can be trained to favour particular interpretations. Neural

networks, Bayesian classifiers, support vector machines (SVMs), and Hidden

Markov Models can be used for this purpose [7]. Further information on various

similarity measurements can be found in [7, 21,63,91].

3.2.3 Display and Feedback

The semantic gap necessitates an active user as part of the image retrieval pro-

cess. A human must be presented with the retrieved images so that a semantic

interpretation can be performed, i.e., the user must confirm whether the results of

the retrieval matched his or her intent. A retrieval system must therefore provide

some way for the user to meaningfully view and interact with the displayed data.

Most CBIR systems display the retrieved images in a grid sorted from most

similar to least similar. The user then must browse through these retrieved images

to locate the most similar images, according to their semantic interpretation. It
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was shown that arranging images based upon their similarity assisted in picture

selection tasks [92]. An overview of general exploratory search systems is given

in [93] and a survey of browsing models can be found in [94].

There have been several recommendations about the functionality of search

interfaces [95] and the consideration of human factors when displaying informa-

tion [96]. These recommendations include details about the presentation of both

query and retrieved data, the use of multiple views to provide a comprehensive

perspective of the retrieved data, and the use of abstractions to provide an over-

view of complex data. The recommendations also state that the user should al-

ways have control over the presentation and ordering of the retrieved information.

The properties of elements, the relationships between them, and supplementary

data should be displayed to enable user semantic interpretation. The ability to

iteratively refine queries to narrow down the search space is also valuable.

One of the recommendations refers to the ability to refine the query, either

through filtering, sorting or iterative searching. Relevance feedback [63] is a

mechanism by which the user is able to iteratively improve the pertinence of the

retrieved images by marking retrieved images as ‘relevant’ or ‘not relevant’. This

enables the user to narrow the retrieval to those most relevant to their semantic

interpretation of the query [91]; it is a means to bridge the semantic gap. While

relevance feedback can be implemented in a number of ways (see [97] for a review),

there must be a focus on displaying the images and features transparently to the

user, i.e., showing the user which features have made an image similar [21].

3.3 Medical Content-Based Image Retrieval

PACS and other hospital information systems (HIS) store a large variety of in-

formation, ranging from clinical measurements (age, weight, blood pressure) to

free text reports, test results, and images. These systems have been designed to
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support higher quality patient care through the effective and efficient manage-

ment of patient data by enabling physicians to access relevant data in a timely

manner [98]. Diagnostic decision making has traditionally involved using evid-

ence from a patient’s data coupled with the physician’s prior experiences with

similar cases [99]. The introduction of PACS has created an opportunity to lever-

age large repositories to support clinical decision making, by analysing the stored

data for similarities in diseases-specific information across patients [9]. This is

especially useful for non-specialists that may have had very limited experience

with particular cases.

CBIR technologies are seen as promising methods for utilising this diverse and

information rich medical imaging repositories for these purposes. Several studies

have already demonstrated the potential benefits of CBIR in clinical applications.

Clinical evaluation of the ASSERT CBIR system for high resolution CT lung

images [100] showed an improvement in the accuracy of the diagnosis made by

physicians [22]. Another study for liver CT concluded that CBIR could be used

to provide real-time decision support [25]. CBIR was also shown to have benefits

when used as part of a radiology teaching system [23].

In the following subsections, we review CBIR developments that have enabled

medical image access for clinical applications. Existing reviews [7, 8, 101, 102]

mainly considered the differences in features and algorithms applied to medical

imaging, and the domains in which they were applied. We take a different ap-

proach by describing the evolution of CBIR methods for the retrieval of modern

multi-dimensional and multi-modality medical images. In particular, we survey

different applications of and approaches to medical CBIR in five main categories:

2D image retrieval, retrieval of images with 3 or more dimensions, using non-image

data to enhance the retrieval, retrieval from diverse data sets, and multi-image

(and multi-modality) retrieval. We use these categories as a framework for dis-

cussing the state-of-the-art, focusing on the characteristics and modalities of the
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Table 3.1: Medical CBIR Studies Divided by Data Types

Type of Data Studies

2D Images radiographs: [103–105]; spine x-rays: [106–112]; cervico-
graphs: [113]; mammograms: [114–116], [117, 118]a ; retino-
pathy: [116], [117,118]a

3D+ Images CT: [22,100,119], [25]a; MRI: [82,120,121]; dynamic PET: [122,123]a

; PET-CT: [124–130], [131–140]c

Non-Image Data text: [122, 123, 141–147]b, [148, 149]; annotation or ontology: [25,
150,151]b; others: [117,118]b

Multiple Images ImageCLEF: [152–156]; pathology: [157]; general [158,159]; PET-
CT: [124–130], [131–140]c

a Also used non-image data.
b Also used image data.
c Based on work described in this thesis.

information used during medical image retrieval. Table 3.1 provides a brief sum-

mary of the studies that we will examine in this review and the types of data

used during retrieval.

3.3.1 2D Medical Image Retrieval

The majority of CBIR research on 2D medical images has focused on radiographic

images, such as x-rays and mammograms. The Image Retrieval in Medical Ap-

plications (IRMA) project3 has been a sustained effort in the CBIR of radiologic

images for medical diagnosis systems. The IRMA approach is divided into seven

interdependent steps [103]: (i) categorisation based on global features, (ii) regis-

tration using geometry and contrast, (iii) local feature extraction, (iv) category

and query dependent feature selection, (v) multi scale indexing, (vi) identifica-

tion of semantic knowledge, and (vii) retrieval on the basis of the previous steps.

The IRMA method classifies images into anatomical areas, modalities and view-

points and provides a generic framework [104] that allows the derivation of flexible

implementations that are optimised for specific applications.

3IRMA Homepage (English): http://www.irma-project.org/index_en.php
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Other approaches for radiograph retrieval have tried to group features into

semantically meaningful patterns. In one such study [105], multi-scale statistical

features were extracted from images by a 2D discrete wavelet transform. These

features were then clustered into small patterns; images were represented as com-

plex patterns consisting of sets of these smaller patterns. Experimental results

revealed that the method had significantly higher precision and recall compared

to two conventional approaches: local and global grey-level histograms.

A series of studies [106–112] investigated every component of CBIR for spine

x-ray retrieval, including feature extraction [107, 108, 111], indexing [112], simil-

arity measurement [109, 112], and visualisation and refinement [110]. The initial

methods of matching whole vertebrae shapes [107, 108] had a major drawback:

in 2D x-rays, regions of the vertebrae that were not of pathologic interest could

obscure differences between critical regions. Partial shape matching [109] was

proposed as a way to deal with occlusion when comparing incomplete or distor-

ted shapes. An application-specific feature, the 9-point landmark model used

by radiologists and bone morphometrists in marking pathologies, was localised

to improve the computational performance of their algorithm for partial shape

matching. In experiments their method achieved a precision greater than 85%.

While the users could apply weights to angles, lengths, and the cost to merge

points on the model, it was difficult to determine the effect of these weights on

the retrieval results.

This was resolved in a later study [110], where a web-based spine x-ray re-

trieval system contained a query editor that allowed a user to alter the appearance

of a shape and to assign weights to points on the shape to emphasise their import-

ance. The integration of relevance feedback further improved the performance of

the algorithm. Originally 68% of the retrieved images were relevant (what the

user expected); three iterations of feedback increased this by a further 22%. As-

signing weights to parts of the shape allowed the user to specify why the images
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were similar. The web-based shape retrieval algorithm was demonstrated to also

work with uterine cervix images; the system was able to distinguish between three

tissue types with an accuracy of 64% [113].

The spine retrieval framework was further enhanced with the introduction of

several domain-specific features: the geometric and spatial relationships between

adjacent vertebrae [111]. Combining these features with a voting consensus al-

gorithm improved retrieval accuracy by about 8%. To improve the speed of the

retrieval, Qian et al. [112] indexed the images by embedding the shapes in a Euc-

lidean space. This index resulted in significantly faster retrieval times (0.29s com-

pared to 319.42s). It was also discovered that the embedded Euclidean distance

measure was a very good approximation of Procrustes distance used previously:

the first 5 retrieved images were identical for both methods over 100 queries.

Korn et al. [114] proposed a tumour shape retrieval algorithm for mammo-

graphy images. In particular, the study introduced application-specific features

to model the ‘jaggedness’ of the periphery of tumours; tumours were represented

by a pattern spectrum consisting of shape characteristics with high discriminatory

power, such as shape smoothness and area in different scales. This was done to

differentiate benign and malignant masses, which are more likely to have higher

fractal dimensions. Experiments on a simulated data set revealed that the pro-

posed application-specific approach achieved 80% precision at 100% recall. Their

use of pruning to reduce the search space resulted in computational performance

that was up to 27 times better than sequential scans of the entire data set.

In [115] a boosting framework was used to learn a distance metric that pre-

served both semantic and visual similarity during medical image retrieval. Ini-

tially, sets of binary features for data representation were learned from a labelled

training set. To preserve visual similarity, sets of visual pairs (pairs of similar

images) were used alongside the binary features for training the distance func-

tion. The proposed approach had a higher retrieval accuracy than other retrieval



CHAPTER 3. CONTENT-BASED IMAGE RETRIEVAL 38

methods on mammograms and comparable accuracy to the best approach on the

x-ray images from the medical data set of the Cross Language Evaluation Forum’s

imaging track (ImageCLEF)4. The retrieval framework performed more consist-

ently than other state-of-the-art approaches across different data sets due to its

ability to learn feature sets and distance functions optimised for a particular data

set.

3.3.2 3D+ Medical Image Retrieval

In recent years, many 2D retrieval algorithms have been adapted for use in 3D

medical image retrieval. Perhaps the most well-known example is the ASSERT

system [100], which retrieved a volumetric high resolution CT (HRCT) image on

the basis of key slices selected from the volume. This essentially reduced a 3D

image retrieval problem to 2D retrieval. The system retrieved images with the

same type of lung pathology (e.g. emphysema, cysts, metastatic classification

etc.), preferably within the same lung lobe as the query. During the query pro-

cess, a physician would mark a pathology bearing region in a HRCT lung slice;

grey-level texture features, as well as other statistics, were then extracted from

these regions. Relational information about the lung lobes was also captured. In

experiments, the ASSERT system achieved a retrieval precision of 76.3% when

matching the type of disease; this dropped to 47.3% when pathology location was

also considered. During clinical evaluation [22], physicians used the ASSERT sys-

tem to retrieve and display four diagnosed cases that were similar to an unknown

case; this was shown to improve the accuracy of their diagnosis.

An improvement to the ASSERT system involved a two-stage unsupervised

feature selection method to “customise” the query [119]. During the first stage,

the features that best discriminated different classes of images were used to clas-

sify the query into the most appropriate pathology class. In the second stage,

4ImageCLEF Homepage: http://www.imageclef.org/
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the features that best discriminated between images within a class were used to

identify the “subclass” of the query, i.e., to find the most similar images within

the class. The customised query approach had an effective retrieval precision of

73.2% compared to 38.9% using a single vector of all the features. The study

demonstrated that finding images on the basis of class was not enough; there was

a need to also find the most similar images within a particular class.

Local structure information in ROIs was used for the retrieval of brain MR

slices [120]. Two feature sets for the representation of structural information

were compared. The first, local binary patterns (LBPs), treated every local ROI

equally. The other, Kanade-Lucas-Tomasi (KLT) feature points, gave greater

emphasis to the more salient regions. The results revealed interesting insights

about the tradeoffs inherent in structure-based retrieval. LBPs were very dom-

inant when spatial information was included, and its accuracy was consistently

higher than its rivals in experiments involving pathologies or other anomalies.

The experiments also showed that accuracy was degraded when KLT points were

not matched.

Petrakis [121] proposed a graph-based methodology for retrieving MR images.

Each image was represented by an attributed graph; vertices represented ROIs

while edges represented relationships between ROI. Their results showed that a

similarity measure based on the concept of graph edit distance achieved the best

retrieval precision, at the cost of computational efficiency. Alajlan et al. [82]

proposed a tree representation that achieved improved computational perform-

ance by only indexing relationships between ROIs that were included (completely

surrounded) within other ROI.

Dynamic PET images consist of a sequence of PET image frames acquired over

time. Cai et al. [122] proposed a CBIR system that utilised the temporal features

in these images. They exploited the activity of pixels or voxels across different

time frames by basing their retrieval on the similarity of tissue time activity
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curves (TTACs) [160]. In [122], three query input methods were allowed: textual

attributes, definition of a query TTAC, and a combination of these features. Kim

et al. [123] extended this retrieval to 4 dimensions (3 spatial and 1 temporal) by

registering 3D brain images to an anatomical atlas, and defining the structures

to search using the atlas’ labels.

3.3.3 Retrieval Enhancement Using Non-Image Data

Text information is a common complement to image features in general CBIR

research [161] as well as medical CBIR research. Several examples of studies

including non-image data have already been described [122,123]. Textual inform-

ation has also been used to complement several studies that were part of the

ImageCLEF medical challenge or used the same data [141–147].

An initial approach to using text as the input query mechanism for image data

together was presented by Chu et al. [148]. The spatial properties of ROIs and

the relationships between them were indexed in a conceptual model consisting of

two layers. The first layer abstracted individual objects from images, while the

second layer modelled hierarchical, spatial, temporal, and evolutionary relations.

The relationships represented the users’ conceptual and semantic understand-

ing of organs and diseases. Users constructed text queries using an SQL-like

language. Each query specified ROI properties, e.g., organ size, as well as rela-

tionships between ROIs. This retrieval approach was expanded in [149] with the

introduction of a visual method for query construction and by the inclusion of a

hierarchy for grouping related image features.

Rahman et al. [146] presented a technique that used the correlation between

text and visual components to expand the query. Their comparison of text, visual,

and combined approaches revealed that the text retrieval had a higher mean

average precision than the purely visual method, while the combined method

outperformed both text and visual features alone. This outcome was also visible
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in a comparison of different retrieval algorithms in [147] but could be explained by

the nature of the data set that was used. The medical images in the ImageCLEF

data set were highly annotated and this made text-based retrieval inherently

easier than purely visual approaches.

A comparison of text, images, and combined text and image features was

conducted in [150], using a data set that was not as well annotated. The text

features were extracted from the caption of the images in the document, as well

as paragraphs referring to those images. The experiments consisted of an index-

ing task that produced a single IRMA annotation for an image and a retrieval

task that matched images to a query. The results showed that image analysis

was better than text for both indexing and retrieval, though there were a few

circumstances where indexing performed better with text data. The results also

revealed that caption text provided more suitable information than the paragraph

text. While combined image and text data seemed beneficial for indexing, the

retrieval accuracy was not significantly higher than that of using images alone.

A preliminary clinical study [25] evaluated different features for the retrieval of

liver lesions in CT images. In particular, the study compared texture, boundary

features, and semantic descriptors. Twenty-six unique descriptors, from a set of

161 terms from the Radlex terminology [151], were manually assigned by trained

radiologists to the 30 lesions in the data set; each lesion was given between 8

to 11 descriptors. The semantic descriptors were a feature that explained why

images were clinically similar. The similarity of a pair of lesions was defined as

the inverse of a weighted sum of differences of their respective feature vectors.

Evaluation demonstrated that the semantic descriptors outperformed the other

features in both the precision and recall. However, the highest accuracy was

obtained when a combination of all the features was used for retrieval.

Unsupervised classification was used to index heterogeneous information (in

the form of wavelets [116] and semantic text data) on decision trees in [117]. A
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committee of decision trees was used to ensure that individual attributes (either

text or image features) were not weighted too highly. A boosting algorithm

was applied to reduce the tendency of decision trees to be biased towards larger

classes. The proposed algorithm achieved an average precision at five retrieved

items of about 79% on a retinopathy data set, and of about 87% on a mammo-

graphy data set. Without boosting, the results were lower: about 74% and 84%

for the retinopathy and mammography data sets, respectively. The study also

demonstrated that the approach was robust to missing data with a precision of

about 60% for the retinopathy data when less than 40% of the attributes were

available in the query images.

Similarly in [118], wavelets were fused with contextual semantic data for case

retrieval. A Bayesian network was used to estimate the probability of unknown

variables, i.e., missing features. Information from all features was then used to

estimate a correspondence between a query case and a reference case in the data

set, again using the conditional probabilities of a Bayesian network. An uncer-

tainty component modelled the confidence of this correspondence. The highest

precision was achieved when using all features, though the Bayesian method alone

outperformed Bayesian plus confidence information on a mammography data set.

On the retinopathy data set, the highest precision was achieved by Bayesian plus

confidence component.

3.3.4 Retrieval from Diverse Data Sets

The diverse nature of medical imaging means that CBIR capabilities must have

the capacity to differentiate between modalities when searching for images. This

problem has been taken up by the medical image retrieval challenge at Image-

CLEF. Participants submit retrieval algorithms that are evaluated on a large

diverse medical image repository [162]. Overviews of submissions to the Image-

CLEF medical imaging task can be found in [152–154].
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In 2006, Liu et al. [155] proposed two methods for solving this retrieval chal-

lenge. The first method used global features such as the average grey-levels in

blocks, the mean and variance of wavelet coefficients in blocks, spatial geometric

properties (area, contour, centroid etc.) of binary ROIs, colour histograms and

band correlograms. The second method divided the image into patches and used

clusters of high dimensional patterns within these patches as features. Using

multi-class SVMs they were able to achieve a mean average precision of about

68% when using visual features.

Tian et al. [163] used a feature set consisting of local binary patterns and

the MPEG-7 edge histogram to compare effect of dimensionality reduction using

principle component analysis (PCA); the classification was performed using multi-

class SVMs. The accuracy of the dimensionally reduced feature set (80.5% at 68

features) was not very different from the accuracy using all features (83.5% at

602 features). Indeed, the highest accuracy was achieved by the feature set falling

between these two extremes (83.8% at 330 features).

Recognising that the categorising of diverse images by modalities is essential

to support effective retrieval, Rahman et al. [156] proposed a method for the auto-

matic categorisation and pre-filtering of the search space. The authors reduced

the semantic gap by associating low-level global image features with high-level

semantic categories using supervised and unsupervised learning via multi-class

SVMs and fuzzy c-means (FCM) clustering. The retrieval efficiency was increased

by using PCA to reduce the feature dimension while the learned categorisation

and filtering reduced the search space. Experiments on the ImageCLEF medical

data set showed that pre-filtering resulted in higher precision and recall than

executing queries on the entire data set.

In a similar approach, the associations between features in MPEG-7 format

and anatomical concepts in the University of Washington Digital Anatomist ref-

erence ontology were used to annotate new, unlabelled images [158]. The most
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similar images, based upon feature distance, were retrieved from the data set on

the basis of feature similarity. The semantic annotation for the unlabelled im-

age was derived from the annotations of the similar images. Experiments on the

Visible Human data set [164] demonstrated that their retrieval and annotation

framework achieved an accuracy of about 93.5%.

3.3.5 Multiple Images and Modalities

A recent study [157] proposed the use of multiple query images to augment the

retrieval process. These images were of the same modality: microscopic images

of cells. Texture and colour features were used in a two-tier retrieval approach.

In the first tier, SVMs were used to classify the major disease type (similar to

the approach used by [119]). The second tier was further subdivided into two

levels: the first level found the most similar images, while the second tier ranked

individual slides using a nearest-neighbour approach for slide-level similarity. The

slide-level similarity was weighted according to the distribution of the disease

subtypes appearing on the slide and the frequency of that subtype across the

entire data set. The method achieved a classification accuracy of 93% and 86%

on two separate disease types.

Zhou et al. [159] presented a case-based retrieval algorithm for images with

fractures. The algorithm combined multi-image queries consisting of data from

different imaging modalities to search a repository of diverse images. The cases

in the repository included x-ray, CT, MR, angiography, and scintigraphy images.

The cases were represented by a bag of visual keywords and a local scale-invariant

feature transform (SIFT) [165] descriptor. Retrieval was achieved by calculating

the similarity of every image in the query case with every image in the data set

to find the set of most similar images (for a particular image in the query case).

The list of all similar images was then reduced to a list of unique cases in the data

set. Three feature selection strategies were evaluated and it was demonstrated



CHAPTER 3. CONTENT-BASED IMAGE RETRIEVAL 45

that feature selection based on case offered the best performance and stability.

The studies described earlier in this section operated on multiple images or

multiple modalities but were not designed to retrieve multi-modality images that

were acquired on a combined scanner, such as PET-CT or PET-MR. The co-

alignment of the different modalities in these images offers opportunities for search

based on complementary features in different modalities and spatial relationships

between regions in either modality.

While clinical utilisation of co-aligned PET-CT has grown rapidly [39,44], few

studies have investigated PET-CT CBIR. The only research on this subject was

either conducted by our collaborators [124–130] or is described in this thesis [131–

140]5. Kim et al. [124] presented a PET-CT retrieval framework that enabled a

user to search for images with tumours (extracted from PET) that were contained

within a particular lung (extracted from CT) using overlapping pixels. The study

introduced the capability to search for tumours by their location or size. Song et

al. [125] presented a PET-CT retrieval method using Gabor texture features from

CT lung fields and the SUV normalised PET image. Experiments showed that the

method had higher precision than approaches that used traditional histograms

and Haralick texture features. A scheme for matching tumours and abnormal

lymph nodes by pairwise mapping across images was presented in [128]. A weight

learning approach using regression for feature selection was presented in [130].

While the algorithms were restricted to thoracic images they showed promise for

adaptation to whole body images.

3.4 Summary of Gaps

A number of approaches in the literature have been validated for different image

modalities and clinical applications (breast cancer, spinal conditions, etc.). The

5These works will not be discussed in this section as their contents are integrated throughout
this thesis.
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multiplicity of 2D CBIR research has led to many 2D approaches being applied

to images with higher dimensions, e.g., the representation of volumetric images

through the use of key slices.

