160 research outputs found

    Deep learning for intracellular particle tracking and motion analysis

    Get PDF

    Deep learning for intracellular particle tracking and motion analysis

    Get PDF

    Cell Nuclear Morphology Analysis Using 3D Shape Modeling, Machine Learning and Visual Analytics

    Full text link
    Quantitative analysis of morphological changes in a cell nucleus is important for the understanding of nuclear architecture and its relationship with cell differentiation, development, proliferation, and disease. Changes in the nuclear form are associated with reorganization of chromatin architecture related to altered functional properties such as gene regulation and expression. Understanding these processes through quantitative analysis of morphological changes is important not only for investigating nuclear organization, but also has clinical implications, for example, in detection and treatment of pathological conditions such as cancer. While efforts have been made to characterize nuclear shapes in two or pseudo-three dimensions, several studies have demonstrated that three dimensional (3D) representations provide better nuclear shape description, in part due to the high variability of nuclear morphologies. 3D shape descriptors that permit robust morphological analysis and facilitate human interpretation are still under active investigation. A few methods have been proposed to classify nuclear morphologies in 3D, however, there is a lack of publicly available 3D data for the evaluation and comparison of such algorithms. There is a compelling need for robust 3D nuclear morphometric techniques to carry out population-wide analyses. In this work, we address a number of these existing limitations. First, we present a largest publicly available, to-date, 3D microscopy imaging dataset for cell nuclear morphology analysis and classification. We provide a detailed description of the image analysis protocol, from segmentation to baseline evaluation of a number of popular classification algorithms using 2D and 3D voxel-based morphometric measures. We proposed a specific cross-validation scheme that accounts for possible batch effects in data. Second, we propose a new technique that combines mathematical modeling, machine learning, and interpretation of morphometric characteristics of cell nuclei and nucleoli in 3D. Employing robust and smooth surface reconstruction methods to accurately approximate 3D object boundary enables the establishment of homologies between different biological shapes. Then, we compute geometric morphological measures characterizing the form of cell nuclei and nucleoli. We combine these methods into a highly parallel computational pipeline workflow for automated morphological analysis of thousands of nuclei and nucleoli in 3D. We also describe the use of visual analytics and deep learning techniques for the analysis of nuclear morphology data. Third, we evaluate proposed methods for 3D surface morphometric analysis of our data. We improved the performance of morphological classification between epithelial vs mesenchymal human prostate cancer cells compared to the previously reported results due to the more accurate shape representation and the use of combined nuclear and nucleolar morphometry. We confirmed previously reported relevant morphological characteristics, and also reported new features that can provide insight in the underlying biological mechanisms of pathology of prostate cancer. We also assessed nuclear morphology changes associated with chromatin remodeling in drug-induced cellular reprogramming. We computed temporal trajectories reflecting morphological differences in astroglial cell sub-populations administered with 2 different treatments vs controls. We described specific changes in nuclear morphology that are characteristic of chromatin re-organization under each treatment, which previously has been only tentatively hypothesized in literature. Our approach demonstrated high classification performance on each of 3 different cell lines and reported the most salient morphometric characteristics. We conclude with the discussion of the potential impact of method development in nuclear morphology analysis on clinical decision-making and fundamental investigation of 3D nuclear architecture. We consider some open problems and future trends in this field.PHDBioinformaticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147598/1/akalinin_1.pd

    Bioinformatic analysis and deep learning on large-scale human transcriptomic data: studies on aging, Alzheimer’s neurodegeneration and cancer

    Get PDF
    [ES] El objetivo general del proyecto ha sido el análisis bioinformático integrativo de datos múltiples de proteómica y genómica combinados con datos clínicos asociados para la búsqueda de biomarcadores y módulos poligénicos causales aplicado a enfermedades complejas; principalmente, cáncer de origen primario desconocido, en sus distintos tipos y subtipos y enfermedades neurodegenerativas (ND) mayormente Alzheimer, además de neurodegeneración debida a la edad. Además, se ha hecho un uso intensivo de técnicas de inteligencia artificial, más en concreto de técnicas de redes neuronales de aprendizaje profundo para el análisis y pronóstico de dichas enfermedades

    Accessible software frameworks for reproducible image analysis of host-pathogen interactions

    Get PDF
    Um die Mechanismen hinter lebensgefährlichen Krankheiten zu verstehen, müssen die zugrundeliegenden Interaktionen zwischen den Wirtszellen und krankheitserregenden Mikroorganismen bekannt sein. Die kontinuierlichen Verbesserungen in bildgebenden Verfahren und Computertechnologien ermöglichen die Anwendung von Methoden aus der bildbasierten Systembiologie, welche moderne Computeralgorithmen benutzt um das Verhalten von Zellen, Geweben oder ganzen Organen präzise zu messen. Um den Standards des digitalen Managements von Forschungsdaten zu genügen, müssen Algorithmen den FAIR-Prinzipien (Findability, Accessibility, Interoperability, and Reusability) entsprechen und zur Verbreitung ebenjener in der wissenschaftlichen Gemeinschaft beitragen. Dies ist insbesondere wichtig für interdisziplinäre Teams bestehend aus Experimentatoren und Informatikern, in denen Computerprogramme zur Verbesserung der Kommunikation und schnellerer Adaption von neuen Technologien beitragen können. In dieser Arbeit wurden daher Software-Frameworks entwickelt, welche dazu beitragen die FAIR-Prinzipien durch die Entwicklung von standardisierten, reproduzierbaren, hochperformanten, und leicht zugänglichen Softwarepaketen zur Quantifizierung von Interaktionen in biologischen System zu verbreiten. Zusammenfassend zeigt diese Arbeit wie Software-Frameworks zu der Charakterisierung von Interaktionen zwischen Wirtszellen und Pathogenen beitragen können, indem der Entwurf und die Anwendung von quantitativen und FAIR-kompatiblen Bildanalyseprogrammen vereinfacht werden. Diese Verbesserungen erleichtern zukünftige Kollaborationen mit Lebenswissenschaftlern und Medizinern, was nach dem Prinzip der bildbasierten Systembiologie zur Entwicklung von neuen Experimenten, Bildgebungsverfahren, Algorithmen, und Computermodellen führen wird

