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Abstract 

One of the major technological success stories of the last decade has been the advent 

of deep learning (DL), which has touched almost every aspect of modern life after a 

breakthrough performance in an image detection challenge in 2012. The bioimaging 

community quickly recognised the prospect of the automated ability to make sense of 

image data with near-human performance as potentially ground-breaking. In the 

decade since, hundreds of publications have used this technology to tackle many 

problems related to image analysis, such as labelling or counting cells, identifying 

cells or organelles of interest in large image datasets, or removing noise or improving 

the resolution of images. However, the adoption of DL tools in large parts of the 

bioimaging community has been slow, and many tools have remained in the hands of 

developers. In this project, I have identified key barriers which have prevented many 

bioimage analysts and microscopists from accessing existing DL technology in their 

field and have, in collaboration with colleagues, developed the ZeroCostDL4Mic 

platform, which aims to address these barriers. This project is inspired by the 

observation that the most significant impact technology can have in science is when it 

becomes ubiquitous, that is, when its use becomes essential to address the 

community’s questions. This work represents one of the first attempts to make DL 

tools accessible in a transparent, code-free, and affordable manner for bioimage 

analysis to unlock the full potential of DL via its democratisation for the bioimaging 

community.  
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Impact Statement 

One of the key tasks in this project was assessing the practical obstacles of existing 

tools in DL for the bioimaging community and developing a tool to overcome these 

obstacles. The reason why it was necessary to overcome these obstacles lies in the 

massive potential DL can have for bioimaging and microscopy. DL tools have 

already been shown to outcompete many existing bioimaging algorithms regarding 

their speed and accuracy. Hence, widening the user-base for these tools has the 

immediate impact that more users can benefit from this technology. The impact of 

this project is thus based on the simple assumption that a larger community with 

access to certain technologies can create a more significant research impact than a 

smaller community with such access. Here, the intended growth of the user base of 

DL is achieved by removing three key barriers to accessibility. First, the developed 

method, ZeroCostDL4Mic, is free and widely accessible via a web browser. Hence, it 

removes the financial constraint, which can still be a limiting factor for new users of 

DL as this usually requires procuring powerful and expensive computational 

equipment. Second, given that DL is a new technology in bioimaging and other fields 

using large quantities of data, and literacy in the community is relatively low, the 

impact of this research is specifically giving users confidence in navigating DL 

techniques. This is achieved by removing the requirement to read code and instead 

creating a completely code-free interface for DL. Thirdly, this work provides 

guidelines towards good practice, both in developing DL-methods and in their safe 

use in research. This will aid researchers following these guidelines to exploit and test 

DL tools in the most gainful way for their data. Specifically, this work emphasises the 

importance of quality control, highlighting essential aspects which have previously 

rarely been explored, which will be important in interpreting data created in DL 

algorithms and help create more robust DL models. 

Since the work is accessible in a web browser and some of the implemented tools, are 

agnostic to data type, the ZeroCostDL4Mic platform can be used widely and is 

theoretically accessible, even beyond bioimaging, to anyone with a paired dataset. 

This means that the project is uniquely placed in a position where it is as accessible 

by academia as by anyone with a web browser. Given that the tool is aimed at 

audiences without an understanding of coding, this could help new users and lay-
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persons alike gain insight into DL and associated research and may help spawn 

similar projects in other fields of research, education, or art. 
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I. Introduction 

I. 1. Literature Review 

The latest technological advances have pushed the capabilities of microscopy in 

bioimaging so far that the remaining domains that elude imaging are small and 

increasingly difficult to access with current technologies. Hence, the bioimaging 

community is increasingly searching for the next novel technologies which can help 

overcome the hurdles for further exploration of cell biology via images. The recent 

advent of deep learning (DL) for image-based tasks from near-human performance in 

object recognition tasks1,2 to applications in self-driving cars3–5, has therefore quickly 

garnered interest in the bioimaging community as it promises solutions to significant 

challenges inherent in existing imaging and analysis methods. In this project, I aimed 

to create a tool to boost access to this novel technology for the bioimaging 

community.  To understand the exact motivation for this endeavour, in this chapter, I 

will first give an overview of the two critical challenges in microscopy that limit the 

biological information that can be accessed in bioimaging studies. Next, I will outline 

why DL may be suited to solve these challenges, giving an overview first of how DL 

works, and second, which microscopy applications have been implemented by the 

community. In the final section, I will discuss why the democratisation of 

technologies in microscopy is crucial for their impact on research. This directly 

informs the primary objectives this project attempts to achieve, which are outlined at 

the end of the discussion. 

I. 1. 1. Challenges of bioimaging 

I. 1. 1. a. The resolution and toxicity dilemma 

Since its invention, innovation in microscopy has been aimed at lowering the 

threshold of the smallest structures that could be visualised. This promises insight 

into previously unseen domains of life. Ultimately, microscopic imaging of the 

smallest components of living systems answers one of the most profound questions in 

biology: how the organisation of non-living objects on the atomic or molecular scale 

leads to the complexities emergent in living systems. The most recent innovations in 

microscopy have now come increasingly close to reaching this goal. Electron 

microscopy (EM), aided by innovation in sample preparation6,7 and image 
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reconstruction8, today gives access, in fixed specimens, to biological structures down 

to the atomic scale9,10. To visualise subcellular structures in living cells, fluorescence 

microscopy boosted by a revolution in the form of fluorescent proteins11, can give 

insights to detailed subcellular features which would be invisible under white light. 

At the turn of the century, different fluorescent microscopy techniques, most notably, 

stimulated emission depletion (STED)12, structured illumination microscopy (SIM)13 

and single-molecule localisation microscopy (SMLM)14,15, were developed which 

achieved unprecedented resolution for optical microscopy methods. In this context, 

resolution can be defined as the smallest distance at which two real objects can still 

be separated in an image. In optical microscopy resolution is limited by the self-

interference of light waves in the optics of microscopes. Point sources of light thus 

get converted to a point-spread function which appears as a blur or multiple blurry 

rings around the centre of an object on the imaging plane, a phenomenon known as an 

Airy disk. The shape and extent of the PSF and Airy disk depends on the optics of the 

microscope and the wavelength of the light used for imaging. However, because of 

this phenomenon there exists a limit for a given wavelength and imaging system 

where two neighbouring object’s PSFs will overlap and any distance between the 

objects will not be resolvable on the imaging plane. This generally prevents structures 

from being resolved which are smaller than about half the wavelength of the light 

used for imaging16. Using light in the optical spectrum meant that structures below 

roughly 250nm could not be imaged with light microscopes, precluding most protein 

complexes and many subcellular structures from visualisation. With the above 

fluorescence microscopy techniques, collectively termed super-resolution microscopy 

(SRM), structures below this limit, with dimensions in the molecular scale, could be 

resolved for the first time using optical methods, for example, in the organisation of 

cytoskeletal structures in neurons17 (Fig. 1). 

When considering only resolution, it could be assumed that microscopy techniques 

today have nearly reached the ultimate goal of bioimaging, that of visualising life 

down to its fundamental particles. However, it has become increasingly clear that 

visualisation of life to this level requires another key aspect aside from spatial 

resolution, which is capturing its dynamics over time. Current EM and SRM 

techniques both fall short in achieving this satisfactorily. EM is inherently toxic as it 

requires samples to be fixed and therefore dead, to be imaged18. SRM, as most 
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fluorescence microscopy techniques, suffers from the phenomenon of phototoxicity19. 

Phototoxicity describes the detrimental effect of light on cell homeostasis, which can 

alter natural cellular behaviours and even lead to apoptosis of the imaged cell20 and 

can arise from several sources, often dependent on the type of light used in imaging. 

Notably, in cells labelled with and imaged for fluorescent proteins or dyes, the 

activation of the fluorophore can produce radical oxygen species (ROS), which 

trigger apoptotic pathways or disrupt cell homeostasis19,21. Imaging with short 

wavelengths such as UV light risks light-induced DNA damage if UV light is 

absorbed in the nucleus19,20. This can initiate DNA repair pathways and apoptosis. 

Although longer wavelengths such as near-infrared light have been observed to be 

less damaging to cells via direct phototoxicity19, such light sources can yet lead to 

sample heating and could potentially lead to heat shock pathways that disrupt cell 

homeostasis22. 

Phototoxicity scales with the dose of light transmitted onto the sample, i.e. the 

number of photons absorbed per square area per unit time22. Hence, phototoxicity can 

be reduced by reducing the intensity of the incident light (number of photons), 

reducing the exposure time per acquisition or, in time-lapses, reducing the number of 

frames per time unit19,20,22,23. Furthermore, since ROS production is primarily related 

to the excitation of fluorescence, reducing fluorescence, e.g. by imaging in brightfield 

microscopes, should reduce the impact of imaging on the specimen. However, 

reducing the number of excitatory photons or not inducing fluorescence also reduces 

the number of photons emitted from the sample to the signal detector of the 

microscope’s camera24. This leads to a decrease in an image’s signal-to-noise ratio 

(SNR)2, as the intensity of background noise from out-of-focus objects, the 

fluorescence of the growth medium or shot noise on the camera’s detector become 

significant in comparison with the signal collected from the sample. This is 

problematic as high SNR is required to visualise delicate structures in cells and is 

essential for SRM techniques to achieve sub-diffraction limit resolution25. The impact 

of phototoxicity is most significant in recording time-lapses as each acquisition 

increases the light-dose experienced by the sample22,25. Reducing phototoxicity in 

time-lapses without sacrificing SNR per image requires spacing acquisitions to a 

period in which the sample can recover, which effectively reduces the temporal 

resolution of the timelapse20,22,23 (Fig. 1A). An additional problem is that 
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phototoxicity induced pathways may occur silently in cells that appear healthy and 

toxic effects may only be discovered after the cell undergoes morphological 

changes23. Therefore, the true impact of phototoxicity, especially in fluorescence 

microscopy, can be underestimated in many imaging experiments and even raises the 

question of whether the behaviours shown by cells imaged for sustained periods 

under fluorescence can be deemed ‘natural’ and thus of biological interest. 

Phototoxicity is a crucial caveat of most SRM techniques. Techniques such as STED 

and SMLM rely specifically on very high-intensity lasers to achieve sub-diffraction 

limit resolution12,14,15, making them significantly more toxic to cells than diffraction-

limited microscopy methods19,25. The other major SRM technique, structured 

illumination microscopy (SIM) does not usually require as high-intensity illumination 

of the sample as other SRM methods. However, each SIM-resolved image requires 

multiple acquisitions with patterned image filters which are used to computationally 

reconstruct the super-resolved spatial features on the image13. This increases the total 

light dose required for a single super-resolved image when compared to standard 

microscopy where one acquisition is needed per image. The increased phototoxicity 

related to SRM makes it extremely challenging to exploit the potential of super-

resolution for most biological processes beyond the timescale of minutes25 (Fig. 1 B). 

Although acquisitions with SRM, such as STED, over hours, have been reported with 

apparently healthy samples26, potential phototoxic effects are not usually quantified in 

these studies, making it difficult to determine if ‘silent’ phototoxic effects are 

affecting the sample in unknown ways19,23. 

The inability of the best optical microscopy methods to exploit their resolution for 

longer acquisitions of living structures leaves a white space in the domain of cellular 

processes which can be imaged (shown in red in Fig. 1B). Closing these gaps for 

possible exploration is one of the key drivers for developing new methods. This has 

led to the development of increasingly complex techniques such as lattice-light sheet 

microscopy (LLSM)27, which is specifically designed to optimise the light-dose for 

3D acquisitions over time. Another approach is to optimise existing SRM techniques 

by using more sensitive detectors28,29 or pushing the optical parameters of lenses30,31. 

However, most technological innovations which can push the envelope of resolution 

and live-cell compatibility are technologically complex or expensive while providing 

only limited improvements to existing technology. Therefore, computational 
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approaches that tend to be inexpensive are increasingly sought after in the bioimaging 

community to help solve challenging imaging problems32. 

 

 

Figure 1 - Boundaries of microscopy in live-cell imaging – A) Schematic of the 

dilemma between image quality (noise), possible temporal resolution and live-cell 

compatibility. B) Domains of biology that can and cannot be visualised in time and 

space with current microscopy techniques. Phototoxicity limits high spatial and 

temporal resolution at longer timescales (see A). The red area indicates the current 

limitations of microscopy and, thus, the domains that DL methods could help access. 

The coloured circles indicate the microscopy methods used for each size and 

timescale. Symbols: tick – size scale at timescale is acquirable with current 

techniques, tick in brackets – size scale at timescale can under some circumstances 

be visualised in specific samples with cutting-edge equipment, x – size scale at 

timescale cannot currently be visualised. 

 

I. 1. 1. b. Advent of high-throughput imaging and analysis bottlenecks 

The use of software methods in microscopy has expanded in line with the increase of 

storage space and availability of cheap, powerful, and fast computers during the last 

three decades. These technological advances have enabled new forms of imaging 

studies to be conducted. High-throughput microscopy studies containing tens of 

thousands of individual fields-of-view (FOV)33, which allow large scale drug 

screens34–36 with hundreds of conditions, only became possible thanks to increased 

capabilities of computational equipment. Similarly, faster and more efficient storage 
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made it feasible to collect images with extremely large dimensions to resolve small 

structures present in extensive fields of view37 or 3D stacks38 or to image38,39 and 

annotate40 entire organs. 

Automation of image collection and more efficient data storage leading to significant 

volumes of data made it necessary to create more sophisticated analysis methods to 

extract information from these datasets. This led to rapid growth in bioimage 

analysis, which is concerned primarily with the analysis of biological image data, 

rather than its acquisition and is beginning to be treated as its own discipline in 

biology32. In analysis, computational methods have the advantage of improving the 

precision and scale at which data can be analysed32. This has contributed significantly 

to modern imaging studies and the data types that can be gainfully used in research. 

Techniques like RNA FISH41,42, cell-tracking43–45 and lineage tracing46,47 and SRM 

techniques like SMLM14,15 or SIM13, would not be feasible without using 

computational image analysis post-acquisition. Bioimage analysis has also addressed 

the previously discussed microscopy problem of phototoxicity and resolution. 

Methods such as super-resolution radial fluctuations (SRRF)48 or image 

deconvolution49,50, which models and then removes the noise created during imaging, 

offer alternatives to the optical super-resolution methods and do not require the light 

dose often required for SRM. Hence, bioimage analysis can have an impact on 

microscopic imaging challenges that is comparable to innovation in optical methods. 

However, in contrast to innovations in microscopy, such as SRM techniques or 

LLSM, bioimage analysis innovation is easily disseminated and comparably 

inexpensive, as it is based primarily on code that can be shared on the Web, reaching 

more users than many microscopy techniques51. Since many researchers who require 

image analysis tools possess limited experience in coding environments, developers 

have a great incentive to facilitate the use of software tools by making them 

accessible, for example, through graphical user interfaces (GUI) that require no code 

interaction51–54. An example of such a tool is the ImageJ/Fiji platform, which 

researchers widely use to assess many different types of data and has a highly active 

developer and user base53 which also contributes to the fast improvement of methods 

and resolution of problems.  

However, the advent of cheap, fast, and efficient data acquisition has come with new 

challenges. One significant problem lies in replicating the abilities of humans to 
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identify substantial features in images at the scale of the data volumes produced 

today. For example, van Valen et al. note that the segmentation of nuclei, which is 

necessary, for example, to track nuclei in time-lapses or to measure their volume, can 

take hours to days of work55. This type of work is trivial but strenuous for a human 

who could likely perform more impactful tasks if such activities as nuclear 

segmentation could be automated. However, humans have evolved a pattern 

recognition capacity that most algorithms still cannot replicate. Hence, trivial tasks 

such as separating the background from foreground objects in images automatically 

remains a significant challenge in computer vision56. More involved tasks such as 

identifying different classes of objects are even more challenging to perform with 

standard bioimage analysis tools but are of significant value to biologists as complex 

phenotypes or patterns could be quickly identified by a machine rather than a human, 

which is beneficial especially in datasets with thousands of images1. Due to these 

difficulties, the ability to acquire and store very large datasets and images has not 

scaled at the same rate as the ability to analyse these datasets with human precision57. 

Extracting all informative biological features present in imaging data remains one of 

the key challenges of bioimaging56,57 (Fig. 2).   

Further hindering the potential of automated analysis of images via algorithms is that 

humans invariably introduce their own bias into code. For example, most algorithms 

designed to remove noise or enhance resolution use error estimators (also named 

priors), which are essentially based on an educated guess on the nature of the image 

noise58,59. This can lead to artefacts, such as edge smoothing59 or the introduction of 

artificial structures on the image, which is relatively common in some SRM 

techniques, such as SMLM60,61 or SIM62,63. Hence, images obtained by algorithms 

based on their creators' assumptions are less agnostic than the raw images produced 

by microscopy, which can make them less valuable in research than the latter. 

 

 



20 
 

 

Figure 2 - The promise of DL in bioimaging – comparing the potential of DL 

qualitatively with manual and standard computational bioimage analysis: A) As 

datasets become larger and more complex, it becomes difficult or impossible to 

annotate by hand. However, human annotation is usually unsurpassed for individual 

images, i.e. small dataset sizes. Current bioimage analysis methods can be 

algorithmically programmed with relative ease and can extract key features from 

datasets, but often not at the level of a human analyst. Creating a DL pipeline 

requires the same or more effort than standard algorithms, as they require dataset 

curation and training, and they tend to not perform well when little data is available. 

However, as the size of the available training data increases, so usually does the 

performance of DL tools. Even complex tasks can be performed on large datasets 

with well-trained DL-methods which would be difficult or impossible to do manually 

or with standard methods. B) DL tools may be slower than standard methods, 

specifically when the computational resources are not available for training or 

prediction. However, for tasks such as manual labelling or classification they are 

significantly faster than a human. 
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I. 1. 2. Deep Learning (DL) as a solution to challenges in bioimaging 

I. 1. 2. a. Overview of DL technology 

The difficulty of replicating human performance in bioimage analysis tasks, such as 

object recognition, and the introduction of human bias, is not a problem unique to 

microscopic images but has been a long-standing puzzle in computer science. The 

first algorithm reaching human-like performance in classifying images on a large and 

diverse image dataset was published in 20122. In this breakthrough, a team from the 

University of Toronto used an artificial neural network (ANN) called AlexNet to 

participate in a popular object identification competition and easily outcompeted the 

nearest competitors in terms of precision and even matched human annotators in this 

task2.  

This result sparked a massive interest in ANNs, which now dominate other 

algorithms in many tasks from image annotation64,65 to language recognition66–68. The 

sudden success of ANNs in such data challenges was surprising since ANNs are a 

relatively ‘old’ technology, known since the beginning of computer science69, 

however, with limited use, since their architecture makes them computationally 

expensive to use66. To understand why ANNs can be so resource-intensive, it is 

helpful to understand how they operate, which I will outline below.  

i. Artificial neural network (ANN) architecture 

As their names suggest, ANNs were originally indeed an attempt to represent neural 

networks found in the nervous systems of complex organisms. Since these networks 

perform complex functions despite consisting of relatively simple units, the neurons, 

it was thought that the functions of biological neural networks could be replicated 

artificially by mimicking neuronal activity with a simple model70. Such a model of a 

neuron, termed the perceptron, was developed in 1957 by Rosenblatt69. The 

perceptron takes an arbitrary number of inputs, performs a function operation on 

these inputs and gives an output. In this process, different inputs can be weighted 

differently, similarly to how some synapses can have stronger influence on a neuron’s 

activity than others.  Depending on a threshold value, this output is converted by the 

perceptron to either a 0 or 1, making the perceptron essentially a binary classifier of a 

weighted sum of inputs. Due to this simplistic nature, an individual perceptron cannot 

perform operations beyond simple linear classifications. To achieve more complex 
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non-linear classifications, perceptrons can be stacked in ‘layers’ with each layer 

consisting of multiple perceptrons, and each perceptron’s output becoming the input 

to a downstream perceptron (see Fig. 3A). Modern ANNs are essentially an 

adaptation of such ‘multi-layer perceptrons’. And even though a perceptron, can in no 

way model the true or even relevant complexities of real neurons (indeed, these 

complexities are not even clear biologically), in such networks, they are sometimes 

referred to as ‘neurons’. Even though this might be a misleading nomenclature, since 

a perceptron is very much not like a neuron, it is arguably a more intuitive and 

descriptive term than perceptron, and in the following chapters, I will continue to use 

it instead of ‘perceptron’ despite the obvious caveats.  

As in the multilayer-perceptron, an ANN has at least an input and an output layer, but 

further ‘hidden’ layers can be added between to give rise to ‘deeper’ networks. This 

has led to the term ‘deep learning’ (DL) when referring to learning methods that use 

ANNs with several hidden layers (Fig. 3A). Each neuron receives inputs from one or 

more neurons of a preceding layer and transforms this input using a mathematical 

function called an activation function. The output from this computation is passed to 

neurons in the next layer after multiplying the value with a weight. The weights of an 

ANN are flexible and are the main parameters that allow the network to adjust to a 

given dataset, as they can reinforce the output of specific neurons and suppress 

others71.  

 

The most widely used type of ANN for image-related tasks, and also the type of 

network used by AlexNet2, are convolutional neural networks (CNN)66,72. In CNNs, 

the so-called convolution layers contain sets of convolution matrices (kernels) which 

can extract specific types of features or patterns from the input image, resulting in 

different representations of the image known as feature representations or feature 

maps (Fig. 3B). Each convolutional layer will output multiple feature maps, the 

number of which is equivalent to the number of kernels in the layer. In most CNNs, 

convolution layers are interspaced with pooling layers which reduce the 

dimensionality of the feature maps. This is usually achieved by assembling a smaller 

image from individual pixels of the feature map, by sliding a window of a specific 

size (e.g. 3x3 pixels) over the feature map and selecting only one pixel from each 

position. A common strategy is choosing the pixel with the highest intensity from 

each window position, called max-pooling. Pooling is used to simplify features while 
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reducing the size of the feature maps, which reduces the memory footprint of each 

image. 

After multiple layers have processed an input image, the feature maps are flattened, 

which means that the pixels in the feature maps are arranged as a one-dimensional 

vector71. This vector is passed through so-called fully connected layers. In fully 

connected layers, each neuron is connected to every neuron in the following layer. 

For classification tasks, the final fully connected layer will use an activation function  

resulting in the sum of all values in the output vector to add up to 1 (Fig. 3B).  

 

ii. Training and applying ANNs 

The network has not been trained for any task up to this point. To train the network, 

say for object classification, the output from the CNN needs to be compared to a 

reference, also called a ground-truth or target, against which it can assess its 

performance73. The goal of training the CNN is to adjust the weights applied to each 

kernel in the convolutional layers of the network, such that the CNN can find a 

representation of an input image that is as close as possible to a ground-truth. For 

classification tasks, the target will usually a be vector where each entry represents a 

class66. These entries will commonly be binary and define a class as present (1) or not 

present (0) in an image (Fig. 3C). The difference between the output of the CNN and 

the ground-truth is assessed using a loss function. This loss function is a function of 

the weights of the CNN and evaluates the mismatch between input and ground-truth. 

To improve its performance in representing the ground-truth, the weights of the CNN 

must be updated to reduce the value of the loss function. To achieve this, the 

contribution of each weight to the final value of the loss function needs to be 

evaluated, which is done using the so-called error backpropagation74 (Fig. 3C). In 

backpropagation, the derivative of the loss function is first evaluated with respect to 

the weights in the final layer of the CNN and proceeds backwards through the 

network layer by layer. Since the error contributed by each weight depends on the 

weights of neurons in previous layers, the derivative calculated for previous layers is 

carried out according to the chain rule of calculus74.  

Once the partial derivatives of the loss function for each weight of the network are 

known, the weights can be updated to move down the slope of the derivative, using a 

process called gradient descent75 (Fig. 3C). There are different strategies for gradient 
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descent, but all methods have the goal to adjust the value of a weight so that the 

derivative of the loss function will have a lower value than before the adjustment. The 

magnitude of the adjustment change is determined by a parameter termed learning 

rate. This value determines how significantly the gradient descent will change the 

weights in the CNN. Large learning rates rapidly shift the value of the gradient and 

will change the loss of the network significantly76. However, large learning rates may 

change the value of the loss function so much that it cannot converge to a minimum 

that represents the optimal state of the weights for a given dataset. A very small 

learning rate may allow the loss function to converge slowly or at a local rather than a 

global minimum. Ideally, the learning rate takes a value that balances the need for 

convergence and the ability to skip beyond the local minima of the loss-function 

space76,77. 