The ImageCLEF medical retrieval task has encouraged research into retrieval

from diverse data sets. The CBIR technologies developed as part of the task are

well positioned to tackle the challenges in clinical environments where a variety

of image modalities are acquired. In particular, the ImageCLEF task has led

to the development of methodologies for classifying image modalities based on

features. In past years, most of the images in the ImageCLEF medical data set

were inherently 2D or 2D constructions of multidimensional data. The data set is

expanding to include a greater variety of images (including combined modalities

in one image), to inspire further research into the retrieval of such data6.

Similarly, the VISCERAL project [166] is a new initiative that aims to provide

10 TB of medical image data for research and validation. In particular the project

intends to hold challenges that exploit the knowledge stored in repositories for

the development of diagnostic tools. The VISCERAL data set will contain two

annotation standards: a gold corpus annotated by domain experts and a silver

corpus annotated by deriving a consensus among research systems developed by

challenge participants.

The use of non-image features to complement image features has been widely

investigated because all patients have some associated textual data, such as clin-

ical reports and measurements. Metadata such as DICOM tags also provide

useful information about the image acquisition protocol, e.g., patient weight, ra-

diotracer dose, etc., and these can also be used to enhance the retrieval process.

It has been demonstrated that combining visual features together with text data

improves the accuracy of the search but further research is necessary to make the

6The variety of data included in the ImageCLEF medical challenges for 2013 can be viewed
at http://www.imageclef.org/2013/medical.
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contribution of this combination statistically significant [150].

Despite the progress in medical CBIR, there are still several gaps in the state-

of-the-art. The Workshop on Medical Content-Based Retrieval for Clinical De-

cision Support at MICCAI [9], one of the premier forums for medical CBIR

research, and several other medical CBIR reviews [27], have identified several

areas for investigation. In the following subsections, we detail specific areas for

future research that should be pursued to improve CBIR capabilities for modern

multi-dimensional and multi-modality medical image retrieval from repositories

containing a diverse collection of data.

3.4.1 Multi-dimensional Image Processing and Feature Ex-

traction

Multi-dimensional images are now acquired as a routine part of clinical workflows.

However, despite the prevalence of volumetric images (CT, PET, MR, etc.) and

time-varying images (4D CT, dynamic PET and MR), some medical CBIR al-

gorithms adopt key slices to represent the entire set of multi-dimensional image

data. While this has proven effective in some scenarios, it is highly dependent on

the selection of appropriate key slices; manual selection is subjective. In applica-

tions where key slices are still viable, subjective selection can be avoided by using

a selection algorithm trained by unsupervised learning, as in [167]. In other cases,

the use of key slices may not be possible as it may sacrifice spatial information,

such as clinically relevant information (a fracture, multiple tumours, etc.) that

is spread across multiple sites and slices. Multiple key slices, as in [129, 167],

become less viable in cases where the disease potentially spreads across the body,

e.g., lymphoma. As such, it would be advantageous if future medical CBIR stud-

ies do not rely on key slices but are optimised to operate directly on the rich

multi-dimensional image data acquired in modern hospitals.
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The direct use of multi-dimensional images will require the integration of

image processing techniques (compression, segmentation, registration, etc.) that

are optimised for such images. The trend towards using local features in generic

CBIR [63] indicates that the development of accurate segmentation algorithms

will become critical for the development of ROI-based CBIR solutions. The

efficiency of some existing algorithms will also need to be optimised for real-

time operation. As an example, a recent adaptive local multi-atlas segmentation

algorithm [168] extracted the heart from chest CT scans with a mean accuracy

of approximately 87% within 30 minutes; such processing times are not feasible

for rapid data access without further optimisation.

The curse of dimensionality has always been an issue for medical CBIR al-

gorithms and remains relevant as algorithms are developed for modern medical

images. Feature extraction and selection algorithms will need to form a core

component of retrieval technologies to ensure that indexing and retrieval can be

performed in an efficient manner. Methods that extract multi-dimensional local

features from every pixel are no longer feasible for volume and types of images

routinely acquired in modern hospitals.

The increasing clinical utilisation of multi-modality images offers the oppor-

tunity to derive complementary information from different modalities, the fusion

of which will provide extra multi-dimensional features that may not be available

from a single image type. The registration of viewpoints and ROIs between ima-

ging modalities will be a key aspect of such CBIR systems, particularly for the

extraction of relational features, tumour segmentation given anatomical priors,

and fused visualisation. Multi-modality PET-CT and PET-MR scanners inher-

ently provide co-alignment information, allowing the relations between function

(tumours) and anatomy (organs) to be emphasised. Future studies should make

full use of these features by defining similarity in terms of features from both

modalities. In addition, useful indexing features can potentially be extracted
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from the relationships between ROIs in different modalities. Feature selection

algorithms will need to examine the balance between features from individual

modalities, as well as relationship features between modalities.

3.4.2 Interpretation and Visualisation

Image retrieval tasks are often carried out for a particular purpose. In medi-

cine, these purposes can include evidence-based diagnosis, physician training, or

research. As such, an effective method of showing the images to the user is a

critical aspect of CBIR systems. However, there has been limited investigation

into methods for the effective interpretation and visualisation of retrieved images,

with most studies focusing on improving retrieval accuracy and speed. This not

only limits the ability of researchers to evaluate the clinical relevance of their

work but also makes it more difficult for clinical acceptance of CBIR as a tool

that can be used for daily patient diagnosis and management. This issue exists in

general CBIR research as well, where the gap in experiential multimedia search

hinders the ability of users to explore and understand the retrieved images [61].

Existing research works that address these problems are often 2D or key slice

CBIR systems, such as [169] for non-medical images. The introduction of multi-

dimensional and multi-modality data introduces new visualisation challenges.

CBIR systems need to have the capacity to display multiple volumes or time-

series (one for each retrieved image), as well as fusion information in the case

of multi-modality images. The systems need to optimise hardware use especially

when volume rendering is being used. A number of human factors also need to

be considered to enable interpretation of visualised data by users [96]. The visu-

alisation should exploit the retrieval process to demonstrate why the retrieved

images are relevant.

The development of effective user interfaces is an area of increasing interest,

especially if the CBIR systems are to be trialled in clinical environments. User
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interface guidelines for search applications should be followed to ensure that users

are able to easily integrate the CBIR system into their clinical workflow [95].

Context-aware multi-modal search interfaces, such as [170], should be pursued to

give users the flexibility to overcome the sensory and semantic gaps.

3.4.3 Inclusion of Clinical Context

As mentioned by Müller et al. [9], the majority of CBIR research is evaluated

purely in non-clinical environments. Closer communication is needed with clin-

ical staff to ensure that medical CBIR research has outcomes that are relevant to

healthcare. Clinical staff should be involved in the design of CBIR systems; med-

ical specialists should be consulted especially if a domain-specific paradigm [63]

is being adapted. However, collaborative projects are hampered by the need for

physicians to actively treat patients, leaving limited time for frequent feedback.

It has been indicated that there is a lack of effective representations of med-

ical content using low-level image features. Medical CBIR research could be

vastly improved if the clinical context is taken into account, either from dir-

ect feedback from physicians, or by using clinical literature as a tool to design

CBIR algorithms in line with clinical knowledge. Disease staging and classifica-

tion schemes, such as those for cancer [171, 172], provide contextual information

that can be used to optimise medical CBIR systems based on the guidelines used

by physicians. Furthermore, the integration of medical terminology in ontolo-

gies such as RadLex [151] and the Unified Medical Language System [173] by

learning correspondences between image features and text labels should also be

investigated for the case of multi-dimensional images.

The benefits and drawbacks of current algorithms in clinical environments

should also be examined. The lessons learnt from such studies will benefit the

design and optimisation of algorithms in future CBIR investigations. This will

lead to CBIR frameworks that are practical, usable, and valuable for the intended
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task.

3.4.4 Data Sets for Evaluation

Most medical CBIR research is evaluated on closed data sets that are available

only to the authors. This makes it difficult to compare different CBIR algorithms.

The creation of standardised data sets, such as the ImageCLEF medical data set,

should assist in alleviating this problem. Other data sets that can be used for this

purpose include the Lung Imaging Database Consortium (LIDC) [174], the OASIS

data set of MR brain images [175], and the new VISCERAL data set [166].



Chapter 4

A Graph Primer

This chapter provides an overview of graphs, graph-based representations of data,

and graph algorithms that are the basis for later sections of this thesis.

4.1 Definitions

A graph G = (V,E) is a pair of sets V and E, where V = {v1, v2, . . . , vn} and

E = {e1, e2, . . . , em}. The elements of V are called the vertices or nodes of G. The

elements of E are known as the edges or arcs of G. Every edge ek = (vi, vj) = vivj

is a pair of vertices vi, vj ∈ V , where 1 ≤ i, j ≤ n, i 6= j, and 1 ≤ k ≤ m. The

vertices vi and vj are called the endvertices of ek; vi and vj are said to be adjacent

to each other and incident to ek. The order of a graph, denoted by |G|, refers to

the number of vertices in G, i.e., |G| = |V | = n. The size of a graph, denoted by

||G||, refers to the number of edges in G, i.e., ||G|| = |E| = m.

In this thesis, graphs are visualised by depicting vertices as circles and edges

as lines that connect two vertices. The graph in Figure 4.1 has an order of 5 and

a size of 6. Its vertex set consists of the vertices A, B, C, D, and E. The vertices

C and D are adjacent while the vertices D and E are not. The vertex C is an

endvertex of the edges BC, CD, and CE, and is incident to all of them.

52
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C

E

B

D

A

Figure 4.1: A graph with five vertices.

CB

D

A

(a) One subgraph.

CB

D

A

(b) Another subgraph.

Figure 4.2: Two subgraphs of Figure 4.1.

A graph G
′
=
(
V

′
, E

′)
is a subgraph of G if V

′ ⊆ V and E
′ ⊆ E. That is, G

′

is a subgraph of G if its vertex set (V
′
) and edge set (E

′
) are subsets of the vertex

set and edge set of G. Figures 4.2(a) and 4.2(b) are two subgraphs of Figure 4.1.

The vertex E, and the edges CD, and CE have been removed from Figure 4.1 to

form Figure 4.2(a). Similarly, the vertex E and the edges AD, BD, and CE have

been removed to form Figure 4.2(b).

A complete graph is a graph where all vertices are pairwise adjacent, i.e., there

exists an edge between all vertices in the graph. A clique is a subgraph that is

also a complete graph. An example of a clique of Figure 4.1 is the subgraph

formed by the vertices A, B, and D, and the edges AB, AD, and BD.

Two graphs G = (V,E) and G
′

=
(
V

′
, E

′)
are said to be isomorphic if the

elements of V can be mapped to the elements of V
′
, and vice versa, while pre-

serving the structure of the graphs. More specifically, if G and G
′

are isomorphic

then there exists some bijective mapping ϕ : V → V
′

where ∀e = (x, y) ∈ E ⇔

e
′

= (ϕ (x) , ϕ (y)) ∈ E ′
. That is, for every pair of adjacent vertices in G there
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1

(a) Isomorphic to Figure 4.1.

3

5

2

41

(b) Subgraph isomorphic to Figure 4.1.

Figure 4.3: Isomorphism and subgraph isomorphism. (a) is isomorphic to Fig-
ure 4.1; the blue subgraph in (b) is isomorphic to Figure 4.1.

is an equivalent pair of adjacent vertices in G
′
. The graph G

′
is subgraph iso-

morphic to G if there is some subgraph of G
′

that is isomorphic to G, i.e., a

subset of adjacent vertices in G
′

has an equivalent pair of adjacent vertices in

G. Figure 4.3 depicts these concepts. Figure 4.3(a) is isomorphic to Figure 4.1

under the mapping ϕ (A) = 1, ϕ (B) = 2, ϕ (C) = 3, ϕ (D) = 4, and ϕ (E) = 5.

Figure 4.3(b) is subgraph isomorphic to Figure 4.1 because the subgraph in blue

is isomorphic to Figure 4.1 under the same mapping as given before.

4.2 Representing Structures with Graphs

Pattern recognition approaches generally fall into one of three categories: syn-

tactical, statistical, and structural [176]. Syntactical approaches encode data as

elements of a grammar, and discriminate between different classes of objects us-

ing formal language theory [177]. As discussed in Section 1.1, the volume of data

and the need for analysis by domain experts make syntactical approaches largely

unfeasible for medical image pattern recognition.

In statistical approaches, an object or pattern is represented by a feature

vector f = (f1, f2, . . . , fn) ∈ Rn. Each fi, 1 ≤ i ≤ n, is a real-valued measurement

of a particular feature of the object or pattern. A large number of mathematical

operations can be efficiently computed in a vector space and this has resulted
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in wide variety of algorithms for statistical pattern recognition [178]. However,

vectors are inherently unable to encode relationships between different parts of

an object or pattern. Furthermore, the feature set for any given application must

remain fixed, and all vectors must be of equal length, regardless of the complexity

of the patterns or objects described by individual vectors.

Structural approaches represent objects or patterns as graphs (or special cases

of graphs like trees or strings). Components of the objects become graph vertices

while spatial, temporal, and conceptual relationships between these components

are represented by the edges of the graph. Unlike vectors, graphs are not con-

strained to a fixed length and can adapt to the complexity of the pattern being

represented; the order of the graph can change to match the number of compon-

ents in the pattern while the size of the graph can be altered according to the

relationships in the pattern. However, tools for graph-based pattern recognition

are not as rich as for statistical pattern recognition largely due to the computa-

tional complexity of graph-based algorithms [179].

Several methods have been invented to bridge the gap between the statist-

ical and structural approaches. The most general of these is the attributed re-

lational graph (ARG), an encoding of pattern data that combines vectors and

graphs [180], which is considered the standard definition of graphs in pattern

recognition today [176]. An ARG is a graph G = (V,E, α, β). The function

α : V → LV is a vertex labelling function, on a set of possibly infinite vertex la-

bels LV . Similarly, β : E → LE is an edge labelling function, on a set of possibly

infinite edge labels, LE. In essence, every ARG vertex and edge is labelled with

a feature vector that describes the properties of the object or the relationship,

respectively for vertices and edges. These feature vectors are also known as the

attributes of the ARG. ARG representations are capable of indexing almost any

feature as vertex and edge attributes by expanding the label sets LV and LE [121].
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(a) A visual pattern with five objects.

Λ: 4

Λ: 15

Λ: 4

Λ: 1

!"#$%&

!"#'%&
Λ: 26

!"#'%'

!"#'%'

!"#(%)

(b) One possible ARG.

Figure 4.4: Constructing a graph representation of a pattern.

Figure 4.4 depicts a pattern (Figure 4.4(a)) and one possible ARG represent-

ation (Figure 4.4(b)) of that pattern. Each vertex of the graph represents the

object of the same colour. Edges have been created between objects that are

overlapping or touching. Each vertex has a single attribute Λ for the area of the

object (measured in square centimetres), while every edge has a single attribute

δ for the spatial distance between the location each object’s centre (measured

in centimetres). That is, α = {Λ} and β = {δ}, where Λ = area (ROI) and

δ = distance (ROI1,ROI2); in this example LV = {R>0} and LE = {R≥0}.

While we have only depicted one attribute for both vertices and edges, they do

not need to have the same number of attributes. The unit of measurement for

the attributes can vary depending on the application domain; while we have used

centimetres in our example, it is equaly valid to use pixels, voxels, or millimetres

as the situation demands.

There are various forms of ARGs. A regional adjacency graph (RAG) repres-

ents ROIs and the relationships between ROIs that share a common border [181],

e.g., Figure 4.4(b). The curvature tree represents the curvature information of

ROIs and the relationships between ROIs that are bounded by or contained within

others [82]. The hierarchical attributed regional adjacency graph (HARAG) is an

RAG with extra relationships between larger ROIs and their smaller constituent

ROIs [81].
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4.3 Measuring Graph Similarity

The measurement of graph similarity is a question of the degree to which the

structures of the graph are the same. Graph isomorphism and subgraph iso-

morphism are specialised forms of this measurement and have a binary outcome,

i.e., two graphs are either isomorphic (or subgraph isomorphic) or they are not.

The following subsections discuss two methods for measuring graph similarity:

the traditional approaches based on graph edit distance, and modern approaches

based on the concept of kernel machines.

4.3.1 Graph Edit Distance

The graph edit distanceDge (G,H) is a method for measuring the similarity of two

graphs, G and H, by measuring the amount of distortion to morph one graph into

the other [182]. This process is also known as error-tolerant graph matching. The

graph edit distance calculation measures the cost to make the graph structures

isomorphic as well as the cost to make vertex and edge attributes the same. The

calculation of Dge requires the definition of a sequence of graph transformation

operations (such as vertex insertion, deletion, etc.), and an associated cost for

each of these operations. The algorithm for calculating Dge attempts to find the

series of operations that has the minimum cost. The cost becomes the degree of

dissimilarity (with a cost of 0 implying the two graphs are isomorphic and have

the same attributes).

Let o = 〈g, h〉 be an edit operation, where g is a vertex of G and h is a vertex

of H or, alternatively, g is an edge of G and h is an edge of H. When g and h

are not null (∅) then o is a substitution operation. When g or h is null then o is

insertion or deletion. Using the terminology for graph isomorphism, substitution

can be defined as ϕ (g) = h while insertion or deletion can be defined as ϕ (g) = ∅

or ϕ (h) = ∅.
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The graph edit distance can then be defined as:

Dge (G,H) = min
(o1,o2,...,on)∈Ω

n∑
i

d (oi) (4.1)

where (o1, o2, . . . , on) is a sequence of edit operations, Ω is the set of all sequences

that transform G to H, and d (oi) is a function for calculating the cost for the edit

operation oi. For ARGs the cost function d (·) can be derived from the attributes

that are indexed on the vertices and edges. As an example, Petrakis et al [183]

adapted Dp (Equation 3.1) as the cost for the various different transformation

operations.

However, the flexible nature of the graph edit distance calculation is also its

downfall, especially in application to unconstrained graphs. The Dge calculation

works by finding the cost of every sequence in Ω, and then selecting the sequence

that has the minimum cost overall. Larger graphs will have a larger number of

sequences in Ω. As such, brute-force algorithms for calculating Dge have very

high time and space complexities. Restricting the calculation to special classes of

graphs, such as trees can improve the efficiency of the process [184]. Formulating

the process as a vertex labelling problem enables the use of relaxation labelling

techniques [185].

Most graph edit distance calculations are formulated as tree search problem.

One such search tree is depicted in Figure 4.5. In this example, G (Figure 4.5(a))

is being compared with H (Figure 4.5(b)). The nodes of the search tree (Fig-

ure 4.5(c)) represent edit operations between the vertices of G and H (and ∅).

The path from the root (∗) to a leaf node is a unique sequence in Ω.

Figure 4.5(d) shows the expansion of one branch of the search tree (marked

with a double line in Figure 4.5(c)). In the blue path, vertex A is substituted

with vertex Y at the first node. The second node substitutes vertex B to vertex

Z. Edge AB is deleted as there is no edge incident to Y and Z in H. At the third
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A B

C D

(a) G

Y Z

X

(b) H〈A,X〉〈B,Y〉 〈B,Z〉 〈B,∅〉〈D,∅〉〈C,Z〉 〈D,Z〉〈C,∅〉 〈D,∅〉〈C,Y〉 〈D,Y〉〈C,∅〉 〈D,Z〉〈C,Y〉 〈D,Y〉〈C,Z〉 〈A,Y〉〈B,X〉 〈B,Z〉 〈B,∅〉〈D,∅〉〈C,Z〉 〈D,Z〉〈C,∅〉 〈D,∅〉〈C,X〉 〈D,X〉〈C,∅〉 〈D,Z〉〈C,X〉 〈D,X〉〈C,Z〉 〈A,Z〉〈B,X〉 〈B,Y〉 〈B,∅〉〈D,∅〉〈C,Y〉 〈D,Y〉〈C,∅〉 〈D,∅〉〈C,X〉 〈D,X〉〈C,∅〉 〈D,Y〉〈C,X〉 〈D,X〉〈C,Y〉 〈A,∅〉〈B,X〉 〈B,Y〉 〈B,Z〉〈D,Z〉〈C,Y〉 〈D,Y〉〈C,Z〉 〈D,Z〉〈C,X〉 〈D,X〉〈C,Z〉 〈D,Y〉〈C,X〉 〈D,X〉〈C,Y〉!

(c) The search tree.〈A,Y〉〈B,X〉 〈B,Z〉 〈B,∅〉〈D,∅〉〈C,Z〉 〈D,Z〉〈C,∅〉 〈D,∅〉〈C,X〉 〈D,X〉〈C,∅〉 〈D,Z〉〈C,X〉 〈D,X〉〈C,Z〉 !

(d) A branch of the search tree.

Figure 4.5: Graph edit distance search tree for the graphs given by (a) and (b).
The search tree (c) represents all possible combinations of vertex edit operations
between the two graphs. Every branch from the root to leaf (such as the blue
one given in (d)) is a unique sequence of edit operations.

node, vertex C is deleted, resulting in the deletion of edge AC. In the leaf node,

vertex D is substituted with vertex X. This causes edge BD to be substituted
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with edge XZ and the insertion of an edge between A and D to correspond to

edge XY . The blue path would have a total cost that aggregates the substitution

costs of A and Y , B and Z, D and X, and B and XZ; the deletion costs of AB

and AC; and the insertion cost of XY (as AD).

One of the most notable algorithms for computing the graph edit distance is

the A? algorithm [186], a best-first algorithm that constructs the search tree dy-

namically. The root of the tree is the starting point, and every branch represents

a decision point for vertex operations. As such, every path from the root to a leaf

represents a different possible sequence of transformation operations. A heuristic

function at every search tree node estimates the cost from that node to a leaf,

allowing the algorithm to determine whether a particular search space is worth

exploring. However, even with the heuristic function, the A? algorithm has at

worst an exponential complexity.

Two adaptations of the A? algorithm were proposed in [187]. The path length

A? approach introduces an additional weighting to the A? algorithms optimal

path and heuristic cost functions to avoid expanding the search tree when a node

with a significantly large cost is encountered during vertex mapping. Faster search

is enabled because similar graph elements have very cheap transformation costs.