    Creating a platform for the democratisation of Deep Learning in microscopy

    Get PDF
    One of the major technological success stories of the last decade has been the advent of deep learning (DL), which has touched almost every aspect of modern life after a breakthrough performance in an image detection challenge in 2012. The bioimaging community quickly recognised the prospect of the automated ability to make sense of image data with near-human performance as potentially ground-breaking. In the decade since, hundreds of publications have used this technology to tackle many problems related to image analysis, such as labelling or counting cells, identifying cells or organelles of interest in large image datasets, or removing noise or improving the resolution of images. However, the adoption of DL tools in large parts of the bioimaging community has been slow, and many tools have remained in the hands of developers. In this project, I have identified key barriers which have prevented many bioimage analysts and microscopists from accessing existing DL technology in their field and have, in collaboration with colleagues, developed the ZeroCostDL4Mic platform, which aims to address these barriers. This project is inspired by the observation that the most significant impact technology can have in science is when it becomes ubiquitous, that is, when its use becomes essential to address the community’s questions. This work represents one of the first attempts to make DL tools accessible in a transparent, code-free, and affordable manner for bioimage analysis to unlock the full potential of DL via its democratisation for the bioimaging community

    Mathematical Morphology for Quantification in Biological & Medical Image Analysis

    Get PDF
    Mathematical morphology is an established field of image processing first introduced as an application of set and lattice theories. Originally used to characterise particle distributions, mathematical morphology has gone on to be a core tool required for such important analysis methods as skeletonisation and the watershed transform. In this thesis, I introduce a selection of new image analysis techniques based on mathematical morphology. Utilising assumptions of shape, I propose a new approach for the enhancement of vessel-like objects in images: the bowler-hat transform. Built upon morphological operations, this approach is successful at challenges such as junctions and robust against noise. The bowler-hat transform is shown to give better results than competitor methods on challenging data such as retinal/fundus imagery. Building further on morphological operations, I introduce two novel methods for particle and blob detection. The first of which is developed in the context of colocalisation, a standard biological assay, and the second, which is based on Hilbert-Edge Detection And Ranging (HEDAR), with regard to nuclei detection and counting in fluorescent microscopy. These methods are shown to produce accurate and informative results for sub-pixel and supra-pixel object counting in complex and noisy biological scenarios. I propose a new approach for the automated extraction and measurement of object thickness for intricate and complicated vessels, such as brain vascular in medical images. This pipeline depends on two key technologies: semi-automated segmentation by advanced level-set methods and automatic thickness calculation based on morphological operations. This approach is validated and results demonstrating the broad range of challenges posed by these images and the possible limitations of this pipeline are shown. This thesis represents a significant contribution to the field of image processing using mathematical morphology and the methods within are transferable to a range of complex challenges present across biomedical image analysis

    Machine Learning Advances for Practical Problems in Computer Vision

    Get PDF
    Convolutional neural networks (CNN) have become the de facto standard for computer vision tasks, due to their unparalleled performance and versatility. Although deep learning removes the need for extensive hand engineered features for every task, real world applications of CNNs still often require considerable engineering effort to produce usable results. In this thesis, we explore solutions to problems that arise in practical applications of CNNs. We address a rarely acknowledged weakness of CNN object detectors: the tendency to emit many excess detection boxes per object, which must be pruned by non maximum suppression (NMS). This practice relies on the assumption that highly overlapping boxes are excess, which is problematic when objects are occluding overlapping detections are actually required. Therefore we propose a novel loss function that incentivises a CNN to emit exactly one detection per object, making NMS unnecessary. Another common problem when deploying a CNN in the real world is domain shift - CNNs can be surprisingly vulnerable to sometimes quite subtle differences between the images they encounter at deployment and those they are trained on. We investigate the role that texture plays in domain shift, and propose a novel data augmentation technique using style transfer to train CNNs that are more robust against shifts in texture. We demonstrate that this technique results in better domain transfer on several datasets, without requiring any domain specific knowledge. In collaboration with AstraZeneca, we develop an embedding space for cellular images collected in a high throughput imaging screen as part of a drug discovery project. This uses a combination of techniques to embed the images in 2D space such that similar images are nearby, for the purpose of visualization and data exploration. The images are also clustered automatically, splitting the large dataset into a smaller number of clusters that display a common phenotype. This allows biologists to quickly triage the high throughput screen, selecting a small subset of promising phenotypes for further investigation. Finally, we investigate an unusual form of domain bias that manifested in a real-world visual binary classification project for counterfeit detection. We confirm that CNNs are able to ``cheat'' the task by exploiting a strong correlation between class label and the specific camera that acquired the image, and show that this reliably occurs when the correlation is present. We also investigate the question of how exactly the CNN is able to infer camera type from image pixels, given that this is impossible to the human eye. The contributions in this thesis are of practical value to deep learning practitioners working on a variety of problems in the field of computer vision
    • …
    corecore