During training, the CNN will be presented with many input-target pairs, each of 

which will update the weights via calculation of a loss function and subsequent 

backpropagation and gradient descent. In many training pipelines, this process is 

repeated several times on a given dataset since CNNs’ convergence towards low 

losses tends to be gradual and thus slow. For convenience, the training process is 

often split into training ‘epochs’ during which the CNN is presented with each 

training-input pair once (or a specified number of times). Calculating the loss of the 

network after each epoch is a convenient way to follow the progress of the network 

throughout the training process78. 

The loss decreases as the network improves its performance until it ideally converges 

towards a minimum. Once the user deems the network sufficiently trained (either 

after the loss stops improving sufficiently or at a specific threshold value of the loss), 

it can be used on an ‘unseen’ dataset, i.e., a dataset without ground-truth targets. The 

trained network can now apply the learned transformation from inputs to targets on 

unseen inputs, and ‘predict’ or ‘infer’ an output or result73. For this use case, the 

weights remain fixed at the value that produced the lowest loss during training, thus 

no longer changing via gradient descent. From here on, such trained networks will be 

referred to as models. An important feature of DL models is the ability to ‘generalise’ 

to novel data which describes how well-trained models can apply their learned 

mapping to a dataset that was not part of the training set. When the model can 

perform the desired image processing well on such ‘unseen’ data, and specifically 
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when this data is very different to the training dataset, it is said to generalise well. 

Conversely, neural networks can also underfit to training datasets. This can occur 

when the model’s own complexity, e.g. in terms of the number of learnable weights, 

is smaller than the number of features present in the training dataset. In this case, 

training losses are expected to not converge at all, and the model learning no relevant 

features in the dataset. In the era of very broad and deep neural networks this 

phenomenon however is much rarer and less well explored than underfitting, and can 

be remedied for example by adding more neurons to the network’s hidden layers79. 

However, it is common for DL models to fail to generalise appropriately, resulting in 

unrealistic or inaccurate predictions80. This is often caused by a phenomenon called 

overfitting, which occurs when an ANN learns a specific input-target transformation 

so well on a training dataset that it cannot generalise the transformation to data 

beyond this dataset. Preventing overfitting is a common task for DL practitioners and 

can be remedied in different ways. The first is to identify overfitting during training 

and before using the network for predictions. This can be done by setting aside a 

validation dataset which can be a random sample from the training dataset78. The 

validation dataset does not lead to an update of the CNN’s weights but is instead used 

after each epoch to evaluate how well the CNN can perform on an image that is not 

used or ‘seen’ during training. The loss calculated between the network’s prediction 

from the validation input and the validation target is known as the validation loss. 

Calculating the validation loss simultaneously to the training loss at the end of an 

epoch can help identify overfitting during training in the following way: while 

validation loss and training loss decline at roughly the same rate, the model likely 

does not overfit. When the training loss continues to decrease with each epoch while 

the validation loss stays the same or rises, this indicates overfitting, since the model’s 

performance is no longer generalisable to the ‘unseen’ validation dataset.  

Once a network is trained, it can be applied for tasks on ‘unseen’ data, i.e. data that 

the user is interested in analysing and for which presumably no ground-truth exists. 

However, there are some non-trivial challenges in this step which are connected to the 

limited interpretability of DL-model predictions. Like other computational image 

analysis methods, CNNs can predict artifacts or detect incorrect objects (false 

positives) or miss existing objects (false negatives). Without availability of a ground-

truth against which to compare a model’s predictions, such mistakes can be difficult 
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or even impossible to identify for well-trained models. These problems can even be 

compounded by some methods giving high ‘confidence’ scores for predictions which 

may be incorrect. These confidence scores do not reflect the actual probability of 

predictions’ correctness, but rather are an internal measure of models ranking 

different object categories. The reasons for such failures are still subject of research, 

partially because there is no full theory of how the complexity of neural networks 

contributes to its performance (though this understanding is improving81,82). 

However, there are methods which can improve the interpretability of model outputs 

which can also compensate for these problems in neural network predictions. For 

instance, different methods exist which predict probability distributions rather than 

single categories where models’ confidence in a prediction is reflected in the variance 

of the distributions around individual predictions. Unlike the confidence score given 

by models, these measures reflect a more accurate description of the probability of a 

correct prediction. This can help users identify when model outputs become 

unreliable, even in the absence of a ground-truth label. However, the methods which 

allow such probabilities to be given by a neural network are often computationally 

expensive, in training (see e.g. Bayesian neural networks83,84 and ensemble 

learning85) or during inference (e.g. test-time augmentation86,87). They are also not 

implemented in many of the most popular methods, and thus not accessible to general 

users of the most powerful DL-methods. For general use-cases, the gold-standard to 

determine the quality of a DL-model thus remains a test against a ground-truth dataset 

in a quality control step. This quality control (or test-) dataset contains input-output 

pairs that are not part of the training dataset but can be picked from the same 

population of images, i.e. this dataset can be set aside prior to training from the 

training dataset. To test the model's performance, the predictions of the model on the 

test inputs are compared to the test targets. The comparison can be made using 

similarity or quality metrics which measure the errors between prediction and ground-

truth. Which metric is used depends on the type of task performed by the network. 

Quality metrics can give a quantitative assessment of DL-models and are the main 

way in which different models are ranked against each other in competition88,89 and in 

the literature. 
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iii. Potential challenges and solutions to dataset curation for DL 

Due to its reliance on training datasets, DL performance fundamentally depends on 

the features present in the datasets used for ANN training. Therefore, neural network 

performance scales strongly with the size of the dataset and networks trained on 

larger datasets perform better than those trained in smaller ones2,90, as they adjust to 

the diversity of features present in large datasets. For the same reason, it is important 

to avoid patterns in the dataset that may introduce bias. While in standard algorithms 

bias may be introduced by assumptions or priors introduced by developers, in DL 

bias can occur due to imbalanced features in the dataset. For example, Moeckl et al. 

showed how the shapes present in a training dataset in a simple task of estimating the 

shape of objects on an image determined the model's predictions significantly91. If the 

training dataset contained only rectangles, the trained model predicted only rectangles 

in unseen images, even if the ground-truth consisted of other shapes. Conversely, a 

diverse dataset with multiple shapes allowed it to identify shapes in an unseen dataset 

correctly. This example shows how creating a suitable training dataset is crucial for 

creating useful DL models. 

 1. Data Augmentation 

The reliance on large datasets is often regarded as a bottleneck in DL. Many networks 

with the best performance for object detection, which have made DL popular, were 

trained on very large public datasets92–95. Such datasets are rarely available for users 

who want to use DL on their data and annotating or curating such training datasets at 

a scale similar to those in image challenges can be difficult or impossible. Therefore, 

several tricks are commonly employed within DL methods to overcome the hurdle of 

dataset size. The first is to augment the dataset. This means that each image in a 

dataset is slightly changed by some form of image manipulation, such as rotation, and 

this transformed image is added to the dataset96. Using ‘geometric’ image 

transformations like rotation, shearing, shifting, mirroring, or zooming or 

manipulating the image’s signal such as noise, contrast, or colour changes can 

quickly increase the size of a dataset by nearly arbitrary factors96,97. Another popular 

approach is to extract patches or crops from images, which can, depending on the size 

and number of patches per image, increase the total number of images in the dataset96. 

Neural networks theoretically do not recognize transformed replicates of an image as 
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the same image since the values of its pixels and the structures shown do not match 

the original. Thus, a dataset can be conveniently expanded using augmentation 

without requiring the user to produce more data80. However, there are some 

limitations; for example, if the augmentation changes the appearance of objects the 

user wants a model to recognize, specific transformations need to be avoided. 

Augmentation can also increase the contribution of unique features in the dataset, 

leading to worse performance on a test dataset than a model trained on a non-

augmented dataset97. 

 2. Transfer Learning 

Another approach is to not train neural networks from scratch on new datasets. The 

early layers of neural networks may learn surprisingly similar representations from 

datasets, as these layers tend to identify simple patterns. Hence, using a well-trained 

network from a different dataset as a starting point can give users with smaller 

datasets the ability to fine-tune a well-rounded network quickly to their dataset. The 

process in which ANNs are used from a trained starting point to learn a new task is 

called transfer learning. Pre-trained models are commonly used as starting points in 

many published object detection tasks. For example, a ResNet65 pre-trained on a large 

imaging dataset has been used in many object detection publications, which detect 

completely different types of objects1,98–100. Transfer learning can be powerful in 

many cases and save the user time and effort with their dataset curation and training 

time to reach the desired performance. It is also possible to train only some layers of a 

pre-trained ANN for this purpose. Especially when models were pre-trained on very 

large datasets, it can be sufficient to train only the final layer of the network, which is 

used to create the class labels of the dataset. This approach reduces the training time 

for the network and can still reach strong performance for new classification 

tasks101,102.  

A potential drawback of using pretrained models is the risk of introducing unintended 

bias from training datasets into the new task. For example, many networks pre-trained 

on public datasets use data from the web, which is known to be unrepresentative of 

real-world diversity1,103,104. This can lead to an intransparency of models’ 

performance: if the model fails to adjust to a new task, is this due to problems in the 

original or the new dataset? Further, the model could predict images with artefacts 
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based on the original dataset, which may be easy or, in a worse case, difficult to spot 

by the user. 

 3. Unsupervised Learning Strategies 

Augmentation or the use of pre-trained models are popular approaches to overcome 

the sometimes laborious task of dataset curation, with ground-truth targets for each 

input image. This type of dataset is necessary for the training described above, called 

supervised training (also ‘fully’ or ‘strongly’ supervised). Most DL models used 

today are trained using this approach. Due to the limitations of curation, developers of 

DL methods have been interested in alternative approaches that range from weakly 

supervised training105–107, where only a subset of training images has ground truth 

labels, to fully unsupervised training84,108,109, where the network learns a task without 

any ground truth information. These significantly reduce the effort for dataset 

curation or remove the requirement entirely. Currently, existing approaches in the 

literature are relatively unique and are designed for particular data challenges, and 

thus challenging to generalise to broader tasks. Hence, unsupervised training methods 

are not as versatile as supervised methods, which may explain why they are not yet as 

widely used. Because of the appeal of not requiring the same effort in dataset 

curation, specifically for very large datasets, unsupervised training of DL models 

remains a highly anticipated innovation for many users of DL. 

iv. Note on DL hardware 

The impact of ANNs on the computer vision field has been dramatic, and they have 

become state-of-the-art in many image-processing tasks since the presentation of 

AlexNet. This impact was possible due to an important innovation by AlexNet 

developers, the use of graphical processing units (GPU) to perform the massive 

amounts of computations necessary for the backpropagation and gradient descent 

algorithms66. GPUs were originally developed to accelerate graphics processing for 

gaming computers and achieve this through massive parallelisation of calculations 

performed simultaneously. This parallelisation can improve the speed of calculations 

by several orders of magnitude and has been crucial in making the time required to 

train a neural network feasible for many users. Prior to GPU acceleration, ANNs 

could take days110 for training on comparably trivial tasks and be deemed unfeasible 

for more complex image analysis tasks66. 
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Figure 3 – Overview of DL methods and functions – A) Neuron and basic artificial 

neural network (ANN) and a common schematic representation of an ANN. B) Basic 

function of a convolutional neural network (CNN) for classification, exemplified on a 

fluorescence microscopy image. CNNs have convolutional layers which create 

feature maps of an input image. Each feature map is simplified in pooling layers by 

combining pixels of specified image patches by using only certain pixels, e.g. the 

highest value pixel (max-pooling). In further convolution and pooling layers, the 

feature maps become increasingly abstract until they are flattened to a one-

dimensional array, similar to a barcode passed through one or more fully connected 

layers that map the patterns in the flattened vector to classes by assigning a 

probability to each class. C) Three basic steps of ANN training: i) Feedforward cycle, 

as in B. At the end of this step, the output is compared with a provided target (ground 

truth) that represents the expected or desired outcome the network should provide. ii) 

The difference between the network output and target is used to calculate an error 

(loss) sigma. The contribution of each neuron in the ANN is calculated via 

backpropagation. iii) each neuron’s weight (wn) is updated via gradient descent so 

that its loss (sigma) follows a downward slope on the loss space (simplified to 2D). 

The step size of the gradient descent in w is given by the learning rate nu. Once all 

weights are updated, the steps are repeated for a new image or batch of images. D) 

Three commonly used types of ANN in bioimaging. ‘Classic’ CNN architecture is 

used for classification tasks, such as AlexNet. The U-Net architecture uses 

upsampling after the standard CNN layers which can be used for image-to-image 

tasks. A GAN network often contains both U-Net-type networks to generate images 

and classifiers (discriminators) to decide if a given image is created by the generator 

or is contained in the training dataset. The aim is to train the generator until the 

discriminator cannot distinguish ‘fake’ from ‘real’ images. The generator can then be 

used to generate artificial images that appear realistic within the domain of the 

training data set. 
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I. 1. 2. b. DL in microscopy and image analysis 

The effectiveness of ANNs in computer vision tasks quickly led to interest from the 

microscopy and bioimaging community, which was further fuelled by additional 

innovations in the ANN architecture. One of the most significant ones was the 

introduction of U-Net by Ronneberger et al.111. This architecture consists of a classic 

CNN without the fully connected layers which, instead of classifying images, uses an 

up-sampling pathway that reconstructs an image output instead of a class label. This 

allows U-net-type neural networks to be easily trained with image pairs as training 

examples and was shown by Ronneberger and colleagues to be highly accurate in an 

image segmentation task111,112. U-Net has been one of the most popular DL 

architectures in the bioimaging community and has since been adapted for various 

tasks in microscopy and bioimage analysis113–116. More recently, the success of 

another type of DL architecture, the generative adversarial networks (GAN)117,118, has 

become increasingly popular for tasks in microscopy. GANs are trained by letting 

two networks, a generator, and a discriminator, compete against one another to 

generate a realistic image in the target domain and distinguish ‘fake’ from ‘real’ 

images. When the generator ‘fools’ the discriminator, it can be used to generate new 

images that appear extremely realistic in a certain domain, e.g. predicting a 

photograph from a drawing. GANs can be used for extremely diverse tasks. Unlike 

U-Net, they do not necessarily require paired images, which may have potential for 

tasks in which no paired images can be easily acquired (Fig. 3D). 

How such architectures and learning strategies as discussed above are applied in 

microscopy challenges and bioimage analysis will be the subject of the following 

sections. 

i. Denoising 

As explained above, one of the major outstanding questions in microscopy is how to 

balance the dilemma of phototoxicity and resolution, with existing techniques 

approaching their technological or conceptual limitations. DL methods can address 

this question in different ways. A primary focus of DL on this is to improve on the 

existing plethora of denoising algorithms to enhance image data. As previously 

mentioned, existing denoising algorithms suffer from the problem of bias introduction 

by making assumptions about the imaging process and the type of noise in the image. 
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However, noise in an image can have multiple different components which can be 

difficult to model correctly in composite. This includes the noise inherent in all 

imaging systems such as shot noise and read noise. Shot noise is caused by the 

random arrival of photons on the detector at a given signal intensity, a result of light’s 

particle-wave nature. The detection of these photons follows a Poisson distribution 

which for the amount of photons usually measured in imaging experiments is 

approximately normal119,120. The standard deviation of the signal due to shot noise 

therefore scales with the square root of the total number of detected photons, i.e. the 

square root of the signal’s intensity. The contribution of shot noise to the standard 

deviation of the signal intensity thus becomes more significant where the signal 

intensity is small but is comparatively small at higher signal intensities. Read noise is 

caused by the random displacement of electrons in the detector for example due to the 

temperature of the detector itself (thermal noise), which is then translated to a pixel 

with non-zero intensity. The intensities of these pixels are usually Gaussian 

distributed121, and unlike shot-noise are not dependent on the image signal. This 

means that even in the complete absence of light the detector will produce some 

pixels with a signal in the image, i.e. noise. The presence of these noise sources limits 

the dynamic range of images, specifically at small signal intensities where these types 

of noise can dominate, meaning that small differences in the signal intensity will not 

be distinguishable from noise. In microscopy, other sources can also change the total 

noise of the image. This includes for instance light from out-of-focus objects122 or 

autofluorescence123 or bleed-through from other fluorophores124,125. Furthermore, the 

contribution of each type of noise can differ between different samples or 

microscopes, which can make it more challenging to employ the same denoising 

method to differently acquired datasets. 

Instead, several groups have attempted to remove noise from microscopic images by 

training CNNs, often with a U-Net architecture1. If trained successfully, no 

assumptions about the nature of the noise in the image are required, and noise based 

on specific imaging scenarios could be removed by training the CNN on a suitable 

dataset. One such application is content-aware image restoration (CARE) which uses 

a U-Net architecture and paired images (noisy and low noise) to learn denoising113. 

Paired images of different specimens were created by imaging fields-of-view (FOV) 

with high and low exposure or different exposure times and training CARE on this 
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data. An application of this denoising approach is to image light-sensitive organisms 

under conditions with low phototoxicity, and denoising the resulting images using a 

CARE model trained on images acquired on fixed samples of this organism which 

can be done at higher light doses than live-specimens. Using CARE in this manner to 

denoise live-image data yielded high SNR images at greatly reduced light doses113. 

As expected, CARE also outperformed classic denoising algorithms in terms of the 

quality of the images produced. This was an early example of how DL could be 

exploited to address the crucial challenge of achieving strong signal at low 

phototoxicity in microscopy images, as outlined above. CARE was one of the first 

published DL-based denoising approaches for the bioimaging field which has since 

seen several similar approaches with slight differences in architecture37,129. 

A disadvantage of the supervised training approach used in CARE is the 

abovementioned dependency on paired training data which may be difficult to acquire 

under a microscope for some experiments, e.g. very dynamic systems. Hence, 

different groups have trained neural networks for denoising in an unsupervised 

manner126–128. The main assumption of unsupervised training for denoising is that 

image-noise, unlike image-signal, is pixel-wise independent, meaning that the 

contribution of noise to the intensity of one pixel does not depend on the intensities of 

any of the other pixels in the image. This was first exploited by Lehtinen et al. who 

showed that a network trained on pairs of two noisy images can learn the structure of 

the image noise while recognizing underlying structures126. The requirement of image 

pairs was removed entirely by further improvements by Batson et al. with the 

noise2self approach127. This demonstrated that removing random parameters from the 

input image and using an ANN to learn to exploit the remaining information to 

predict the removed information can outperform classic denoising approaches. A 

more specialised case of this approach was used by Noise2Void, which creates paired 

image patches where the input has one pixel removed128, in a so-called blind-spot 

network. By training a U-Net-like blind-spot ANN to predict the missing pixel, the 

model exploits neighbouring pixel information to reconstruct underlying structures. 

Since noise should be pixel-wise independent, the model can theoretically only learn 

the correct pixel intensity by recognizing the signal of the underlying surrounding 

structure, rather than the noise. Such denoising approaches can reach surprising 

performance and the advantage of requiring no ground-truth information make them 
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attractive for experiments where acquisition of low-noise ground-truth data is 

challenging, e.g. in timelapse acquisitions where it may not always be feasible to 

create paired images from the dynamic sample or to create a fixed training sample. 

 

 

ii. Super-resolution 

Beyond the ability to denoise images, supervised approaches can reconstruct super-

resolution images from diffraction-limited images. For example, one of the original 

applications of CARE was the prediction of super-resolution radial fluctuation 

(SRRF) images from diffraction-limited images113. Similarly, ANN’s are able to 

predict SRM images from conventional confocal microscopy images by using 

Stimulated Emission Depletion (STED) microscopy images as a high-resolution 

training dataset130,131. Using ANNs for super-resolution has been criticized within the 

bioimaging community, primarily because of the risk of undetected artifacts80 . In 

CARE, it could also be argued that predictions may enhance details but do not 

achieve true super-resolution because predictions have the same number of pixels as 

inputs, thus not generating images with more information than input images.  

Another advantage of DL for SRM is in single-molecule localisation microscopy. 

Although at least one approach has achieved SMLM resolution with a supervised 

paired image approach (ANNA-PALM)37, an alternative route is to train algorithms 

to reconstruct images from the localisation data from images, essentially the same 

information used to reconstruct SMLM images with existing algorithms130,131. 

However, once trained on such data, DL algorithms have been shown to be faster and 

more efficient in reconstruction than conventional reconstruction methods. The latter 

point means, for instance, that fewer frames are needed to reconstruct an SMLM 

image or that the model allows for a higher emitter density than before. Using DL 

here can, therefore, make it faster, cheaper, and less toxic to perform super-resolution, 

addressing key shortcomings of existing SMLM reconstruction methods. 

iii. Artificial labelling 

In addition to improving existing software methods for microscopy and post-

processing, DL offers exciting new avenues to tackle the challenges that persist in 
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bioimaging. A prominent example of the innovative tasks DL can perform is artificial 

labelling114,132. This task attempts to label cells completely in silico, rather than 

introducing labels into cells. The rationale behind this approach is that it would allow 

cells to be imaged under brightfield conditions without the risk of inducing 

phototoxicity through ROS creation. Individual compartments could then be inferred 

from the brightfield image. Two groups initially demonstrated that this is possible in 

2D and 3D and can be exploited from brightfield-to-fluorescence and EM-to-

fluorescence images, inferring cellular structures, such as nuclear membrane, 

nucleoli, plasma membranes and mitochondria. In one of these, label-free prediction 

(fnet), it was also shown that successful translation between different image 

modalities could be achieved by training on a relatively small dataset of only 30-40 

images. Artificial labelling has sometimes been used as a step in other DL pipelines. 

For example, in Lu et al., the prediction of labels is used to train a network to learn 

autonomously to separate different classes of objects in images133. 

A question that has yet to be convincingly answered by artificial labelling algorithms 

is whether they can detect features not present in a training dataset, i.e., discover truly 

‘new biology’. Similar questions are sometimes seen as the main weakness of DL 

algorithms in general. Although this caveat must be acknowledged, DL-methods for 

artificial labelling may have applications beyond their ability for label prediction. As 

Lu et al. have shown, artificial labelling can be used as a step in other analysis 

pipelines, other than predicting structures. Furthermore, DL-methods that translate 

between modalities can be used to track nuclei without labelling cells134. It is also 

possible to use such methods for virtual tissue staining, by translating from a 

brightfield or fluorescence microscopy image to a histopathology-like sample135 Such 

applications, which could be very beneficial for bioimage analysis, do not require 

‘new biology’ to be detected while fulfilling the promise of reducing the risk of 

photodamage via fluorescence or the fixing of samples using toxic chemicals. 

iv. Segmentation 

A common task in bioimage analysis where DL’s powerful object detection 

capabilities can be exploited is object segmentation. There are two types of 

segmentation which are used in computer vision tasks, one of which is semantic 

segmentation the primary aim of which is distinguishing a foreground structure from 
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background. This task consists primarily of separating objects of a specific class from 

the background, usually by creating a mask that outlines the edge of these objects. 

Semantic segmentation is used for example to identify large structures such as 

membranes in EM-data which stretch over significant areas of an image111,115. The 

other type of segmentation is instance segmentation which aims to distinguish 

individual objects by creating object masks around their edges. Instance segmentation 

is a common requirement for cell size measurements, cell counting, and tracking. 

DL for semantic segmentation is already heavily employed in biomedical imaging as 

it requires significantly less effort than manual segmentation55 and relatively less 

manual fine-tuning than existing segmentation methods136–138. Semantic segmentation 

usually requires inputs and target masks, which need to be manually or otherwise 

curated before training which is the most labour-intensive step in using DL for this 

purpose. However, after training, ANNs generally outperform classical approaches in 

accuracy and generalization55,111,139–141, especially when performing cell segmentation 

in cocultures of multiple cell types55. This has led to wide use-cases in histopathology 

where sections can be segmented to detect cancer cells in tissues such as colon 

glands142,143 and breast tissues144,145. 