The beam search A? algorithm approach [187] generates a smaller set of sequences

Ωb ⊆ Ω by iteratively expanding the b best partial branches (sequences) in the

tree. This speeds up operation by limiting the number of sequences that have to

be evaluated. While the beam search algorithm is suboptimal in accuracy, it was

demonstrated that the beam search approach was almost as accurate as a brute

force approach when using large beams [187]. When applied to a classification

task, the suboptimality of the algorithm resulted in an increase in inter-class

differences while intra-class differences were not strongly affected, demonstrating

that the algorithm was appropriate for ranking objects images based on similarity

of their classes.
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Another solution for measuring graph similarity is the Hungarian method

for solving the assignment problem [188, 189], which is a polynomial time solu-

tion that operates entirely on vertex attributes. However, this method produces

suboptimal graph similarities because it ignores edge attributes. Thus it is not

viable for graph similarity except when adapted to graphs where the edges encode

a specific binary relationship, e.g., inclusion in [82].

Petrakis et al [121] experimentally demonstrated that measuring ARG sim-

ilarity with a brute-force graph edit distance calculation was more precise than

other approaches such as the Hungarian method when searching for images based

on spatial similarity. They also demonstrated that the ARG representation al-

lowed for more precise retrievals compared to other graph-like structures such as

strings. However, this precision came at a cost; there was a trade-off between

accuracy and computational performance.

4.3.2 Graph Kernels

Kernel machines [190,191] address pattern recognition problems by solving them

in a related vector space instead of the original space. Graph kernels enable graph

similarity measurement by mapping all graphs into a vector space where the rich

mathematical tools for the domain of vectors can be applied [192]. The difficultly

lies in finding a vector space mapping that preserves the structural similarity of

graphs. A key result of graph kernel machines is that an implicit embedding of

the entire graph space to a vector space can be formulated from the definition

of another graph similarity measure [192]. It was shown in [193] that deriving a

general graph kernel on the basis of subgraph isomorphism is a computationally

intractable problem.

A number of graph kernels related to graph edit distance were described

in [194]. Diffusion kernels are trained from a subset of the entire graph space.

The training process turns a matrix of pairwise graph edit distances (between the
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graphs in the subset) into a diffusion kernel by considering not only how similar

two patterns are, but also how many similar patterns they have in common.

Convolution kernels [194] are calculated on the basis of decomposed graphs,

an ordered sequence of vertices, and the edges connected to those vertices. These

decompositions can be interpreted as edit distance paths (paths from the root

to the leaf node of the search tree). The kernel over all possible, compatible

decompositions determines the similarity of corresponding elements of the edit

distance path. The convolution kernel is inherently inefficient because the number

of decompositions grows exponentially with the order of the graphs.

Random walk kernels [194] define the similarity of graphs by comparing ran-

dom walks. Two graphs are considered similar if they share a large number of

matching random walks. The random walk kernel essentially evaluates the local

similarity of parts of two graphs. The random walk kernel was enhanced by

the graph edit distance to render classification performed with the kernel more

robust to noise. The modification removed from the kernel computation those

nodes that violated the optimal vertex correspondence identified by the minimum

cost transformation path. However, the computational complexity of this kernel

is comparable to the graph edit distance.

A set of experiments compared these kernels and the nearest neighbour ap-

proach in conjunction with an SVM on various data sets [194]. All three kernels

showed statistically significant improvement of the nearest neighbour approach

on a data set containing line drawings of capital letters. The diffusion and convo-

lution data sets were significantly better than the nearest neighbour when clas-

sifying a data set of images. The convolution and edit distance modified random

walks kernel outperformed the nearest neighbour approach on a finger print data

set.

Graph kernels enable the use of vector space algorithms and tools (such as

SVMs) on graphs. However, because the derivation of the aforementioned kernels
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is still generally dependent upon the graph edit distance or is similarly compu-

tationally expensive, it is important to first establish an edit distance algorithm

before considering solutions that use kernel machines.



Chapter 5

CBIR Design

This chapter represents the start of the methodology section of the thesis. We

begin by describing the design of our proposed CBIR system for multi-modality

medical images, and specifying the manner in which our design contributes to

solving the “gaps” in the state-of-the-art.

5.1 Overview

As described in Chapter 3, most CBIR technologies require the following compon-

ents: a method for extracting features from images; a representation for indexing

these features; a technique by which the indexed features, and consequently their

images, can be compared; and an interface that communicates the findings back to

the user who initiated the search. Existing approaches for systems and compon-

ents have already been discussed in Sections 3.2 and 3.3; as such this section will

only describe deviations from the norm that are motivated by our multi-modality

image domain.

Our retrieval framework is designed around the following notion of image

similarity: “an retrieved image is relevant to a query image if the location of

tumours relative to anatomy within both images is similar”. That is to say, we

64
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defined a true positive retrieved image as one where the localisation of tumours

was shared with the query image. This criterion for image similarity was derived

from clinical guidelines for cancer staging and disease staging [171,172,195], which

classifies the disease according to tumour characteristics and the relationships of

tumours with surrounding anatomical structures.

In particular, our proposed design requires the following modifications to the

standard CBIR framework:

1. Separate segmentation and feature extraction algorithms for the different

modalities of multi-modality images. This enables optimised ROI detection,

and the extraction of feature sets that are better suited to a particular image

modality.

2. The inclusion of cross-modality registration to enable extraction of relation-

ships between ROIs from different modalities.

3. A single representation that indexes image features from different modalit-

ies, as well as relationships between modalities.

4. A feature normalisation scheme that can scale different types of features

from different modalities into the same range. This must be done to ensure

that no feature inherently biases similarity measurement.

5. A similarity measurement algorithm that is capable of deriving a single sim-

ilarity value on the basis of information from different modalities. The sim-

ilarity measurement must take into account all image features, as opposed

to comparing similarity by modality and then fusing the results together.

6. A method for visualising and interpreting the retrieved results. This means

the implementation of a user interface that displays complete volumes (rather

than key slices) of the individual images, as well as the fused images, thereby
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enabling users to visually verify image similarity on a per modality and fused

basis.

In particular, our representation and similarity measurement algorithm will

integrate clinical knowledge to ensure that our CBIR technique is relevant to

the clinical context. More specifically, our representation uses the geometric and

topological spatial features to constrain tumours to their proximal (spatially-

nearest) organs.

5.1.1 Assumptions

Our multi-modality CBIR design is predicated on the following assumptions:

1. The images only consist of two modalities, each of which present both com-

mon and complementary information. In particular we assume that ana-

tomical data is provided by one modality (CT), and functional or pathology

data from another (PET).

2. Cross-modality registration is performed by the scanner. Hardware co-

alignment is a common feature of modern multi-modality scanners. For the

purpose of simplicity, we disregard registration errors in this thesis.

3. ROIs may be extracted using any segmentation algorithm. We assume that

the framework need not use segmentation algorithms that delineate specific

structures. As such, the ROIs are only labelled by their modality.

4. Each ROI is a collection of pixels (2D) or voxels (3D) belonging to either

an anatomical structure or a tumour.
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5.2 Framework

Figure 5.1 shows the major components of our CBIR framework. The compon-

ents marked in grey indicate the main contributions of this thesis; later chapters

describe them in greater detail. The data flow for the offline indexing process is

depicted by the pink arrows. The green arrows indicate the flow of data during

the real-time querying process. These processes are described in detail in the

following subsections.

5.2.1 Data Set Indexing

The data set indexing process converts the images stored in a repository to graphs

that represent the content (features) of those images. The entire process can be

done offline prior to any query being run.

1. The DICOM images in the PACS are converted to fast-loading TIFF im-

ages [196], which are stored on disk. The fast-loading TIFF stacks allow

the image processing algorithms and user interface to efficiently load images

during processing or visualisation.

2. Segmentation is performed to select ROIs from the images. If necessary,

more than one segmentation algorithm may be used. The ROIs from both

modalities are stored on disk.

3. ARGs are constructed from each of the ROIs. These graphs are stored on

disk. See Section 6.2 for more details.

4. The index is normalised before being used for a query to reduce feature bias

during similarity measurement. See Section 6.4 for more details.
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Figure 5.1: Proposed CBIR framework. The pink arrows show the process during
offline indexing; the green arrows show the process flow when a real-time query
is being performed. The grey boxes indicate elements of the framework that are
described in detail, in other sections of this thesis.
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5.2.2 Querying

The query process converts a query image to a graph, and then compares the

query graph with the graphs created during the indexing process. This process

is carried out in real-time.

1. The user inputs a query image. A graph is created for this image following

the same process used during data set indexing, except that the query graph

is not stored in the index. See Section 6.2 for more details.

2. The query graph is normalised. See Section 6.4 for more details.

3. The query graph is compared to the graphs in the index. The output of the

similarity calculation is used to construct a ranked list of the most similar

images. See Section 6.6 for more details.

4. The user interface presents the query image and the retrieved images to

the user. The clinical reports and segmented ROIs provide supplementary

information that assists the user in interpreting the retrieved images. See

Chapter 8 for more details.

5.3 Design Justification

Our definition of image similarity arose from clinical literature describing cancer

staging and classification [171,172,195]. These schemes generally characterise dif-

ferent disease stages according to the proximity, size, and relationships between

tumours to surrounding anatomical structures. For example, under the TNM

classification scheme for lung cancer [171], a T1 primary tumour is surrounded

by the lung or visceral pleura and is always ≤ 3cm in size while a T2 primary

tumour is always > 3cm in size (but ≤ 7cm) and can invade the visceral pleura

or involve the main bronchus; meanwhile, T3 primary tumours may invade other
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structures such as the chest wall, diaphragm, or mediastinal pleura. Similar loc-

ation based criteria are applied for the categorisation of lymph node involvement

(the N-descriptor) and metastatic disease (the M-descriptor). Another example

is provided by the Ann Arbor staging system for lymphoma [195]: Stage III in-

cludes involvement of lymph nodes on both sides of the diagram and may be

accompanied by involvement of the spleen, while Stage IV indicates diffuse or

disseminated diseases, such as involvement of the liver1. Our definition of image

similarity, based as it is on the properties of tumours and their location relative

to anatomy, therefore mimics the geometric and topological characteristics used

for clinical staging and classification.

We chose a graph-based representation for multi-modality images due to a

number of factors. Firstly, graphs are more capable at representing structural

image information than vector-based approaches because they are not-constrained

to a predetermined fixed size or order [179]. This was particularly important

for cases with multiple tumours and organs, each with different characteristics;

a graph-based approach enables every element to be represented independently

instead of accumulating features. Graph edges allow the spatial arrangement of

ROIs to be quantitatively characterised unlike directional matrices [85], which

are limited to dividing relative location into a set number of bins. In addition,

unlike complex strings [86] graphs can inherently accommodate 3D data. Graphs

have also been demonstrated to be more accurate than other approaches when

retrieving images based on the spatial arrangements of objects [121] meaning a

graph-based representation was ideal for our similarity definition.

The major drawback of graph representations comes from the high computa-

tional complexity of many graph algorithms, including the most accurate brute

1Note that for the purposes of brevity, the examples given here for both TNM and Ann
Arbor staging have been simplified. In reality, these descriptors often have numerous substages
for more specifically identifying the characteristics of the disease.



CHAPTER 5. CBIR DESIGN 71

force methods for calculating the graph edit distance [121, 179] (see also Sec-

tion 4.3). The number of ROIs in our data sets made brute force approaches im-

practical. While faster methods are generally less accurate, Neuhaus et al. [187]

demonstrated that the beam search approach was almost as accurate as a brute

force method when using large beams. In addition, they demonstrated that the

beam search algorithm was appropriate for ranking objects images based on sim-

ilarity of their classes because it increased inter-class differences while intra-class

differences were not strongly affected. We therefore adapted the beam search al-

gorithm to enable the comparison of graphs representing multi-modality images.



Chapter 6

Multi-Modality Image Retrieval

In this chapter, we present our method for the graph-based retrieval of multi-

modality medical images. We first define graphs for representing multi-modality

images. We also describe the multi-modality regional and relational image fea-

tures to be indexed as attributes of these graphs. We then detail a scheme for nor-

malising the indexed features in a modality-specific manner. Finally, we present

adaptations to the graph edit distance algorithm that enables the comparison of

multi-modality graphs.

6.1 Overview

Figure 6.1 illustrates our graph construction process. During the first stage,

ROIs are delineated in each image using segmentation. Different segmentation al-

gorithms are applied to different modalities. In the figure, two tumours (bordered

in red) are extracted from the PET image and the lungs (bordered in blue) are

extracted from the CT image. Features are then extracted from each ROI. The

extracted features include those that occur in only a specific modality. A vertex

is then created for every ROI; an ROI’s features are assigned as the attributes of

its vertex.

72
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Figure 6.1: Multi-modality graph construction process.

Registration information (such as the co-alignment acquired by the scanner

hardware) is then used to align different ROIs within the same coordinate space.

The co-alignment is used to calculate spatial relational features between two

ROIs extracted from different modalities. These relational features are indexed as

attributes of the edges between the vertices representing the two ROIs. An edge is

created for every pair of vertices, resulting in the construction of a complete graph
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(Section 6.2.1). Finally, an edge filter constrains the edges using criterion based

on the geometric and topologic attributes of the disease classes (Section 6.2.2).

6.2 Multi-modality Graph Definitions

According to Assumption 1 (see Section 5.1.1), the individual modalities provide

either anatomical or functional (pathological) information. We therefore divided

our vertex set into two, giving us the following definitions.

Let VA be the set of vertices that represent anatomical ROI. Similarly, let VP

be the set of vertices representing functional ROIs. Let fA and fP be the sets

of features extracted from the anatomical and functional ROIs, respectively. In

addition, let αA : VA → LjA and αP : VP → LkP be the vertex labelling functions

for VA and VP , respectively, where LA and LP are their respective label sets,

j = |fA|, and k = |fP |. Let βS : E → LmS be the labelling function for all edges,

with feature set fS, label set LS, and where m = |fS|. This definition treats each

vertex or edge of a graph as an individual feature vector.

The feature sets fA, fP , and fS are dependent upon the characteristics of the

data set, i.e., different multi-modality images will have different features. The

features used in this thesis are defined in Sections 6.3.

Given these notations, we defined the graph representations for a given multi-

modality image I.

6.2.1 Complete Graph

We indexed all features and all relationships extracted from the images using a

complete graph. The pairwise adjacency of all complete graph vertices ensured

that relationships between all ROIs were preserved and considered equally im-

portant. This enabled us to model anatomical variations between patients, e.g.,

minor differences in the separation of organs, as well as the relationships between
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Figure 6.2: Creating a CAPP graph by pruning edges. The pruning function Φ is
applied to the complete graph representation of the PET-CT image in Figure 6.1.
The green edge is preserved (Φ = 1) because it is incident to two vertices in
VA. The purple edges are preserved because they represent relationships between
tumours (VP ) to the nearest anatomical structures (VA). The dashed edges do
not meet either of these criteria and are pruned (Φ = 0).

tumours to all anatomical ROIs.

We defined our multi-modality complete graph as GK = (VK , EK , α, β, I)

where VK = VA ∪ VP is the vertex set, EK = {vivj} ∀vi, vj ∈ VK where i 6= j is

the set of all edges, α = (αA, αP ) is the combined vertex alphabet, and β = βS is

the edge alphabet.

6.2.2 Complete-Anatomy Proximal-Pathology Graph

We hypothesised that the complete graph representation could be improved by

constraining tumours to the most closely related anatomy by pruning edges that

connect tumours to anatomical structures that are not likely to be directly related.

This de-emphasised the less relevant information between unrelated structures.

For example, if e1 was an edge between a lung tumour vertex and a brain vertex,

and e2 was an edge between the tumour vertex and a lung, then e1 would be

pruned while e2 would be preserved. We applied this pruning process to the

complete graph to obtain the Complete-Anatomy Proximal-Pathology (CAPP)

graph. The CAPP graph used the geometric and topological spatial features

indexed to constrain tumours to their proximal (spatially-nearest) organs.

We therefore defined our CAPP graph as GCAPP = (VK , ECAPP , α, β, I) where
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ECAPP ⊆ EK . We generate ECAPP by pruning the complete edge set EK using

an indicator function Φ. Let vi, vj ∈ VK with vi 6= vj be the endvertices of an

edge vivj ∈ EK . The function Φ uses the modalities and proximity of vi and vj

to signal inclusion within ECAPP . We defined Φ as follows:

Φ (vivj) =



1 if vi ∈ VA and vj ∈ VA

1 if
vi ∈ VA and vj ∈ VP and

vi = arg min
x∈VA

proximity (xvj)

0 otherwise

(6.1)

where proximity (vavp) : EK → R is a function that obtained the spatial nearness

of the regions represented by vertices va ∈ VA and vp ∈ VP from the edge vavp ∈

EK . The value returned by proximity (vavp) can be calculated from the features

(fS) indexed on it; in our experiments this was done on the basis of the md feature

(see Section 6.3 for an explanation of the different features).

Figure 6.2 depicts the creation of the CAPP graph of the PET-CT image in

Figure 6.1. The function Φ indicates the edges that are to be preserved: the green

edge connects two vertices that are elements of VA, while the purple edges connect

vertices in VP to the vertex in VA representing the spatially nearest anatomical

ROI. The dashed edges have been removed to produce the CAPP graph.

Our definition of Φ limited the relationships between elements of VP and VA.

As such, it constrained tumours to their spatially nearest anatomical structures,

thereby creating a representation where tumour localisation was given a greater

emphasis compared to the complete graph. Furthermore, by preserving edges

incident to two vertices in VA our graph graph created a clique (a complete

subgraph) containing all the vertices representing anatomical structures. This
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enabled the CAPP graph to represent all relationships between all anatomical

structures. This was necessary to model minor variations between individuals

because most humans have the same anatomical structures in the same general

arrangement, i.e, the structure is generally the same while individual features

(e.g. organ size) may be different.

Edges incident to vertices in VP were pruned during CAPP graph construction

because it was not necessary to explicitly encode the relationships between PET

ROIs. The information represented by these edges was already implicitly con-

tained by the relationship features on the other edges. For example, the relative

location of two tumours could be reconstructed using the relationships between

their nearest-anatomical neighbours and the edges of the complete anatomical

subgraph.

6.3 Graph Attributes and Image Features

6.3.1 Types of Features

As noted in Section 6.2, our feature set was divided into three categories, corres-

ponding to the two vertex sets and the edge set: anatomical ROI features (fA),

tumour ROI features (fP ), and spatial relationship features for edges (fS). As

in [116, 118], the types of images contained by a data set determined its feature

set, e.g., texture features for CT images, SUV features for PET images, area for

2D images, and volume for 3D images, etc. This enabled the use of features that

exploited the characteristics of a particular data set.

In this thesis, we only consider three types of features: measurements, angu-

lar values, and point sets. Measurements are features that represent a certain

property such as distance or size. Angular features are also measurements except

that they may consist of multiple numbers that describe different components
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of a single feature, e.g., the use of two angles (the pitch and yaw) to describe

the relative positions of two ROIs in a 3D space. Finally, point sets are used to

describe a collection of coordinates, e.g., the boundary of an ROI.

Our graphs are not inherently limited to these types of features. The definition

of the ARG and thus our CAPP graph leaves open the possibility that any possible

feature can be indexed as a graph attribute [121]. These features need not be

numeric in nature and could potentially include text annotations, or even other

sub-images. New feature types may require a unique normalisation and similarity

calculation methods to those given in Sections 6.4 and 6.6.1, respectively.

6.3.2 Image Features

In this thesis, we indexed the following features as vertex attributes: size (s),

boundary (b), length or the maximum distance between two points on an ROI’s

boundary (l), roundness (r), and tumour homogeneity (th). The maximum

(IMAX), mean (Iµ), and standard deviation (Iσ) of the intensity or SUV of pixels

in an ROI were also indexed as vertex features. The graph edge attributes were:

distance (d), the spatial separation of the centroids of two ROIs; relative orient-

ation (ro), the angle between the centroids of two ROIs; relative size (rs), the

ratio between the sizes of two ROIs; and minimum distance (md), the minimum

separation between two points in different ROIs.

Figure 6.3 shows the difference between the d and md edge features of a

relationship between two lung ROIs. The red line joins the centroids of the ROIs;

this distance is indexed as the d feature and represents the separation of the

centres of mass of the two ROIs. The blue line joins the closest points in either

ROIs. It represents the shortest distance between the ROI and is indexed as the

md feature.

Figure 6.4 explains our concept of relative orientation. The red line joins the

centroids of two lung ROIs, while the blue lines are the xy axis of the image
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md

d

Figure 6.3: Calculating the distance and minimum distance edge features between
two lung ROI. The red line is the distance between the centroids of the two lungs
(d feature) and the blue line indicates the shortest distance between a point in
the left lung and a point in the right lung (md feature).

centred over the centroid of one of the ROIs. The ro feature is the angle θ (or

2π − θ) made between the axes and the line joining the centroids. Together the

d and ro features represent the location of the centre of mass of an ROI relative

to the centre of mass of another.

Several of these features had corresponding 2D and 3D counterparts. Size

was represented by area for ROIs in 2D images and by volume for ROIs in 3D

images. Similarly, the boundary size was defined as the perimeter of the 2D and

the surface area of the 3D ROIs. For 2D images, ro was a single value representing

the angle between the x-axis and the semi-major axis of the ROI. For 3D images,

ro consisted of two values, equivalent to the pitch and yaw angles directing an

observer from one ROI’s centroid towards the centroid of the other.

We defined the 2D feature for roundness (or circularity) as a function of the

ratio of the lengths of the region’s semi-major and semi-minor axes. We defined

sphericity, the corresponding 3D feature, as a function of a region’s volume (the
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!