One of the most common instance segmentation tasks in bioimage analysis is nuclear 

segmentation146. A difficulty in automating nuclear segmentation is separating 

overlapping or touching nuclei in a segmentation pipeline. This challenge in nuclear 

segmentation was specifically tackled by the StarDist method, which interprets masks 

of individual nuclei as polygons the edge points of which are used as training data for 

a U-Net architecture which learns to create the mask147,148. StarDist became one of the 

best nuclear segmentation algorithms, which more recent nuclear segmentation 

algorithms are only beginning to improve upon. By exploiting the architecture and 

backend of StarDist with a slight modification of the interpretation of the training 

masks, the SplineDist architecture has since been developed, which improves the 

versatility of the original StarDist and allows segmentation of shapes beyond the 

roughly circular shapes in the original StarDist149. This example also highlights how 

the open-source nature of some DL tools, such as StarDist which was documented 

and disseminated via GitHub, aids in the improvement and adaptation of algorithms 

by the community. 
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v. Object detection 

From their inception, DL methods were designed to solve object classification 

problems in image data sets. The increased performance of novel methods is driven 

primarily by image analysis competitions that provide very large datasets, containing 

millions of images with thousands of classes, and ultimately rank the architectures 

that achieve the best performance in identifying the classes in the images150–152. It is 

often the highest ranked architectures, such as ResNet65, VGGNet153 or GoogleNet154, 

which are then employed for research in tasks beyond the classes in the public image 

data for which these methods are developed. Bioimage analysts and histopathologists 

quickly identified the potential of using powerful classifier CNNs for microscopic 

image analysis. Compared to the often tedious process of manual annotation, such 

networks can automate classification while maintaining almost human-level 

accuracy1. This performance compares well with non-DL methods for classification, 

which rarely achieves human-like performance on complex datasets. Therefore, 

CNNs are already widely used in biomedical imaging, for example, to identify cancer 

cells in patient samples155–158. They have also shown promise in analysing high-

content subcellular feature screens in drug studies56,159,160.  

An important aspect of using ANNs for classification tasks is their potential to use 

features in the image which may be very subtle for human annotators to identify. 

Thus, CNNs can affect the type of data acquired by microscopists. For example, 

CNNs, which do not require fluorescence markers to identify certain cell types, may 

free up the requirement of users to introduce labels into their specimens or to image 

them fluorescently. Indeed, CNNs for classification have been used for just such 

purposes in identifying dead cells161, cell cycle stages162 or stem-cell-derived 

endothelial cells163. 

The output of standard classification tasks is usually a simple class label predicted for 

a whole image. However, for many bioimaging tasks, this is not sufficient as images 

may contain hundreds of cells and the exact locations of the classified cells in the 

image need to be identified for analysis. The task of establishing the location and 

class of objects is known as object detection. Here, the object is often ‘detected’ by 

drawing a bounding box around the object. Image classification and object detection 

are similar in their goal, and it is common to exploit features learned in classification 



39 
 

networks for object detection. To do this, one can use the trained weights of a 

classification model which can encode useful feature maps for a dataset, and add one 

or more layers which are trained to learn the correct location of bounding boxes via 

regression. Using powerful image classification architectures such as Resnet50, 

Resnet10165 or EfficientNet164 as a so-called backbone of such object detection 

methods is relatively common as these methods are well-tested and represent the 

state-of-the-art for classification tasks. They therefore promise to yield strong 

performance in object detection tasks as well. Thus, they are often the backbones of 

some of the best current object detection or instance segmentation architectures, 

which includes, for example, YOLOv2 (object detection)94, Detectron165 and 

MaskRCNN166 (Detection and instance segmentation). To use these networks in 

biology, they must be retrained by transfer learning on a relevant data set and cannot 

be applied directly ‘out-of-the-box’102,167,168.  

The main drawback of CNNs as classifiers or object detectors is the need to provide 

annotated training datasets. Firstly, this tends to require manual curation of large 

datasets with class labels and/or hand-drawn bounding boxes which may be a 

significant time investment. Secondly, there are currently several different formats for 

image annotation, and it can be difficult to use a specific method without the correct 

data format which may be difficult to create for certain data types. Finding a 

standardised format for image annotation or labelling remains an open problem when 

using existing CNNs for classification tasks. 
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Figure 4 – Examples of DL tasks in bioimaging – A) On top: classic algorithm for 

denoising/deblurring/resolution enhancement task. Below: i) ANN is trained on pairs 

of noisy-noise-free images and is used in ii) to denoise an unseen image. Once 

trained the network can be used in the same direction as the classic bioimaging 

algorithm. B) Three further examples of neural network tasks which would be trained 

the same as in A. (adapted from von Chamier et al., 201973). 
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I. 1. 3. On the benefit of democratisation of new technology for science 

 

Besides biochemical approaches, microscopy remains the main tool that gives 

researchers access to the micro- and nano-cosmos. Therefore, much of our knowledge 

about cellular biology is connected to technologies that have enabled progress in 

microscopy and bioimage analysis. Hence, it is interesting to understand what 

features a successful technological innovation in microscopy must have to maximise 

its impact on cell biological research. One way in which this can at least qualitatively 

be defined in research is by assessing the rate of discoveries made by researchers. 

This can perhaps be further specified by considering how ‘big’ a discovery is, with a 

breakthrough regarded as having higher ‘impact’ than several incremental additions 

to knowledge. Although it may be impossible to quantify the ‘impact’ of discoveries, 

this approach may help to explain how technology influences research. Hence, a 

simple answer to the impact of technology on research is the extent to which it helps 

researchers make discoveries. 

In the above exposition, several problems in microscopy and their current technology 

solutions are described. The impacts these technologies have had on biology differ 

significantly, but not only in terms of the nature of the questions they are trying to 

answer. While it may be argued that technology itself is transformative for science169, 

this diminishes the role of the community that uses the technology. In the influential 

‘Laboratory Life’ Bruno Latour observes that a lab's research output is intricately 

linked with the group’s access to cutting-edge technology. Indeed, access to 

technology can even make or break a scientist’s career prospects and is sometimes 

used as a gatekeeper to beat competitors170. In a competitive research environment, it 

is often the laboratories with access to the most novel tools that quickly impact their 

research areas. Although this initial impact of new technology is often stressed in 

retrospect, the true influence of a new technology on a research field is often not clear 

until it has reached most of its community. The technologies described above are all 

examples of this concept. In the first phase, they are developed by specialist groups 

with significant expertise and resources who want to solve a specific problem, e.g. the 

problem posed by the diffraction limit. In the next phase, the technology is assessed 

by other expert groups who might add features and replicate the technology. Usually, 

only after innovations have been assessed by the community of experts, are these 

tools adopted by the majority of users in the community who are not experts in the 
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technology, but who can exploit it (Fig. 5). In this phase, tools such as SRM and 

bioimaging algorithms develop their full impact for the community, as they benefit 

from the full diversity of questions its users can ask and contribute to the creation of 

new knowledge on a wide scale. Hence, whenever novel technologies are developed 

there is an immediate drive to make them cheaper or simpler in use. This common 

practice within the scientific community will from hereon be referred to as 

‘democratisation’.  

The impact of a technology can therefore be at least qualitatively assessed via the 

degree to which it becomes democratised. For example, the use of personal 

computers and hard drives with terabytes of storage has had a tremendous impact on 

the research performed daily by almost the entire bioimaging community (Fig. 5). In 

fact, the impact of the personal computer for microscopy is virtually impossible to 

assess because it has become the standard within a few decades. In contrast, SRM 

techniques and novel microscopy tools such as LLSM are difficult to use, expensive, 

less versatile, and therefore much harder to grow within the microscopy community. 

Yet, even SRM and LLSM have become significantly more accessible in recent years 

and a much larger proportion of users now has access to these tools than during the 

initial phase of their development, with many methods now commercialised or 

accessible via open-source resources171,172 which will likely continue to grow their 

impact on biological research. 

The phenomenon of technologies spreading in communities has been studied 

extensively in the social sciences and economics as ‘diffusion of innovation’. Under 

this theory, Rogers identifies factors which can prevent a technology from being 

adopted by user-subgroups and thus fail to become ubiquitously used173. These 

include among others: 

- the failure to convince groups of prospective users of the potential or purpose 

of an innovation,  

- the complexity of the innovation, i.e. how easily and financially feasible it is 

to use the innovation.  

Overcoming these obstacles is the role of democratisation. This also applies to the 

most recently introduced technological innovation in microscopy. 
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Figure 5 - Diffusion of innovation in bioimaging – Uptake of technological 

innovation goes through different phases (x axis). To enter each phase, barriers to 

further uptake need to be overcome (vertical blue lines). DL is in an early phase as 

many DL tools are still mostly distributed and used among developers (innovators) 

with some (early) adopters for specific tasks. Other tools have already progressed 

further in terms of their adoption and their impact. ‘Impact’ is added here (red) to 

symbolise how new technologies can continue to produce novel results for the 

community even after community saturation is reached. The exact impact as 

saturation is reached can be difficult to assess (dotted lines). The figure is adapted 

from the original proposal of diffusion of technology by Rogers, et al173. 

 

When interpreting the advent of DL in microscopy from the perspective of the 

concepts of diffusion and democratisation, it likely sits between the first and second 

stages. However, some potentially ground-breaking techniques remain unused by 

most bioimaging communities and continue to be developed and used primarily by 

groups with significant expertise in DL. Taking three DL papers with big impact in 

the bioimaging community, those introducing CARE113, StarDist148 and fnet114, and 

searching the papers citing these methods for use of the respective techniques in their 

research, it becomes clear that these tools, though widely cited by other method 

developers, were not yet widely used in the bioimaging community at the time of 

writing, though StarDist appears to have comparatively more users than the other 

methods (Fig. 6). 
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It can therefore be argued that despite the increase in the number of publications and 

their relative impact, in this case measured via citation, DL has currently not reached 

a level of uptake where it can develop its full potential for the research community, in 

contrast, for example, to image analysis tools such as ImageJ/Fiji. Phrased differently, 

it has not yet been fully democratised. 
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Figure 6 - Citations and use of DL methods for bioimaging – 'total citations’ 

include reviews and any other citation found in a search using Google Scholar. 

‘used in paper’ indicates the use of the tool in a paper which cites the original 

publication. ‘excluding comparisons’ includes bioimaging papers, rather than 

publications which only use the tool to compare their own tool with. (Results are 

based on citations up to 23rd March 2021). 
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I. 1. 3. a. Barriers in the democratisation of DL for bioimaging 

What are the reasons for the relatively low uptake of DL tools? Although the 

relatively small uptake of DL in the bioimaging community can be explained simply 

by the novelty of the technology, one can identify at least five reasons which are 

hampering the uptake of this specific technology in bioimaging which can be related 

to some of the obstacles which Rogers observed in his work on diffusion of 

innovation. I summarise these obstacles for DL in the bioimaging field as follows: 

1. Dissemination problem – since DL is a comparatively novel technology, the 

existing tools are primarily disseminated between groups that develop DL tools and 

have a high degree of expertise in this field. Groups new to the field still often require 

the help of developers to utilise even some popular tools. This suggests that existing 

methods may often not be intuitive enough for novice users to independently employ 

on their own data. 

2. Knowledge problem – This is directly related to the above point. Many biologists 

and even bioimage analysts are currently not familiar with DL and its jargon. 

Currently, users will often need at least an understanding of the underlying coding 

language, usually Python, to start using most published DL tools. While the number 

of users in the bioimaging community using Python packages, such as NumPy174 and 

SciPy175 is likely growing, using DL, and optimising tools for custom data requires 

additional knowledge of basic neural network concepts, which is still rare in the 

bioimaging community. Therefore, there has been a push within the community to 

give wider access to DL to novice users. Currently, the main strategy has been to 

provide access to trained models that can thus be applied by users. This includes U-

Net111,176, cDeep3m177, DeepCell Kiosk178, DeepMIB179, NucleAIzer180, YAPiC181, 

ImJoy182, the recent releases of ilastik54 and CellProfiler183 and the Noise2Void128 and 

DenoiSeg184 Fiji plugin. Furthermore, there has been an increase in interest in 

creating 'model zoos', which are collections of models trained on a wide variety of 

datasets that users can download and use locally on their data182. However, very few 

tools allow users to use DL easily for training, arguably the key to successfully using 

this technology. Achieving this will again often require a good understanding of 

Python and DL. There exists a need for easily accessible didactic DL tools for 

training novice users in the bioimaging community in this new technology and tools 

which do not require learning a new (code) language to use. 
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3. Hardware problem – DL is resource-intensive. DL tools are most valuable to users 

when they train neural networks on custom datasets. While it is possible to use 

models trained on other datasets for prediction, the performance of such models will 

almost always improve upon retraining on a dataset that represents the user's use case. 

If not, DL models are likely to produce suboptimal results or may even predict 

artefacts that are learned and incorrectly introduced from an unrelated dataset. 

Therefore, training is often essential for the successful use of a DL tool in a research 

project. However, this may not be simple for many users because DL training, 

specifically backpropagation and gradient descent, used with large datasets, will only 

be practically feasible if it is GPU accelerated. Setting up a DL workstation on-site 

would for most labs be a significant expense (1000s of pounds) and even setting up 

remote resources can incur significant costs. Furthermore, running a GPU 

workstation can be energy intensive, training a model on a Tesla P100 GPU for 4 

hours can use up to 1kWh, consuming relatively large amounts of energy adding not 

only to the running costs of the lab but also increasing the environmental impact of 

the lab’s research. 

4. Reliability Problem – DL has limitations that somewhat set it apart from other tools 

commonly used in bioimage analysis, such as deconvolution or image reconstruction 

algorithms. Specifically, poorly evaluated neural networks can produce undetected 

artefacts and hallucinations80. Problematically, these hallucinations can be 

challenging to trace back through the complex architectures of neural networks, 

making the identification of the error-source challenging or even impossible. This has 

led to the characterisation of DL algorithms as ‘black-boxes’ which are challenging to 

analyse by users, and has led to scepticism towards DL tools in parts of the 

bioimaging community185. While such criticisms are often justified, the creation of 

artefacts in image reconstructions is not unique to DL61. Some of these can be 

addressed if DL tools are supplemented with concise and robust quality controls that 

allow users to identify problems quickly. Yet, such quality control steps may vary 

between tools and it is often up to the developers how these quality controls are 

implemented, how much guidance is given to users in establishing a quality control 

pipeline and how quality metrics can be interpreted. To improve uptake and trust in 

DL tools, quality control steps should be built into every pipeline and should be easy 
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and quick to use, readily interpretable and comparable between methods. This is 

currently not the case for the existing menagerie of DL tools. 

5. Dataset problem – Many currently existing DL algorithms are based on supervised 

learning approaches and these approaches scale strongly with dataset size in terms of 

performance. Hence, many networks will only reach peak performance if they are 

trained on an appropriately sized dataset, often containing hundreds to tens of 

thousands of training pairs. Creating and curating such datasets for neural network 

training imposes a significant time and resource constraint on laboratories. 
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I. 2. Motivation of this project 

As a new technology, DL is yet to enter the phase of maximal uptake in the 

community (Fig. 5) which is currently limited by the above obstacles. However, DL 

has massive potential for many significant problems for the bioimaging community, 

from challenges directly related to imaging (phototoxicity, resolution) and to image 

analysis (classification, segmentation). By the above reasoning, arguing for the 

benefit of democratisation of technologies to unleash their potential for discovery and 

thus science, it can be assumed that the democratisation of DL could be 

transformative for many researchers in the bioimaging community. 

In this project, I have set out to create an avenue that could contribute to the 

democratisation of DL by addressing the limitations mentioned above in the field. In 

the following chapters, I will lay out how the above problems were addressed in the 

ZeroCostDL4Mic platform which is the main product of this research.  
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I. 3. Summary of main results 

In the first chapter, I will explain how the problems outlined above influenced the 

creation of the platform and specifically how these considerations informed the 

platform's interface.  

The main achievements of the work presented in chapter 1 are:  

- Creation of the ZeroCostDL4Mic GUI, including a standardised workflow 

and detailed explanations of each step. This allows novice users to access DL 

without code interaction and gives access to GPUs through the exploitation of 

Google Colab – addressing problems 1, 2 and 3. 

- By implementing different DL-methods, I can compare key features of the 

current DL-code and assess what characteristics make tools better for the 

bioimaging community. This gives a deeper understanding of Problems 1 and 

2 and potential solutions. 

The second chapter deals with the quality control problem in the DL tools currently 

used in bioimage analysis. I demonstrate how we implemented Quality Control (QC) 

in the platform created in chapter 1 and show how it can be applied in the platform to 

facilitate the use of DL in bioimaging.  

The main achievements of the work presented in chapter 2 are: 

- By applying standard quality metrics, I show that the ZeroCostDL4Mic 

platform can be used successfully as a powerful DL deployment tool, 

replicating many of the behaviours expected from ANNs. This means that 

despite its limitations, it can be used to train and deploy DL models which can 

produce meaningful results for research projects, and not only as a teaching or 

learning tool.  

- I show that DL performance depends not only on dataset size, but also on the 

data type. 

- Furthermore, I find limitations in the currently used quality metrics employed 

in image-based DL methods that may hamper their ability to determine DL 

performance. 

- Integration of Quality Control is designed to directly address problem 4. 
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In the final chapter, I show an example of how the platform can be used for an 

emergent image analysis problem (unmixing fluorescent labels to free up imaging 

channels in microscopy). 

The main achievements of the work presented in chapter 3 are:  

- The tools included in ZeroCostDL4Mic allow users to easily explore datasets 

for their own analysis challenges, beyond those the implemented methods 

were developed for. This is important if the platform is to engage a broad 

variety of users and use-cases. 

- The outputs from the notebooks give enough detail to thoroughly compare 

different methods and datasets, giving insights both into the DL methods and 

the datasets used to train them  

Finally, I will discuss how the project can inform the integration of future DL tools 

into bioimaging, and what specific aspects of implementation should be considered. 

This includes insights gained about the use of quality metrics and the types of data 

sets for which DL can be used effectively and whether there are domains in cell 

biological imaging data for which DL solutions may currently remain unsuitable. 
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II. Results Chapter 1 –  

Creating the ZeroCostDL4Mic 

Platform 

II. 1. Overview of ZeroCostDL4Mic 

The key aim of this project is to accelerate the uptake of DL tools by the microscopy 

community. As a novel technology, its democratisation can fuel new research and 

lead to discoveries. In the Introduction, I identified 5 problems for the 

democratisation of DL technology: 

1. Dissemination Problem 

2. Knowledge Problem 

3. Hardware Problem 

4. Reliability Problem 

5. Dataset Problem 
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Recognizing these obstacles and the benefits to the bioimaging community in 

overcoming them was the inspiration for the development of the ZeroCostDL4Mic 

platform. In this chapter, I will describe how this platform was developed, starting 

with the creation of the standardised DL workflow and its step-by-step integration 

into a graphical user interface (GUI). However, it is helpful to describe briefly what 

ZeroCostDL4Mic is and what it achieves to understand the significant efforts 

required to create it. Therefore, before explaining the details of its creation, I will 

briefly outline the ZeroCostDL4Mic platform. For full details, see our publication 

[134]. 

 

ZeroCostDL4Mic is a repository of notebooks created in Google Colab, which, 

respectively, implement a published DL method for applications in bioimage 

analysis. Its key aim is to make these methods more accessible to various users in the 

bioimaging community and DL-novices.  

Colab has several features that make it an attractive solution for problems related to 

the accessibility of DL tools. The most important one is that it provides free access to 

GPUs, which is essential for training neural networks, as discussed in the 

introduction. This allows users to fit DL-methods to their data, without investing 

financial and time resources into procuring GPUs or GPU time. Colab notebooks 

follow the format of the widely used Jupyter186 notebook for Python methods, but 

come equipped with hundreds of software packages pre-installed and are available 

through a web-browser, i.e. require no installation on a local machine. Like Jupyter 

notebooks, Colab notebooks can contain text cells to introduce, explain, and annotate 

sections of code. The code itself is placed in code cells that execute a block of code 

when initiated by the user by pressing the play button of the code cell, in the 

notebook interface. In contrast to Jupyter notebooks, ZeroCostDL4Mic exploits a 

feature specific to Colab, which is its ability to hide the code in code cells behind text 

or interactive graphical modules (Fig. 1) by using the Colab forms modules. This 

means that all ZeroCostDL4Mic notebooks, in their default state, are entirely text- 

and image-based, thus allowing users to use any implemented DL method on the 

platform without code interaction. This addresses the important obstacle of 

accessibility because the backend code runs smoothly and intuitively. The code-free 

implementation of different DL-methods is a key achievement of this project, but, as I 

will explain below, it was also one of the central challenges during its development. 



53 
 

To appeal to a wide user base in the community, the methods we implemented in 

ZeroCostDL4Mic primarily address current challenges in bioimaging. The core 

methods released in ZeroCostDL4Mic are for denoising (CARE 2D/3D113, 

Noise2Void 2D/3D128), super-resolution (Deep-STORM131), image segmentation (U-

net 2D/3D111,115, StarDist 2D/3D147,187, SplineDist149, CellProfiler183), object detection 

(YOLOv294) and artificial labelling (label-free prediction/fnet 2D/3D114). In addition, 

we implemented methods which at the time of ZeroCostDL4Mic’s creation had few 

applications in bioimaging188,189 but which are so versatile that many applications are 

conceivable. These are the pix2pix117 and cycleGAN118 methods, which use 

generative adversarial networks and can, in theory, translate images between any two 

modalities. 

The ZeroCostDL4Mic workflow and GUI are agnostic to the underlying methods, 

which means that all notebooks have an almost identical appearance and can be 

navigated in the same way by users. It allows methods beyond the core ones 

described above to be brought into the same format. In fact, this has already occurred, 

and the repository continues to grow 

(https://github.com/HenriquesLab/ZeroCostDL4Mic). 

 

To summarise, ZeroCostDL4Mic addresses several of the problems identified in the 

previous chapter. Colab removes the financial and technical constraints of gaining 

access to powerful hardware, though with some limitations in terms of compute time 

and storage (see II.2.4). The GUI built around existing methods provides code-free 

access to powerful DL-tools with many uses in bioimaging. Furthermore, the 

workflow steps and annotations are specifically designed to educate users and 

promote DL's best practices, which will aid in increasing the appeal and user base of 

DL in bioimaging tasks to improve their democratisation. 

 

The development of this platform required the review and use of many different tools 

and their adaptation to the project’s desired format. In this chapter, I will outline how 

the central challenge in this project was solved: creating a consistent and accessible 

pipeline for a wide range of tools, without code access. The chapter follows the 

structure of the ZeroCostDL4Mic workflow. In each section, I first introduce the 

steps' objectives, which were always designed with the goals of simplicity and 

accessibility, and then outline how and how well these aims were ultimately achieved 

https://github.com/HenriquesLab/ZeroCostDL4Mic
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in the ZeroCostDL4Mic notebooks. To avoid redundancies, since several methods 

required very similar implementations, in this chapter, I focus on only 4 different 

notebooks, which represent the different main types of tools encountered in this 

project and cover the whole spectrum in terms of their ease-of-adaptation. These 

notebooks are for the CARE, U-Net 2D, fnet, and YOLOv2 methods. Furthermore, 

since this project was developed in collaboration with Romain Laine and Guillaume 

Jacquemet, these were the methods in which I was the only (YOLOv2, fnet) or a 

major (CARE, U-Net 2D) contributor. Therefore, for all steps with significant 

differences between these methods and their implementation, I treat them separately. 

Showing how these methods were implemented provides enough detail to understand 

how other notebooks in the project were developed and how further methods could be 

adapted in the future. 

In the final section of this chapter, I will summarise the key achievements and discuss 

the insights gained from adopting a wide range of methods for use in 

ZeroCostDL4Mic. I will discuss which specific barriers in the code of current DL-

methods were identified and how these influenced the creation of the presented 

platform. Additionally, it is instructive beyond this project, as future DL tools could 

incorporate the features that I identify here as crucial for the accessibility of DL for 

bioimage analysis. 
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II. 2. Building the ZeroCostDL4Mic notebooks step-by-step 

II. 2. 1. Core DL-workflow for bioimaging tasks 

Unlike conventional image analysis algorithms, DL workflows usually require 

significant user interaction before being used for custom tasks. The central task 

within this workflow is the training step that determines the model's performance for 

the analysis tasks. However, preceding a model's training, users will have to curate a 

training dataset, bring the dataset into a format suitable for the model to be trained, 

e.g. adjusting the size or datatype of the images, and choose hyperparameters for 

training. Different DL applications vary significantly in how the steps preceding, 

following, and including training are implemented in code. In some cases, these steps 

can be challenging to perform and often require the user to understand the developer 

code, which can be a challenging task even for experienced scriptwriters.  

The variety in how developers implement the steps of DL workflows makes it 

challenging to apply the knowledge acquired in one DL tool to a different one, a 

potential source of confusion for users unfamiliar with DL. We thus set out to 

standardise the workflow steps of DL tasks so that methods for such different tasks as 

denoising and object detection can be performed by a user using the same steps. After 

deciding on the core methods to be implemented in the ZeroCostDL4Mic platform, 

we established a standard workflow that all notebooks should follow which contains 

7 steps: Installation, Google drive mounting, uploading datasets, creating data and 

model objects, executing training, performing quality control on trained models, and 

using models for batch processing on unseen data. If datasets are already uploaded to 

the user’s google drive, this pipeline contains only 6 separate steps the user will 

usually engage with. The pipeline and its appearance in the ZeroCostDL4Mic GUI 

are shown in Fig. 7. 
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Figure 7 - The ZeroCostDL4Mic GUI and workflow – A) Shown are the four 

primary interactive features used in the ZeroCostDL4Mic GUI (from top to bottom: 

Text input field, tick box, slider and drop-down choices) to allow users to input 

parameters without code interaction and how this is implemented in the backend 

code of the notebook, using the forms module. B) (Left) The intended standardized 

workflow. (Right) How the GUI is intended to incorporate the workflow steps, with 

user entering paths and playing cells in a code-free environment. 



57 
 

In Colab, each step is separated into a distinct code block that is played individually 

by the user. Instead of running the whole script at once, this separation allows the 

user to engage carefully with each step of the pipeline, which aims to help them 

familiarise themselves with the workflow and best practices of the DL pipeline. 

After the workflow steps and the idea of using a code-free interface were established, 

I could begin the implementation of different DL methods in ZeroCostDL4Mic. This 

presented the central challenge of this project and is best summarized by the question: 

How can a standard DL workflow be created with the same user inputs while the 

underlying methods perform DL very differently? And how can this be achieved 

without significantly changing the methods themselves?  

 

The effort to find these solutions varied significantly among the DL methods 

implemented and often depended on how the authors of the method implemented 

their specific DL tool. This directly influenced the ease with which different methods 

could be adapted for this project. In the following sections, I will show how we found 

solutions to implement all the DL methods chosen for ZeroCostDL4Mic for each step 

in the workflow. As I explained above, I focus on a subset of methods, firstly because 

these are the methods that I was primarily involved in developing for this project. 

These represent all the main types of backends encountered in this project. This 

includes CARE, which uses the CSBDeep type packages (also used in StarDist and 

Noise2Void), U-Net which is a Keras based method which is entirely created within 

the ZeroCostDL4Mic notebook (similar to Deep-STORM), YOLOv2 which is also 

based on Keras and uses separate configuration files, and fnet which uses a 

PyTorch190 backend and required several custom functions to be writing in the 

notebook to be implemented (similar to pix2pix and cycleGAN). By focusing on 

these exemplary methods, I avoid showing redundant implementation aspects that 

would be nearly identical for methods of the same ‘type’.  
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II. 2. 1. a. Method Documentation 

Aims: To use a DL-method, the user needs to know quickly what it is for and what 

they need, beyond the notebook, to use it. Therefore, each notebook should briefly 

explain the purpose of the method and specifically the exact data type they need and 

how it should be structured to use the notebook without errors. In addition, the user 

must reference the publication, authors, or resource from which the notebook is 

adapted. 

Each ZeroCostDL4Mic notebook begins with a text section that explains the purpose 

of the notebook and the authors of the original code (Fig. 8). Next, the user is guided 

through the types of datasets they need to provide. This differs between methods. 

While methods created for bioimaging purposes (e.g. CARE, U-Net, fnet) generally 

require .tif files, either as single-channel 2D images or as .tif stacks, others (e.g. 

YOLOv2) were designed for .png files. Furthermore, we give additional details about 

the datasets with which the notebooks were tested, such as their dimensions, number, 

and bit-depth. These values can guide the user to properly curate their dataset for the 

notebook.  

The section on data type also contains instructions about the nomenclature 

conventions and folder structure of the datasets, which is usually necessary for 

supervised learning to construct training pairs of images. By default, developers 

choose different ways to achieve this. For example, in fnet, training pairs could 

theoretically be contained in any folder under any name, but training pairs need to 

have their paths stored in a path .csv file under columns named input and target. Most 

other methods require that the data pairs be at least in the same parent folder and 

require that the images in a training pair have identical names. For the 

ZeroCostDL4Mic notebooks, we chose this type of naming convention as the 

standard method, as we deem it instructive for users to engage carefully in dataset 

curation and encourage users to rename and structure their datasets in the same way 

for all notebooks, including those which by default do not require this from users. 

The outer appearance of the introductory cells is identical in terms of formatting 

between all notebooks and is designed to give a sense of familiarity once a user has 

used any of the notebooks and switches to a different one. This should promote users' 

confidence in their ability to use different notebooks and quickly understand the steps 
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necessary to curate their datasets and begin training neural networks. The standard 

layout is also useable as a template for new methods developed using the 

ZeroCostDL4Mic GUI. 
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Figure 8 - Documentation of the ZeroCostDL4Mic notebooks - Summary of the 

key sections in the introduction of the notebook for the example of CARE. This set-

up is identical for all ZeroCostDL4Mic notebooks. 
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II. 2. 1. b. Installation of DL-methods 

Aims: In this step, the DL method is installed in the Colab environment. After 

playing the cell all the packages and functions needed by the DL method or elsewhere 

in the notebook should be installed. This ensures that all functions used in the 

notebook are available, no matter which cell is played after the installation cell. This 

is necessary so that cells later in the workflow do not depend on cells higher up in the 

workflow and can be played independently. 

 

i. CARE 2D 

Like other CSBDeep methods, CARE is directly installed as a Python package in the 

/usr/local/lib/python3.7/dist-packages directory in Colab, with which users will 

generally not interact. Any methods necessary for CARE can be called after 

installation via its custom functions.  

 

ii. U-Net 2D 

Some published tools are built using basic Keras, a high-level language using 

TensorFlow191 as a backend. Keras is native to the Colab environment and requires 

little effort to integrate into the notebooks. In the case of U-Net 2D, it was possible to 

create a function in the installation cell using Keras functions. This means that the 

functions defining the network architecture, building the training dataset objects, and 

defining the execution of model training and prediction could be defined here. For 

this purpose, the code for U-Net was simply transferred from a public repository into 

the installation cell, where any adjustments could be made easily. In the later cells of 

the notebooks, including those discussed below, this means user input could be 

simply used as input arguments for the functions defined in this cell, simplifying the 

implementation. 

 

iii. YOLOv2 

The YOLOv2 implementation in ZeroCostDL4Mic also uses Keras as a backend, but 

the functions used to build the model, dataset objects, training, and other functions 

are complex and in their public repository are defined on many separate Python 

scripts. Transferring these functions into the installation cell would have been 

significantly more challenging than for the U-Net notebook and would have been 
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difficult to navigate for users. Instead, the YOLOv2 method is cloned from its GitHub 

repository into the Colab environment via the /content folder. From here, all YOLO 

functions can usually be accessed in the notebook after a Python import. The /content 

folder of the Colab notebooks created in each new runtime disappears at the end of 

the runtime. Although this means that changes to files in the content folder cloned 

from GitHub are lost when the notebook is restarted, this prevents files from 

occupying space on the users’ drive, thus frees space for data that can be used for 

training. Compared to building methods entirely in the notebook, accessing functions 

via GitHub is less flexible and changes to the source code, often require editing files 

‘on the fly’. For example, originally, the YOLOv2 model training function does not 

contain learning rate decay. However, a decaying learning rate can help models 

converge to minima as the slope of the loss function decreases and is commonly used 

in DL76. However, including this in the training function in YOLOv2 required adding 

multiple lines of code to the function that builds the model in a script file. To 

facilitate this editing without user interaction, I created a function that overwrites the 

document and adds the lines of code if they are missing. The new training function 

can now be used with learning rate decay (Fig. 3 bottom). Similar adjustments were 

made in other functions in the YOLO notebook (not shown).  

 

iv. fnet 

fnet uses PyTorch as a backend, another Python-based deep learning package that 

currently competes with TensorFlow based methods for primacy in the DL field. 

Pytorch is not natively supported in the Colab notebooks. Hence, fnet, and other 

PyTorch based methods, need to be installed together with all necessary PyTorch 

packages, specifically, compatible CUDA packages, which ensure smooth 

performance on Colab’s GPUs. Similar to YOLOv2, the fnet method is too complex 

to be feasibly transferred directly into the Colab notebook. Therefore, any changes to 

the fnet functions, such as user inputs, need to be edited in script files or Python 

scripts defining the training functions. Therefore, the installation cell in fnet contains 

replacement functions similar to those of YOLOv2. 

 

Since many DL-methods are not as regularly updated by developers as Colab, there is 

a moderate risk that package versions included in the Colab environment such as 

NumPy or matplotlib are more recent version than those which the respective DL 
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methods require. Therefore, it was necessary in almost all notebooks to replace Colab 

native packages by uninstalling the incompatible and installing the compatible 

version of these packages. However, to update the packages, the notebook runtime 

needs to be restarted, which usually requires user interaction and would be a 

confusing step for a novice. Hence, to avoid users having to restart the Colab runtime 

manually, the notebook is crashed in a controlled way to restart the runtime and 

update the required packages, without user input. After the crash, all packages, 

including any re-installed packages, can be imported into the runtime via import.  

Due to this requirement, the installation section in the notebooks is three-tiered. The 

first cell (1.1.) installs all the packages that are not native to Colab; this usually 

includes the respective DL-package or repository, CUDA and torch packages, and 

any required versions for compatibility with the DL method. After installation, the 

notebook crashes and is automatically restarted, without user interaction. This step is 

denoted by a text cell to explain to users why the notebook crashed. Finally, packages 

are imported into the runtime, and any additional Python functions are defined. The 

frontend of the GUI and some typical features of the backends are shown in Fig. 9. 
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Figure 9 - Step 1 – Installing different DL-methods into the Colab environment - 

A) The first cell installs the DL methods if they are not native to Colab. Only methods 

built entirely (U-Net) in the notebook require no methods installed in the notebook, 

via cloning repositories from GitHub or by installing Python packages. The frontend 

of the GUI looks identical for all different DL or coding backends. (Other functions 

installed to ensure that the methods run correctly in the notebook are not shown here 

for simplicity) B) The Installation cell crashes the notebook, via the command shown 

on the right. This is explained to the user in a separate cell which requires no further 

interaction. C) Any methods or functions used in the notebook are installed in this 

section. For Keras-based methods, functions and classes are imported from the 

native libraries in Colab. Any functions required for the notebook can be defined 

here and can use parameters which are convenient for implementation in the 

notebook (e.g. Training_source, Training_target etc.). The functions shown here are 

only an example of the full code in the notebook. Methods from the CSBDeep project, 

e.g. CARE, can be imported from the previously installed Python package (see A) 

which is sufficient to run the notebook. In methods such as fnet, are not generally 

imported into the notebooks but use script files in the repository. Hence, any changes 

in parameters, such as the number of pixels or specific numerical values can be 

inserted into these functions via the replace function, written for the notebook. The 

function ensures that if the ‘pattern’ argument is not found, the functions remain 

unchanged, ensuring that functions are not repeatedly edited. The approach used for 

YOLO uses a combination of all methods where some methods are imported, some 

are imported from the repository, and some are via ‘replace’. 
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II. 2. 1. c. Mounting the Google Drive 

Aims: This section aims to enable users to easily get access to their datasets in the 

notebook with minimal effort. 

To use Colab for customised tasks, on datasets provided by users, we determined the 

most efficient solution to be to access user data via Google Drive. Alternatively, 

datasets can be loaded into the Colab session directly via a Colab specific load 

function. However, this solution is inconvenient as it is prolonged and depends on the 

internet connection bandwidth. Uploading files in this way would also need to be 

repeated each time the runtime is restarted. Another alternative is loading files from 

GitHub repository and cloning the repository into Colab. However, this would require 

the user to already have or need to set up a GitHub account. This would run counter 

to the goal of providing the most straightforward possible access to the platform. 

Google Drive is a cloud storage platform that is already widely used and was 

therefore deemed suitable for most users. In this notebook step, the user plays a cell 

named ‘Play the cell to connect your Google Drive to Colab’ (Fig. 10). In the 

backend, the cell uses a Colab command to open a hyperlink and an input field. The 

user follows the hyperlink and the instructions to create an access code entered in the 

input field. This will connect the user’s google drive with all included files and 

folders to the notebook. To use files in a respective DL-method, the user can now 

access any datasets contained in the Google drive by navigating on a menu on the 

left-hand side of the notebook, which is saved in Colab’s /content folder, which is the 

default directory established for every Colab runtime. 
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Figure 10 - Step 2 – Connecting to a Google Drive - In the GUI, the user plays the 

cell which opens the authorization code dialogue. By following the instructions, the 

user generates an authorization code which they can enter into the dialogue and 

mount their google drive to the Colab notebook. The lower cell shows how this is 

implemented in the notebook and that the Google drive will be available as gdrive in 

the notebook’s ‘/content’ folder. Note that the exact steps are subject to change due 

to updates in how Google Colab accesses users’ Google Drive. 
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II. 2. 1. d. Entering Training paths and hyperparameters 

Aims: Before training a neural network on a custom dataset, the data users will 

usually curate for training needs to be converted into a DL compatible format, which 

means a Python object that is compatible with the training function of the respective 

method. Similarly, a neural network needs to be instantiated as a Python object and 

several parameters, such as the validation split, need to be defined by the user to set 

up the training process. Combining these steps into one section would allow users to 

see almost all the necessary parameters and variables necessary for training in a 

single cell. The goal is to allow user to enter the paths to an input and target dataset 

and the training parameters into GUI, which should be sufficient to create the dataset 

and model objects compatible with the respective DL method (Fig. 11). The user 

should also choose a name for their model. Under this name, we create a folder where 

all relevant files, including the model weights, for the trained model can be accessed 

later.  

Since the platform is aimed to be conducive to users’ experimentation with DL 

models, we also want to ensure that the training parameters and the most important 

aspects of the training dataset (i.e. number of elements, size) are saved in a readable 

format, allowing the user to review or replicate the training on the model. Finally, the 

user should be able to see an example of their dataset before the next step to ensure 

that the data was correctly loaded into the notebook.  
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Figure 11 - Envisioned flow of steps 3-4 - Converting user datasets to DL-objects: 

The user provides a curated dataset with paired images or images and annotations. 

The GUI will have a consistent format where training paths for the datasets and 

model hyperparameters are entered. This is the only inputs the user needs to give. 

The backends in the different notebooks use different functions to convert these 

instructions from the GUI into dataset and model objects, ready for training. 
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i. CARE 2D 

A convenient way to create a dataset object compatible with a DL method is to use 

tools created by the authors of the method themselves, which convert files, given as a 

path variable, into the required format. Such functions exist for several methods used 

in this project, specifically those of the CSBDeep ‘family’ (CARE, N2V, StarDist). 

As these methods can take a path variable as input and give NumPy arrays that are 

compatible with the respective neural networks as output, the implementation in a 

Colab notebook was comparatively simple. The paths to the training dataset are 

inserted by the user in the ‘Training_source’ and Training_target’ (as shown in Fig. 

12) fields and are used as input arguments in these custom functions to convert them 

into a CARE compatible format. The neural network model object is also created 

using a CARE-specific function which is imported from CARE’s Python package. 

The training parameters are defined via a configuration library (Python dict) which 

stores key-value pairs for each hyperparameter. To implement this into the GUI, the 

parameters defined in the input fields by the user are used as the values for this 

configuration library, called config (similarly for StarDist 2D: Config2D, and N2V: 

N2VConfig). 
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Figure 12 - Step 4 - Converting User inputs to DL-objects in CARE 2D notebook 

– A) CARE functions imported as shown in fig.3 can be used to convert user inputs 

from folders into the required dataset objects. Additional parameters, here patch 

size and the number of patches is used in another function to convert the ‘rawdata’ 

into patches automatically. Training parameters, e.g. ‘number_of_epochs’ is used 

directly as input to create a config object which is used later to create the model 

object for training (shown on bottom right). This command is executed in the 

notebook in the Create the model and dataset objects cell (shown on top right)) 

which is played directly after the training inputs. (For simplicity not all parameters 

available in the notebook are shown). B) Output shown after playing the parameter 

cell in CARE 2D notebook. 
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ii. U-Net 2D 

To convert paths and training hyperparameters into compatible object in the U-Net 

notebook was possible by creating Python functions that convert the user’s paths and 

chosen validation splits into Keras data generator objects. Here, Romain Laine and I 

created custom functions that first split the dataset into patches and then used these 

patches as NumPy arrays as inputs for a data generator function built around the 

standard Keras datagenerator object (Fig. 13). An advantage of using the Keras data 

generator is that it creates training batches of data ‘on the fly’, i.e. during training, in 

contrast to making all the patches at once and then passing them to the network. This 

minimises the use of the available RAM capacity in Colab, which is helpful, as RAM 

was identified as one of the limitations in Colab134. 

 

 

 

 

 

 

 

 

Figure 13- Step 4 - Converting User inputs to DL-objects in U-Net 2D notebook – 

A) Custom Python functions defined in the installation section for U-Net (shown in 

fig. 3) are used to create the necessary data objects and the model, using the user’s 

parameters directly. B) Output shown after playing the parameter cell in U-Net 2D 

notebook. 

 

 



74 
 

iii. YOLOv2 

The implementation of methods that define objects via script files is more challenging 

within the ZeroCostDL4Mic GUI, as it is difficult to edit a file without explicit user 

interaction. 

In YOLOv2, a data generator function takes its arguments from a config.json file and 

then converts the path variables into dataset objects like those created in the U-Net 

notebook. Creating this file from scratch in the notebook would not have been trivial, 

given the aim of a code-free GUI. Hence, the default config.json file must be edited 

by inserting the users’ input variables when the cell is played. To do this, I used shell 

search functions (sed -i) to locate the path variable field in the config.json and 

replaced it with the user input (Fig. 14A). This approach was chosen because it does 

not replace parameters which already exist in the file. This protects the file from 

being edited again if the user plays the cell multiple times while using the same or 

similar variable names. 
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Figure 14 - Step 4 - Converting User inputs to DL-objects in YOLOv2 notebook - 

A) The paths (top) and hyperparameters (e.g. penalties unique to the YOLOv2 

notebook) are edited via shell search command into a ‘config.json’ which will later 

be used to create the model (see fig. 10) and dataset objects. YOLOv2 requires the 

user to calculate anchors for their datasets (blue box) via shell command and copy 

pasting the result into the ‘config.json’. To automate this without user input, the 

shell output is saved as a Python string (‘output’) and anchors are extracted from 

the string through the coordinates of the brackets around them. B) The main 

features of the ‘config.json’ before and after playing the above cell, showing the 

example paths and new anchors, and class names inserted into the file. C) Output 

shown after playing the parameter cell in YOLOv2 notebook. Left: Number of 

objects per image, Middle: Frequency of classes in dataset, Right: Training image 

with bounding box and class annotations. 
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iv. fnet 

A similar approach as for YOLOv2 was used to implement label-free prediction or 

fnet. In fnet, the training function requires at least two files, a configuration file (as 

YOLOv2), named train.sh, and a train_csv file that contains the path to each training 

image pair, separated into columns named train_signal and train_target, respectively.  

Additionally, the fnet method by default does not include a validation split, and the 

option to use validation is instead designed to be manually inserted into the train.sh 

file. Additionally, using validation in this method requires an additional .csv file 

(val_csv) that contains the validation data paths. Creating or editing these files 

without user interaction required several additional functions to be written to make 

these methods useable (Fig. 15). As above, I used shell commands to change the 

train's parameters (as shown above).sh configuration file. However, I wrote additional 

Python functions that could replace or insert full lines into existing script files as 

several files in the fnet method needed to be updated. Debugging was simpler when 

using Python functions to replace lines in Python or other script files. Since it must be 

assumed that users play cells multiple times when choosing parameters, e.g. when 

deciding to rename a model, it also needed to be ensured that these functions did not 

repeatedly insert parameters into the files, as this might have made them unreadable 

by the functions required to build the dataset and model objects. After thoroughly 

testing that the replacement and editing functions performed the desired insertions, 

without throwing errors, they were repeatedly used to change parameters and paths in 

the script files. Since these functions operate behind the GUI, the user interface can 

remain consistent with other notebooks. 

Unlike U-Net or the CSBDeep methods, the training dataset and model objects are 

not created after the user chooses the parameters. Because fnet is specifically 

designed to pass the configuration script to its training function rather than Python 

objects, the model and dataset objects are created only once the training cell is played. 

To maintain consistency between notebooks, the cell which constructs the dataset and 

model objects in U-Net and CARE (Create model and dataset objects) is used in the 

fnet notebooks to create the dataset .csv files with the paths to the dataset. The cell is 

therefore called (Create the dataset files for training) 
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Figure 15 - Step 4 - Converting User inputs to DL-objects in fnet notebook - A) 

The user enters the paths to datasets as in other methods. In the backend, the paths 

are used to create two csv files, one for training and one for validation which carry 

the model’s name. The files used for training and validation are split automatically 

from the file folders, using the user’s choice for validation split (lower GUI). The 

paths to the csv files, not the actual file folders, are then inserted into a ‘train.sh’ 

script file. B) The path .csv file for the training dataset, created in A. C) The 

‘train.sh’ script before (left) and after editing (right) in A. D) Output shown after 

playing the parameter cell in fnet notebook. 
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v. Saving a dataset and hyperparameter summary as pdf file 

After choosing training datasets and a set of parameters and training a model, I 

noticed that it is often difficult to determine precisely which parameters were used to 

train a model. However, for experimentation with models across days or weeks, this 

is crucial and having access to these parameters can be essential to compare models' 

performances and make improvements. Furthermore, to ensure reproducibility of any 

DL experiments, it is often necessary to give version numbers of the software and the 

type of hardware used. While some methods that use TensorFlow create an events file 

that can extract some important features about training (even though this can be 

cumbersome), details about hardware or versions are usually not included in these 

files and need to be found by the user. To give all users, regardless of their skills to 

find parameter values and version numbers the ability to perform analysis across 

weeks on different models and to report on results quickly, I decided to save this 

information and details about the datasets and models used in a human-readable pdf 

file. This output could then also be used easily as a template for any publication of the 

results, which would simplify reproduction by other users which would be a very 

attractive feature for the project, as it aims to teach novice users how to train their 

DL-models. Initially, this file was intended to be saved after training, but the user 

would only get access if the training cell is played and executes error-free. To 

accommodate the possibility for such errors or time-outs of the notebook, this pdf is 

first saved after the parameter choice cell and updated with the time required for 

training after training completes. This means that after playing the cell in this section 

of the notebook, the user will have created a pdf file which contains the most 

important training settings in the folder chosen under the model_path. The basis for 

the pdf creation function (named pdf_export) is identical in each notebook, with small 

adjustments necessary in each notebook to accommodate method-specific parameters. 

Fig. 16 shows the pdf export of the CARE 2D notebook which is saved after training. 
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Figure 16 - Creation of a pdf summary of training and parameters - The document 

exported for the user after choosing parameters and playing the cell (here, for the 

example of CARE 2D). These sections are conserved across all notebooks. The 

version of the pdf export shown, with the training time displayed becomes available 

only after training completes. Similarly, the augmentation option is only displayed if 

this option is chosen in the notebook. 
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II. 2. 1. e. Execution of Training 

Aims: In ZeroCostDL4Mic, the training cell must train the respective neural 

networks without user input, but we also need to create a set of outputs that can be 

used to evaluate the model after training (Fig. 17A). Specifically, we wanted to save a 

.csv file after training which would contain the losses of the model per epoch and the 

learning rate used per epoch. Viewing losses after training is a standard step in 

performance evaluation in DL tasks (and is also done in ZeroCostdL4Mic’s QC step) 

and TensorFlow even provides this option in the tensorboard GUI. However, 

tensorboard is only viewable within the notebook and it is not easy for users to 

quickly extract the loss information from tensorboard. Exporting simple .csv files 

was therefore thought to facilitate the ability of users to analyse their models after 

training as these are human-readable and can quickly be used for quantitative studies.  

Finally, the training section needs to create the trained model object in the location 

indicated by the user in the previous section. 
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Figure 17 - Step 5 – Execution of Training in ZeroCostDL4Mic - A) The model 

objects (or other files) created in previous steps should are to be used for training 

the model, by playing a single ‘Start Training’ cell. All outputs from training are 

saved in the model folder (blue). B) In CARE and U-Net notebooks, the Start 

Training cell executes training functions which directly create a Keras model object 

from which the loss history is extracted after training. In fnet, ‘Start Training’ 

executes a simple script from the fnet repository which automatically saves model 

checkpoints and losses in the model folder. YOLOv2 executes a training function 

defined in the notebook, part of which creates the loss .csv file after training is 

complete, here, also including the mAP metric in addition to losses. (The full 

training function can be viewed in the YOLOv2 notebook: 

https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/mast

er/Colab_notebooks/YOLOv2_ZeroCostDL4Mic.ipynb 

 ) 

https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/YOLOv2_ZeroCostDL4Mic.ipynb
https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/YOLOv2_ZeroCostDL4Mic.ipynb
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i. CARE 2D 

In CARE, the training function can be called from the model objects (model_training) 

and creates a Keras history object that can be used after training completes to extract 

the losses and learning rates stored in a csv file once per epoch (Fig. 17B top). Hence, 

after the model object and dataset objects are created in the previous section, training 

can be initiated by calling the training functions on the model object. Implementation 

was simple as no user input is required and the user will only need to play the training 

cell to train the CARE model. During training the best weights, i.e. those weights 

which reduce the loss on the validation dataset after each epoch, are updated and 

saved in the folder called model_name in the parent folder model_path.  