Figure 6.4: Calculating the relative orientation edge feature between two lung
ROI. The red line joins the centroids of the two lungs and the blue line indicates
xy axis of the image. The angle θ between this axis and the line joining the two
centroids is used to represent relative orientation.

s feature) and surface area (the b feature), as in [197]:

sphericity =
π

1
3 (6s)

2
3

b
(6.2)

Tumour homogeneity was a measure of the uniformity of tumour pixel intens-

ities. We adapted the voxel neighbourhood homogeneity coefficient given by [38],

which considers intensity distribution with spatial constraints. Our adaptation

limited the calculation of the coefficient to only neighbouring voxels within the

tumour ROI instead of all 26 3D neighbours. Let P = {p1, p2, ..., pn} be the set

of voxels within a tumour. The tumour homogeneity is then given by:

th (P ) =

n∑
i

Λ (pi)

n
(6.3)
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and

Λ (p) =
1

1 +

√
1

|nd(p)|

|nd(p)|∑
k=1

(pk − p)2

(6.4)

where pi ∈ P , |·| is the cardinality function, and the function nd (p) returns a set

of voxels Pnd ⊂ P that are the neighbours of p, and pk ∈ Pnd is a voxel that is a

neighbour of p.

Thirteen grey-level co-occurence matrices (one for each unique direction) were

used to calculate 3D Haralick texture features [72, 73]. We calculated five well-

established features from these matrices: entropy (ent), contrast (cont), correla-

tion (cor), energy (nrg) and homogeneity (hmgt).

We extracted point sets (pts) representing the coordinates of all the pixels in

a given ROI from data sets where the image acquisition protocols used the same

patient orientation (e.g. head-first and supine) for images with the same resol-

ution. We used this to improve anatomical matching by measuring the overlap

between anatomy ROIs in the query and data set images, as in [124].

The features for our experimental data sets are given in Section 7.1.

6.3.3 Feature Set Justification

Our choice of features was primarily motivated by the need to represent the geo-

metric and topological attributes used for cancer staging and classification [171,

172,195], such as geometric tumour properties (volume, length, etc.) and tumour

location relative to anatomy (distances and angles from other structures). For

this purpose, we adapted the geometric and spatial features described in [121] and

complemented them with modality specific information, such as SUV for PET or

texture for CT.

We did not perform feature selection to find the optimal set of features. Se-

lecting the features for a graph representation is not a trivial task as it must
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balance structural information as well as the image features indexed on vertices

and edges. This is because, in our context, the optimality of a feature may be

dependent on a number of factors: the modality the feature was extracted from,

the structure on which it is indexed, and other structures in the same graph. For

example, the IMAX feature may only be optimal if it occurs on a tumour that

has particular rd and rs relationships with a mediastinum that contains multiple

tumours; the feature may not be optimal for other tumours. To the best of our

knowledge, there is no standard toolset for performing such feature selection. We

have therefore left this to future work.

6.4 Graph Feature Normalisation

As explained in Section 3.2.2, there is a danger that features with high numerical

absolute values may bias the similarity calculation over features that may have

relatively smaller values. This issue can be resolved by normalising features or

the differences between features to a standard range thereby ensuring that each

feature contributes equally to the distance function. Aksoy et al. [87] demon-

strated that normalising features to a fixed range improved the discriminatory

capabilities of similarity measures in image retrieval applications.

One technique for normalising feature vectors linearly scaled a feature value

to a random variable with zero mean and unit variance, ensuring that 99% of

all values were normalised to the range [0, 1]; a ceiling and floor operation was

applied guarantee that all normalised values fell within this range [87]. While the

vertices and edges of our multi-modality graphs are essentially feature vectors

this approach could not be directly applied to all the features indexed on our

graphs because of our different feature sets and feature types.

The following subsections provide a summary of our feature normalisation

technique for each of the feature types used in our experiments. Each of the
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normalisation techniques ensured that the contribution of each feature to the

similarity measure was independent of its range of values and was within the

range [0, 1]. Detailed algorithms for performing the feature normalisation are

provided in Appendix A.

6.4.1 Measurements

Because measurements were features that represented a certain property it is

possible to scale the features using the technique in [87]. However, in our multi-

modality case it is possible for the range of features to vary widely across different

modalities (e.g., tumour volume can be much smaller than organ volume). As

such, this normalisation was applied separately for different modalities, e.g., ana-

tomical volume was scaled using the mean and standard deviation of the volume

of anatomical ROIs.

Let x be the value of a feature f , and µf and σf be the mean and standard

deviation of f in the data set. The normalised value x̃ of x was determined the

following function [87]:

x̃ =
(x− µf ) /3σf + 1

2
(6.5)

6.4.2 Angular Values

While angular features (such as relative orientation) are also measurements, the

circular nature of the measurements makes them difficult to normalise by linear

scaling as in Section 6.4.1. The difficulties arise when normalising angles that

have a large difference but are similar when plotted on a circle. For example,

the values + (π − ε) and − (π − ε), for a small value ε > 0 have a difference of

2 (π − ε) but the angles are only 2ε radians apart.

We therefore normalised an angular value θ as functions of its sine and
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cosine [121]. The normalised value θ̃ was a pair of values:

θ̃ =

〈
sin (θ) + 1

4
,
cos (θ) + 1

4

〉
(6.6)

The maximum value of each component was 0.5. This ensured that the contri-

bution of a single angle lay within the range [0, 1].

6.4.3 Point Sets

We did not normalise point set features directly instead electing to normalise

the distance between two point set features during the similarity measurement

process. That is, we normalised the difference between two point sets such that

the distance value ranged from 0 (total similarity) to 1 (total dissimilarity). The

Jaccard distance was used to measure the dissimilarity between two point sets:

distance (qpts, spts) = 1− |qpts ∩ spts|
|qpts ∪ spts|

(6.7)

where qpts and spts are two point sets of a query and data set vertex, respectively.

This distance value was within the range [0, 1].

6.5 Retrieval Procedure

Algorithm 6.1 describes our overall retrieval process. We assumed that a database

of graphs had been pre-constructed offline prior to the query process. We also

assumed that the graphs in the index have been normalised. The query graph GQ

is also normalised (line 2). The normalisation operation uses the sets of feature

means (Fµ) and standard deviations (Fσ) derived from the graphs in the index

(see Appendix A).

The retrieval is then performed on the normalised query graph NGQ. The
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retrieved images are sorted in ascending order of the graph edit distance between

the query and indexed graphs (line 8).

6.6 Graph Comparisons

We compared graphs by adapting the beam search A? algorithm [187], which

calculates graph edit distances by applying a beam to the well-established A?

algorithm [186]. Both the standard brute force approach and its beam search

adaptation assume a standard set of vertex features. Both the complete and

CAPP graphs have different feature sets for different graph vertices (fA for VA

and fP for VP ). As such, it was necessary to adapt the beam search algorithm to

account for these cases. The major challenges for this adaptation are:

• Maintaining the similarity of the graph structure, especially that of edges

between vertices in VA and VP .

• Using different feature sets for different vertex sets.

• Avoiding substitution operations between vertices from different vertex sets

so as not to compare tumours to anatomical structures.

Our graph comparison technique is presented by Algorithm 6.2.

Algorithm 6.1 Graph-Based Query Process

1: function query(GQ, index, Fµ, Fσ, beam)
2: NGQ ← normaliseGraph(GQ, Fµ, Fσ)
3: similarities← ∅
4: for all NGS ∈ index do
5: sim← compare(NGQ,

N GS, beam) . sim is a 3-tuple (img, dist, ϕ)
6: similarities← similarities ∪ sim
7: end for
8: rankedList← sort(similarities) . sorts ascending using dist
9: return rankedList

10: end function
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Algorithm 6.2 Modality-Specific Beam-Search Algorithm

Require: |GQ| > 0, |GS| > 0
1: function compare(GQ, GS, beam)
2: img ← I(GS) . The image represented by GS

3: VQ ← V (GQ) . Obtain vertex set
4: VS ← V (GS)
5: P ← ∅ . The search tree
6: for all vs ∈ VS do
7: ϕ← {〈vq1 , vs〉} . vq1 ∈ VQ, ϕ is a branch
8: dist← cost(ϕ)
9: P ← P ∪ {(dist, ϕ)}

10: end for
11: ϕ← {〈vq1 ,∅〉} . vertex deletion
12: dist← cost(ϕ)
13: P ← P ∪ {(dist, ϕ)}
14: loop
15: P ← trim(P, beam)
16: pmin = arg min

p∈P
dist (p)

17: dist← dist (pmin)
18: ϕ← ϕ (pmin)
19: P ← P \ pmin . removal of minimum cost match
20: if completeMatch(ϕ, VQ, VS) then . ϕ is completely expanded
21: return (img, dist, ϕ)
22: else
23: k ← |ϕ|
24: if k < |VQ| then
25: for all vs ∈ VS \ {vs1, vs2, ..., vsk} do . vsi mapped in ϕ
26: ϕk+1 ← ϕ ∪

{〈
vqk+1

, vs
〉}

27: distk+1 ← cost(ϕk+1)
28: P ← P ∪ {(distk+1, ϕk+1)}
29: end for
30: ϕk+1 ← ϕ ∪

{〈
vqk+1

,∅
〉}

. delete vertex vqk+1

31: distk+1 ← cost(ϕk+1)
32: P ← P ∪ {(distk+1, ϕk+1)}
33: else
34: ϕ← ϕ ∪

⋃
vs∈VS\{vs1,vs2,...,vsk} {〈∅, vs〉} . vertex insertion

35: dist← cost(ϕ)
36: P ← P ∪ {(dist, ϕ)}
37: end if
38: end if
39: end loop
40: end function
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In our algorithm, set P (initialised on line 5) represents the graph edit distance

search tree (described in Section 4.3.1 and shown in Figure 4.5). Each branch

p ∈ P is a 2-tuple consisting of a scalar value dist, the total graph edit distance

of the branch, and a set ϕ, the search tree branch. The set ϕ contains mappings

between vertices of the two graphs 〈vq, vs〉 where vq ∈ VQ ∪ ∅ is a vertex of

the query graph, vs ∈ VS ∪ ∅ is a vertex of a graph in the index, and ∅ is a

non-existent vertex used to specify vertex insertion (〈∅, vs〉) or deletion (〈vq,∅〉).

Each element of VQ or VS appears at most once in ϕ, while ∅ may occur many

times.

The search tree P (line 15) is reduced by removing branches (p ∈ P ) until

|P | ≤ beam. The branches are removed in descending order beginning with those

that have the highest dist values. Combined with the breadth-wise expansion

of the search tree (see the loops beginning on lines 6 and 25), this means that

the algorithm only explores those search branches that show the most promise

in finding a minimal graph edit distance, i.e., they currently have the lowest dist

values.

Every iteration of the main loop (lines 14 to 39), the branch with the minimum

distance is selected from the search tree (line 16). The branch is a complete

match if all elements of VQ and VS appear in ϕ once; if so, then ϕ is the optimal

branch of the search tree and the function returns the image, its distance to

the query, and the vertex mapping. This determination is made by the function

completeMatch(ϕ, VQ, VS).

If ϕ is not a complete match, then either there are still elements of VQ or

VS or both that have not yet been mapped. In this case, if there are unmapped

query vertices the algorithm expands the branch by mapping another vertex in

VQ (lines 25 to 32). Once all query vertices have been mapped, any remaining

vertices in VS are inserted (lines 34 to 36). The main loop then repeats until a

complete match with a minimal cost is discovered.
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Algorithm 6.3 Branch Cost Calculation

1: function cost(ϕ)
2: dist← 0
3: ϕt ← ∅
4: for all map1 ∈ ϕ do . map1 = 〈vq1, vs1〉
5: dist← dist+Distp (〈vq1, vs1〉) . Vertex distance
6: ϕt ← ϕt ∪map1

7: for all map2 ∈ ϕt do . map2 = 〈vq2, vs2〉
8: if map1 6= map2 then
9: dist← dist+Distp (〈vq1vq2, vs1vs2〉) . Edge distance

10: end if
11: end for
12: end for
13: return dist
14: end function

6.6.1 Determining Operation Costs

An important aspect of this algorithm is cost(ϕ), the function that calculates

the graph edit distance given a search tree path ϕ. This function (called d (·)

in Equation 4.1) needs to account for several operations: substitution, insertion,

and deletion. Furthermore, for each of these operations, the function must also

calculate the cost of substituting, inserting, or deleting edges. The n-th vertex

operation may result in up to n− 1 edge operations, one for each vertex that was

already in the branch prior to the current operation. This function is described

by Algorithm 6.3.

Line 5 measures the cost to map two vertices. The cost for any edge operations

is calculated by the inner loop (lines 7 to 11), which compares edges incident to

vq1 ∈ VQ and any other vertex vq2 ∈ VQ to edges incident to vs1 ∈ VS and any

other vertex vs2 ∈ VS. The cost of the vertex mapping 〈vq2, vs2〉 ∈ ϕ has already

been calculated in an earlier iteration of the outer loop. The edge operation costs

are therefore calculated in an iterative manner.
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The cost function used by the algorithm was given by the following equation:

Distp (〈Q,S〉) =



0 if Q = ∅ and S = ∅

∞ if mdt (Q) 6= mdt (S)[
N−n∑
i

(qi)
p

] 1
p

if S = ∅[
N−n∑
i

(si)
p

] 1
p

if Q = ∅[
N−n∑
i

(qi − si)p +
N∑

N−n
dJ (qi, si)

p

] 1
p

otherwise

(6.8)

where Q and S are a graph element (vertex or edge) of a query and stored graph,

respectively; qi and si are i-th feature of Q and S, respectively; p is the order of

the equation; N is the total number of features in Q and S; n is the number of

non-point set features in Q and S; and mdt (X) is a function that returns the

modality of the ROI represented by a vertex (if X is a vertex) or the modality of

the vertices incident to an edge (if X is an edge).

Equation 6.8 divides the cost function into five separate cases. Due to the

design of Algorithm 6.3, the first case (Distp = 0) can only occur on line 9 when

the algorithm tries to calculate the cost to match two edges, vq1vq2 and vs1vs2,

both of which do not exist. Since they both do not exist, no transformation

operation is necessary, and as such the cost is 0.

The second case is a consequence of the multi-modality nature of our graphs.

In Assumption 1 (see Section 5.1.1), we stated that anatomical data is provided

by one modality, while pathology (or tumour) data is provided by the other.

As such, when the modalities of the two elements, Q and S, are different, the

cost is assigned to infinity to avoid matching vertices that represent anatomical

structures with vertices representing tumours.

The final three cases were the costs for insertion, deletion, and substitution,
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respectively. Our graph features consisted of three types (as described in Sec-

tion 6.3); we therefore combined different functions to obtain our final cost. Meas-

urement features and angle features were treated as elements of a feature vector.

This allowed the costs to be determined by adapting the distance function Dp

described in Equation 3.1. On the other hand, point set costs were determined

using the Jaccard distance given by Equation 6.7. The insertion and deletion

costs were equivalent to each other; in each case, the element that did not exist

(∅) was assumed to compose of numeric and angle features that were all norm-

alised to 0. This was an adaptation of insertion and deletion cost calculations in

prior work [183].

6.6.2 Beam Search Adaptation

The basic beam search A? algorithm operates on a search tree created by breadth-

wise expansion. The tree is expanded iteratively by adding children to the current

leaf nodes. During each iteration, the i-th vertex vqi ∈ VQ is mapped to each

vertex vs ∈ VS that does not appear in the branch, as well as to ∅. Each of these

mappings become new leaf nodes.

An example of such an expansion is shown in Figure 6.5. During the first

iteration, the vertex A from the graph Q (Figure 6.5(a)) is mapped to all vertices

of the graph S (Figure 6.5(b)), as well as to ∅, as shown in Figure 6.5(c). During

the second iteration, each of the leaf nodes created during the first iteration is

expanded. Figure 6.5(d) shows the expansion of the first leaf node (〈A,X〉) of

the tree. The vertex B from Q is mapped to all vertices of S (and to ∅) except

for X, which has already been mapped in that branch. This expansion, which

maps B to vertices of S, continues until all the leaf nodes created during the first

iteration have been expanded. This is shown in Figure 6.5(e); the expansions of

the nodes 〈A, Y 〉 and 〈A,Z〉 have been left out for the purpose of clarity. Note

that the expansion of 〈A,∅〉 contains 〈B,∅〉 as a child; ∅ is allowed to appear
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A B

C D

(a) Q

Y Z

X

(b) S

!〈A,X〉 〈A,Y〉 〈A,Z〉 〈A,∅〉
(c) Search tree after first iteration.〈B,Y〉 〈B,Z〉 〈B,∅〉 !〈A,X〉 〈A,Y〉 〈A,Z〉 〈A,∅〉

(d) Part of the second iteration; expanding the first leaf node.〈B,Y〉 〈B,Z〉 〈B,∅〉 !〈A,X〉 〈A,Y〉 〈A,Z〉 〈A,∅〉〈B,X〉 〈B,Y〉 〈B,Z〉... 〈B,∅〉
(e) The search tree after the second iteration.

Figure 6.5: Search tree expansion for the graphs given by 6.5(a) and 6.5(b).
During each iteration, all existing child search tree nodes 6.5(c) are expanded in
turn 6.5(d). The new child nodes are not expanded until all previous child nodes
have been expanded 6.5(d).

multiple times in any branch because it signifies the deletion of a vertex of Q.

Each leaf node represents a unique branch of the search tree (an element of P

in Algorithm 6.2), and a unique combination of vertex mappings between a query

and stored graph. The beam search algorithm reduces the search space at every

iteration of the search tree expansion by expanding at most b leaf nodes. These
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b leaf nodes represent those search tree branches that are most likely to deliver a

low final total dist. Figure 6.6 shows the search tree for the graphs in Figure 6.5.

This search tree was generated by the beam search algorithm with b = 2. Nodes

that have been removed from consideration are marked in grey. During the first

iteration, 4 nodes are added to the root. During the next iteration, only 2 of

these nodes are expanded, for a total of 7 leaf nodes. In the third iteration, 2 of

these 7 nodes are expanded, leading to the creation of 5 branches. This process

continues until the final iteration where 3 nodes are reduced to 2; one of these two

branches is the sequence with the best (lowest) beam search graph edit distance.〈C,Y〉 〈C,∅〉〈B,Y〉 〈B,Z〉 〈B,∅〉 !〈A,X〉 〈A,Y〉 〈A,Z〉 〈A,∅〉〈B,X〉 〈B,Y〉 〈B,Z〉 〈B,∅〉〈C,Y〉 〈C,Z〉 〈C,∅〉〈D,∅〉 〈D,∅〉〈D,Y〉Iteration

1

2

3

4

Figure 6.6: Search tree expansion with a beam value of 2. During each iteration
2 nodes are expanded a further level. The grey nodes indicate branches that are
not expanded as they have been removed by the beam.

The multi-modality nature of our graphs and our formulation of the cost

function given by Equation 6.8 opens the way for an additional optimisation of

the search space. Any leaf node that contains a mapping of vertices representing

ROIs in different modalities will have an infinite cost. We can therefore modify the

beam search algorithm to not expand any branch that has an infinite cost. This

further reduces the number of vertex mapping combinations that the A? algorithm

needs to consider in order to find the optimal graph edit distance cost. The

function trim(P, beam) (line 15 of Algorithm 6.2) integrates this functionality
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alongside the normal beam search removal of leaf nodes in the search tree.

6.6.3 Aside: An Inferior Approach

The vertex set of our multi-modality graphs VK = VA∪VP is by definition divided

into two sets. Therefore, one could argue that a more efficient approach to the

graph edit distance problem would be to apply the edit distance to each vertex

subset independently and to combine the results. The motivation behind such

an approach would be to reduce computational time. A brute force approach has

exponential computational complexity based upon the order of the graph. By

using two smaller vertex sets, one could reduce the time taken to calculate the

graph edit distance. However, this approach is inferior.

Such a technique will mean that the graph edit distance for vertices in VA

will only map edges that are incident to two vertices in VA. Similarly, the graph

edit distance for vertices in VP will only map edges that are incident to two

vertices in VP . Edges incident to vertices in VA and vertices in VP , the edges

emphasised by the CAPP graph, are not mapped at all. These edges represent

relationships between ROIs in different modalities and index features such as the

distance separating a tumour from an organ. Cancer classification is dependent

upon such features [171,172]; the independent calculation of graph edit distances

on the vertex subsets is therefore not a viable option in our problem domain.



Chapter 7

Evaluation of Retrieval Method

This chapter contains the evaluation of our retrieval method. We evaluate both

the accuracy and computational performance of our retrieval method.

7.1 Data Sets

We chose data sets to evaluate different aspects of our CBIR framework. A 2D

liver shape data set was used to evaluate the retrieval precision on images with

multiple shape distortions. We used a 3D simulated lymphoma data set to evalu-

ate retrieval precision using images with multiple tumours placed across different

anatomical structures. Finally, a PET-CT data set was used to investigate our

method given the natural diversity of human anatomy and tumour distribution

that exists in clinical practice. The clinical data set was also used to evaluate

the retrieval of tumours in specific locations and for examining the contribution

of different features. Table 7.1 summarises the data sets and how they were used

in our experiments.

We compiled a reference index for all the data sets for use during our eval-

uation. Our definition of similarity considered two images to be relevant if the

tumours within the images were located in a similar place and shared similar

94
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Table 7.1: Summary of Data Sets

Name 2D/3D Size Purpose

Liver Shapes 2D 500 - Evaluation of retrieval with multiple shape
variations
- Evaluation of computational performance

OncoPET 3D 50 - Evaluation of retrieval with multiple tu-
mours spread across the whole body

PET-CT 3D 50 - Evaluation using clinical images (natural
diversity of anatomy and tumours)
- Evaluation of retrieval by specific tumour
location
- Evaluation of feature contribution
- Evaluation of user interface (see Chapters 8
and 9)

characteristics (as stated in Section 5.1). This corresponds to the clinical sta-

ging criteria [171] where the classification of stage is dependent upon tumour

properties (e.g., size) and location. We therefore created the reference indices

by labelling every image according to the anatomical locations of their tumours

and then listing all images with the same labels, as described in the following

subsections.