 

ii. U-Net 2D 

In U-Net 2D, a standard Keras training function (fit_generator) is used to train the 

model on the data created by the data generator defined in the previous section. Most 

of the users chosen parameters can be added directly as input arguments of the 

fit_generator function. As in the CARE notebook, losses can be extracted from the 

history object after training. 

 

iii. YOLOv2 

In YOLOv2, several changes to the default training function were needed to align it 

with the goals outlined for this section. This was necessary because in the YOLO 

repository two different functions are used for training: one is a high-level Python 

training function definition that is designed to be run as a shell script. This function 

calls the underlying second training function which belongs to the YOLO class object 

that creates the neural network model. This second function is an adaptation of Keras’ 

default training function (as in U-Net 2D). Running shell scripts in the Colab 

notebook can make it difficult to access the file objects created during training such 

as the loss histories and thus requires changes which allow such useful files to be 

stored by for the user. In fnet, which by default also runs training via shell script, 

changes did not need to be made because its training function automatically stored 

loss .csv files which was not the case for the YOLOv2’s default shell training 

function. I therefore transferred the code of this high-level training function to the 

Colab notebook, so it could be run as a standard Python function without shell 

commands. This allowed me to add code that would create loss csv files, exploiting 
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the same Keras history object as CARE and U-Net, in this case as an element of the 

trained YOLO class object.  

Inserting the training function into the notebook also facilitated further changes useful 

in ZeroCostDL4Mic. Specifically, I added mean average precision (mAP) as an 

additional validation metric for training. As a relatively intuitive metric, inspecting 

mAP per training epoch makes it easier for users to interpret how well the model 

learns to classify unseen data (validation dataset) than the relatively complex loss 

evaluated during YOLOv2 training94. This would also allow for saving two different 

models at the end of training, with the minimal validation loss and the one with the 

best validation mAP. Since neither losses nor mAP on the validation set during 

training will predict the model's performance on unseen data, using these two metrics 

gives users more opportunity to choose between model weights that optimise 

performance. Adding mAP required changes to the underlying training function of 

the YOLO class which is created in the frontend.py of the YOLO repository. No 

mAP evaluation function was included in the main branch of the YOLO GitHub 

repository. Therefore, I used a side-branch that included mAP evaluation as a custom 

Keras callback and included it into a cloned repository in Colab. This was necessary 

as the side-branch contained several bugs not present in the main branch and could 

therefore not be used as the default version in the ZeroCostDL4Mic notebook. I, 

therefore, cloned the mAP callback script from the side-branch and copied it into the 

main repository in Colab during installation. To use the mAP callback, all YOLO 

files needed to be updated, e.g. by adding the mAP callback to the imported functions 

at the start of each script, specifically YOLO’s frontend.py required for training. 

These changes all occur during installation without interaction by the user, i.e. occur 

code-free. Due to these changes, after training, the user of the ZeroCostDL4Mic 

YOLOv2 notebook has access to all training losses and mAP values as .csv files after 

training and to models with weights optimising either validation loss or mAP (Fig. 

17B bottom). 

iv. fnet 

In fnet, the execution of training usually requires running a Python script via shell 

command. This process can be implemented in the Colab environment by adding an 

exclamation mark to the beginning of the line that executes the Python training script. 

The Python script (train_model.py) then creates the model and dataset objects by 

parsing the user's input from the configuration script (train.sh) and the csv files 
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containing the paths to the training and validation datasets, all of which are created or 

edited during the parameter and training path choices (see above) and the following 

cells (Fig. 17B, third from top). 

In fnet, no history object is created and only the trained model is available after 

training, with no Python objects stored in the runtime. However, the losses are stored 

during training by default in fnet in two dynamically updated .csv files (for training 

and validation) updated dynamically. However, unlike CARE and U-Net, fnet’s 

validation losses are not evaluated per epoch because fnet executes training 

differently from the other networks used in ZeroCostDL4Mic. Instead of dividing the 

dataset into a specific set of batches repeatedly used over multiple epochs to train the 

model, in fnet the dataset is split into a much higher number of unique batches 

(although redundancy can be expected) used only once. Therefore, the training of fnet 

is essentially one very long epoch in which eventually all the batches of the data set 

are ‘seen’. Improvement of the model weights is not usually seen per step (i.e. batch), 

but over long batches. Hence, I set the evaluation of validation batches to occur only 

once every 100 steps, which means that the validation loss.csv has 100 times fewer 

entries than the training loss.csv. This is the only key difference in the output from 

the training cell for users in fnet compared to the other notebooks where all losses are 

stored in one csv file. Learning rates are not stored for fnet as it is not changed during 

training, i.e., there is no equivalent to the reduction of the learning rate once the loss 

reaches a plateau (which is done, e.g. in CARE and U-Net).  
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II. 2. 1. f. Performing Quality Control 

Aims: Quality Control (QC) is a central feature in ZeroCostDL4Mic with several 

uses within the platform and importance for democratising DL methods (discussed 

more in chapter III). QC aims to provide users with enough information to judge 

whether a trained DL-model can be trusted to perform a task on an unseen dataset. In 

ZeroCostDL4Mic, we want to achieve this in the following way:  

- The user chooses a model they want to evaluate in the GUI 

- The user curates a test dataset with inputs and targets, separate from the training 

dataset, and uploads this dataset to the Google Drive. The user can then input the 

paths to these test input and test target images in the GUI. 

- The QC should provide the following results:  

 - training history of the model 

 - predictions on the provided dataset (QC dataset) 

 - quantitative evaluation of differences between model predictions and targets 

 - example representation of differences between predictions and targets 

(qualitative evaluation) 

These results should be displayed in the notebook and need to be easily accessible by 

the user for later use. This envisioned workflow for QC is shown schematically in 

Fig. 18. 
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Figure 18 - Envisioned flow of step 6 - Quality Control (QC) step in 

ZeroCostDL4Mic - The user curates a QC dataset from the same domain as the 

training dataset and has access to a trained model. In the GUI, the user provides 

paths to this dataset and chooses either a trained model from the current runtime or 

the path to a weights file from a trained model. In the notebook backend, the model 

is used to create predictions on the inputs, calculates metrics (different metrics for 

different notebooks), and where applicable also creates and saves error maps. All 

results are saved inside the model folder. 
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The first step of the QC section is implemented almost identically across all 

notebooks. The user first selects the model to be evaluated. Here, we implemented a 

choice for the user: either using the most recently trained model in the Colab runtime 

(using a checkbox) or choosing a model previously saved by the user (by inserting the 

path to the folder in which the model is stored in). The former option is only available 

to the user if they have trained a model in the notebook in the same runtime; the latter 

can also be used if an old model needs to be evaluated without training, providing 

independence of the section from the rest of the notebook. In this cell, the notebook 

will create a new QC folder in the ‘model_folder’ (if Option 1 is used) or the 

‘QC_model_folder’ in the latter case and will overwrite any existing files under the 

same path. This ensures that only the files from the current QC session are stored and 

avoids any possible confusion with previous QC trials (Fig. 19A top). 

Next, the .csv files with the training and validation loss which are stored from the 

training section (see above) are used to plot the loss history of the model which helps 

identify potential overfitting during training. Here, we plot both on a linear scale and 

logarithmic scale, in the latter case to visualise potentially incremental changes in 

losses (Fig. 19B, log scale not shown). These are consistent across notebooks with the 

exception for the fnet notebook, which stores fewer validation loss values than 

training loss values (see above). GAN notebooks that do not store classic losses are 

evaluated differently. 
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Figure 19 - Step 6 – part 1 - Extracting and displaying Losses in the QC section – 

A) The user has the choice between a model trained in the runtime (tickbox) or a 

saved model (QC_model_folder). In the backend, the QC_model_folder is split into 

its parent and daughter folder or the model_name and model_path chosen in the 

input cell of the runtime (fig.13-15) are used. Any existing QC folders are removed. 

Next, the losses are extracted from the loss .csv files which are stored after training 

when the user plays the second cell Play the cell to show figure of training errors. 

This backend is identical across all notebooks, the only exception being fnet, where 

the losses are extracted from two separate .csv files. The losses are then displayed 

below the cell as output. B) example losses from a YOLOv2 training. For simplicity 

the losses are shown only in logarithmic scale, although linear scale is also 

displayed in all notebooks. mAP is only displayed in the YOLOv2 notebook. 
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Figure 20 - Step 6 – part 2 – Calculating Quality metrics and error maps in the 

QC section - The user enters the paths to the QC inputs and targets in the GUI. In 

the backend, the model performs predictions on the inputs. Images are then 

compared using quality control functions SSIM, PSNR and RSE and error maps are 

calculated (see Fig. 21). All results are saved in the model folder. Average metrics 

are saved as .csv file in QC folder of the model. Circled in blue are comparisons 

between source and target which are specific to denoising models. For other 

image-to-image methods, this comparison is not evaluated because inputs and 

targets cannot necessarily be compared as noisy and low-noise images can be.  
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In the second part of the QC, the user inputs their QC input and target dataset paths 

used to calculate metrics and display examples for visualisation (Fig. 20 top). The 

evaluation of loss metrics, e.g. between predictions and targets, depends on the 

modality of data each method uses. It is therefore sensible to discuss these metrics 

one method at a time. 

 

i. CARE 2D 

In denoising methods for bioimaging, such as CARE, inputs, targets, and predictions 

all represent images from the same modality, usually a fluorescence microscopy 

image. To calculate the model's performance, we need to primarily evaluate the 

differences between predictions and targets, which will show how close the network 

approaches a ground-truth. However, we can also evaluate the difference between 

input and target which will show how much closer the prediction is to the target than 

the noisy input. We chose three widely used image quality metrics to evaluate the 

differences in the ZeroCostDL4Mic notebook: normalised root-mean-squared error 

(NRMSE), peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The 

first two evaluate pixel-wise differences between the images. NRMSE gives the result 

as a raw calculation of these differences. PSNR gives this result as the ratio between 

error and signal, giving a slightly more insightful predictor of image quality. SSIM 

evaluates the images based on the similarities between structures on the images, 

which is based on a larger field of view around each pixel in the image. (For details 

on the calculation of these metrics, see Methods in Chapter 2). 

The model first needs to run predictions to calculate these metrics. The next section 

describes in more detail how the prediction is executed. The predictions are saved in a 

prediction subfolder within the above-created Quality Control folder.  

Once the predictions are created, the quality metrics can be evaluated. All three 

metrics are calculated for each pair of prediction-target and input-target and are stored 

in a .csv file in the model's ‘Quality Control’ folder. In addition to these metrics, we 

also create error maps. Since the images are evaluated pixel-by-pixel (in NRMSE and 

PSNR, directly and in SSIM, via the surrounding pixels), we can visually display the 

differences between the images as ‘maps’ (Fig. 21). The reason is that the metrics 

alone give only an average value of the model's performance on the image, which 

may disguise nuances, such as better or worse predictions in different image regions. 
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Error maps should highlight these differences or help detect artefacts or weaknesses 

which could easily be overlooked when studying only the metrics. The same map can 

be used for the NRMSE and PSNR metrics as both metrics essentially use the same 

values for their calculation (see Methods in chapter 2). However, instead of averaging 

over the image we show the root-squared-error (RSE) between the images pixel-by-

pixel. This represents an intuitive way to display the unsigned difference in pixel 

intensities between the images. For the SSIM maps, we use the structural_similarity 

function of the scikit-image.metrics package192 which is based on the SSIM metric as 

defined in 193,194. The function is integrated into a custom SSIM function created for 

the ZeroCostDL4Mic notebook, which simultaneously calculates the average SSIM 

and SSIM maps. 

All the resulting error maps are saved in the Quality Control folder. An example for 

the quality control evaluation is shown to the user after the cell finishes execution. 

Here, the user will see an input-target pair, the model’s prediction on the input, and 

RSE and SSIM error maps between input-target and prediction-target pairs, together 

with the average metrics displayed for the example image.  

Together, these results should provide sufficient quantitative and qualitative 

information on model performance to decide whether the model is suitable for 

denoising unseen datasets or if a different model needs to be trained.  
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ii. U-Net 2D 

U-Net is designed for semantic segmentation challenges, specifically to distinguish 

background from structures of interest. One of the most common evaluation metrics 

for such segmentation challenges is intersection over union (IoU), which measures 

how many predicted pixels are correctly allocated as foreground/object or 

background, compared to number of all the predicted pixels (for details, see Methods 

in chapter 2)195. The higher the value the better the prediction. 

To evaluate the IoU for U-Net, the output of the non-binary prediction by U-Net 

models first need to be converted to a binary segmentation map which we do by 

thresholding. Here, the QC is used to determine the threshold yielding the highest IoU 

between prediction and target (Fig. 22). This is done by converting the prediction into 

a binary image in a loop where each iteration increases the signal threshold by one 

and calculates IoU for each threshold. This is done for each image in the QC dataset, 

yielding unique threshold curves for each image and an average best threshold for the 

whole QC dataset. The predicted segmentation map is shown side-by-side with the 

target segmentation and an overlay between the two, allowing the user to visually 

investigate the differences between target and prediction (Fig. 22).  

Figure 21 - Example QC Outputs of CARE 2D notebook – An equivalent figure 

is shown to the user after playing section shown in fig. 14 for CARE 2D. 
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iii. YOLOv2 

In most object detection challenges, the metrics used for performance evaluation are 

the number of false positives, true positives, and false negatives as these are crucial 

for real world problems of object detection. Determining these values requires a 

definition for what counts as a positive detection. In the ZeroCostDL4Mic notebook, 

we used the IoU between predicted and target bounding boxes with a threshold of 0.4, 

i.e. at least 40% overlap, and a correct predicted object class to count a detection as a 

true positive. On the contrary, predicted bounding boxes with a lower IoU to a 

ground-truth bounding box count as false negatives and predicted bounding boxes 

with an IoU of 0 count as false positives. From these initial values, additional metrics 

can be calculated that can give information about the model’s performance (Fig. 

17A). In many object-detection challenges, the standard metrics which are evaluated 

are the recall and precision which are calculated as89: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

where TP – true positive, FP – false positive, FN – false negative  

Figure 22 - Example QC Outputs of U-Net 2D 

notebook – An equivalent figure is shown to the user 

after playing section shown in fig. 14 for U-Net 2D. The 

best threshold for the prediction is calculated 

automatically (top left) and is used for the overlay 

image and the calculation of the IoU score (lower 

right). 
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The so-called precision-recall curve is an additional metric to evaluate the 

performance (Fig. 17B). To calculate the values on this curve, each object predicted 

on the QC dataset is ranked by the model’s confidence that it predicted it correctly. 

Next, the recall and precision of the model are calculated one by one. As items with 

lower confidence scores are evaluated, the precision of the model usually decreases 

until every predicted object has been evaluated in this way. When recall and precision 

are plotted against each other in this way, it gives the user an additional quality 

feature of the network which can be interpreted as how well the model predicts 

correctly the existence and identity of difficult objects in the dataset which would 

usually be located lower in the confidence list. High precision for low recall is 

expected for objects which are relatively easy to classify. In contrast, it is a better 

indicator of performance if precision remains high as a larger number of objects is 

taken into account. Aside from the qualitative information drawn from such p-r 

curves, the quantitative measure that can be extracted from this curve is the average 

precision of the model on the object class, which is determined by calculating the area 

under the p-r curve. Once these curves are estimated for all classes to be evaluated in 

a dataset, the mean value of these gives the mean average precision (mAP) of the 

model on the dataset which summarises all the other metrics. The other metric that 

more directly summarises the true and false positives and false negatives is the F1 

metric which is calculated as: 

𝐹1 = 2 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

and can give the user additional information to quickly compare the performance of 

the models with each other. 

The evaluated metrics for all objects and each class individually and the p-r curves for 

all classes are calculated for YOLOv2 and shown as output below the QC cell (Fig. 

23A-C) and are stored as .csvs and .pngs, respectively, in the evaluated model’s 

‘Quality Control’ folder.  



100 
 

 

 

 

 

 

 

 

iv. fnet 

In the fnet notebook, the evaluation of quality metrics follows closely the route of the 

CARE notebook, using the same image quality metrics as above (Fig. 24). The key 

difference is that only prediction vs. target errors are evaluated because the modality 

of the ground-truth, usually a label-free brightfield or EM image and the predicted 

output are too different to be evaluated by the values of pixel intensities which the 

NRMSE, PSNR and SSIM metrics are based on. In the example below, the QC cell 

shows an example of input, target, prediction, and the error maps and metrics 

between target and prediction. Hence, the QC section in fnet could almost be 

completely taken over from CARE, apart from the prediction step, the 

implementation of which differs significantly between both methods, and which is 

discussed in detail in the next section. 

Figure 23: Example QC Outputs of YOLOv2 notebook – An equivalent figure is 

shown to the user after playing section shown in fig. 14 for YOLOv2. A) The table 

shows the user the most important quality metrics numerically. B) The p-r curves for 

two classes investigated in this example (dividing or division complete). C) Visual 

depiction of model predictions versus the input and the target annotation. 
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Figure 24: Example QC Outputs of fnet 3D notebook – An equivalent figure is 

shown to the user after playing the section shown in fig. 20 for fnet 3D: The same 

metrics are calculated as for Fig. 21, but in fnet no metric between input and target 

is calculated as images tend to lie in different domains (e.g. brightfield and 

fluorescence) which are not always commensurable. 
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II. 2. 1. g. Execution of Prediction and saving results 

Aims: In the prediction step, the previously trained models need to be useable to 

process and save unseen data for the user. The prediction step should therefore 

consist of three inputs by the user which should be sufficient to achieve this: The 

model to be used (Prediction_model_path), and if possible, which model weights (i.e. 

in YOLO, best validation loss or best mAP), the path of the raw data (Data_folder), 

and the path where the predicted data should be saved (Results_folder) (Fig. 25). 

After the prediction, the user should see at least one example of an input and 

prediction pair, as a minimal assurance that the predictions appear reasonable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25 - Envisioned flow of step 7 – Executing Predictions on unseen data - The 

user provides an unseen dataset and a trained model. In the GUI, the user gives the 

path to this dataset and the path to where predictions should be stored and which 

model to use, either from within the runtime or a previously saved model. The 

different backends perform predictions using their respective functions. All results are 

then saved in the ‘Results_path’ indicated in the GUI. 
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The prediction section is consistent throughout notebooks and the three input 

arguments are equivalent throughout. The user first chooses a model folder, and as in 

the quality control section has the choice between using the model currently used in 

the session, i.e. trained in the runtime, via a checkbox or to use a previously trained 

model saved in the user’s drive by inputting the path to the model folder in the input 

field in the GUI. 

 

i. CARE 2D 

In CARE, predictions are made after loading the model from the weights file saved in 

the model_folder using CARE's custom CARE class and leaving the configuration 

argument empty. The path to the model is deconstructed into the base directory and 

the daughter directory of the model and used as input arguments to the CARE 

function which creates the model from the weights file found under this path. 

Predictions are then performed on this object via the predict function on this CARE 

class model object. Because the predict function operates only on individual images, 

it needs to be run in a loop that cycles through the Data_folder. Since predicted 

images are not automatically saved, this is also done within the same loop (Fig. 26A – 

CARE 2D).  

 

ii. U-Net 2D 

In U-Net, the model is loaded via Keras’ load_model function using the 

Prediction_model_folder as input. Predictions are performed using a custom 

prediction function designed for the ZeroCostDL4Mic notebook. This function uses 

as input arguments simply the Data_folder and the previously loaded unet model 

object. Here, the predictions are appended to a list saved in the Results_folder via a 

custom saveResults function created for this notebook (Fig. 26A – U-Net 2D). 

 

iii. YOLOv2 

In YOLOv2, several significant changes were made to the repository’s default 

prediction function. This was deemed necessary because the original outputs of the 

prediction function were images with bounding boxes drawn on to the image together 

with the class names and confidence levels for each bounding box. These outputs are 

nearly unusable for bioimage analysis as these images contain neither the coordinates 
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of the bounding boxes nor are these images editable, allowing the user to edit 

predicted bounding boxes and fine-tune or remove any predictions. 

Hence, I created a new prediction function with several sub-functions that would not 

only save the predicted images but would also create a list of all bounding boxes, 

their predicted classes, and confidence levels and save them in a .csv file which can 

be read, for example, into ImageJ’s or Fiji’s ROI manager and thus viewed and edited 

for bioimage analysis.  

In the YOLOv2 predictions are again performed in a loop because the prediction 

function of the YOLO class, based on Keras, only predicts on individual images. 

However, in the YOLOv2 notebook, this led to significant memory leakage, which 

often overloaded the notebook’s RAM. Therefore, I added an additional line to the 

prediction loop, which would clear the session's memory after each prediction. This 

allows the notebook to run smoothly and perform hundreds to thousands of 

predictions without crashing (Fig. 26B).  

 

iv. fnet 

To run predictions in fnet, the paths to the files to be predicted need to be inserted 

into a .csv file as in training. We therefore first need to create a .csv file in the 

Prediction cell of the notebook using the files in Data_folder to fill the rows. Next, we 

need to edit the predict.sh script (or predict_2D.sh for fnet 2D) which needs to be 

filled with the user’s inputs on the Prediction_model_folder and the path to the csv 

file. Furthermore, the prediction file assumes that the data folder contains training 

files with targets. To avoid the fnet from searching for these files in an additional .csv 

file which we do not need to create, we need to remove this line from the script to 

avoid errors. All these modifications are done using shell search commands, similar 

to those used in the installation cell.  

By default, fnet creates a Prediction folder in the Results_folder, which is filled with 

one folder for each image each of which contains three images, the input, the 

prediction, and a ‘target’. However, it is not clear from the fnet annotation why there 

is a target in the prediction folder. These files do not contain the original file name 

and are simply named 00, 01, 02, etc. To bring the results into a more intuitive folder 

structure, the predictions from each folder created in this way by fnet are copied into 

the user’s Results_folder under the original filename with the suffix predicted. After 

all files are copied in this way, the fnet-created Prediction folder is deleted, leaving 
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the user with outputs in a similar format as in the other notebooks with no additional 

inputs (Fig. 26B). 

 

 

 

  

 

 

Figure 26A - Step 7 – part 1 – Executing prediction on unseen datasets: CARE 

and U-Net 2D  - A) Common GUI for all notebooks. B) Common and method-

specific backends of the DL-methods in the notebooks for CARE and fnet. 
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Figure 26 B - Step 7 – part 2 – Executing prediction on unseen datasets: YOLOv2 

and fnet - Continuation of previous figure showing the backends of the YOLOv2 and 

U-Net notebooks’ prediction cells. 
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II. 2. 2. Auxiliary steps to overcome barriers of DL in bioimage analysis 

With the implementation of the above steps into a GUI built in Colab, we created a 

core pipeline that allows users to easily apply different DL-tools without significant 

interaction with a code environment. This directly addressed four key problems that 

limit access to DL: the lack of access to inexpensive hardware acceleration, the lack 

of technical knowledge of coding, the lack of tools useable by non-developers, and 

the absence of simple quality controls for DL methods. However, these core steps 

could be enhanced to address a further issue: the difficulty in obtaining large, curated 

datasets required to train DL-methods. In ZeroCostDL4Mic, we can at least alleviate 

the need for very large datasets by providing access to data augmentation and transfer 

learning within the workflow of the notebook. 

 

II. 2. 2. a. Data augmentation 

Aims: One of the barriers to using DL-tools is the limited access to large enough 

datasets with paired images or image-label pairs, as these are time-intensive in 

curation. One way in which this problem can be mitigated is by augmenting data 

through image transformations. Several augmentation packages exist for Python. 

However, like DL-tools themselves, augmentation pipelines developed for DL often 

require an understanding of code, limiting access to this potentially performance-

enhancing step. Here, we wanted to facilitate the augmentation by implementing it in 

a code-free form, allowing the user to make various choices for the augmentation.  

As inputs, this cell should simply take the datasets which the user originally chose in 

Section 1 of the notebook. The augmented images can be either saved in the notebook 

or used for training without saving. However, if saved, they should not be mixed with 

the original dataset to prevent this dataset from changing across different model 

training sessions. The augmentation cell needs to be optional since users may not 

want to enhance their dataset artificially. Therefore, this step must include an option 

for users to skip the step entirely or to actively choose that no augmentation is 

desired. 

In the ZeroCostDL4Mic notebooks, the augmentation steps follow immediately after 

the choice of the main training parameters.  
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i. Making augmentation optional 

To make the augmentation cell optional, the first possible user input is a tick-box that 

gives the user the option to select the use of augmentation or opt-out. The choice will 

determine the value of a Boolean variable (True if selected and False if un-selected). 

By default, the augmentation choice Boolean is set to False at the end of the previous 

cell (the training parameter choice, see Fig. 12-15). Defining the variable before the 

augmentation cell allows the user to skip the augmentation cell altogether, without 

leading to later VariableErrors when the augmentation choice Boolean is called in the 

code.  

 

ii. Augmentation Options 

Next, the augmentation box includes variable adjustable parameters which are 

represented by sliders or dropdown options, allowing interaction without requiring 

the user to type in the code. By using sliders, we limit the choice and number of 

possible augmentations. This prevents users from inserting unsuitable values that 

could lead to datasets too large for the Colab environment or might result in 

redundant augmentations, i.e., rotating an image twice by 180 degrees.  

Implementing augmentations in a standardised manner was challenging, as the 

datasets to be augmented may vary in data type, dimensionality, and size. 

Furthermore, not all augmentations may be equally suitable for different 

functionalities of the DL methods. For example, an augmentation that adds noise or 

blur to a denoising dataset might introduce biases into the images, making the 

network’s performance on a real dataset worse. In biological contexts, it is important 

to choose augmentations that lead to instances of images mimicking the original data. 

For example, networks that learn the shapes of a certain cell-type might not benefit 

from augmentations that significantly change the cells' shapes, e.g. under shearing 

augmentations. 

The next most conservative transformation for biological data is translation. The 

image is shifted in a specific direction, and the rest is filled either by mirroring the 

remaining content or leaving it blank. Using translations, images can be arbitrarily 

augmented. However, this approach is limited by how far a shift is needed to 

constitute a significant change.  
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Given these considerations on augmentation type and dataset, the augmentation 

options provided in each notebook differ slightly between methods. However, there 

are augmentations that are likely to be almost universally useful for bioimaging and 

included in all notebooks. All notebooks provide at least rotation and mirroring (flip) 

augmentations, since from an image information standpoint, many bioimaging 

datasets can be assumed to be orientationally invariant (i.e. whether a cell is ‘upside-

down’ or ‘left-to-right-flipped’ should not change the information content of the 

image) (Fig. 27A). Hence, these geometric augmentations can be interpreted as 

relatively conservative as they do not change the shape of the objects on the images 

but only their orientation representing realistic variations in biological data. 

Geometric augmentations can be easily implemented on NumPy174 arrays using 

matrix transformations and easily extended to 3D datasets that many existing 

augmentation pipelines do not consider (Fig. 27C). Geometric augmentation by 

rotation around 90 degrees angles is the simplest form of augmentation as no parts of 

the images need to be cut-off by the image edges. Using ninety-degree rotations and 

mirroring can increase a dataset at best by a factor of 8, since every single image can 

be quadrupled by rotations around 90 degrees and again doubled by flipping each 

image once around either the x or the y axis, without creating any redundant images. 

These augmentations were performed on datasets used in the 3D methods, such as 

fnet and CARE 3D. The user can choose whether one or both types of augmentations 

should be performed on the data in these notebooks. 

 

A different type of augmentation is implemented in YOLOv2 and CARE 2D. In both 

notebooks, augmentations are executed by dedicated Python packages. In YOLOv2, 

we use the img_aug Python package, which can perform geometric augmentations on 

images and bounding boxes (Fig. 27B). However, the img_aug library may be able to 

calculate the new coordinates for each bounding box after rotation or flipping but will 

not automatically save this information in new annotation files, which are necessary 

to train the YOLOv2 network. Hence, I created a function that converts the new 

bounding box coordinates for the geometrically augmented images into PASCAL 

VOC style .xml files which are used to train the YOLOv2 model. These files are 

saved in additional folders that are by default saved in the /content folder but can 

optionally be saved under a path of the user’s choice. 
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Similarly, in CARE 2D, the Augmentor196 package is used for augmentations and was 

implemented by Guillaume Jacquemet. Here, the augmented images are also saved in 

a new location and then used as the new Training_Source and Training_Target to 

train the neural network (not shown). 

A more elegant solution for augmentation can be applied in the purely Keras-based 

U-Net 2D notebook. The Keras data generator has an inbuilt augmentation argument 

which can be filled with many different augmentation choices. In the augmentation 

cell, the user’s augmentation choices are simply put into the augmentation library and 

passed to the data generator in the next cell (Fig. 28A). Using this form of 

augmentation means the augmented images are not by default stored in the runtime 

and cannot overload the notebook’s memory. This has the significant advantage that 

datasets can theoretically be augmented infinitely, despite the memory limitations in 

Colab. 

 

Given the various options for augmentations and different requirements per data type 

and the backend of the methods, the augmentation cell is the most variable cell in the 

project (see Fig. 27). However, the interactive elements of the GUI are maintained 

throughout, which provides a minimum of the continuity desired in the project. 
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Figure 27 - Implementing Augmentation in different notebooks - A) Augmentation 

in U-Net using Keras datagenerator B) Augmentation in YOLOv2 using the 

img_aug package (here, for simplicity, only one augmentation is shown which is 

repeated in the notebook depending on the multiplication chosen by the user. In 

each round of augmentation, the new annotations are saved in the 

combined_labels.csv C) Augmentation in fnet, using NumPy array functions. 
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II. 2. 2. b. Transfer learning 

Aims: Using a pretrained model for further training has several important advantages. 

Firstly, a limitation of the Colab environment is its limited runtime, which limits the 

number of epochs a model can be trained for, imposing an upper limit on any 

convergence achievable during training and ultimately limiting the model’s 

performance. This also means that models need to be retrained from randomized 

weights even when adjusting parameters only slightly, taking significantly longer 

than using a model with weights already initialized for a task. Therefore, it is 

beneficial to include the option to load models with existing weights into the runtime 

and retrain these models in the notebooks. This would also allow users to exploit the 

vast array of available pre-trained models often published by developer groups and 

trained on much larger datasets than would be feasible for use in Google Colab. This 

builds a useful connection point for the community creating trained DL-model 

repositories, such as bioimage.io. 

The simplest way to implement this is by giving the user the ability to choose the path 

to a pre-trained model folder containing the model weights file to be used. This model 

should be chosen after the training parameters and the model_path and model_name 

parameters are chosen in Section 1. This is necessary to clarify where the retrained 

model file should be saved and to avoid overwriting the pre-trained model weights. 

Transfer learning should be an optional choice, and the notebook needs to run error-

free with or without the transfer learning option. 

 

In the ZeroCostDL4Mic notebooks, transfer learning is not named as such. The step 

is instead referred to as ‘Using weights from a pre-trained model as initial weights’. 

This change was made with the user-base in mind, which we assume to be primarily 

biologists with no prior knowledge of machine learning jargon which transfer 

learning is part of. This section is consistent throughout most of the notebooks since 

the steps in backend of the notebook are usually very similar.  
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i. Using pretrained models in CARE, U-Net 2D and YOLOv2 

First, the user chooses, using a tick-box, whether to use a pre-trained model for 

training or not. This tick-box is similarly designed to the one in the augmentation cell 

and represents a Boolean which is set by default to ‘False’ (Fig. 28 top). 

Next, the user can enter the path to a previously trained model into the input box 

named, ‘Pretrained_model_path’. A further option which is available only in some 

methods (StarDist, CellPose) is to use pretrained models provided with the method 

itself. In these cases, to provide the user a choice between using their own model or a 

pre-trained model from within the method, the cell contains an additional dropdown 

menu containing the different trained model names and the option to use a 

‘Model_from_file’ after which the user enters the Pretrained_model_path as above 

(Fig. 28 top). If the model is trained from a previously trained model on the user’s 

google drive, it may contain different weight files, such as the ‘last_weights’ and 

‘best_weights’. In these cases, the cell contains an additional dropdown option, in 

which the respective model weights can be selected (e.g. YOLOv2, CARE). 

The different methods handle pre-trained weights slightly differently. In CARE, the 

pretrained model weights can be directly loaded into the model object after its 

creation in the Create dataset and model objects cell. In both U-Net and YOLOv2, 

the option to use pretrained weights is used by default if a path to a pre-trained model 

is given. In U-Net, the parameter, pretrained_model_path exists in the data generator 

function. If given as ‘None’ the network uses a blank model to start training. 

Otherwise, the Pretrained_model_path is used with the weights file chosen by the 

user to start training from the pre-trained model. In YOLOv2, the 

Pretrained_model_path needs to be added to the config.json and will then be 

automatically used for training. This is done like the other edits to the config.json via 

shell search function (see e.g. Fig. 14, 15). If a pre-trained model path does not exist, 

the network will be automatically trained from the default model weights. In 

YOLOv2, an additional feature needs to be considered in the form of warm-up 

epochs. Using default settings, the default model weights are ‘adjusted’ to the user's 

data set by training only the top layers of the network for 3 epochs, which is known to 

prevent the model from quickly reaching a vanishing gradient in a new dataset. When 

using pre-trained weights, this ‘warm-up’ is not necessary, and this parameter should 

be set to 0. 
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In notebooks which adjust the learning rate, we also need to ensure that any further 

training continues at a sufficiently low learning rate to prevent the model from 

diverging from an optimal loss. To find this learning rate, a training_losses.csv file is 

searched for in the Pretrained_model_folder. If the model was trained in 

ZeroCostDL4Mic, this file is automatically created during training. This losses.csv 

file contains the learning rate and losses for each epoch of the previously trained 

model. The learning rate corresponding to the epoch with the lowest validation loss is 

used to continue training the model, since generally the model weights yielding the 

lowest validation loss are saved in the ZeroCostDL4Mic notebooks. Where other 

weight files are saved, e.g. in YOLOv2 which saves the weights for the highest mAP 

score as well (see above), the learning rate corresponding to the highest mAP score 

achieved during training is used.  
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Figure 28: Implementing Transfer Learning in CARE, U-Net and YOLOv2 

notebooks - shown is how the learning rate for the model is determined when re-

trained by using the originally trained models’ training_evaluation.csv file which is 

created during training and contains losses and learning rates for each epoch. In 

CARE, different weight files are accessible which can be chosen from in CARE’s 

GUI. In U-Net, the weight file detected above is directly inserted into the unet 

model function which instantiates the model object as in Fig.13. In YOLOv2, the 

primary step is changing the warm-up epochs and learning rate in the 

‘config.json’. The ‘model_folder’ is changed by default in the ‘config.json’ in 

YOLOv2. This is therefore not specific to the Transfer learning section. 
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ii. Using pretrained models in fnet 

An exception to the transfer learning section in the ZeroCostDL4Mic notebooks is the 

fnet notebook. Here, the section is designed to allow continued training on a model 

using the same filename and file location (Fig. 29). Hence, if the user opts to use a 

pre-trained model, they will automatically continue training from a specific weight 

file that will then be overwritten. The reason for this is that in the Colab environment, 

fnet fits very slowly to the training datasets, which regularly results in the notebook’s 

maximum runtime being exceeded. Hence, the most likely use-case for the transfer 

learning section in the fnet notebooks during development of the notebook and its 

testing was to continue training from the last saved checkpoint and finish training on 

the exact same dataset. In a future version, the notebook might be adapted to the more 

general use-case that already applies to the other notebooks. A difficulty in fnet is that 

training already requires several different files to be edited and named in a very 

specific way for the model to be trained error-free. The adaptation of the notebook 

into a consistent format with the other notebooks would thus require significant effort 

which was not yet feasible within the timeframe of this project. 
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Figure 29: Implementing Transfer Learning in fnet notebook – In fnet, the 

datasets used for the pretrained model are located via the path csv files created for 

the model’s training. Training continues after the last checkpoint saved in the 

losses.csv file. The users’ additional steps are added. The changed parameters are 

added to the ‘train_model.sh’ script before retraining. 
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II. 2. 3. Summary of the complete ZeroCostDL4Mic notebook 

After establishing a workflow and implementing a method in a ZeroCostDL4Mic, the 

user can now with relative ease and without coding train a neural network on a 

custom dataset. The workflow is summarised in the supplementary videos which are 

part of the publication, and which was created by Romain Laine. To summarise this 

briefly: 

1. The user opens the notebook, is introduced to the method, and can read 

instructions on curating the dataset for the respective method. 

2. The user then installs the method by playing the Install Method and 

Dependencies cell. This will automatically download all necessary packages 

into the Colab runtime, if they are not already native to Colab (e.g. for pure 

Keras methods). The notebook will then restart to ensure that any software 

versions that need to be updated are used correctly. The user then imports all 

the necessary packages and classes into the runtime by playing the cell Import 

Dependencies. This will also create all the function definitions for the 

notebook, so that training, re-training, quality control, and prediction can be 

played independently. 

3. After following the instructions on dataset curation, users can upload their 

datasets to their Google Drive. When the datasets are in the user’s Google 

Drive, they can access these datasets by mounting their google drive to the 

runtime, which is done by playing the Mount Google Drive cell. 

4. Once the cell is connected, the user can access the paths to their training 

datasets and enter them into the GUI of the parameter input cell. The user also 

chooses a name for their model, and the path where the trained model weights 

should be saved once training completes. Other parameters such as the 

validation split, the learning rate and parameters specific to certain methods 

are also entered in this step. Once the cell is executed, the notebook saves a 

pdf document detailing the parameter choices and datasets used in the training 

session. 

4a. If the user decides to use augmentation on their dataset, this is done after 

the training parameter inputs. Here, the user can use interactive elements in 

the GUI to perform different augmentations, depending on the datatype the 

network uses. 
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4b. If the user wants to train from a previous checkpoint, this is done in an 

additional step by entering the path to a pretrained model folder. In fnet, 

models can currently only be trained on the same dataset, and the user will 

need to provide the number of steps to be added for re-training. 

5. Next, the user can initiate the training, by playing the Start Training cell. 

After this step, the model is saved in a folder with the name model_name in 

the model_path folder. The training cell also creates a .csv file containing all 

losses and the learning rate per epoch for most methods. 

6. After training, the user can use the Quality Control section. First, the user 

chooses a model to be used in the section by providing the path to a 

previously trained model or by using the model used in the same runtime for 

training. Once chosen, a QC folder is created on the path chosen by the user. 

In the second cell of the QC section, the user can then play a cell which will 

display the loss curves during training and save these as .png files in the QC 

folder. The user enters the paths to an input and a target folder in the final cell. 

Once executed, the cell will calculate the metrics between targets and the 

model’s predictions on the inputs and provides the quality metrics as an 

output of the cell for one example, and for the whole dataset in a .csv file 

which is saved in the QC folder. For the image-to-image translation methods, 

the cell also creates error maps which are saved together with the predictions 

from the QC inputs in the QC folder. 

7. If the performance of the model meets the user's expectations, it can be used 

to process datasets for which the user has no ground truth targets and which 

can be the ‘real’ data the user wants to analyse using DL. Here, the user inputs 

the model to be trained, folder containing the dataset to be analysed, and a 

path where the predicted files should be saved. After playing the cell, these 

files are saved, and an example of input and prediction is shown to the user in 

the notebook as a sanity-check. 

All these steps run in all the notebooks in code-free GUI. However, all the code 

remains accessible should errors appear or if more experienced users need to inspect 

or adapt the code. Together, these steps create the ZeroCostDL4Mic pipeline. The 

steps we have implemented, and the files saved for the user are designed to maximise 

the information gained from the training of the neural networks (Fig. 30). While we 

have refrained from changing source-code for the networks and the training, where 
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possible, the additional features and files created arguably enrich many of the existing 

tools, if not in their frontend, then at least in terms of information content for 

downstream analysis or reporting. The table shown in Fig. 30 illustrates this, which 

compares the output files created in each ZeroCostDL4Mic notebook compared to the 

original code available from the original repositories. 

 

Method Outputs of original 

code 

Outputs of ZeroCostDL4Mic implementation 

CARE 

2D/3D 

Models, 

TensorFlow.events, 

predicted images 

Models, TensorFlow.events, predicted images, training 

parameter pdf, csv with training losses and learning rate 

per epoch, QC csv with SSIM, NRMSE, PSNR scores on 

test dataset, QC summary pdf, predicted test dataset 

images 

Noise2Void 

2D/3D 

Models, 

TensorFlow.events, 

predicted images 

Models, TensorFlow.events, predicted images, training 

parameter pdf, csv with training losses and learning rate 

per epoch, QC csv with SSIM, NRMSE, PSNR scores on 

test dataset (if available), QC summary pdf, predicted 

test dataset images, predicted images 

StarDist 

2D/3D 

Models, 

TensorFlow.events, 

predicted images 

Models, TensorFlow.events, predicted masks, training 

parameter pdf, csv with training losses and learning rate 

per epoch, QC csv with IoU, confusion matrix values and 

F1 scores on test dataset, predicted test dataset masks and 

overlay images, tracking file to use in Trackmate (Fiji) 

U-Net 

2D/3D 

Trained models, 

predicted images 

Models, TensorFlow.events, predicted masks, training 

parameter pdf, csv with training losses and learning rate 

per epoch, QC csv with IoU scores, predicted test dataset 

masks, and overlay images. 

YOLOv2 Trained model (best val 

loss), predicted images 

with bounding boxes 

Models (best val loss, best mAP and last weights),  

predicted images with bounding boxes, predicted 

bounding box coordinates (to plot in ImageJ) csv, csv 

with training losses and mAP per epoch, QC csv with 

mAP, F1 and confusion matrix values on test dataset, 

predicted test dataset images with bounding boxes. 

Deep-

STORM 

Trained model, predicted 

images 

Models, TensorFlow.events, predicted images, training 

parameter pdf, csv with training losses and learning rate 

per epoch, QC csv with SSIM, NRMSE, PSNR scores on 

test dataset, QC summary pdf, predicted test dataset 

images 

Fnet Trained model, predicted 

images, loss csv files 

Models, predicted images, training parameter pdf, csv 

with training losses, QC csv with SSIM, NRMSE, PSNR 

scores on test dataset, QC summary pdf, predicted test 

dataset images 

pix2pix Trained model, predicted 

images 

Models, predicted images, training parameter pdf, csv 

with training losses, QC csv with SSIM scores on test 

dataset, QC summary pdf, predicted test dataset images 

cycleGAN Trained model, predicted 

images 

Models, predicted images, training parameter pdf, csv 

with training losses, QC csv with SSIM scores on test 

dataset, QC summary pdf, predicted test dataset images 

Figure 30: Summary of data outputs in raw code vs ZeroCostDL4Mic 
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II. 2. 4. Characterising Limitations of the platform 

While Colab is a platform suitable to mitigate the financial constraint of GPU 

training, the usage also has constraints that limit the use-cases for the DL tools 

implemented on the platform. To create transparency about the platform's limitations, 

we characterised several of the bottlenecks of the platform which affect the type of 

data or models users can train on the platform. 

We identified four areas in which the Colab platform may limit the Deep Learning 

methods implemented within the ZeroCostDL4Mic resource which we created here. 

1. RAM limit – The GPUs provided by Colab have a limited RAM capacity which 

determines the maximum amount of data which can be loaded into DL models at one 

time. This is particularly important when training data is usually processed in batches 

containing multiple images. To estimate the RAM limits, I determined breaking 

points of the notebooks for all the implemented methods by increasing the batch sizes 

for a given image size and training session until the notebooks crashed. The results of 

this test are presented in the table in Fig. 31A and the breaking point batch size (in 

total pixels in Fig. 31B). To estimate a breaking point, the limit was taken as the 

number of pixels per batch, which can be calculated as the batch size and image 

dimensions. Since the way the models handle the training data and the training 

datasets themselves may vary, these results should be used as guidelines for the 

maximum RAM capacity of each notebook rather than the absolute limits of the 

Colab platform. However, these values show that an upper limit of batch pixels lies in 

the range of between 1e6 to 1e7 pixels except for the Deep-STORM and CycleGAN 

networks where the limit is reached earlier, likely because the size of the model itself 

is significant in these models, contributing to the usage of RAM. For example, an 

image from the segmentation dataset from the isbi challenge 2012 was used in the 

original U-Net paper and in this project for the U-Net notebook. This limit is 

equivalent to a batch size of 43 with image or patch sizes of 256x256 pixels. It is not 

clear how the image's file size relates to this limit, as the size of a single image from 

the StarDist dataset is almost 10x the size of a U-Net image, yet the StarDist network 

handles almost 10 times the number of pixels per batch. However, in most cases, the 

RAM limitation will restrict the size of the patches loaded into the model to the range 

of 512x512 to 1024x1024, depending on the notebook. However, this does not mean 

that larger images cannot be used in the notebook, since these can be fed into the 
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notebooks in patches. In these cases, the image size can be much larger than the 

maximum patch size. 

The RAM limitation does not limit the dataset size used within the notebook per se 

(see disk space below). However, given the limited number of images that can be 

loaded into the network per batch, it imposes a constraint in time spent training the 

models. Since larger batch sizes allow the network to be trained more efficiently, 

smaller ones may correspond to a higher number of steps per training epoch and thus 

a prolonged training. This means that users may be more likely to reach the runtime 

limit imposed by Colab notebooks. 

2. Run time limit – The Colab platform imposes a runtime limitation per GPU of 12h. 

In practice, sessions may also end earlier. This means that training models over days 

or weeks, which is the case for some of the highest performing DL models in the 

literature, is not feasible in Colab. However, the limitation can be mitigated by 

training models across multiple runtimes by using model checkpoints, saved during 

training. If the models have not converged by the end of a runtime, a model can then 

be further trained in a consecutive runtime. 

3. Disk space – Disk space of the Colab notebooks becomes limiting in two cases. 

The first case that most users of google drive will encounter is the limitation to data 

that can be stored within a user’s google drive, which is 15GB. This limit can be 

overcome by either purchasing additional space on Google Drive or by storing 

datasets in a folder which is shared with the user, e.g., via a lab Google Drive 

account. The second case is when the session's memory reaches its limit, which is ca. 

60GB. This limit can be reached when the dataset used to train the model is very 

large and is stored in the notebook’s session’s memory. In some methods, this occurs 

when models are initialised (fnet), but it more often occurs if datasets, for instance 

upon augmentation in the ZeroCostDL4Mic notebooks, are saved in the session 

memory. In this case, the notebook may disconnect, and training will not be possible. 

In the cases tested in this project, especially for 2D images, the disk space limit is not 

usually reached and likely becomes increasingly relevant as datasets reach 1000s to 

10000s images. For the use-cases in this project, the disk space limitation was not 

usually the main limitation, as few of the 2D datasets approached this limit. However, 

for some of the 3D datasets, this limit appears to be reached more frequently and will 

limit the datasets' sizes that can be used in the notebooks. 
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 4. – GPU access - The final limitation of the Colab platform, particularly when 

compared with purchased GPU time or local GPU workstations is the reliability of 

GPU access. Colab provides access to different types of GPU, including Tesla P100, 

Tesla P1, Tesla K80, Tesla T4, and Tesla T1 GPUs, which are allocated based on 

demand to the platform, geography, and time of day. (The GPUs I was allocated 

during a 5-month period are shown in Fig. 31C). Furthermore, models can be trained 

on only one GPU per runtime. This limitation may be of concern for very large data 

requirements, in the 100s GB to TB range, which may thus not be feasible to train 

through this platform. The GPU type influences the speed of training and we have 

observed an increased speed when allocated to the P100 GPUs compared to the K80 

and T4, Fig. 31A. However, performance of the trained models is not expected to be 

influenced by the allocation of certain GPUs. 

In some cases, Colab notebooks will not connect to a GPU and will revert to runtime 

without acceleration. This can occur when the runtime limit of up to 12 hours is 

reached. Colab may also ‘blacklist’ users for a short period of time, usually after 

using the platform over consecutive days. This ‘blacklisting’ is often lifted after one 

day of no use by the respective Google account. This likely ensures a fair allocation 

of resources if too many users attempt to connect to a GPU runtime. 

 

The limitations outlined above give the boundary conditions for using the Google 

Colab platform we chose to use for this project and may make the platform unsuitable 

for certain datasets. However, despite these conditions, a resource based on Colab can 

still hold value to test models, tune parameters, and explore the merit of DL 

technology, even if users may ultimately require more powerful resources. 