7.1.1 Simulated 2D Liver Shapes

We used a set of simulated liver shapes to evaluate our approach on images

with multiple shape distortions. The shapes were derived by applying multiple

randomised variations to 50 manually segmented clinical MR slices1. The 2D

ROIs in every image were already delineated. To create multi-modality shapes for

our experiments, we assumed that the anatomical ROIs (body, liver, and spine)

were derived from MR and the tumour ROIs were derived from PET, i.e., we

assumed the source clinical images were PET-MR. The data set contained several

regions labelled as “unknown”; we marked these as tumour ROIs to increase the

1The liver shape data set can be obtained from https://www.intelligence.tuc.gr/

~petrakis/downloads/spatial-datasets-evaluation.zip.
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diversity of PET shapes in our experiments.

We selected 500 images from the liver shape database. Images were divided

into groups with the same number of tumours, and then sorted in ascending order

according to liver size (area). We then selected images at equally spaced intervals

to give us a consistent coverage of different liver shapes within the data set. Our

selected subset included 100 images with 1 tumour, 100 images with 2 tumours,

100 images with 3 tumours, 100 images with 4 tumours, and 100 images with 5

tumours. The full data set has previously been used in other studies [82,121,183].

We created 6 reference indices for the liver shape data set: one for each set

of 100 images with the same number of tumours, and one for the combined 500

image data set. During construction of the liver shape index we discovered that

in addition to having tumours in the same relative location, every relevant image

for a particular query also contained the same number of tumours as the query

image, e.g., if a query had three tumours, every relevant image also had three

tumours.

The feature set for the liver shape data was:

• fA = (s, b, l)

• fP = (s, b, l, r)

• fS = (d, ro, rs,md)

Figure 7.1 shows several examples of the liver shape data. All the images in

the data set contained 3 annotated anatomical regions: the liver, the spine, and

the body outline. All other regions were marked as “tumour” or “unknown”. In

our experiments, we considered the “unknown” regions to be tumours, thereby

increasing the diversity of tumour shape data.
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Liver Spine Body

Figure 7.1: Simulated 2D liver shapes. The arrows in the magnified image label
the three known anatomical ROIs in every image. In the smaller images, the
extra tumour and unknown regions are marked in red (left black in the magnified
image).

7.1.2 OncoPET: Simulated 3D Lymphoma Images

The OncoPET database2 [198] was created for the purpose of evaluating tumour

detection algorithms and assessing computer-aided diagnosis methods. It contains

50 3D simulated 18F-FDG PET images, with multiple tumours per image. The

tumours vary between 7mm and 14mm in diameter, have 5 different contrasts

per diameter, and are spread across multiple sites: 180 in lymph nodes, 79 in the

liver, 90 in the lungs and 26 in the spleen.

The OncoPET data set comes with two forms of annotation: a spreadsheet

that defines tumour locations and a phantom image where different structures are

labelled with different voxel values. The phantoms, originally used to create the

simulated images, provided a perfect 3D delineation of the organs and tumours.

We defined the ROIs as being representative of PET-CT images, assuming the

anatomical ROIs were from CT and the tumour ROIs from PET.

We created a reference index for the OncoPET data using the tumour labels

in the annotation. The OncoPET data set was used to evaluate the effectiveness

of our algorithm on images containing multiple tumour in different locations.

2Available from: https://www.creatis.insa-lyon.fr/oncoPET_DB/
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(a) Phantom (b) Simulated image

Figure 7.2: An example of the OncoPET simulation data. The phantom (or
model) for a lymphoma case and its associated simulated image (depicted with
an inverted lookup table). The red arrows indicate the location of tumours in
both the images.

The feature set for the OncoPET data was:

• fA = (s, b, l)

• fP = (s, b, l, r, th, IMAX , Iµ, Iσ)

• fS = (d, ro, rs,md)

Figure 7.2 shows an example of the images in the OncoPET data set. Fig-

ure 7.2(a) is the phantom image from which the simulated image (Figure 7.2(b))

was generated. Each grey-level pixel value in the phantom corresponds to a dif-

ferent tissue type. The red arrows indicate the tumours in the phantom and the

corresponding tumours in the simulated PET image.

7.1.3 Clinical PET-CT Images

We collected 50 PET-CT studies of lung cancer patients on a Siemens Biograph

mCT scanner. The reconstructed images had a CT resolution of 512× 512 pixels
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at 0.98mm ×0.98mm, a PET resolution of 200×200 pixels at 4.07mm ×4.07mm,

and a slice thickness and an interslice distance of 3mm. The images in the data

set contained between 1 to 7 tumours (inclusive). The studies included clinical

reports detailing tumour locations and nodal involvement as specified by a clini-

cian. The reference index for the clinical data set was derived from the tumour

locations in the clinical reports. All data were de-identified.

We used a well-established adaptive thresholding algorithm [48] with refine-

ments to segment the lung ROI from the CT. Tumours from the PET images were

segmented with a 40% peak SUV connected thresholding to detect hot spots in-

dicated in the diagnosed reports [199]. To include other major organs above the

diaphragm we applied manual connected thresholding to coarsely segment the

brain and mediastinal tissue (including the heart). We used the clinical reports

to make minor corrections to the segmented ROI to ensure that the segments

were well-defined.

The feature set for the clinical data was:

• fA = (s, b, l, ent, cont, cor, nrg, hmgt, pts)

• fP = (s, b, l, r, th, IMAX , Iµ, Iσ)

• fS = (d, ro, rs,md)

Figure 7.3 shows a sample of our clinical PET-CT data. Each PET-CT

image pair (Figures 7.3(a) and 7.3(b)) was accompanied by a clinical report

(Figure 7.3(c)). The clinical report contained information about the location

of tumours in the image, written by an expert radiologist with several years of

experience in PET-CT image interpretation.
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(a) CT image (b) PET image

(c) Clinical report extract

Figure 7.3: An example PET-CT lung cancer image from our data set, and an
extract from its associated clinical report. The images are shown in the coronal
plane.

7.2 Experimental Procedure

7.2.1 Determining the Relevance of Retrieved Images

Our experiments were focused on determining if our method enabled the retrieval

of multi-modality images. In addition, we investigated whether constraining the

tumours to spatially related structures improved the retrieval accuracy; for this,

we used the complete graph as a baseline that represented all features and rela-

tionships. We compared the retrieval results to the reference index for each data
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set. We evaluated our work using precision and recall, two standard metrics used

to evaluate CBIR research (e.g., [25,82,116,121,183]). Precision is the proportion

of retrieved images that are similar to the query, while recall is the proportion

of similar images in the database that were retrieved. The ideal scenario would

be 100% precision and 100% recall, implying that the CBIR method retrieved all

the similar images and retrieved nothing but the similar images.

Precision and recall are defined as:

precision (k) =
tp

tp+ fp
(7.1)

and

recall (k) =
tp

tp+ fn
(7.2)

where k is the number of retrieved images, tp is the number of true positives (rel-

evant retrieved images), fp is the number of false positives (not relevant retrieved

images), and fn is the number of false negatives (relevant images that were not

retrieved). Whether a retrieved image was tp, fp, or fn was determined by the

reference index. For several experiments we also calculated the mean average

precision (MAP), a single-value indicating the average precision over all levels of

recall:

MAP =

Q∑(
n∑
k=1

precision (k)×∆recall (k)

)
Q

(7.3)

where n is the number of images in the data set, Q is the total number of queries,

and ∆recall (k) = recall (k)− recall (k − 1), with recall (0) = 0.

Our retrieval experiments used a leave-one-out (LOO) cross-validation ap-

proach. We divided every data set of m images into m sets consisting of 1 query

image and m − 1 indexed images. The removal of the query from the indexed

image ensured that our final precision and recall were not biased. We performed
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LOO retrievals on all data sets using both complete and CAPP graphs and com-

pared them by calculating the mean precision over all values of recall. For our

clinical data set, we also compared the complete and CAPP graphs based on the

location of tumours. We also manually examined the visual similarities of the

retrieved images and the query.

We also examined the contribution of the image features on PET-CT retrieval

using CAPP graphs. We first created multiple new feature sets, each of which

excluded a feature from the full feature set F . That is, we constructed new

feature sets Fi = F \ fi where fi ∈ F and 1 ≤ f ≤ |F |. The MAP of LOO

retrievals using each Fi was then calculated. We also examined the contribution

of the graph structure by repeating the LOO retrievals using no image features.

7.2.2 Evaluating the Computational Performance

The computational evaluation was performed on an Intel Core i5 CPU clocked at

2.67 GHz with 4 GB RAM, running Windows 7 Professional 64-bit. Our graph

comparison algorithm was implemented in MATLAB 7.11 (R2010b) 64-bit.

The computational performance was evaluated using the 5 liver shape subsets

divided based upon the number of tumours in each number (Section 7.1.1). We

measured the time taken by our implementation of Algorithm 6.2 when comparing

two CAPP graphs representing images with the same number of tumours. This

calculation was repeated in a LOO approach for all images with the same number

of tumours, thereby producing 9900 graph comparison times for each of the 5

subsets. We repeated this procedure for 10 different beam sizes, ranging from

100 to 1000, increasing in increments of 100.

Our experiments allowed us to investigate and compare the time taken by our

algorithm when using graphs with different orders. Furthermore, by varying the

beam we were also able to examine the impact of beam size on the time taken to

compare graphs.
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Figure 7.4: Liver shape retrieval (by graph order): mean precision vs. recall. This
figure shows the mean precision and recall of liver shape retrieval with complete
and CAPP graph representations on a data set containing images with the same
number of tumours.

7.3 Results

7.3.1 Liver Shapes

We examined the retrieval performance of the two graph representations with a

typical scenario of retrieving images with the same number of tumours and local-

isations as the query. Figure 7.4 shows the mean precision of these experiments.

The complete and CAPP graph representations were able to retrieve the images

from the data set. Figure 7.4 also shows that the CAPP graph achieved a higher

average precision for every subset.

We also compared the retrieval of the liver shapes using a data set containing

images with varying numbers of tumours (combination of all the images from

the previous experiment). Figure 7.5 shows the precision and recall of the two
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Figure 7.5: Liver shape retrieval (by graph order): mean precision vs. recall. This
figure shows the mean precision and recall of liver shape retrieval with complete
and CAPP graph representations on the data set of 500 images with different
order number of tumours.
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RETRIEVAL USING COMPLETE GRAPHS

RETRIEVAL USING CAPP GRAPHS

0.0000

0.0000

6.5126

2.8380

7.1212

3.4483

7.3967

3.6992

7.4110

3.7477

liver

spine

body

Figure 7.6: Example of liver shape retrieval. Anatomical regions are bordered in
black while tumour ROIs are marked in red. Note that we considered unknown
ROIs to be tumours to include greater shape diversity. The graph edit distance
is given beneath each retrieved image. The complete and CAPP graph edit
distances are independent of each other, and serve as a measure of the difference
between the retrieved image and the query for the purpose of retrieval ranking.

representations.

An example of liver shape retrieval on the 500 image data set is shown in

Figure 7.6. The query image contains 5 tumours: one in the liver, and 4 in

the body (2 of which are overlapping) depicting a typical scenario of retrieving
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images with tumours in different anatomical locations. The graph edit distance

is provided for each retrieved image; the distances for the complete and CAPP

graph methods are independent of each other.

7.3.2 OncoPET

Figure 7.7 depicts the mean precision and recall of our retrievals on the OncoPET

data set. A retrieval example with the OncoPET data set is depicted in Figure 7.8;

the images are given as maximum intensity projections (MIPs), which are 2D

reconstructions of 3D data that show the pixels with the highest intensity from

the given point of view. Table 7.2 lists the localisation of the five query tumours

and the tumours of the top three retrieved images using the complete and CAPP

graphs; this is done to clarify the location of the tumours in Figure 7.8.
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Figure 7.7: OncoPET retrieval: mean precision vs. recall.
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QUERY
RETRIEVAL USING COMPLETE GRAPHS

RETRIEVAL USING CAPP GRAPHS

2.8782 3.4619 3.5583

3.0520 3.1156 3.8583

Figure 7.8: Example OncoPET retrieval. Note that in these images the right side
of the body appears on the left. The figure shows maximum intensity projections
(MIPs) of the simulated PET images with tumours marked in red. Since there
is a loss of depth in MIPs, the exact tumour locations are provided in Table 7.2.
The edit distances from the query graph are given beneath the retrieved images,
which have been cropped to the chest region for clarity.

Table 7.2: OncoPET Retrieval Localisation

Tumour Localisationa

1 2 3 4 5

Query LL LL RL HT LL/HT

Complete

R1b LL LL RL HT HT

R2 LL LL RL LL/HT LL/HT

R3 LL LL LL LL RL/HT

CAPP

R1 LL LL RL HT LL/HT

R2 LL LL RL HT HT

R3 LL LL RL LL/HT LL/HT

a LL = left lung, RL = right lung, HT = heart, X/Y = near X and Y.
b RN = n-th retrieved image.

7.3.3 Clinical PET-CT

Figure 7.9 depicts the mean precision and recall of the retrievals carried out on

the clinical PET-CT data set. Table 7.3 provides a breakdown of the retrieval

accuracy (using the MAP) by tumour location. Table 7.4 lists the effect of the

image features on the retrieval process; we calculated the MAP of CAPP graph

retrievals using all features, using no features, and using our varied feature set
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Figure 7.9: PET-CT retrieval: mean precision vs. recall.

(excluding one feature at a time).

A PET-CT retrieval example is depicted in Figure 7.10. Table 7.5 gives the

the locations of tumours in query and the top three retrieved results using both

the complete and CAPP graphs.

7.3.4 Computational Performance

Figure 7.11 shows bar charts that depict the mean retrieval time based on the

number of tumours in the images. The bar groups show the effect of the different

beam sizes for each set of images with the same number of tumours. Due to

issues of scale, we have separated the results for images with 1 and 2 tumours

(Figure 7.11(a)) from the results for images with 4 and 5 tumours (Figure 7.11(b)).

The results for images with 3 tumours are replicated in both these charts to

provide a reference for the relative time difference. The bar heights are the mean
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Table 7.3: MAP By Tumour Location

Location
MAP (%)

Complete CAPP

right upper lobe (RUL) 46.06 50.27

right middle lobe (RML) 12.51 12.20

right lower lobe (RLL) 24.51 24.18

left upper lobe (LUL) 14.45 23.17

left lower lobe (LLL) 25.06 26.78

mediastinum (M) 36.64 39.14

right mediastinum (RM) 14.00 24.68

right hilum (RH) 37.32 45.52

left hilum (LH) 30.14 45.30

Table 7.4: Feature Contributions

MAP (%)

CAPP - all features used 52.28

complete - all features used 46.58

CAPP - no features used 46.12

Vertex Feature MAP (%) Edge Feature MAP (%)

size (s) 52.44 distance (d) 52.68

boundary (b) 52.50 relative size (rs) 53.40

length (l) 52.47 relative orientation (f) 48.40

entropy (ent) 52.34 minimum distance (md) 52.20

contrast (cont) 52.35

correlation (cor) 52.24

energy (nrg) 52.27

homogeneity (hmgt) 52.29

roundness (b) 52.54

tumour homogeneity (th) 52.35

SUV maximum (IMAX) 52.52

SUV mean (Iµ) 52.42

SUV variation (Iσ) 52.51

point set (pts) 50.20
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RETRIEVAL USING COMPLETE GRAPHS

RETRIEVAL USING CAPP GRAPHS

QUERY

7.6566 8.5900 17.1362

9.23227.1562 9.4826

Figure 7.10: Example PET-CT retrieval showing MIPs of the PET images, with
tumour ROIs marked in red. The edit distances from the query graph are given
beneath the retrieved images, which have been cropped to the lung fields.

Table 7.5: Clinical Retrieval Localisation

Localisation Labelsa

1 2 3

Query RLL RH -

Complete

R1b RUL RH M

R2 LUL LH M

R3 RUL RH M

CAPP

R1 M RH -

R2 RUL RH M

R3 RLL RH -

a RLL = right lower lobe, RH = right hilum, RUL = right upper lobe,
LUL = left upper lobe, LH = left hilum, M = mediastinum.

b RN = n-th retrieved image.

time while the error bars depict 1 positive standard deviation from this mean

time.

In a similar manner, Figure 7.12 shows bar charts depicting the mean retrieval

time based on varying beam sizes, with the bar groups indicating the effect of an

increasing number of tumours in the images. Once again, due to issues of scale, we

have separated the bar groups for images with 1 and 2 tumours (Figure 7.12(a))
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(b) Graph comparison time by number of tumours (images with 3 to 5 tumours)

Figure 7.11: Graph comparison time by number of tumours.
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(b) Retrieval time by beam size (images with 3 to 5 tumours)

Figure 7.12: Graph comparison time by beam size.
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Table 7.6: Graph Comparison Time Summary (Images with 5 Tumours)

Beam
Measurement (seconds)

mean min max 25% 50% 75% 95%

100 0.3435 0.0512 0.7382 0.2564 0.3248 0.4287 0.5654

200 0.6490 0.0530 1.8332 0.4216 0.6032 0.8301 1.2854

300 0.9810 0.0519 3.2439 0.5288 0.8712 1.2825 2.2412

400 1.3502 0.0531 5.1745 0.6245 1.1402 1.8019 3.3938

500 1.7381 0.0521 8.4201 0.7198 1.3651 2.3162 4.7461

600 2.1437 0.0531 12.4875 0.8129 1.5849 2.8573 6.1160

700 2.5695 0.0521 17.4058 0.9024 1.8151 3.4413 7.5317

800 3.0036 0.0525 22.1322 0.9861 2.0488 3.9873 8.8613

900 3.4326 0.0524 27.7739 1.0590 2.2852 4.5279 10.0562

1000 3.8516 0.0524 33.9689 1.1167 2.5252 5.0970 11.5476

from the bar groups for images with 4 and 5 tumours (Figure 7.12(b)). The

results for images with 3 tumours are replicated in both these charts to provide

a reference for the relative time difference.

Table 7.6 and Figure 7.13 provide further analysis of the graph comparison

time in the case of graphs representing images with 5 tumours (the largest graphs

for the liver shape data set). The table shows for different beam values the mean,

minimum, and maximum graph comparison times. It also shows the retrieval

times at different percentiles: 25% (1st quartile), 50% (median), 75% (third quart-

ile), and 95%. The figure shows histograms of the graph comparison times using

the liver shape data set with 5 tumours per image; each histogram was derived

using a different beam value. The histograms contain 100 bins each, with the

range each bin representing 1% of the maximum time.

7.4 Discussion

During the liver shape retrievals we discovered that the CAPP graph had a higher

retrieval precision than the complete graphs for recall < 40% (see Figure 7.5).
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Figure 7.13: Histograms of graph comparison time using the liver shape data set
with 5 tumours per image. Each histogram has 100 bins, scaled to the maximum
retrieval time.

The complete graph had consistent retrieval precision for levels of recall ≥ 30%

and had a higher precision than the CAPP graph at levels of recall ≥ 40%; the

CAPP graph’s retrieval precision continued to degrade linearly. This was due to

the characteristics of the data set. According to the liver shape reference index,

all similar images contained the same number of tumours as their associated

query and therefore had graphs with the same order. Complete graphs inherently

favoured this situation because the major distinction between complete graphs

is order rather than structure. Further analysis of this is given by Figure 7.14,

which plots the average difference in the number of vertices in the query and

retrieved graphs against the similarity rank of the retrieved images.
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Figure 7.14: Mean difference in retrieved graph order; the mean difference is
plotted against rank of the retrieved image.

In the figure, the complete graph plot follows a step function with a jump at

approximately every 100 retrieved images. The flat gradient of the plot in the

first 100 images at a mean difference of 0 means that the complete graph method

guaranteed that most of the similar images would be retrieved within the first

100 images. This was only possible because in the data set every similar image

contained the same number of tumours as the query. On the other hand, the

CAPP approach retrieved graphs of different orders as evidenced by the erratic

nature of its plot and thus could not guarantee that all of the similar images

would be retrieved within the first 100 images.

These results indicated that the CAPP graph found the most similar liver

shapes earlier than the complete graph. In retrieval applications, the most similar

results are expected within the first few retrieved images as evidenced by the use
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of precision at 4 or 5 used by Shyu et al. [100] and Quellec et al. [116]; the

CAPP graph is more capable than the complete graph at meeting this criterion.

Furthermore, Figure 7.4 shows that the CAPP graph would maintain a higher

retrieval precision than the complete graph if the data set was filtered to only

consider images with the same number of tumours as the query.

The precision and recall in the OncoPET retrievals demonstrated that the

CAPP graph had a higher precision than the complete graph when retrieving

images with multiple lesions placed across different organs in a 3D space. It also

demonstrated the accuracy of our method when the images contained a fixed

anatomy containing a large number of tumours. In these experiments, the CAPP

graph achieved a maximum precision that was approximately 40% higher than

that of the complete graph. The OncoPET images all contained a large number

of tumours (5 or 10) and the results demonstrated that in such complex cases the

CAPP graph had precision ≥ 60% at levels of recall ≤ 50%. Every query had

very few similar images (average 2.2, deviation 1.5) as defined in our reference

index (Section 7.1.2) and as such every false positive resulted in a large precision

drop; this impacts on the complete graph approach more than the CAPP graph

due to the lower discriminatory power of the former.

Our clinical retrievals demonstrated that the CAPP graph had a higher overall

mean precision than the complete graph (Figure 7.9). The CAPP graph also had

higher a MAP when retrieving tumours in most anatomical locations (Table 7.3),

with right middle lobe (RML) and right lower lobe (RLL) tumours being the

exceptions. However, in both the exceptions the difference in MAP was < 0.4%.

There were also very few RML and RLL tumours in the data set (5 and 9, re-

spectively) and the images often contained other tumours. As such, the retrieved

images often had other similarities to the query (e.g., anatomical similarities,

other tumours in similar locations) but did not have a tumour in the particular

location of interest. Weighting the retrieval process can overcome this hurdle.
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This is a non-trivial task that requires weighting not only individual features but

also a subset of the query graph structure; this is a non-trivial task and is left for

future work.