Furthermore, in the course of this work, we showed that the limitations do not 

preclude the platform from being used for relevant real-world biological datasets. 
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Figure 31 - Limiting factors of ZeroCostDL4Mic in the Colab environment – A) 

Table shows the parameters used to make the respective ZeroCostDL4Mic 

notebooks crash and the errors to be expected. B) Histogram of the maximal batch 

size for each notebook, this does not appear dependent on GPU type in Colab. C) 

Histogram of the allocation of GPUs per training session. 



127 
 

II. 3. Discussion 

In this project, we created the ZeroCostDL4Mic platform which aims to address the 

main barriers that currently prevent a larger proportion of the bioimaging community 

to use DL-methods gainfully and successfully for their analysis tasks. Although 

ZeroCostDL4Mic is characterised in detail in its publication, in this chapter, I showed 

what challenges were faced in constructing the platform and, specifically, how the 

overall consistency of the notebooks could be maintained while the underlying 

methods and their code implementation by developers differed significantly. In these 

details, it is important to convey with more clarity the challenges that users of DL-

tools might experience when adapting published DL-tools to their own bioimage 

analysis problems. Hence, the key result of this chapter is not only the end-product, 

the ZeroCostDL4Mic platform, but the experience gained from creating it. The first 

conclusion drawn from this experience is how many more challenges need to be 

overcome to implement certain tools into the platform than others. Here, I covered 

four of the core methods of ZeroCostDL4Mic, which broadly represent the types of 

methods used throughout the project: CARE is a representative for the methods 

developed primarily by a group in Dresden who also created the StarDist, 

Noise2Void and DenoiSeg methods which are also part of the platform, U-Net 2D is 

an example of a Keras method which is entirely contained within the Colab notebook, 

of which U-Net 3D and Deep-STORM are further examples in the platform. 

YOLOv2 represents a method which uses Keras but depends on external scripts to be 

implemented. At the same time, fnet 2D/3D is PyTorch based, like pix2pix and 

cycleGAN, and requires several external files which are accessed to train a network.  

The methods developed by the CSBDeep group stand out on this list in terms of ease 

of use and ability to bring DL to the bioimaging community for several reasons. 

CARE, like the other CSBDeep methods, is constructed as a Python package and well 

documented. This facilitated understanding of CARE’s functions and their use cases 

and implementation of this method in ZeroCostDL4Mic. Since all the CARE 

hyperparameters for training and the paths to the training datasets could be used 

directly as input arguments for the CARE model creation and training functions, it 

was relatively easy to implement in the GUI in this project. This is also the case for 

much of the U-Net 2D implementation. An additional attractive feature of using 

Keras to implement U-Net 2D is the ability to use Keras data generators in training. 
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This is particularly useful in the Colab environment as it makes efficient use of the 

environment’s RAM and does not require datasets to be buffered in the runtime 

which can eat into the total time available before notebooks time out.  

Compared to CARE and U-Net, the YOLOv2 and fnet methods were difficult to 

implement in the notebooks. The latter methods are designed to use script files to 

store paths and parameters for training and to execute certain functions, including 

training and prediction. This is not necessarily a flaw of these methods and is a valid 

design choice by the developers, likely to allow users to see all their parameter 

choices in one place instead of searching and changing them inside a code-block. 

However, neither of these methods was as well documented as the CSBDeep 

methods, and in their raw form would be challenging to use for users with little 

experience in coding. The lack of annotation and the structure of the repositories, 

with many functions importing methods from other scripts in the repository, made 

integration into the ZeroCostDL4Mic format challenging.  

The key to using these methods in the notebooks was to make changes in these script 

files by editing their choices. This was primarily done using shell commands which 

can be easily used in the notebooks via ! at the start of the line. However, using these 

commands can be error-prone and is difficult to debug as failure to execute 

commands does not always result in an error message and failure to insert a specific 

parameter usually only becomes apparent by opening the file and verifying that the 

parameters were correctly inserted or when error messages appear further 

downstream in the code. Secondly, any parameter search needed to be unique, which 

means that the search term could only appear once in each script file, as otherwise 

any edits would appear in multiple locations in the document. This was simpler when 

only individual parameters needed to be inserted into script files (Fig. 14 and 15). 

It was more difficult to insert new functions or parameters into scripts to be able to 

fulfil some of the aims designed for this project. Here, entire new lines of code 

needed to be inserted. An example of this in fnet was evaluating a validation loss 

during training, which surprisingly is not done by default in fnet (Fig. 15C). In 

YOLOv2, a similar change needed to be made in the YOLOv2 frontend.py to ensure 

that mAP was evaluated as a callback (not shown). These types of changes would be 

relatively simple to make if script-writing was expected of the user, but because this 

project specifically set out to avoid user-side code-input, these relatively complex 

steps needed to be performed in the notebook, upon playing the cell.  
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Comparing the different methods in terms of their ease of implementation gives 

insight into their general ease-of-use and their applicability for a wide variety of 

tasks. Looking at the above observations, it can be concluded that the methods 

requiring the least effort in terms of their application are tools which do not use 

multiple scripting files and instead design their tools for user-friendliness such as the 

CARE methods or by being able to use Keras entirely. Although there is a rationale, 

e.g. to store all hyperparameters in a separate document, which can also be of use for 

the user after the network is trained, inputting all parameters in a script file is usually 

no more convenient than inputting these parameters in a Python object, such as a 

configuration library, as is done in both CARE and U-Net, thus, reducing the number 

of necessary documents to run a method. In ZeroCostDL4Mic, we ensured that the 

most important hyperparameters, essentially those chosen by the user in the notebook, 

are stored for every model in a human-readable pdf format, such that even for 

methods that do not by default store parameters in a configuration file, they remain 

useable for review after training, such as for U-Net and CARE. This pdf serves an 

important function for users who want to learn about the effects of models, datasets, 

or parameter choices on the performance on a specific task, specifically when 

returning to models which were trained a long time ago. 

 

Despite the differences and the ensuing difficulties in implementing methods such as 

YOLOv2 and fnet, the input cells for paths and training parameters could be kept 

extremely consistent across notebooks which means that users should recognize the 

similarities between methods despite the underlying differences. The key differences 

that do exist, e.g. choosing the number of layers in U-Net, or the penalties in 

YOLOv2, are specifically adapted to each method and give the user opportunities to 

experiment and optimise their methods as much as possible. In some cases, it would 

have been possible to add further parameters. For example, it has been observed that 

changing the size of the convolution filters in U-Net-architectures can impact 

performance. However, this may have required further adjustments, either within the 

methods themselves, or would likely unnecessarily complicate the methods for the 

intended user base. However, the included parameters that users can choose from 

should be sufficient to tune models to sufficiently high performance, something I 

explore in chapter 2. 
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Implementing methods for predicting unseen data or for the quality control step 

involved similar strategies for adapting methods to the ZeroCostDL4Mic 

environment. Here, more than inputting any user-specified parameters into Python 

objects or script files, the challenge was to save all predicted files in a similar and 

accessible format. Again, this was more challenging for fnet and YOLOv2 than for 

the CARE and U-Net methods. While the latter save files automatically in a path that 

can be input to the function which executes the prediction, in fnet several changes 

needed to be made to the prediction script (predict.sh or predict_2d.sh) which 

included removing the option of predicting on training data or including targets for 

the prediction. These choices by the developers were difficult to comprehend when 

developing the notebook as they would likely make this method difficult to use for 

any users whose data is not exactly formatted as intended by developers. A further 

inconvenience in the default fnet prediction pipeline was that any predictions were 

saved in folders named with consecutive numerals so that the original file name was 

no longer visible, with each prediction saved in a folder together with an input and a 

target. However, it was useful to save information on the filenames and even more so 

in Colab without requiring the input in the same folder, since memory is limited in 

Google Drive and Colab, and saving each input in the results folder is not memory 

efficient since the user already has access to their own input files. The choices made 

in the development of fnet were often counter-intuitive and suggest that fnet was 

developed for a very specific dataset or dataset-type without considering the 

challenges in adapting it to different use-cases. The efforts made in this project to 

simplify the DL-experience may, therefore, improve the experience of users wanting 

to use this method, potentially growing its user-base. 

In YOLOv2, a particular problem in the prediction function was that the predictions 

were only saved as images with bounding boxes directly drawn on the images. This 

makes downstream analysis extremely difficult. Interestingly, this is not a peculiarity 

of YOLOv2 and indeed, many object detection methods create only images with 

bounding boxes as prediction outputs, despite also calculating coordinates for each 

box, which would arguably be a more valuable output for downstream analysis. This 

means that the output of the neural network model is in a different format to its 

training input, which usually consists of annotation files, in the case of the 

ZeroCostDL4Mic implementation of YOLOv2, in the.xml format used for the 

PASCAL VOC detection challenge. Creating image outputs with bounding boxes 
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instead of a set of coordinates may be related to the types of tasks tools such as 

YOLOv2 were originally designed for: the detection of real-world objects on public 

image datasets. However, for bioimaging, object detection methods should output 

much more quantifiable information, ideally in a format which can be used quickly 

for downstream analysis. In ZeroCostDL4Mic, the prediction function of YOLOv2 

was therefore changed such that the predicted bounding boxes were saved as 

coordinates in a .csv file. This .csv file is firstly readable by a human and can 

secondly be imported into Fiji, to view and edit any predicted bounding boxes which 

would not be possible using only the default outputs of YOLOv2. 

One feature in the prediction functions that re-occurred was that many prediction 

functions take only individual images as inputs, which required these functions to be 

implemented in a loop in the notebooks to use a folder as an input. This was 

somewhat surprising since developers should presume that users will employ their 

methods on batches of data. 

 

Again, in this project, we largely succeeded in making the prediction section and its 

outputs very consistent across DL-methods, despite the underlying differences and in 

some cases, arguably made improvements in terms of data-structure. This should help 

users make use of these methods more efficiently after training is complete than is the 

case with the default methods. 

 

When building the ZeroCostDL4Mic platform, one of the most important novelties 

integrated into the workflow was the addition of the QC step which is rarely 

integrated into DL-methods, even though they are essential for reporting the quality 

of the performance of a method. In the ZeroCostDL4Mic notebooks, the quality 

metrics and error maps were calculated by performing the calculations directly in the 

notebook (NRMSE, IoU), by using Python packages (SSIM) or by importing and 

integrating Python scripts from public repositories (mAP). However, none of these 

metrics were already integrated into the methods themselves when the notebooks 

were created. This is an indication that making robust quality controls on trained 

models accessible to users has not been the focus of developer groups. However, the 

scepticism levelled at DL methods in bioimaging is often directly concerned with the 

lack of transparency of DL outputs. Here, the integration of QC into the workflow is a 



132 
 

direct response to the existing shortcomings of methods currently developed in the 

community and will hopefully be helpful in building trust in these methods. 

 

In addition to our core workflow, we included two additional steps which should 

make DL more accessible for our notebooks. The first was the integration of data 

augmentation. Users would likely perform this step before training a model, but it 

was included in the workflow as it should, ideally be a very simple part of the DL-

workflow and be effortless and intuitive. Augmentation is likely the least consistent 

step across the notebooks because different methods were convenient for each data 

type and because the underlying augmentation functions or packages performed 

augmentations differently. Here, Keras augmentation was the easiest to implement 

because it only involved inserting user choices into a Keras object which carries out 

augmentation dynamically during training. Here, the augmentations are performed on 

a percentual basis where the user determines how likely a certain augmentation 

should occur. Although this form of augmentation is convenient in terms of 

implementation, I believe it is not the most intuitive form for users. It is usually not 

clear how much the dataset is augmented and what the input images look like. In U-

Net, we attempted to alleviate this small problem by displaying examples for 

augmentation after the augmentation cell, which we also did for all the other 

notebooks. However, it is still more intuitive to give the user the option to choose an 

augmentation factor implemented in most notebooks although the underlying 

methods for augmentation differ. Here, the disadvantages are primarily the lack of 

memory to save augmented images in the runtime (which is not a problem when 

using a datagenerator) which can be slow and consumes resources the user may want 

to use for other purposes. Hence, the augmentation sections often compromise 

intuition and their convenience of implementation. Importantly, all notebooks have an 

augmentation option and can be used with interactive tools in the runtime. Such 

visual features are an additional element which should give the impression that DL 

methods can be used to experiment or even play with in the notebooks. Despite the 

relative inconsistency between different notebooks, the augmentation section always 

remains simple to apply in line with the platform's design principles. 

 

In concluding this chapter, I will summarise the key features that I found important 

for the practical use of a DL method. In this chapter, I was primarily concerned with 
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the question how an intuitive GUI can be built from the existing code-resources 

available for the bioimaging community. In this process, I have made several 

observations on how developers currently implement code and can outline key 

features which I believe would make any future methods more accessible than many 

current tools in the community. These are the same aspects I tried to integrate in this 

platform. These recommendations follow the workflow of the suggested DL pipeline. 

 

Documentation 

1. Tools must be well documented, specifically, the meaning and purpose of 

parameters used for training. 

2. Developers should provide example code and importantly, example datasets 

(including meta-data) that are easily accessible to users. Especially, the 

availability of an accessible example dataset may facilitate reproducibility of 

results by users on their own datasets. 

Installation 

3. Tools should be easily downloadable by the user with few steps, e.g., a Python 

package via pip install. Users should not be required to download or install 

other software than the one of the specific DL-package. 

Training 

4. Training the model should be simple and not require additional files to store 

code or paths. 

5. Validation during training should be performed by default. Users should be 

able to opt-out but should never be required to opt-in to performing validation 

during training. 

6. DL-methods should automatically output as much information as possible 

about hyperparameters and training history in a human-readable format, so 

that experiments can be analysed and replicated easily by the user themselves 

or reviewers. 

Quality Control 

7. Quality Control methods should be integrated by default in every DL-tool. 

Prediction 

8. Outputs should be saved with the original filename still available and with as 

few additional folders as possible. 
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9. Outputs should be in a format that allows downstream analysis and should be 

compatible with other tools used by the community. 

Data types 

10. Tools should be able to handle different data formats and bit-depths as 

bioimaging data comes in various formats. It is cumbersome for users to adapt 

their data to the specific needs of a method. The method should adapt to the 

data, where possible. 

Efficiency 

11. Methods should be designed for memory efficiency. To exploit large datasets 

on available hardware, methods should be designed and tested to minimise, 

e.g., the RAM needed for training. This makes the methods faster and, 

therefore, more likely to be used by analysts. 

 

I believe that these recommendations beyond being guidance for good practice in 

development of new tools, also provide a good summary of what I attempted to 

achieve when creating this platform. While hardware access is often a significant 

barrier for DL, the lack of relatively simple features in code should not be 

underestimated as an obstacle to the democratisation of this technology. The 

development of languages such as TensorFlow, Python and Keras has been a 

significant driver in this field and has already helped its democratisation among 

coders as it has dramatically simplified building and training neural networks. The 

next step which should bring this technology to an audience beyond coders is its 

adaptation to a code-free environment which requires good practices and intuitive and 

useful design elements. With the implementation of the presented methods, together 

with my collaborators, I took the first steps in this direction. 
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II. 5. Methods 

Testing the notebooks 

During the development of the notebooks, the workflow was tested by a group of 

beta-testers with little to no previous experience with DL. Their feedback helped to 

design the final workflow and layout of the notebooks. 

Notebooks were tested before release by me, Romain Laine, and Guillaume 

Jacquemet to ensure they function as intended in the following way. Each notebook is 

played cell by cell with transfer learning and augmentation disabled or skipped and 

tested on the publicly available datasets (zenodo) created for each method197–203. Once 

it is fully run, the runtime is disconnected, and a new runtime is initialised. The cells 

are run as before, the dataset is augmented, and the previously trained model is 

loaded into the transfer learning cell. The other cells are run as before. The runtime is 

disconnected a second time, and the notebook reconnected. The training section is 

skipped and one of the previously trained models is assessed in the QC section by 

disabling the ‘Use_current_trained_model’ tickbox and entering the path of the 

previously trained model in the ‘QC_model_path’. Once QC is complete, the runtime 

can be disconnected again and re-established as before. In the final test, the training 

and QC steps are skipped and analogous to the previous step, the tickbox 

‘Use_current_trained_model’ is disabled in the Prediction cell and the path to one of 

the previously trained models is entered in the Prediction_model_path. The 

prediction cell is played. If all these steps run error-free on a respective dataset, all 

input cells apart from those containing default parameters are cleared. The outputs of 

all cells are cleared, and the runtime is disconnected. The notebook is saved and ready 

to be released in the repository. 

Datasets 

CARE 2D 
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Guillaume Jacquemet acquired the dataset shown in Fig. 12 (CARE 2D) for the 

ZeroCostDL4Mic project134,197. Briefly, images of fixed DCIS.COM LifeAct-RFP 

cells were acquired on a DeltaVision OMX v4 SIM set-up with a 60x Plan-

Apochromat objective lens in SIM mode for high resolution images of actin labelled 

with Phalloidin-488 at high laser power (10%) with 50ms exposure. Low SNR 

images were acquired by imaging the LifeAct-RFP channel with lower laser power 

(1%) with 100ms exposure. For more details see details in 134. 

The data shown in Fig. 21 was acquired from a fixed sample of HeLa cells with 

EGFP α-tubulin on a Nikon ECLIPSE Ti-E with a 60x Apo VC oil immersion 

objective, in widefield mode. The difference in noise between inputs and targets was 

achieved by different exposure times with low and high noise achieved with 500ms 

and 5ms exposure, respectively at an excitation wavelength of 550nm. 

U-Net 2D 

The data used for U-Net, as shown in Fig. 13 and 22, is from a public dataset which 

was used in the original isbi segmentation challenge in 2012112. 

 

YOLOv2 

Guillaume Jacquemet acquired the raw data shown in Fig. 14 (YOLOv2) for the 

ZeroCostDL4Mic project134,198. Briefly, breast cancer cells (MDA-MB-231) 

migrating over a cell-derived matrix were imaged on an inverted wide-field 

microscope (AxioCam MRm camera, EL Plan-Neofluar 20/0.5 NA objective (Carl 

Zeiss)). The data shown in Fig.17 shows HeLa cells (HTRG) with endogenous 

nuclear GFP expression imaged in a Nikon ECLIPSE Ti-E microscope under 

widefield settings using a Plan Apo 20x oil immersion objective and excitation 

wavelength of 525nm in a timelapse with 1-minute timeframes and 40ms exposure. 

Cells were previously grown to confluence at 37 degrees and treated with a cycle 

inhibitor for 12 hours prior to imaging, which was washed off the sample before 

timelapse acquisition by gently aspirating the growth medium (Optimem with 10% 

FBS) and pipetting fresh medium into the plate and repeating this step 3 times. The 

annotations for the YOLOv2 datasets were performed using the public makesens.ai 

platform (https://www.makesense.ai/). This is described in detail in 134. Briefly, the 

images were imported into the makesense.ai platform, manually annotated with class-

https://www.makesense.ai/
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labels and bounding boxes. The annotations were then downloaded as .xml files in the 

PASCAL VOC format for use in the ZeroCostDL4Mic notebook. 

fnet 

The data shown in Fig. 15 for fnet shows HeLa cells with labelled with H2B mCherry 

red which were grown to ca. 70% confluence at 37 degrees and 4% CO2 in Optimem 

medium (10% FBS). The two channels were acquired using a LEICA SP8 confocal 

microscope with a HC PL APO CS2 63x oil immersion objective. To image multiple 

channels simultaneously, the brightfield channel was acquired with a transmitted light 

detector and the fluorescent channel with a photomultiplier tube (PMT). Timelapses 

were acquired excitation wavelength for the fluorescent channel was 570nm and 

exposure time 30ms, with 1-minute timepoints. 

Software versions 

All the notebooks use Python 3.2. All notebooks use TensorFlow 1.15.2 as the default 

backend, with the following exceptions: N2V 2D uses TensorFlow 2.1, fnet uses 

PyTorch v 1.10 and CUDA 11.1., CycleGAN and pix2pix use PyTorch v1.19 and 

CUDA 11.1. 

Data availability 

All the notebooks in this project are publicly available on the ZeroCostDL4Mic’s 

GitHub repository https://github.com/HenriquesLab/ZeroCostDL4Mic and all 

datasets used for testing the notebooks are available on the project’s Zenodo 

repository accessed through GitHub or the publication to this project134. 
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III. Results Chapter 2 – 

Quality Control (QC) of DL-tools in 

ZeroCostDL4Mic 

III. 1. The goal of QC in ZeroCostDL4Mic 

In the previous chapter, I outlined how the need for accessible DL for bioimaging 

tasks inspired the creation of the ZeroCostDL4Mic platform. The primary goal of this 
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project was to facilitate training DL models on custom datasets. As indicated in the 

Introduction to this work, a significant aspect of disseminating DL technology is 

ensuring that the available tools produce meaningful and reliable output (Reliability 

Problem). To ensure that the models created through the ZeroCostDL4Mic pipeline 

can accomplish this, it needed to provide quality control methods (shortened: QC). 

The QC step is not always considered part of the DL pipeline. Many available tools 

provide quality metrics only in the form of additional optional functions for the users, 

such as CARE113, YOLOv294 and Label-free prediction114, and generally require 

additional effort from the user side to implement. 

As explained in the previous chapter, in ZeroCostDL4Mic, QC is an integral step of 

the workflow between the training and the inference step. How does the integration of 

this step aid the democratisation of DL tools? There are at least two answers to this 

question. Firstly, QC can show that the models trained on the platform can perform 

the tasks they are designed to do. This means that the QC section fulfils the purpose 

of confirming in a quantitative, thus comparable, manner that the tools implemented 

in this project achieve a specific performance. The key task here is to examine if 

desirable outcomes can be achieved with the dataset size, runtime, and RAM 

limitations present in the Colab platform. If not, the QC step will at least show any 

shortcomings and can thus help users to determine alternative routes of investigation 

than Colab or even DL-based tools. The second way an integrated QC step allows 

users to adopt DL strategies is that it can be used to optimise DL-models, by 

performing the training step using different parameters and then evaluating how such 

changes affect performance. With the guidance provided in the notebooks, this could 

help in creating a higher degree of literacy with DL tools, and how fine-tuning of 

models can be achieved, and potential problems overcome, thus targeting the 

knowledge problem (see Introduction). 

For these two aims to be fulfilled, the QC section needs to accommodate the 

following key features, which will be the subject of this chapter. First, the metrics 

used to evaluate the models on the platform should have some use in the community 

for the relevant tasks. Second, their predictions should provide a degree of 

interpretability of the performance of the models. However, beyond the metrics, the 

QC step should provide a qualitative assessment which means that it should be 

possible for the user to corroborate any quantitative metrics themselves. This means 
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that QC can be performed in a quantifiable way that makes trained models 

comparable with each other. The performance of the models is always transparent to 

the user, which may not be the case for purely quantitative metrics. 

For the second feature required of the QC section, the ability to use it to fine-tune 

parameters for training, it should be shown that any metrics, quantitative or 

qualitative, are sensitive enough to detect performance changes in the trained models 

for changes in the training datasets and hyperparameter settings. In this chapter, I 

show that the QC section achieves this, representing an essential contribution to 

allowing DL to become democratised and easier to use within the bioimaging 

community. To demonstrate this, I focus on the main tasks performed by the 

implemented tools in this project, object detection, object segmentation, denoising, 

and artificial labelling. To avoid redundancies, I will focus on one tool for each task, 

covering the quality metric generally used to assess these tasks. This provides an 

overview of how QC can be used in this project to improve the reliability of DL tools 

in microscopy and bioimage analysis. It is important to note that it was not possible in 

this project's scope to perform an exhaustive optimisation of all hyperparameters for 

all included DL tools. Instead, I have focused on specific parameters and settings in 

the notebooks considering the type of dataset, the size of the dataset, and the time 

required to train the models in Colab. Hence, the sections, divided by task, will cover 

different strategies to optimise model performance. This aids in understanding which 

choices users have in the notebooks without repeating the same steps in each section. 

For example, while augmentation was shown to improve performance in this chapter 

only for YOLOv2 and StarDist, it can also be used for the other methods, although it 

is not shown here. For instance, it would have taken a significantly longer time, in the 

order of multiple days, to train fnet even a single time if the dataset used here had 

been augmented, which would have made it difficult to test with different parameters, 

such as patch size which was done in this chapter. 

In the process of testing the use of the QC section, three key observations were made: 

Firstly, all the methods trained here can achieve a desirable performance on 

representative biological datasets from microscopic acquisitions. This is important 

because it shows that custom research data, rather than public datasets, can be used in 

ZeroCostDL4Mic. Further, with one exception, all networks can be trained to 

convergence, the exception being fnet, which shows overfitting without the validation 
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loss converging beyond the first steps. However, this is not reflected in the 

performance of the models in unseen data sets where the fnet models trained for 

longer performed better according to quality metrics.  