Our retrieval examples (Figures 7.6, 7.8, and 7.10) also demonstrated that the

images retrieved by the CAPP graph were visually more similar (based on relative

tumour location) than those retrieved by the complete graph. Visual inspection of

Figure 7.6 shows that the images retrieved by the CAPP graph always contained

1 tumour in the liver and 4 in the body, exactly the same as the query. On

the other hand, the third image retrieved by the complete graph method has

two tumours within the liver, while the fourth retrieved image has three. The

discriminatory power of the CAPP graph is apparent by comparing the graph

edit distances across the retrieved ranks. Retrieval using both representations

was able to find the exact match as the first retrieved image. For the complete

graph approach, the increases in the graph edit distance between the second and

third, third and fourth, and fourth and fifth retrieved images were 9.3%, 3.9%,

and 0.2%, respectively. Similarly, the increases in the graph edit distance for

the CAPP graph approach were 21.5%, 7.3%, and 1.3% respectively. The larger

differences in graph edit distances also indicate that CAPP graphs are easier to

discriminate when ranking image similarity.

Similarly, Figure 7.8 shows that the OncoPET images retrieved by the CAPP

graphs all contained tumours localised in the same anatomical region as the query.

The 3rd image retrieved by the complete graph method did not have a similar

localisation, instead containing 4 tumours within the left lung and 1 tumour

located in the region between the right lung and the heart (see Table 7.2).

In the clinical retrieval example (Figure 7.10), only the CAPP graph was able

to retrieve an image that shared all tumour locations with the query. The second

image retrieved using the complete graph did not have any tumours localised

near the same structure as in the query. All other retrieved images contained at
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least one similar localisation: a tumour that affects the right hilum. The clinical

results demonstrated that our CAPP graph approach is capable of retrieving

similar PET-CT images with the realistic, natural variation of in anatomy and

tumour location that occurs in human patients. However, weighting of particular

substructures is necessary to emphasise the tumours in particular locations of

interest.

Our findings revealed that the CAPP graph had higher retrieval precision than

the complete graph in most retrieval scenarios. The higher precision of the CAPP

graph over the complete graph across all three data sets can be attributed to the

variation in structure of CAPP graphs, which emphasised tumour localisation in

multi-modality images by strongly associating individual pathologies and their

nearest organs. Complete graphs had no variation in structure among graphs

with the same number of vertices and as such they had less discriminatory power

than CAPP graphs. This is illustrated in Figure 7.15. The first column (a)

depicts several images with grey anatomical regions and white tumours. Each of

these images has the same number of ROIs. The same complete graph structure

represents all these images (column (b)). The CAPP graphs in the third column

(c) have different structures.

Equation 6.1 created CAPP graphs by preserving edges between tumour ver-

tices and the vertex of its nearest anatomical neighbour. Modifying Equation 6.1

to include more edges (such as by preserving edges with the two nearest anatom-

ical neighbours) would cause a decrease in retrieval precision. In fact, increasing

the number of edges (to the n closest organs) moves the CAPP graph’s structure

closer to that of a complete graph. We carried out an experiment to test this

possibility. CAPP graphs that preserved edges with the two nearest anatomical

neighbours achieved a MAP of 50.51% compared to MAPs of 46.58% using the

complete graph and 52.28% using the CAPP graph as defined.
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(a) (b) (c)

Figure 7.15: Comparison of graph structures of the same order but having more
than one tumour. Complete graphs of the same order always have the same
structure, while CAPP graphs may have more varied structures. Column (a):
The image depicting four anatomical regions (grey ROI) and two tumours (white
ROI). Column (b): The complete graph structure that represents all the images.
Column (c): Distinct CAPP graph representations.

In addition, our similarity measurement algorithm extended one that em-

phasised inter-class distances [187]. Calculating the similarity of these images

with complete graphs tends to favour the use of substitution operations, espe-

cially when the images have the same number of tumours. When CAPP graphs

are used, all operations are applied. As defined, insertion and deletion operations

have a higher cost (see Equation 6.8). This results in CAPP graphs having greater

discriminatory power. As such, the CAPP graph had the highest precision when

the graph data set contained a wide variety of different structures, representing
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images with many tumours spread across the body. This is illustrated by the

levels of precision achieved when the CAPP graph was used to retrieve OncoPET

images (Figure 7.7) and clinical images (in Figure 7.9).

Our choice of graph representations was primarily motivated by their influ-

ence on retrieval based on the spatial arrangement of the image content [121].

In our graph representation each vertex or edge was treated as a feature vector.

Thus the image features (see Section 6.3) and the distance metric (Equation 6.8)

played a critical role during similarity calculation by allowing the graph match-

ing algorithm to measure the level of similarity between these vectors. A small

difference between two feature vectors indicated a low cost graph edit operation

(implying a minor graph transformation). Table 7.4 shows that retrieval based

purely on graph structure had a lower MAP than retrieval that considered both

image features and graph structure. From this we can conclude that the image

features contributed to the precision of our retrieval method and the retrieval

precision of the CAPP graph was not purely the effect of the graph structure.

Table 7.4 also shows that the CAPP graph was able to maintain similar levels

of retrieval precision using different feature sets. Our normalisation scheme (see

Section 6.4) ensured that the maximum and minimum possible contribution of

each feature to the distance metric (Equation 6.8) was the same. This meant that

no individual feature would bias the metric because it had a higher range of values.

The largest drop in retrieval precision occurred when the ro edge feature was

removed from F because it was responsible for distinguishing between tumours

in two different lung lobes. For example, consider two single tumour images: one

with a tumour in the left upper lobe and the other in the left lower lobe. Each

of these images would have the same graph structure (vertex of the left lung

connected to the tumour vertex). The difference in tumour location would thus

be specified by the ro feature.



CHAPTER 7. EVALUATION OF RETRIEVAL METHOD 120

Image similarity based on disease localisation requires that anatomical struc-

tures be correctly matched across images. Normally, this can be done by matching

labels assigned to the segmented anatomical ROIs. However, to allow segment-

ation that was not specific to a structure we assumed in Section 5.1.1 that the

segmented structures were not labelled. Therefore, in our case the anatomy as-

signment was entirely dependent upon the graph similarity calculation. An incor-

rect anatomy mapping would potentially lead to an incorrect tumour mapping,

e.g., an incorrect match between a liver and a lung would cause lung tumours

to be considered as liver tumours. We reduced the likelihood of an incorrect

anatomical matching by representing all spatial relationships (even minor ones)

between anatomical vertices, by creating edges between all pairs of anatomical

vertices in our CAPP graphs, thus forming a complete anatomical subgraph. This

complete anatomical subgraph did not hinder the retrieval because most humans

bodies have a similar spatial arrangement of organs; thus it was more important

to represent all spatial relationships.

Our performance evaluation revealed that the time taken to compare two

graphs increased exponentially as the number of tumours represented by the im-

ages increased (a larger number of tumours results in more graph vertices, i.e.,

a higher graph order). This increase was expected. The beam search algorithm

is still a brute force approach; its restriction of the search space simply makes

it find a solution faster than a pure brute force approach that considers all pos-

sibilities [187]. This is also indicated in Figure 7.12; the mean comparison time

increases with the number of tumours for any fixed beam size.

Figure 7.11 indicates a linear relationship between retrieval time and beam size

for images with the same number of tumours. This is clearly seen in Figure 7.11(b)

for the case where there are 5 tumours. When beam = 1000, the mean time is

under 4 seconds; this time is reduced to less than 1 second when the beam is

reduced to 100, i.e. the reduced search space of a smaller beam reduces the time



CHAPTER 7. EVALUATION OF RETRIEVAL METHOD 121

taken by the algorithm.

According to the detailed comparison of the graph matching times (Table 7.6

and Figure 7.13), the minimum times are almost exactly the same regardless of

the beam size (standard deviation of about 0.0006s). This indicates consistency

in calculating the graph edit distance to the most similar structures where min-

imal search tree expansion is required, such as cases without vertex deletion or

insertion. Furthermore, comparing the percentile times to the maximum times

indicates that the maximum is not representative of the other comparison times.

In our experiments, during the worst case (beam = 1000) three-quarters of the

data set took one-sixth of the time of the worst case. A further 20% of the data

set took about one-third the time of the maximum. Figure 7.13 clearly shows

that the distribution is heavily weighted to the left (lower comparison times). As

such, while the worst case computational performance of our retrieval algorithm

is not ideal, we have shown that the majority of comparison times are relatively

feasible.

7.5 Summary

The CAPP graph representation enabled the retrieval of both 2D and 3D multi-

modality medical images based on the localisation of tumours in relation to ana-

tomy. Our results demonstrated that the varied nature of CAPP graph structures

enabled higher levels of retrieval precision compared to complete graphs, which

have no structural distinction. These capabilities arise from the CAPP graph’s

ability to model disease localisation within multi-modality images. The CAPP

graph and our proposed similarity measurement algorithm also allowed the use

of modality-specific features to capture the complementary information inher-

ent in multi-modality images. This validates our hypothesis that the retrieval

of multi-modality images can be improved by emphasising tumour localisation
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through a graph representation that strongly associates individual tumours and

their nearest organs.

Our computational evaluation indicated that the graph comparison time was

still exponential according to the number of graph vertices. Furthermore, we

discovered a linear relationship between the beam size and comparison time for

graphs with the same number of vertices. These results suggest that there needs

to be further study into the balance between the graph order, beam size, and

comparison time. In particular, we need to investigate a method for deciding upon

the most appropriate beam size for any given graph order that allows retrieval to

be carried out in real-time.



Chapter 8

Graph-Based Retrieval

Interpretation

In this chapter, we describe a method that assists users in interpreting multi-

modality images that have been retrieved by our CBIR framework. In particular,

we propose recommendations for the design of CBIR user interfaces (UIs) and a

method for assisting user interpretation of retrieved three-dimensional and multi-

modality medical images.

8.1 Integration with the CBIR Framework

Figure 5.1 shows the way in which our UI for interpreting the retrieved results

integrates with our retrieval engine, which was presented in Chapter 6. The UI

takes the similarities calculated by the retrieval engine and uses it to display the

retrieved images in a ranked order. The visualisation of the retrieved images in-

tegrates this ranking along with individual graph representations, clinical reports,

and the ROIs for every image. The interactions defined by the UI, e.g., search

filters, will allow users to explore and understand the set of retrieved images.

123
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8.2 UI and Visualisation Requirements

The presentation of the retrieved results is of paramount importance as it allows

the user to interpret the images for whatever purpose they executed the search.

Thus it is necessary that the visualisation of the retrieved results enhances data

analysis and assists a user in organising their mental interpretation of the presen-

ted data.

Tory et al. [96] presented several guidelines for domain or task specific visual-

isations, such as grouping of related information, imposing structure on data and

tasks, and abstracting and aggregating material. In addition, Wilson [95] made

several recommendations for the design of retrieval UIs, which included guidelines

for the presentation of the query, retrieved data, and metadata, as well as the

level of control available to users. For application to images such as PET-CT, the

guidelines suggested multiple visualisations for different types of data (anatom-

ical, functional, fusion) as a means of assimilating the different views provided by

PET-CT. The use of abstractions and supplementary data would allow complex

PET-CT images to be summarised.

Based on the characteristics of PET-CT, we combined the visualisation [96]

and search UI [95] guidelines to elicit the following requirements for enabling

effective user interpretation of retrieved images:

1. The user interface must be capable of displaying volumetric PET-CT im-

ages. Multiple images should be visualised simultaneously to allow for visual

comparison on the same screen. This includes the simultaneous visualisa-

tion of the query and retrieved images.

2. The user interface should show an abstraction of the PET-CT images.

3. The interface should allow the user to browse through all retrieved res-

ults, not necessarily the k most similar images (see the k-nearest-neighbour
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search scheme briefly described in Section 3.2 on page 27).

4. The interface should display related patient data, e.g., clinical reports.

We also elicited several UI interactions that could potentially enable better

understanding of the retrieved images by users:

5. The user should be able to switch between different views of the same image,

e.g., fused and non-fused PET-CT or 3D projections.

6. The user interface should allow the user to change the presentation of the

data, e.g., reordering, grouping, filtering, or searching within the retrieved

data.

7. The interface should allow the user to provide feedback by adapting or

refining the query.

8. The user should be able to interact with the abstraction of the image in

order to enhance their understanding of the PET-CT images. This could

be through linking the abstraction to important parts of the supplementary

data (patient reports) or by highlighting important aspects of the images,

similar to the vertebrae outlining in [110].

8.3 User Interface Design

Figure 8.1 shows the general layout of our UI. We designed the interface with

five main partitions. The query partition displays the query image and its ab-

straction; similarly, the section for viewing retrieved images displays multiple

retrieved images and their abstractions. We display any available supplementary

information for a selected image (whether query or retrieved) in the section set

aside for this purpose. A set of navigational components for browsing through

all the retrieved images is provided in the lower right corner, while functions
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Figure 8.1: Retrieval UI design schematic.

for searching, sorting, and filtering and grouping the results are provided in the

lower left corner. Three of the five divisions were absolutely necessary: the query

partition, the retrieved image partition, and the navigational tools. The function

bar was added to allow interactions for further exploring the retrieved image data

set, while the supplementary image panel was added to allow access to clinical

reports and other non-image information without the need to access an external

application (e.g., a PACS system).

The area for displaying the retrieved images is divided into four partitions.

Each partition shows a different retrieved image; the most similar retrieved image

is placed in partition 1, the second most similar image in partition 2, and so on.

When the user navigates to a different page of retrieved results, then partition k

contains images with retrieved rank equal to k + 4× (page− 1).

The implementation of our design is shown in Figure 8.2. This UI layout

inherently fulfills several of the visualisation requirements: 3, 4, and the multiple

image visualisation part of Requirement 1. The query and retrieved images are
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Figure 8.2: Retrieval UI implementation

displayed simultaneously on the same screen. The navigational controls allow

the user to browse through the entire retrieved image set and not just the first

4 retrieved results. Finally the area for displaying supplementary information

allows the system to present any extra, related information, e.g., by displaying

clinical reports.

8.3.1 Visualising Multiple Views of Volumetric Images

Individual PET-CT images require relatively high storage space compared to reg-

ular images (several hundred megabytes instead of several kilobytes for a JPEG).

As such, displaying multiple PET-CT is a memory intensive task even before we
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consider displaying multiple views of the same image. Long load times are also

expected for such images.

We have undertaken two strategies to feasibly display multiple views of volu-

metric PET-CT images (or any other image with similar memory requirements).

First, the preprocessing performed by our framework (Figure 5.1) converts the

DICOM images to fast-loading TIFF stacks that are lossless compressed and

downscaled (reduced pixel resolution), thus reducing the memory footprint of the

individual images [196]. The preprocessing phase also calculates views for nav-

igating the images in advance instead of at run-time. These views included the

coronal CT and PET stacks, a fused PET-CT stack with a colour lookup table,

and MIPs of the PET images. The coronal views were further downscaled to

ensure that each slice could be completely visualised within the UI.

The second strategy is in a view-on-demand approach for image visualisation.

Rather than displaying all views of all images currently on the screen, we show

specific views only when requested by the user. The unseen views are loaded

into memory in preparation for display. This allows us to switch between views

almost instantly; this is an important capability for understanding multi-modality

images where users need to integrate information from different images. When

the user navigates to a new page, these images are unloaded from memory and

are replaced by the images on the new page. Keeping unseen images outside of

primary memory gives our CBIR UI a consistent memory footprint. At the same

time, loading new images does not take a long time because each of the views has

been pre-calculated and stored as a fast-loading TIFF stack.

Figure 8.3 shows the way in which we display different views of the same data.

Each image view is loaded into a separate tab, labeled with the name of the view.

When the tab is selected, the image stack corresponding to the view is displayed.

This display method conserves screen space but still allows the user to assimilate

information from multiple views. This UI component fulfils Requirement 5 and



CHAPTER 8. GRAPH-BASED RETRIEVAL INTERPRETATION 129

the volumetric image visualisation part of Requirement 1.

(a) CT View (b) Fused PET-CT (c) PET MIP

Figure 8.3: Switching between views of the same data. When the user selects
a tab, the currently displayed image stack is replaced with the new image. (a)
is the coronal CT view of a PET-CT scan, (b) is the fusion of the coronal PET
and CT scans, rendered with a default fusion ratio, and (c) is the MIP generated
from the PET image.

8.3.2 Abstraction Visualisation

Abstractions of complex data allow humans to gain an overall understanding of

the visualised information without the need to examine it in great detail [96].

In the case of PET-CT CBIR, an abstraction can inform users about the overall

properties of the image before they decide to interpret it in detail. This is of

particular interest in cases that could be time consuming to interpret, e.g., images

with multiple tumours interacting with multiple organs or where there are a large

number of cases to be viewed.

In our framework, the CAPP graph representations of the PET-CT images

form a natural abstraction of the information encoded in the two related volumes:

the graph vertices abstract the ROIs, while the graph edges encode spatial rela-

tionships between these ROIs (see Chapter 6). Furthermore, we use the features

to affect the layout and properties of the visualisation in two ways: (i) the size

of each vertex is proportional to the volume of the 3D ROI it represents, and
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(a) The image and its abstraction. (b) Legend

Figure 8.4: Visualising a graph abstraction and its corresponding PET-CT image.
Each graph vertex represents an ROI within the image, as explained by the
legend (b). Vertex positions are determined by the relative position of the ROIs
within the actual image; vertex sizes are similarly derived from the ROI volumes.

(ii) positioning tumour vertices in the visualisation according to the relative po-

sition of the tumour ROI and anatomy ROI in the PET-CT images. The graph

abstraction visualisation fulfilled Requirement 2.

As such, our graph visualisation enabled users to interpret images based on

the location of tumours in relation to anatomy without needing to physically

navigate through the images to find the tumours. For example, when searching

for a tumour near a particular location the graph visualisation enabled the user

to decide whether the retrieved image was relevant to his or her search criteria.

An example of our graph visualisation is depicted in Figure 8.4.

8.4 User Interactions

The interactions provided by a UI are an essential tool for two-way communication

between the system and the human using it. We defined several mouse-based

interactions for our CBIR UI, designed to allow users to seek out the information

that would assist them in interpreting the retrieved images in the context of their

query.
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8.4.1 Changing Data Presentation

Customising the way retrieved data is presented allows users to more quickly

locate the images they require. We fulfilled Requirement 6 by providing several

methods for the user to select the way they accessed retrieved data.

Sorting Options

We provided two options for sorting the retrieved data: by image similarity (as

calculated by the CBIR algorithm), or by the complexity of the pattern, i.e., the

number of ROIs (corresponding to the number of graph vertices). In the second

case, retrieved images with the same complexity were sorted according to image

similarity (from the most to the least similar).

Search by Features

We implemented tools that allowed the user to search within retrieved results,

based upon the features of individual ROIs. For example, the user could specify a

range of values for the volume of a tumour; this would result in the visualisation

of only those retrieved images that contain a tumour whose volume falls within

the specified range.

Filtering and Grouping

We allowed the user to filter or group the retrieved results based on the proximity

of tumours to other structures. This functionality was implemented by analys-

ing the graph representations of the images; the graph edge features indicated

whether tumours were located in or near an organ, either through total or partial

inclusion. Each filter was defined as a pairing of tumours with an anatomical

structure, i.e., “tumours + organ”. Multiple filters could be applied to further

constrain the images that were displayed; for example, when the user applied
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filters for “tumours + left lung” and “tumours + right lung” only those similar

images with tumours in both lungs were displayed, and other cases (such as im-

ages with tumours only in the mediastinum) were removed from the results that

were displayed.

8.4.2 Query Refinement

Our method of query refinement (to fulfil Requirement 7) allowed the user to edit

aspects of the graph representation through two abstraction-based interactions.

The first interaction allowed the structure of the graph to be edited, e.g., the re-

moval of vertices (ROIs) or edges (relationships). The second interaction applied

weights to individual features of individual vertices to modify their importance to

the query. For example, the user could increase the weight applied to a tumour’s

volume and leave all other tumour features the same, while also decreasing the

weight of the left lung’s volume and increasing the weight of all left lung features.

Examples of the query refinement interactions are shown in Figure 8.5. In

Figure 8.5(a), the structure of the query graph has been changed; the smaller

tumour vertex has been deleted, as have the edges between the mediastinum and

the brain, and the mediastinum and the remaining tumour. In Figure 8.5(b), an

increased weight has been applied to the volume feature of the selected tumour.

The graph abstraction has been updated to reflect this change visually: the vertex

size has changed. These refined graphs can now be used as updated queries for

the CBIR engine.

8.4.3 Visual Indication of Similarity

We presented three methods by which users could interpret image similarity.

The first method was visual inspection of multiple image views and displaying

the similarity (or dissimilarity) value calculated by the CBIR engine. The second
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(a) Editing the structure of the query graph.

(b) Editing the features of the query graph.

Figure 8.5: Query refinement.

method was the standard approach of giving users access to the clinical reports.

Users were then able to view the images and read the reports to find similarities

between the query and retrieved cases, both visually and in the text. However,

this approach did not assist the users in visually finding similarities among images.
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Other Images
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Figure 8.6: Understanding PET-CT similarity through visually-driven user in-
teractions. The user selects a vertex from a graph visualisation. The vertex
mappings calculated by the CBIR engine during retrieval are used to mark the
most similar vertices on the other graphs. This information is combined with the
database of segmented ROIs to highlight the most similar regions on the images.
The initial selection is not limited to the query graph.

Our final method used the abstractions (graph visualisations) as a way of

explaining the similarity between the query and the retrieved images (Require-

ment 8). More specifically, we defined an interaction for every visualised graph

vertex: upon user selection, a vertex would gain a unique border to indicate that
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it was selected. At the same time, the ROI corresponding to the selected vertex

would be outlined within the image. In addition, the image features indexed on

the selected vertex would be displayed to the user. The most similar vertices in

all other displayed graphs would also be given a unique border and their corres-

ponding ROIs would also be highlighted in their associated images. The overall

aim of this interaction was to allow the user to immediately find similar ROIs

across different images. An example is given in Figure 8.6; a user has selected

a tumour vertex within the querys graph visualisation to isolate similar tumour

ROIs in the query and retrieved PET-CT images. A detailed description of the

process is given by Algorithm 8.1.

The algorithm takes as inputs the selected vertex (v), the rank of the graph

containing the vertex (graph), the vertex mappings (maps) generated by the

graph comparison algorithm, and the database of ROIs (segments). The set of

maps contains the best query vertex to indexed graph vertex mapping (ϕ) as

calculated by the our graph comparison technique (Algorithm 6.2). This means

that if graph is not the query then there will be no direct mapping from v to

vertices of other non-query graphs. For this reason, the algorithm finds vQ, the

query vertex that mapped to v, and calls itself with the query vertex and graph

as new inputs (lines 4 to 13). The nested call is able to use maps directly to

find the mapped vertices; the function getROI(vS, segments) then retrieves the

3D boundary of the ROI represented by the mapped vertex vS in segments, the

database of ROIs (see Figure 5.1). The collection of ROIs (one for the query

image, and one for every other retrieved image) is then returned.

Two special cases occur on lines 11 and 25. Line 11 deals with the case where

the non-query vertex v is inserted into the query graph. In this case, there is

no corresponding mapped vertex in the query graph (vQ = ∅) nor any similar

vertices in other retrieved graphs. As such, the only ROI highlighted is in the

image corresponding to the selected graph. Line 25 deals with the case where
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Algorithm 8.1 Mapped Vertex ROI Boundary Extraction

1: function extractBounds(v, graph, maps, segments)
2: bounds← ∅
3: if graph 6= 0 then
4: ϕ← maps (graph)
5: for all pair ∈ ϕ do
6: if second element of pair is v then
7: vQ ← first element of pair
8: if vQ 6= ∅ then
9: return extractBounds(vQ, 0, maps, segments)

10: end if
11: bounds← bounds ∪ (graph,getROI(v, segments))
12: end if
13: end for
14: else
15: bounds← bounds ∪ (0,getROI(v, segments))
16: for i = 1→ length of maps do
17: ϕ← maps (i)
18: for all pair ∈ ϕ do
19: if first element of pair is v then
20: vS ← second element of pair
21: bound← ∅
22: if vS 6= ∅ then
23: bound← getROI(vS, segments)
24: end if
25: bounds← bounds ∪ (i, bound)
26: end if
27: end for
28: end for
29: end if
30: return bounds
31: end function

the query vertex v is inserted into a specific retrieved graph. In this case, there

is no corresponding mapped query for that specific retrieved graph (vS = ∅);

there could be valid mappings for other retrieved graphs. As such, no ROI is

highlighted in the image where the query vertex was inserted.

This interaction was only possible due to our storage of the segmented ROIs

(see Figure 5.1) and the way the underlying graph comparison algorithm oper-

ated. The similarity of two images was calculated on the basis of the graph edit
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distance between their corresponding graph representations. The set of vertex

edit operations can be reinterpreted as mappings between query vertices and

their associated vertices in the retrieved images, i.e., it indicates for every query

vertex (and its associated ROI) the most similar vertex (and associated ROI) of a

retrieved graph (image) as determined by the similarity measurement algorithm.

The interaction is a visual way of presenting these mappings.



Chapter 9

Evaluation of Retrieval User

Interface

In this chapter, we present the evaluation of our method for retrieval visualisa-

tion and interpretation. We assessed our work through user evaluation of the

interpretation capabilities of our retrieval UI, and measuring the computational

performance of our system.

9.1 Evaluation Procedure

9.1.1 Materials

For our experiments we used the clinical PET-CT data set described in Sec-

tion 7.1.3. Our preprocessing stage [196] cropped and scaled the axial images

into the same coordinate space with a new resolution of 256 x 256 pixels at

1.95mm x 1.95mm. We also obtained the clinical reports for each of the studies.

Our system was implemented on an Intel Core 2 Quad CPU clocked at

2.40GHz with 4GB of RAM running Windows 7 64-bit. The underlying retrieval

engine was implemented in MATLAB 2012a; the interface was implemented in

138
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Java using ImageJ [200] and the Java Universal Network/Graph (JUNG) frame-

work [201] as libraries.

9.1.2 Survey Procedure

We examined the capabilities of our UI through a set of user surveys, which

were approved by our institutional human ethics committee. We recruited 10

students (age: mean 25.6, standard deviation 4.4, gender: 3 female, 7 male)

from within our department (years studied: mean 5.6, standard deviation 2.8,

4 undergraduate, 6 graduate), who were otherwise uninvolved in this research

project. The number of participants was sufficient to gain qualitative insights

about the UI’s capabilities [202]. The students were involved in medical image

processing (e.g., segmentation, classification, registration, visualisation) or image-

related research (e.g., telemedicine). Our purpose was to evaluate the various

different capabilities of our UI instead of its application to a specific clinical task.

Furthermore, for an initial evaluation and to elict comments for improvement we

believed that the participants needed to have knowledge about the complexity

of medical images, concepts of image search, and general multimedia processing.

The students had the unique combination of skills that would allow an evaluation

of all aspects of the system in relation to interpreting the retrieved images.

The participants were asked to complete a retrieval task using our proposed

retrieval UI as well as a baseline UI, which had the same layout but only contained

elements of typical CBIR UIs. That is, the baseline UI gave access to different

image views and the clinical reports but there were no graph visualisations or

graph interactions. Prior to undertaking the task, each participant was given

a training session with a walkthrough of the functions of each UI. During the

training session, users were also exposed to the types of information used by the

retrieval system to calculate retrieved image rankings as well as the tools provided

by the UI to explore and interpret the retrieved images. However, we assumed



CHAPTER 9. EVALUATION OF RETRIEVAL USER INTERFACE 140

that in practice each user would have a different interpretation of what they

consider to be similar. As such, image similarity was left to the subjective choice

of individual participants using any criteria they wished (e.g., tumour location,

the size and shape of structures, elements in the clinical report, glucose uptake,

number of tumours, etc.). This allowed us to measure whether the UI let them

achieve their own retrieval goals.

During the task, the participants performed an initial query using a PET-

CT image with two lung tumours. The first tumour occurred within the left

lung while the second tumour invaded the mediastinum from the left lung; the

tumours had different volumes (this was not readily apparent from the image).

In addition, the characteristics of the image (involvement of multiple organs and

tumours, elements of different volumes) was typical of PET-CT images, meaning

that the retrieved results would also have varied characteristics and would require

the participants to study them from different perspectives (or use different UI

tools) before they could decide whether an image was similar to the query. All

participants used the same image as the initial query. After completing the

task, the participants were given the opportunity to try different queries of their

choice, some simpler, e.g., a single tumour, and some more complex, e.g., multiple

tumours in multiple organs. The participants did not have to segment the ROIs

in the query images as this had been performed in advance.

The participants used the same initial query for both the baseline and pro-

posed system evaluation. This was done to ensure that the results of a different

query did not influence their opinion of the different systems. We carried out

tests in both sequences (baseline first then proposed, and vice versa) to demon-

strate that human learning did not affect the responses received by the second

system. Half of the participants were assigned to each sequence. Each user was

given 7 minutes per task. The time limit was determined empirically according

to the time needed to examine the cases retrieved by a query. The time limit also
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Table 9.1: User Survey Statements

# Statement

1 The viewer was easy to use.

2 The viewer was fast and was responsive to input.

3 The viewer rendered good quality images.

4 The viewer provided all the controls I needed.

5 The viewer and its controls were laid-out well.

6 I was able to use the viewer to understand the images.

7 The viewer contained all information necessary to understand the images.

8 The amount of image and other information presented did not confuse me.

9 When searching, the viewer generally found the most similar images first.

10 I was able to use the search and filtering framework to improve my understanding
of the image data.

ensured that both systems (baseline and proposed) were used for the exact same

period, allowing us to compare the effectiveness of each independent of the time

spent on the task.

The participants completed an anonymous survey where they were asked

about their experiences using the system. In the survey, the participants indic-

ated their level of agreement or disagreement with the several statements using

a 5-point scale (1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, 5

= strongly agree); this is a well-established approach for gathering information

about user experiences [203]. We evaluated our approach by comparing the res-

ults of the survey for both the proposed and baseline systems. The statements in

the survey are given in Table 9.1. The survey statements were designed to meas-

ure the UI and interaction requirements presented in Section 8.2. Participants

were also allowed to leave free text comments on any aspect of the system they

wished to mention.
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9.1.3 Other Evaluation

We also examined the performance of our implementation by calculating the mean

time to perform several common tasks. Specifically, we measured the time taken

to perform a query, to browse to a new page of visualisations, and to swap to a

different view. We also simulated increases in the database size to examine the

scalability of the retrieval time compared to the database size

9.2 Results

9.2.1 Survey Responses

Figures 9.1 to 9.3 show the average responses to our survey across all participants.

Figure 9.1 shows the combined responses across all participants. Figure 9.2 shows

the responses of participants who used the baseline viewer first and then used our

proposed viewer. Figure 9.3 shows the responses of participants who first used

our proposed viewer and then used the baseline viewer. Table 9.2 summarises

the median and range of the responses across all participants. The table also

shows the significance (p-value) of the responses across the entire participant

population calculated using the Wilcoxon rank sum. The circles in Figure 9.1

indicate statements where the differences in responses between the baseline and

proposed system were statistically significant (p < 0.05).

9.2.2 Participant Comments

All participants provided textual feedback to explain their opinions and suggest

improvements. The main positive comments about our proposed UI were sum-

marised as follows:

• The proposed UI was much better than the baseline UI (4 comments).
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• The abstractions were more convenient for understanding the images (2

comments).

• It was more difficult to locate small tumours or to see which images were

similar using the baseline UI (2 comments).

• Without the graph abstraction in the baseline system, there was a high

reliance on the fused images to determine image similarity (1 comments).

The main negative comments were summarised as follows:

• In the proposed system the graph edges in the abstractions could cause

confusion if there was a lot of overlap, especially in a complex image (1

comments).

• The speed of operation for both systems was a little slow, particularly the

time to load a new page of results (5 comments).

The participants also suggested several improvements. These included:

• The ability to hide or show different features of the UI.

• Displaying the clinical report within the panel of its associated image.

• The ability to magnify the images, thereby allowing users to view small

ROIs in greater detail.

• A more intuitive method to edit the abstractions and the query.

9.2.3 Performance Evaluation

Table 9.3 lists the resource usage of the baseline and proposed retrieval UIs.

Table 9.4 shows the time taken by standard tasks using the different UIs. We

used a two-sample t-test to determine if the differences in resource usage and task

time were statistically significance. Figure 9.4 shows the scalability of the system

by comparing retrieval time to database size.
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Table 9.2: Survey Response Summary

Statement

Scores

p-valueBaseline Proposed

Median Range Median Range

1 4 2 4.5 1 0.0334

2 3.5 3 3 3 0.6937

3 4 2 4 2 1.0000

4 3 2 4 1 0.0039

5 4 3 4 2 0.1104

6 4 2 4.5 2 0.0426

7 3 3 4 2 0.0128

8 3 2 4 2 0.0598

9 4 2 4 2 0.4253

10 4 2 4 2 0.0246
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Figure 9.1: Survey responses – all participants.

9.3 Discussion

The survey results (Figs. 6 to 8, Table 2) show that our proposed method achieved

better responses in 8 out of 10 questions than the baseline UI. It is important
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Figure 9.2: Survey responses – evaluating the baseline system first.
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Figure 9.3: Survey responses – evaluating the proposed system first.

to note that for these statements, the proposed method equaled or outperformed

the baseline method regardless of which system the users were exposed to first, as
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Table 9.3: Resource Usage

CPU (%) Heap RAM (MB) Non-Heap (MB)

Baseline Proposed Baseline Proposed Baseline Proposed

Mean 6.0% 5.8% 222 246 22 23

Std.Dev. 5.9% 6.7% 125 122 2 3

Peak 31.1% 29.9% 472 499 23 26

p-value 0.9112 0.2077 0.0010)

Table 9.4: Task Timing

Times (ms)

Task
Baseline Proposed

p-value
Mean Std.Dev. Mean Std.Dev.

Switch view 59 77 92 168 0.4298

Load new page 5032 2082 5161 2422 0.8575

Query database (size: 50) 12299 2646 12877 2954 0.7528
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Figure 9.4: Retrieval time in relation to database size.

seen by the results in Figures 9.2 and 9.3. That is to say, the order in which the

users evaluated the two systems did not seem to bias the final average results. The
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survey responses and comments indicated that the capabilities of our proposed

UI (multiple views, displaying abstractions and supplementary data, interactions

for indicating similarity) improved the abilities of users to interpret the retrieved

images.

According to the survey, both methods rendered images equally well (see the

responses to Statement 3). This is understandable because there was no difference

between the UIs in the manner in which the images were displayed.

The responses to Statement 1 indicate that the proposed UI was significantly

easier to use than the baseline system, despite displaying more UI elements and

providing more interactions to the user. The reason behind this is seen in the

responses to Statement 4. The participants felt that the baseline viewing method

did not provide them with the controls necessary to manipulate and completely

understand the retrieved images; the difference in the responses was also statist-

ically significant (p = 0.0039). As shown in Figure 9.1, the users felt that these

controls were laid-out in a manner that allowed them to effectively view the data

and interact with the system (Statement 5). A similar situation to Statement 4

occurs for the amount of information provided by the systems, and whether it was

sufficient for understanding the images (Statement 7); this is discussed further in

a later part of this section.

The baseline method only achieved a better survey response in regards to

speed of operation (Statement 2). However, this result is not statistically signi-

ficant (p = 0.6937). Upon further analysis, it can be shown that the difference

in survey responses was entirely due to the group of participants who used the

baseline system first. The users who were exposed to the proposed method first

did not see any significant difference in the speed of operation between the two

UIs; the mean and deviation in the response was the same for Statement 2 (as

seen in Figure 9.3). Compared to the time taken to execute a query or to change

a page, which are in the order of seconds, the graph display times are negligible
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(measured to be about 2ms). As such, we believe the low responses for State-

ment 2 for the proposed UI were probably due to apparent lag between the graph

and image display when loading a new page. In the proposed system, all graphs

were simultaneously displayed first and were then followed by the images, again

simultaneously. The fast graph display made it seem like there was a delay in

displaying the images (about 5 seconds), even though this same delay existed

when loading a new page in the baseline system.

Statements 6 to 8 were used to measure whether users believed the user in-

terface assisted them in interpreting the retrieved images. The proposed method

achieved higher mean responses than the baseline method in all of these questions,

regardless of which system the participants first used. In particular the responses

to Statement 7 demonstrated that participants believed that the baseline method

did not provide enough information for understanding the retrieved images when

compared to the proposed method. The responses to Statement 8 demonstrated

that the extra information provided by the graph visualisations and its associated

interactions did not confuse the users.

Another finding was that participants who used the baseline version first

stated that the proposed method was more accurate in its retrieval; this can

be seen by the responses to Statement 9 in Figure 9.2. These responses occurred

even though the underlying retrieval algorithm for both cases was the same. This

finding indicates that the graph visualisations allowed users to grasp the sim-

ilarity between images more easily; this conclusion is further supported by the

significantly higher responses to Statement 10 (p = 0.0246), which indicated that

the retrieved images assisted users in understanding the query image. Several

participants commented that the graph abstractions made it easier for them to

understand the images and the similarities between them. As such, we suggest

that the capabilities provided by our UI can bridge the semantic gap by assisting

users in understanding the similarities between complex images, such as PET-CT.
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The survey responses to Statements 3, 7, and 8 indicate that our proposed UI

was capable of visualising multiple volumetric and multi-modality medical images,

contained all information necessary for understanding the images (such as patient

reports to indicate clinical aspects not apparent by visual inspection), and that

the presentation of this information did not hinder the users. These outcomes are

directly related to the visualisation recommendations stated earlier: we rendered

multiple views that were of a good quality (Statement 3), we provided enough

information to understand the images, by allowing users to browse through the

data set and view patient reports for different images (Statement 7), and our

use of the graph visualisation as an abstract aided in reducing confusion among

users (Statement 8). Finally, our UI layout ensured that relevant information

was presented in easy to understand (Statement 5) and easy to use (Statement 1)

manner.

The outcomes for Statements 4, 6, and 10, indicate that our implementation

of the recommended interactions provided the capabilities to allow users to un-

derstand the retrieved images. In particular, the controls on our UI allowed users

to switch between different image views, to highlight similarities on the images,

to rearrange the order of the presented data, and refine the query (Statement 4).

These controls assisted the users in understanding the images (Statement 6).

In particular, the responses to Statement 10 indicated that the combination of

visualised data and the controls for interacting with and manipulating this data

helped users in understanding the characteristics that made images similar. The

comments from the participants also indicated that it was easier to understand

the images using the proposed UI.

The capabilities of the proposed UI were directly responsible for the better

responses received in the survey and the positive participant comments. For ex-

ample, if the user’s subjective search intent was based on the number of tumours,

then this was directly evident in the graph abstraction; the user did not have to
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navigate through the image stacks to count the number of tumours. Similarly,

image similarity based on the anatomical location of tumours could also be de-

termined from the graph abstractions; the filter options provided another way to

narrow search based on tumour location. As another example, when searching

for a primary tumour of a similar volume, the user could select the vertex cor-

responding to the tumour, obtain the volume feature, and then use the search

tools to set upper and lower bounds (e.g., ±10% of the measured volume) on

the volume of tumours. These functionalities are among the reasons why the

proposed UI was more convenient to use.

The interactions that visually indicated image similarity also helped to save

time during interpretation. The user did not have to manually navigate through

each individual view of each image (3 coronal views per image) to find the region

of their choice. A single click automatically aligned all coronal stacks of all the

retrieved images to middle slice of the appropriate ROI. The outline of the ROI

was marked on each slice to indicate its limits (so the user did not need to navigate

beyond it).

We also suggest that the capabilities of our UI can be optimised for clinical

tasks. The UI has the potential to allow users to quickly isolate a subset of a large

set of retrieved images. The abstractions can be used to eliminate cases that the

user is not interested in without needing to examine the images in detail. We pro-

pose that physicians could adopt a similar UI for evidence-based diagnosis. After

executing a query and applying any interactions they deem necessary, physicians

could use the clinical reports of the retrieved cases to determine their diagnosis.

The potential benefits of decision support based on retrieved information has

already been discussed in the literature [22,25].

The performance results demonstrate that the only notable difference between

the proposed and baseline UIs was the use of non-heap RAM. However, the

absolute difference in peak non-heap RAM usage (3 MB) is inconsequential given
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modern hardware. With a mean CPU usage of less than 6% and a mean heap

RAM usage below 250 MB, our method has relatively low resource consumption.

The peak CPU usage of less than 30% and a peak heap RAM usage of less than

500 MB indicates that our UI can be quite effectively used on modern consumer

hardware.

Table 9.4 shows that most common tasks were performed in real time. Switch-

ing between views (PET, CT, fused, MIP) was virtually instantaneous with a

mean time of 92ms. Loading a full page of new results (4 new PET-CT images,

each with multiple views) took on average 5.16s. Querying the database was

the most time-consuming task. The mean retrieval time for our implementation

was 12.88s on a database of 50 PET-CT images. Our evaluation of the system’s

scalability showed that the retrieval time scaled linearly with database size (as in-

dicated by the line of best fit in Figure 9.4), suggesting that optimisations would

be helpful for practical use with large image repositories. Most users were neut-

ral about the speed and responsiveness of the proposed method (Statement 2),

suggesting that it was acceptable for their purpose but that speed improvements

would be helpful. Our retrieval algorithm (described in Chapter 6) does not re-

quire a specific implementation; as such, in the future we can optimise the query

time through the use of parallel computing or cloud-based hardware.



Chapter 10

Discussion

This chapter discusses the novel capabilities introduced in this thesis and the

future work that will overcome their limitations.

10.1 Capabilities

The CBIR framework presented in this thesis was designed to enable the retrieval

of multi-modality medical images like PET-CT by exploiting the complementary

information provided by each image modality. The design of our features, graph

representation, and similarity measurement algorithm was inspired by clinical

cancer classification schemes [171, 172], and their use of geometric and topologic

information (such as the relationships between tumours and anatomy) for disease

staging. Our methods have the following capabilities.

10.1.1 Structural Extensibility

Graphs are not constrained to a fixed order or size [179]. As such, the order of

the CAPP graph can change to match the number of ROIs in the image while

the size of the graph can be altered according to the relationships in the pattern.

Our pruning function (Equation 6.1) can be implemented or adapted to define
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edges between any extra vertices that have been created.

As such, one of the major capabilities of our framework is the ability to

represent images both on a regional level (such as thorax in lung cancer ima-

ging) to whole-body level (for diseases like lymphoma). Improvements in image

acquisition and segmentation technologies (such as whole-body segmentation al-

gorithms [204]) will enable the extraction of even finer details and as well as the

delineation of a larger number of ROIs. Our graphs will be able to represent this

new information.

10.1.2 Modality Extensibility

In this thesis, we have only dealt with dual-modality images and have evaluated

our work using clinical PET-CT. However, our framework is extensible, only re-

quiring modality-specific adjustments. Our approach can be optimised for multi-

modality images such as PET-MR or SPECT-CT through the use of appropriate

registration, segmentation, and feature extraction algorithms.

Furthermore, our division of the entire vertex set VK into anatomical (VA)

and pathology (VP ) subsets is not a limitation to the types of information that

can be indexed on our graphs. The vertex set can be divided in other ways and

could possibly contain more than two subsets. In this case, a graph with the

vertex set VK = V1 ∪ V2 ∪ · · · ∪ Vn would have an associated feature alphabet

f = (f1, f2, . . . , fn).

10.1.3 Feature Extensibility

In this thesis, we used feature sets that included standard geometric features [121]

and complemented them with modality-specific information, e.g., CT texture and

PET SUV for our PET-CT data set (Section 7.1.3). We also only indexed three

types of features (Section 6.3.1).
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However, graph representations can index any feature as an attribute of a

vertex or an edge [121]. As such, it is possible to include other features among

those that we have used already. The feature set should reflect the characteristics

of the data set, and by not using a fixed feature set we are not restricting the use

of our method with other images or for other applications.

Our feature normalisation and similarity measurement schemes have been de-

signed for our application to PET-CT. Expanding the types of features (e.g.,

including free text labels) may require a modification to the normalisation al-

gorithm (Appendix A) or the cost function (Equation 6.8).

10.1.4 Full Representation - Complete Graphs

Complete graphs represented every ROI and every relationship between ROIs.

They essentially attempted to index all the information necessary for representing

even the smallest detail in the images. However, such a representation came at

a cost; there was no difference in structure between complete graphs with the

same number of vertices, thereby reducing their ability to discriminate between

cases where structure is important, e.g., images with tumours within different

anatomical structures (as seen in Chapter 7).

Complete graphs may be useful when structure is not as important, such as

when the tumours are already known to be within a particular structure, or in

images where structure or arrangement is less important. They may also be

useful in images where structures are generally the same but contain many minor

individual feature variations across different ROIs.

10.1.5 Structural Representation - CAPP Graphs

Our CAPP graphs were designed to constrain tumours to spatially related ana-

tomical structures. As such, they emphasised the spatial structure of the objects
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in the image, particularly the relative location of tumours in relation to anatomy.

However, the representation of the anatomy in a CAPP graph (consisting of VA

and the edges between elements of VA) forms a complete subgraph of the entire

CAPP graph because most humans have the same arrangement of anatomical

objects with differences in attributes. This was done in order to represent minor

anatomical features that may be important for inter- and intra-patient similarity

matching. This means that the CAPP graph was equivalent to complete graphs

for healthy patients, e.g., images with no tumours. Its discriminatory power was

higher when tumours were present within an image.

CAPP graphs were most useful when the images in the data set contained a

wide variety of patients and disease patterns. This is ideal for clinical data where

there are large naturally occurring variations among patients, and even images

with similar diagnoses can have different structures and features.

10.2 Future Research Directions

Several new research directions are now possible due to the graph-based multi-

modality image retrieval methods introduced in this thesis. These research direc-

tions both leverage the strengths of our work but also build upon them to innovate

in new areas. They also act to address the limitations of the thesis. While several

research directions are seemingly obvious (application to PET-MR, introduction

of new features, clinical evaluation, etc.), others form detailed areas of study with

the potential for significant theoretical and clinical impact.

10.2.1 Probabilistic Graph Construction

The current CAPP graph construction technique is based upon the values of

image features extracted from the ROIs. In particular, the pruning function is

reliant upon the accurate segmentation of different structures. As such a more
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realistic approach would be a probabilistic pruning function that accounts for the

accuracy of the segmentation algorithm and the features. In effect, the pruning

function chooses the edge e that maximises the probability that it occurred with

a given proximity value x, i.e., maximises P (e|proximity = x).

10.2.2 Including Temporal Information

In this thesis, we retrieved individual studies of patients, i.e., images acquired at a

single time point. However, it is common for multiple scans of a single patient to

be acquired during treatment. These images are acquired at different time points

during the treatment cycle and allow physicians to monitor a particular patient’s

response to treatment. It allows physicians to intervene early if a particular

treatment course (e.g., chemotherapy) is not performing as expected. As such,

it is important to be able to retrieve similar cases for image-driven evidence-

based diagnosis. The similarity of cases would be defined not just by disease

location but also by the pattern of progression over time, i.e., stable disease,

responding disease, or progressing disease. This would require the inclusion of

temporal relationships, edges between the same vertex representing how it has

evolved with time.

10.2.3 Improved Segmentation and Registration

In our experiments, we have shown that current segmentation and hardware

registration algorithms were sufficient for the PET-CT lung tumour data set. It is

important to note that the performance and capabilities of our retrieval algorithm

will improve alongside advances in segmentation and registration algorithms. In

addition, improvements to imaging technology that benefit segmentation and

registration (such as acquiring higher resolution PET images) will also inherently

improve the capabilities of our retrieval framework. This is because our graph
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construction technique relies upon segmentation to enable the extraction of ROI

features. Similarly, registration enables the extraction of the spatial relationships

between ROIs in different modalities.

10.2.4 Optimal Feature Selection

In this thesis, we adapted the geometric and spatial features described in [121] and

complemented them with modality specific information, such as SUV for PET or

texture for CT; the reasons for this were stated in Section 6.3.3. The retrieval

performance could be improved by learning an optimal set of features. However,

standard approaches to feature selection [205] cannot be directly applied to our

graph representations.

A new method for feature selection is needed, one which can balance structural

information as well as the image features indexed on vertices and edges. The

optimal set of features will therefore be subgraphs of the current CAPP graphs.

Each of these subgraphs will have their own individual feature sets (vertex and

edge attributes) that optimise the relative importance of the structure modelled

by that subgraph.

10.2.5 Reduction in Computational Complexity

One of the key limitations of graph edit distance based similarity matching is the

high computational complexity of graph algorithms [179]. Increasing the order of

the graph representations will eventually cause the graph comparison algorithm to

no longer return results in an appropriate time frame. This introduces a trade-off

between accuracy and time [121]. In our case this trade-off could be implemented

by reducing the beam size to reduce the search space (see Section 7.3.4). However,

this is only a delaying strategy since gains from adjusting the beam size are

linear (see Figure 7.11) while the time increases exponentially as the graph order
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increases (see Figure 7.12).

Alternate approaches to graph similarity matching are therefore necessary.

Potential solutions include approaches based on kernel machines [176, 179, 192,

194] or polynomial time algorithms for graph edit distance approximations [206].

In these cases, the algorithms and results in this thesis provide a baseline for

evaluating the viability of future approaches.

10.2.6 Designing an A? Heuristic Function

The A? algorithm uses a heuristic function h (n) to determine the order in which

the search visits the nodes in the search tree. The function h (n) is an estimate

of the distance from the search tree node n to the goal state; an admissible h (x)

never overestimates this distance [186]. The time complexity of A? is dependent

upon this heuristic, with the worst-case being h (n) = 0. The inclusion of multiple

modalities and feature sets on our graphs offers the opportunity to derive a h (n)

that is optimised for our particular retrieval task.

10.2.7 Vector Space Embedding

Our graph comparison algorithm (Section 6.6) is based upon the graph-edit dis-

tance. As such, this offers the opportunity to investigate vector space embed-

dings [207] of our graphs. A vector space embedding of our graphs would allow

for the application of a range of methods and tools available for vectors, e.g.,

support vector machines and feature selection algorithms. One major challenge

will be deriving a method to select the prototype graphs in a manner that ac-

counts for the variation in anatomical features, tumour features, and the graph

structure. Vector space embeddings could also potentially be used to optimise

retrieval time. We have already begun research efforts in this area [140].
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However, an inherent disadvantage of embeddings is that a direct vertex-to-

vertex mappings will not be available for every graph in the data set. As such, a

new method for visually indicating similar regions will be required for our UI.

10.2.8 Hardware-Driven Graph Matching

The future work described Sections 10.2.5, 10.2.6, and 10.2.7 all serve to improve

the computational performance through the use of more efficient algorithms, i.e.,

they are all software based. Hardware-based solutions could also improve the

computational performance of our algorithm. In particular, field programmable

gate arrays (FPGAs) could be used to design a hardware of our graph matching

algorithm [208]. Parallelisation will also improve the throughput of our CBIR

method.

10.2.9 Data Mining and Classification

Our structural representation of relationships between tumours and organs offers

the opportunity for other image similarity research, such as data mining. In

particular, we believe the use of frequent subgraph mining (FSM) [209] on a large

collection of CAPP graphs can reveal information about tumour occurrences, such

as whether commonly occurring tumour localisation patterns have reoccurring

ROI characteristics. We propose to expand FSM algorithms to account for graph

attributes extracted from different modalities.

10.2.10 Improved Visualisation Techniques

The UI presented in Chapter 8 utilises preprocessed views of PET-CT data. As

such, the user’s control over the views is limited entirely to the preprocessed

images. While the use of preprocessed images does offer benefits for real-time

execution it also places limitations on the ways in which the retrieval UI can
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be used. Furthermore, there is an underlying assumption that the preprocessed

images are sufficient to interpret the entire image.

The integration of advanced 3D rendering techniques, such as direct volume

rendering [210], should be investigated as a potential replacement for 2D slice

based views of tomographic data. Furthermore, the user should be provided with

more advanced control over the visualisations, such as the ability to adjust the

image grey-level range (through the manipulation of window width and length),

zoom functionality, and the ability to apply appropriate colour look up tables.

However, care must be taken to ensure that these additional tools do not degrade

the UIs real-time operational capabilities.

10.2.11 Integration of Visual Analytics

Our retrieval UI allows users to understand the similarity between images by

visually indicating similar ROIs on the images. However, this does not describe

the contribution of individual features. That is, while the retrieved images are

ranked according to their overall similarity, there is no method by which users

can examine how individual features affected the overall similarity. The field of

visual analytics [211] provides techniques for analytical reasoning and visual rep-

resentation of analytical results; we believe that integrating such technologies into

a CBIR UI has the potential to provide even greater insight to users attempting

to interpret retrieved images.



Chapter 11

Conclusions

In this thesis, we have presented a graph-based method for the retrieval of

multi-modality medical images. Our formulation of the graph representation

of medical images emphasised the spatial relationships between tumours and or-

gans; this representation in turn emphasised disease localisation during retrieval.

Our method introduced image similarity based upon a combination of modality-

specific features and structure between ROIs extracted from two different mod-

alities.

Furthermore, we also presented the design of a UI to enable effective inter-

pretation of retrieved PET-CT images. In addition to visualising multiple 3D

volumes, our UI provided supplementary information to assist user interpreta-

tion. This supplementary information was in the form of clinical reports associ-

ated with the images as well as graph abstractions that acted as a summary of

the complex image information. We also defined a new interaction that visually

indicated similar regions in images thereby allowing users to more easily locate

and compare similar regions.

Our results demonstrated that our graph-based retrieval algorithm introduced

the capability to search for multi-modality images on the basis of disease local-

isation. They results also showed that our CAPP graph, which emphasised the
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relationships between a tumour and its spatially nearest anatomical structures,

had a higher retrieval precision than the complete graph, which represented all

relationships. Our UI evaluation revealed that the graph visualisations and inter-

actions in our proposed interface improved user’s understanding of the retrieved

images. In summary, this thesis has advanced the state-of-the-art by introdu-

cing a novel graph-based approach for the retrieval of multi-modality medical

images. We suggest that our approach can be adapted to other applications

where knowledge must be retrieved and visualised from repositories containing

multi-modality information.
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Appendix A

Graph Feature Normalisation

This appendix provides detailed algorithms for conducting our feature normal-

isation process. A summary of the process was provided in Section 6.4.

A.1 Index Normalisation

Algorithms A.1 describes the process for normalising the graph index (collection

of graphs). The first stage (line 3) of index normalisation involves finding the

distribution (mean and standard deviation) of each feature across the entire index.

The distribution of features is calculated separately for each modality. This

process is described in Section A.2. The distribution of features is then used

to normalise each graph (line 5), as described in Section A.3.

Algorithm A.1 Graph Index Normalisation

1: function normaliseIndex(index, fA, fP , fS)
2: normIndex← ∅
3: (Fµ, Fσ)← accumulate(index, fA, fP , fS)
4: for all GS ∈ index do
5: normGraph← normaliseGraph(GS, Fµ, Fσ)
6: normIndex← normIndex ∪ normGraph
7: end for
8: return (normIndex, Fµ, Fσ)
9: end function
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A.2 Calculating Feature Distributions

To calculate the feature distribution, we first accumulate all measurement features

on the graph vertices and edges. This is performed for each modality separately.

The process is described by Algorithms A.2 to A.4.

The accumulation creates three sets FA, FP , and FS, each of which contain

pairs F = (f,X) where f is the feature name and X is a set that contains all

occurrences of that feature among all graph elements (vertex or edge) of the

same modality in the entire data set. These pairs are used by Algorithm A.5 to

calculate the mean and standard deviation of these features, again separately for

each modality.

Algorithm A.2 Graph Feature Accumulation

1: function accumulate(index, fA, fP , fS)
2: FA ← initialise(fA)
3: FP ← initialise(fA)
4: FS ← initialise(fA)
5: for all GS ∈ index do
6: V ← V (GS)
7: E ← E (GS)
8: for all v ∈ V do . Accumulate vertex features
9: if modality(v) = A then

10: FA ← accumulateForOne(fA, FA, v) . Anatomical Vertex
11: else
12: FP ← accumulateForOne(fP , FP , v) . Tumour Vertex
13: end if
14: end for
15: for all e ∈ E do . Accumulate edge features
16: FS ← accumulateForOne(fS, FS, e)
17: end for
18: end for
19: (FAµ, FAσ)← distributionOf(fA, FA)
20: (FPµ, FPσ)← distributionOf(fP , FP )
21: (FSµ, FSσ)← distributionOf(fS, FS)
22: Fµ ← (FAµ, FPµ, FSµ)
23: Fσ ← (FAσ, FPσ, FSσ)
24: return (Fµ, Fσ)
25: end function
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Algorithm A.3 Feature Collection Initialisation

1: function initialise(fα)
2: F ← ∅
3: for all f ∈ fα do
4: if isNumericFeature(f) then
5: F ← F ∪ (f, ∅)
6: end if
7: end for
8: return F
9: end function

Algorithm A.4 Graph Element Feature Accumulation

1: function accumulateForOne(fα, Fcoll, elem)
2: for all f ∈ fα do
3: if isNumericFeature(f) then
4: F ← f (Fcoll) . F = (f,X) where X is a set of feature values
5: Fcoll ← Fcoll \ F . Remove feature entry from collection
6: X ← X (F )
7: x← f (elem) . Obtain feature value
8: X ← X ∪ x . Expand set of feature values
9: F ← (f,X)

10: Fcoll ← Fcoll ∪ F . Reinsert expanded entry
11: end if
12: end for
13: return Fcoll . Return updated collection
14: end function

Algorithm A.5 Feature Distribution Calculation

1: function distributionOf(fα, Fcoll)
2: Fµ ← ∅
3: Fσ ← ∅
4: for all f ∈ fα do
5: if isNumericFeature(f) then
6: F ← f (Fcoll)
7: X ← X (F )
8: µf ← mean(X)
9: σf ← std(X)

10: Fµ ← Fµ ∪ (f, µf )
11: Fσ ← Fσ ∪ (f, σf )
12: end if
13: end for
14: return (Fµ, Fσ)
15: end function
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A.3 Graph Normalisation

Our graph normalisation process is described by Algorithms A.6 and A.7. The

normalisation process is dependent upon not only the modality from which a fea-

ture was extracted but also the type of the feature (as described in Section 6.3.1).

Algorithm A.6 Graph Normalisation

1: function normaliseGraph(G,Fµ, Fσ)
2: . Note: Fµ = (FAµ, FPµ, FSµ) and Fσ = (FAσ, FPσ, FSσ)
3: NV ← ∅
4: NE ← ∅
5: V ← V (G)
6: E ← E (G)
7: (fA, fP , fS)← f (G)
8: for all v ∈ V do
9: if modality(v) = A then

10: Nv ← normaliseElement(v, fA, FAµFAσ)
11: NV ←N V ∪N v
12: else
13: Nv ← normaliseElement(v, fP , FPµFPσ)
14: NV ←N V ∪N v
15: end if
16: end for
17: for all e ∈ E do
18: Ne← normaliseElement(e, fS, FSµFSσ)
19: NE ← NE ∪N e
20: end for
21: end function

Measurement features were normalised by the function normalise (called on

line 8 of Algorithm A.7 and given by Equation A.1); this function was directly

adapted from [87]. It linearly scaled a measurement value x to a random variable

with zero mean and unit variance, ensuring 99% of all values were normalised to

the range the range [0, 1]. As in [87], values outside this range were shifted to the

closest value (0 or 1). The function was defined as follows:

normalise (x, fµ, fσ) =
(x− µf ) /3σf + 1

2
(A.1)
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Algorithm A.7 Vertex and Edge Normalisation

1: function normaliseElement(elem, fα, Fµ, Fσ)
2: Nelem← ∅
3: for all f ∈ fα do
4: x← f (elem)
5: if isNumericFeature(f) then
6: fµ ← f (Fµ)
7: fσ ← f (Fσ)
8: x̃← normalise (x, fµ, fσ)
9: else if isAngleFeature(f) then

10: sV al← sinx+1
4

11: cV al← cosx+1
4

12: Nelem← Nelem ∪ sV al ∪ cV al
13: else
14: Nelem← Nelem ∪ x . Point sets are unchanged
15: end if
16: end for
17: return Nelem
18: end function

where x was the actual feature value, and µf and σf were the mean and standard

deviation of the feature in the data set.

Angular values were normalised by function of their sine and cosine values, as

in [121]. This can be seen on lines 10 and 11 of Algorithm A.7. This normalisation

method avoided discrepancies near the extreme angles (± (π − ε), for a small value

ε > 0).

We did not normalise point set features, instead electing to normalise the

distance between two point set features during similarity measurement. That is,

we normalised the difference between two point sets such that the distance value

ranged from 0 (total similarity) to 1 (total dissimilarity). This was achieved using

the Jaccard distance:

dJ (qpts, spts) = 1− |qpts ∩ spts|
|qpts ∪ spts|

(A.2)

where qpts and spts are two point sets of a query and data set vertex, respectively.

The distance value was within the range [0, 1].
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[84] N. Hoàng, V. Gouet-Brunet, M. Rukoz, and M. Manouvrier, “Embedding
spatial information into image content description for scene retrieval,” Pat-
tern Recognition, vol. 43, no. 9, pp. 3013–3024, 2010.
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ing visual features and text data for medical image retrieval using latent



REFERENCES 182

semantic kernels,” in Proceedings of the International Conference on Mul-
timedia Information Retrieval, pp. 359–366, 2010.

[146] M. Rahman, S. Antani, R. Long, D. Demner-Fushman, and G. Thoma,
“Multi-modal query expansion based on local analysis for medical image
retrieval,” in Medical Content-Based Retrieval for Clinical Decision Support
(B. Caputo, H. Müller, T. Syeda-Mahmood, J. Duncan, F. Wang, and
J. Kalpathy-Cramer, eds.), vol. 5853 of Lecture Notes in Computer Science,
pp. 110–119, Springer Berlin / Heidelberg, 2010.

[147] H. Müller, J. Kalpathy-Cramer, J. Charles E. Kahn, and W. Hersh, “Com-
paring the quality of accessing medical literature using content-based visual
and textual information retrieval,” in Proceedings of SPIE 7264 (K. M. Sid-
diqui and B. J. Liu, eds.), pp. 726405:1–11, 2009.

[148] W. W. Chu, I. T. Ieong, and R. K. Taira, “A semantic modeling approach
for image retrieval by content,” The VLDB Journal - The International
Journal on Very Large Data Bases, vol. 3, no. 4, pp. 445–477, 1994.

[149] W. Chu, C.-C. Hsu, A. Cardenas, and R. Taira, “Knowledge-based im-
age retrieval with spatial and temporal constructs,” IEEE Transactions on
Knowledge and Data Engineering, vol. 10, no. 6, pp. 872–888, 1998.
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[193] T. Gärtner, P. Flach, and S. Wrobel, “On graph kernels: Hardness res-
ults and efficient alternatives,” in Learning Theory and Kernel Machines
(B. Schölkopf and M. Warmuth, eds.), vol. 2777 of Lecture Notes in Com-
puter Science, pp. 129–143, Springer Berlin / Heidelberg, 2003.

[194] M. Neuhaus, K. Riesen, and H. Bunke, “Novel kernels for error-tolerant
graph classification,” Spatial Vision, vol. 22, no. 5, pp. 425–441, 2009.

[195] P. P. Carbone, H. S. Kaplan, K. Musshoff, D. W. Smithers, and M. Tubi-
ana, “Report of the committee on Hodgkin’s disease staging classification,”
Cancer Research, vol. 31, no. 11, pp. 1860–1861, 1971.

[196] L. Constantinescu, J. Kim, A. Kumar, D. Haraguchi, L. Wen, and D. Feng,
“A patient-centric distribution architecture for medical image sharing,”
Health Information Science and Systems, vol. 1, article 3, 2013.

[197] H. Wadell, “Volume, Shape, and Roundness of Quartz Particles,” Journal
of Geology, vol. 43, no. 3, pp. 250–280, 1935.

[198] S. Tomei, A. Reilhac, D. Visvikis, N. Boussion, C. Odet, F. Giammarile,
and C. Lartizien, “OncoPET DB: A freely distributed database of realistic
simulated whole body 18F-FDG PET images for oncology,” IEEE Trans-
actions on Nuclear Science, vol. 57, no. 1, pp. 246–255, 2010.

[199] J. Bradley, W. L. Thorstad, S. Mutic, T. R. Miller, F. Dehdashti, B. A.
Siegel, W. Bosch, and R. J. Bertrand, “Impact of FDG-PET on radiation
therapy volume delineation in non-small-cell lung cancer.,” International
Journal of Radiation Oncology*Biology*Physics, vol. 59, no. 1, pp. 78–86,
2004.



REFERENCES 187

[200] M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image processing with
ImageJ,” Biophotonics International, vol. 11, no. 7, pp. 36–42, 2004.

[201] J. O’Madadhain, D. Fisher, S. White, and Y. Boey, “The JUNG (Java
Universal Network/Graph) framework,” http://jung.sourceforge.net/, First
Published: 01/08/2003, Last Updated: 24/01/2010, Last Checked:
25/03/2013.

[202] J. Nielsen and T. K. Landauer, “A mathematical model of the finding of
usability problems,” in Proceedings of the INTERACT ’93 and CHI ’93
conference on Human factors in computing systems, pp. 206–213, 1993.

[203] E. L.-C. Law, V. Roto, M. Hassenzahl, A. P. Vermeeren, and J. Kort,
“Understanding, scoping and defining user experience: a survey approach,”
in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 719–728, 2009.

[204] Y. Zhan, X. S. Zhou, Z. Peng, and A. Krishnan, “Active scheduling of
organ detection and segmentation in whole-body medical images,” in Med-
ical Image Computing and Computer-Assisted Intervention – MICCAI 2008
(D. Metaxas, L. Axel, G. Fichtinger, and G. Székely, eds.), vol. 5241 of Lec-
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