Second, all the tested models can be improved with parameters and settings available 

in the notebooks, making the QC suitable for parameter optimisation experiments, an 

important difference between this tool and models available in model zoos.  

Finally, for the case of metrics used for the denoising of three biological datasets, I 

find that the currently widely used SSIM, MSE and PSNR metrics have shortcomings 

when used to evaluate model performance. When used without consulting an error 

map or an image, these metrics seem biased towards images with more background 

regions, which can skew the analysis of model performance on different datasets 

when this is not controlled, which currently is not common in publication113,114. This 

observation revealed an important benefit of the QC section in this project: the 

availability of error maps for the squared error and structural similarity metrics, 

which are shown and saved for the user. These error maps provide transparency to 

model performance which is not given by the metrics alone. They resolve image areas 

that are not well predicted by the model and reveal if the model learns mostly 

background information.  

These results suggest that current metrics for the analysis of models performing any 

form of image reconstruction do not sufficiently reflect model performance unless 

supplemented by visual inspection by a human. 
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III. 2. QC for an object detection task in ZeroCostDL4Mic 

Identifying the objects of interest in images is a common task in bioimage analysis 

and one in which DL-methods have shown significant superiority compared to classic 

algorithms. In ZeroCostDL4Mic, the task of classification and object detection was 

first implemented with the YOLOv2 method94 (see Results chapter 1). Evaluating the 

performance of object detection algorithms can be achieved with intuitive metrics 

which underly other higher-level metrics: true positives (TP), false positives (FP) and 

false negatives (FN). These are evaluated against the total number of objects labelled 

in a test dataset. As explained in the Introduction, these metrics can be combined to 

give even deeper insight into the performance of a model by evaluating recall and 

precision metrics (see Results Chapter 1), which can be combined to create the F1 

score or to create the so-called p-r curves to visualise the performance graphically. 

Together these metrics provide a ready quantification of model performance on a 

dataset that can be easily compared between models. 

Several models were trained to classify and detect cells of different morphologies in a 

small image dataset to investigate whether the notebook implementation of YOLOv2 

could be used in a standard object detection task. The initial question for this dataset 

was if accurate detections can be achieved in the ZeroCostDL4Mic notebook on a 

small dataset of 30 images, i.e. a dataset compatible with the limitations of the Colab 

environment and those relating to the challenge of curating a dataset for a 

classification task. The chosen dataset contains images of migrating cancer cells 

(MDA-MB-231) collected by a collaborator of the ZeroCostDL4Mic project198 

(Guillaume Jacquemet) and consists of a total of 30 images for which three classes of 

cells were distinguished: migrating, rounded, and dividing. Out of this dataset, three 

images containing instances of all classes were set aside as test images and the 

remaining 27 images were split into 24 images for training and 3 images for 

validation. A bigger dataset could have been assembled as more raw images were 

available. However, labelling all cells was challenging, with up to 80 cells per image 

and a total of more than 1200 annotations, sometimes with cells of challenging 

identity, making the annotation of the dataset laborious and time-consuming. This 
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dataset, therefore, represents a challenge for YOLOv2, which was initially tested on 

thousands of images94. However, many datasets by the envisioned user-base will 

likely have datasets of similar size and complexity. Hence, this project is interested in 

determining whether the YOLOv2 implementation could even help users in an object 

detection challenge. 

In the first trial, a YOLOv2 model was trained on all classes for 30 epochs, using the 

default settings of the notebook. This included three warm-up epochs in which only 

the first network layers are trained. This is suggested as an aid for the network, which 

uses pretrained weights from a large public image dataset, to adapt to a novel 

dataset94. To test if the datasets were sufficient to train a YOLO model, I first tested if 

training and validation losses converged. For YOLOv2, the loss measures several 

terms, bounding box accuracy, bounding box size, classification precision and 

penalizes the models’ confidence in wrong predictions (for details, see 204). After a 

warm-up, losses dropped dramatically, suggesting that the neural network learns the 

classification task (Fig. 32A). However, validation and training losses significantly 

diverge (Fig. 32A – top left), suggesting the model overfits the dataset. When 

investigating another training metric, the mean average precision (mAP), which 

measures the average precision over all classes, the scores remain low (below 0.5), 

which appears to confirm relatively poor performance on the full dataset (Fig. 32B – 

top left). Here, the task of model optimisation begins, which will be required to 

achieve better performance for this task, if possible. As indicated above, 

demonstrating the ability to improve model performance is essential for the 

ZeroCostDL4Mic tool to be of use for novice users of DL tasks and research 

purposes. Here, the most likely problem for the model is the small size of the data set. 

Hence, the first step to improve performance was to augment the dataset using the 

augmentation section built into the YOLOv2 notebook. Here, I performed the 

maximal available augmentation in the notebook, which increased the size of the 

dataset by a factor of 8, yielding a total of 192 training images and extending the 

annotated cells in the dataset to over 10.000. The training was repeated with the same 

standard settings with this augmented dataset. Here, the losses immediately showed 

an improvement compared to the non-augmented dataset, and there was no apparent 

overfitting even when training was extended to 50 epochs (Fig. 32A – top left). The 

mAP in the validation set also improved almost immediately, plateauing at 0.75 (Fig. 
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32B – top left). Since the larger dataset appeared to solve the problem of overfitting 

seen before augmentation, further performance evaluation was performed to 

investigate the models in more detail. Here, it became evident that despite mAP 

scores that suggested robust classification and detection performance, the model 

provides only relatively coarse classifications. Although several cells in the FOV, 

especially in the 'elongated' class, are well classified and detected with bounding 

boxes, other cells only have coarse bounding boxes or are not correctly classified or 

detected (Fig. 32C bottom left). An interpretation of this visual inspection is that 

since the model appears to be worse at detecting the ‘rounded’ and 'dividing' classes, 

there is a problem in learning these classes from the dataset. Indeed, the problem 

likely arises from the class imbalance in the dataset as ‘elongated’ cells are nearly 

five times more common than ‘rounded’ and ‘dividing’ cells. This means that the 

‘elongated’ class dominates performance measurement during training. How can such 

a problem be overcome? An option could have been to reduce the number of 

‘elongated’ annotations in the dataset. As this would have required modifications of 

the annotation files associated with additional effort, I instead deleted this class. A 

further rationale for this step is that in many classification tasks, the main task 

consists of identifying specific cells, such as cancer cells or dead cells, in a large 

population of cells which can be mimicked here by training a model to detect and 

classify only two ‘rare’ cell types, in this case ‘rounded’ and ‘dividing’ cells. 

Therefore, the experiments above were repeated with datasets that did not contain the 

‘elongated’ class, removing these labels from the annotation files. Furthermore, I 

created two datasets that only contained a single class, which resulted in three 

datasets, one containing ‘dividing’ + ‘rounded’ cells and two datasets containing only 

‘rounded’ and ‘dividing’ cells, respectively. Repeating the above experiments with 

these datasets showed strong training performance in ‘rounded’ cells in the standard 

and the augmented datasets, yet the mAP scores for the augmented dataset 

significantly improved the standard dataset, peaking near 0.9, suggesting accurate 

predictions. The models trained on the dataset containing two classes and the one 

containing only ‘dividing’ cells showed overfitting similar to the original dataset, 

which could be compensated for the ‘dividing-only’ dataset by augmentation, but not 

in the mixed dataset. However, the overfitting behaviour of the latter model appears 

less significant than in the original dataset, with the validation loss diverging late and 
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remaining constant parallel to the training loss. This may be caused by some 

particularly ‘challenging’ cells being randomly allocated to the validation set, which 

the model could not correctly predict. This may have led the model to converge at a 

local minimum and may have prevented the correct class-label from being learned. 

This could explain why the validation loss appears to suddenly diverge late during 

training. However, the mAP values suggest that the model has problems correctly 

classifying cell morphologies, as the value plateaus are near 0.6. These problems may 

be caused by the model's difficulty in detecting dividing cells, which is also the class 

with the lowest frequency in all datasets, with only 200 instances existing even in the 

augmented dataset. In the first trial, without augmentation, the 'dividing only' trained 

model does not settle at a mAP greater than 0. Only with augmentation does the mAP 

score rise over training, albeit slowly, and does not peak at 50 epochs. More extended 

training, which was not performed in this case, could have helped increase 

performance slightly. 

Comparing the ground-truth with the models’ predictions shows that the models 

trained on the individual classes did detect the cells that the original model struggled 

to classify and detect, however only after augmentation of the datasets (Fig.  32C – 

middle columns). In the mixed dataset, the trained model fails to detect any cells 

without augmentation but detects two cells when augmentation is applied. However, 

the bounding boxes do not cover the cells well and the dividing cell is incorrectly 

classified as ‘rounded’. As in the original dataset, this result is likely caused by the 

class imbalance between the ‘dividing’ and ‘rounded’ classes. This suggests that for 

detection tasks in ZeroCostDL4Mic, rare class instances in a small dataset are likely 

to be best detected by models trained solely for this class. 

After visual inspection, quantitative quality control metrics help identify further 

potential problems. Looking first at the p-r curves of individual classes for all models 

shows that with the reduction of classes, the performance for individual classes 

improves. This is indicated for the ‘rounded’ class in the augmented datasets in Fig. 

32D. Especially, the final result (right) suggests that the model correctly labels even 

challenging cells, i.e. cells which are correctly identified for high recall values (see 

Methods). Further insights can be gained by looking at specific TP, FP, and FN 

counts, as this provides a dataset-wide evaluation instead of an individual example. 

The results mostly support what was seen above. All models improve with 
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augmentation and more training epochs, as indicated by the losses and mAP scores in 

training. Furthermore, the counts of the quality metrics show that the test set contains 

only 3 cells of the ‘dividing’ class which will lead to large ‘jumps’ in performance 

when cells are or are not detected in the test set. Yet, two out of three of these 

presumably difficult-to-detect cells were identified with the augmented ‘dividing-

only’ trained model, which suggests that performance even for difficult classes can be 

achieved if the training dataset is adjusted, e.g. by augmentation. However, it also 

suggests that the test dataset and the training dataset should contain more balanced 

classes and probably more training images. 
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Figure 32 – YOLOv2 evaluation on a small dataset of migrating cells – A) YOLO 

loss204 for models trained on datasets with different class counts. B) mAP scores 

during training evaluated on the validation dataset for the same models as in A. C) A 

representative field of view of the test dataset and its ground-truth labels (top) and 

predictions by models trained on datasets with different class counts, without (middle 

row) and with dataset augmentation (bottom row). D) p-r curves for the ‘rounded’ 

class. The titles above the curves indicate the dataset used during the model's 

training. E) Table of the quality metrics evaluated on the test dataset for models 

trained on datasets with different class counts. 
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III. 3. QC for a segmentation task in ZeroCostDL4Mic  

To test how the QC section could be used to evaluate and improve models for a 

segmentation task, I chose the StarDist 2D notebook as an example, a method 

designed for nuclear segmentation. Demonstrating the QC task on StarDist 2D has the 

advantage that more features can be investigated than in the ZeroCostDL4Mic U-Net 

notebook, which can only be evaluated on one metric, namely the intersection over 

union (IoU) score. In StarDist 2D, the QC section contains the IoU and other quality 

metrics which evaluate the ratio of detected vs. undetected cells and, therefore, covers 

a more diverse range of metrics than the U-Net notebook. Guillaume Jacquemet 

primarily created the StarDist notebook with minor contributions from myself and 

Romain Laine. 

All StarDist models were trained on the same dataset, published as part of the 

ZeroCostDL4Mic project and created by Johanna Jukkala and Guillaume 

Jacquemet199. One parameter was chosen for fine-tuning to quickly identify an 

avenue for optimisation. The parameter deemed the most likely to affect learning 

during training was ‘patch size’. This parameter determines the dimensions of patches 

into which each image is divided, and thus, the number of patches for each image and 

the size of the objects in relation to each image. For users, this parameter is likely to 

be experimented with significantly as it gives additional flexibility beyond adjusting 

the learning rate or the number of epochs for training. Another parameter that users 

can change is the number of focal points per cell. However, it is likely that a larger 

number should usually lead to better segmentations. It will likely affect mostly the 

time used during training as the number of computations increases per cell. The 

relation of performance to patch size cannot be as easily predicted. As the depth of 

the network is not changed, it is possible that patches that are too small become 

difficult for the model to assess, as the representation maps become too small in the 

deeper layers of the U-Net architecture to identify features that could be upsampled 

(see U-Net architecture in Introduction). However, a smaller patch size may have the 

advantage that finer features could be identified for each nucleus as each object will 

appear larger in each patch. To investigate how this parameter may affect 

segmentation quality and the model's sensitivity, three models were trained with 

patch sizes set to 256x256, 512x512 and 1024x1024, respectively. Since the original 

image dimension was 1024x1024, the latter patch size creates only one patch per 
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image covering the entire field of view. Each model was trained for 100 epochs (lr: 

0.0002, foci: 32, batch size: 16). 

The initial results suggested that the models were overtrained, i.e. every model 

overfit, with the largest patch size leading to overfitting setting on slightly later than 

in the models trained on smaller patch sizes. When visually inspecting the 

segmentation results for each model, only minor differences can be detected between 

the models (Fig. 33B). Overall, all models segment the nuclei well, with most 

ground-truth nuclei correctly detected in all models. Some differences can be seen in 

challenging areas of the image where nuclei are small, close together and touching 

(see insets in Fig. 33B). The model trained on the smallest patch size predicts images 

that show slightly more fringes around the nuclei, when overlayed with the ground-

truth, suggesting a slightly less accurate segmentation result than in the 512x512 and 

the 1024x1024 patch sizes. Furthermore, this model does not detect a small dividing 

cell, suggesting a reduced sensitivity. The differences are slightly easier to detect 

when inspecting the models quantitatively using quality metrics on the full test 

dataset. The StarDist models are evaluated with object detection metrics (such as 

precision and recall) and the IoU for segmentation performance. Additionally, we use 

the panoptic quality metric which represents a combination of both205. Here, the IoU 

is summed over correctly identified (TP) objects and divided by a combination of TP, 

FP and FN (for details, see Methods). The most marked difference is the lower rate of 

FPs as the patch size increases, which appears to confirm the earlier visual 

observation. Yet, most other metrics vary little as they are all relatively high, with 

precision for all models above 0.9 and IoU above 0.8, suggesting generally good 

predictions. To ensure that problems did not arise from the overfitting of the models, 

the experiments were repeated with a lower number of epochs to stop training before 

overfitting occurred. However, models trained for fewer epochs do not significantly 

improve the performance of models trained for longer periods. Only the 512x512 

patch size appears to show slight improvements in some metrics when trained for 

fewer epochs, but since the other models do not parallel this, it may be due to the 

randomness of the data allocated in the validation split or the initialisation of the 

model. By comparing all the models, the one with the highest scores in most metrics 

was the model trained for 100 epochs on the largest patch size. It should be noted 

here that the false positive rate in this experiment needs to be carefully evaluated 

because some of the predictions are clearly correct but are simply not labelled in the 
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test dataset. Therefore, a small number of false positives may be expected. However, 

the number of false negatives remains relatively high compared to the false positives, 

suggesting that the sensitivity of the models could be further enhanced.  

 

I chose to do this by augmenting the dataset and training again on the largest patch 

size to test whether the previous results could be optimised. When augmenting with 

purely geometric augmentations (rotation, flipping) the model performs better in all 

quantitative metrics although it overfits much earlier during training than any of the 

previously trained models. Visually, the main difference appears to be a slightly 

improved overlap between prediction and target. However, other differences cannot 

be clearly detected by eye. As the StarDist notebook provides further augmentations 

beyond those above, a further improvement of the model was attempted by adding 

augmentations that change the intensity of pixels on the image. This might make the 

model more robust against background noise or nuclei which appear dimmer or 

brighter on the images. However, the additional augmentation does not appear to 

improve the model beyond the performance of the ‘geometric’ augmentations. 
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Figure 33 – StarDist segmentation of breast cancer nuclei – A) Training losses 

(mean average error) of StarDist models on 3 different patch sizes, with additional 

plots shown for training on an augmented dataset (8x) for the largest patch size. B) 

Example Test inputs and targets (left column) and predictions overlayed with the 

target from models trained on 3 different patch sizes and one model trained with 

augmentation. (Scalebars: full FOV: 100μm, inset: 50μm) C) Table of the quality 

metrics evaluated in the ZeroCostDL4Mic notebook. Highlights represent the best 

and second-best results for each metric. (IoU – Intersection over union, FP – False 

positives, TP – True positives, FN – false negatives) 
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III. 4. QC for a denoising task in ZeroCostDL4Mic 

While the evaluation of object detection and denoising tasks can be performed with 

metrics which are readily understandable and mirror the visual inspection of the 

images, evaluating denoising performance can be challenging as differences may be 

subtle and thus difficult to verify by eye. Here, I was interested if it was possible to 

evaluate and optimise CARE 2D models using the QC section in the 

ZeroCostDL4Mic notebook and how easy it was the estimate performance using three 

widely used metrics for measuring the performance of image restoration methods 

against ground-truth images: structural similarity (SSIM), mean squared error (MSE) 

and peak signal to noise ratio (PSNR). 

The first trial for CARE 2D was performed on a dataset of 24 1024x1024 images of 

LifeAct-labelled HeLa cells. For QC, two images were set aside and each split into 4 

patches of dimensions 512x512 pixels, which allowed testing on a slightly larger 

sample without reducing the already small dataset. As in the StarDist 2D notebook, 

one of the key parameters which can be adjusted in CARE is the patch size parameter. 

In the context of this project, this parameter has additional significance, as more 

RAM is required in the notebook when the patch size increases (at constant batch 

size). Hence, testing how patch size affects trained model performance could indicate 

the upper limit for model performance in this project. 

For training, four different patch sizes with dimensions of 80x80, 128x128, 256x256, 

and 512x512 pixels were tested. A patch size of 1024x1024 was also attempted for 

training but could not be executed due to the RAM limitations of the Colab 

environment, making 512x512 the maximum patch size in this experiment. Since the 

patch size determines how many unique patches can be sampled from an image, the 

number of patches per image was reduced as the size of the patch increased. In CARE 

2D, the number of patches per image is not automatically calculated as in StarDist 2D 

and is chosen by the user. CARE then creates random patches of the specified size 

and number for each image, which means that choosing a very large number of 

patches is likely to lead to oversampling of each training image. Although this may be 

problematic if overlap is too great as this could lead to overfitting, the authors of the 

CARE method do not report oversampling to lead to performance issues. Hence, for 

the above patch sizes, this was also done in this trial (see Fig. 34A), except for the 
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80x80 experiment where the 100 patches sampled from each image should not lead to 

significant oversampling, i.e. large overlap between two patches. 

As above, the loss curves were evaluated first to identify overfitting models. The 

losses indeed indicate overfitting during training for all patch sizes, with the onset of 

overfitting delayed for larger patch sizes. While training losses are nearly identical for 

all patch sizes, the trajectories of the validation losses differ between the two smaller 

and larger patch sizes, with the former increasing clearly after overfitting while the 

latter continue to decrease (Fig. 34A), albeit more slowly than the training losses. 

Before attempting to overcome this problem, I was interested how much overfitting 

affected model performance on unseen data since experience from the StarDist 2D 

experiment showed that overfitting does not directly imply poor predictions, 

especially if model weights are saved based on the best validation loss. Comparing 

the predictions by the models on the test data no clear differences between models are 

apparent, with all models predicting images that fail to resolve some of the fine 

filaments seen in the ground-truth (Fig. 34B). Further investigation, using the error 

maps calculated in the notebook are also extremely similar, but may reveal subtle 

differences. The SSIM maps show relatively coarse regions of the image that differ 

between ground-truth and predictions. The main difference is that the models trained 

on the patch sizes between 128x128 and 256x256 appear to be overall brighter seen, 

for example, in the inset in Fig. 34B in the third row. The error maps calculated on 

the relatively simple root-squared error (RSE) between pixels are slightly more 

insightful than the SSIM for this dataset, showing quite clearly the filaments that are 

‘missed’ by the models. The RSE maps also show that this error is more pronounced 

as the patch size used in model training increases. Since the error maps show only 

subtle differences, the same metrics were evaluated on the full dataset, to find which 

model performs best overall. Interestingly, the metrics suggest slightly better 

performance of the models on smaller patch sizes (higher PSNR and SSIM, lower 

NRMSE). While a patch size of 128x128 appears to yield the best performance on the 

test dataset in two out of three metrics, the test dataset is relatively small, and this 

result itself should thus be treated with caution. However, since the model trained on 

even smaller patches of 80x80 pixels achieves very similar performance and similarly 

performs slightly but significantly better than those trained on larger patches, this 
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indeed suggests that smaller patch sizes help the CARE 2D model to perform better 

on unseen data.  

How can this be reconciled with the overfitting behaviour of the models? First, it can 

be noted that only the best model weights are used for the testing step. This means 

that for the smaller patch sizes the weights used will be those which were learned 

before overfitting occurred, as validation loss increases after overfitting. Therefore, 

the model weights learned after overfitting are not saved. In contrast, validation loss 

decreases in models trained on larger patch sizes even after overfitting begins. This 

means that the best weights for these models are learned after overfitting to the 

training data. Hence, despite the lower validation losses and the later onset of 

overfitting, the best weights of these models may not lead to better generalisation 

than the models trained on smaller patches. 

An additional observation which can be made when examining the results of the 

CARE 2D models on the test dataset is that the improvement of the images via 

denoising is small, as can be seen when comparing the differences between prediction 

and ground-truth and input and ground-truth. 

The above results raise two questions: Firstly, can performance be improved for the 

larger patch sizes if training is stopped before overfitting? Since the above hypothesis 

is that the best model weights are those saved at the lowest validation loss, i.e. before 

overfitting, in the smaller patch sizes, using a model saved at even lower validation 

loss, but also before overfitting for 512x512, may further improve performance. 

The second question is whether inherent features of the dataset limit the denoising 

performance. This question could be answered by training CARE 2D models on other 

datasets and determining if denoising performance as measured by the QC metrics is 

better on these datasets. 
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Figure 34 – CARE denoising on actin using different patch sizes for training – A) 

Loss curves for each patch size, with the number of patches per image shown in 

brackets. B) Example test data with predictions for each patch size and error maps 

for the SSIM and NRMSE metrics. The metrics shown in the upper right corner 

represent the average values for the shown image. (Scalebars: Full FOV: 5μm, inset: 

1μm) C) Boxplot showing the average metrics evaluated for the whole test dataset 

(n=8) plotted against the patch sizes (in pixels per dimension) used for training (GT – 

ground truth, ps - patch size). (The whiskers encompass the range between the 1st and 

3rd quartile of the distributions, with the median shown as solid and the mean as a 

dotted black line.) 
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To answer the first question, the experiment above was repeated for the largest patch 

size, with checkpoints saved for the 20th, 50th and 100th epoch. For each checkpoint, 

the quality control steps were repeated. 

To test if model performance deteriorates even when validation loss continues to 

improve, the models were trained on 512x512 patches for 20 and 50 epochs, to find a 

model which does not overfit. Fig. 35 shows that the models do not overfit at 20 or 50 

epochs respectively, suggesting that the model trained for 50 epochs should contain 

the best loss achievable with the given set of parameters. As opposed to the previous 

trial, slight differences in quality can be seen between images from models trained for 

a different number of periods, with the model trained for 50 epochs being less grainy 

than the model trained for 20 epochs. Compared to the model trained for 100 epochs, 

which overfits to the training dataset, this model also appears to remove slightly less 

of the background structure and does not provide the same level of artificial 

smoothing. Subtle differences can again be seen on the error maps, with the model 

trained for 50 epochs showing slightly fewer dark (i.e. large error) areas than the 

other models in the SSIM map and more dark (low error) areas in the RSE map. 

Evaluating these metrics across the test dataset appears to confirm that training 

overfitting is a limiting factor and that 50 epochs seems to be near an optimal number 

of training epochs. This result shows that models perform better when the training is 

stopped earlier even if models trained for more epochs achieve a better validation loss 

(Fig. 35). 

The results presented for this dataset show that in all cases the images predicted by 

the trained CARE method noise were closer to the targets than the inputs according to 

the quality metrics. The availability of the metrics also allowed performance to be 

improved even when the image quality was visually difficult to distinguish. However, 

models generally score low on all metrics with peak SSIM scores below 0.4, 

suggesting poor performance even if some models score high relative to others. This 

is also confirmed by visual inspection of the images themselves. The CARE 2D 

models predict images that are less granular than targets and appear to smooth edges, 

which can make structures visible in the ground-truth images completely disappear. Is 

this a result of the small size of this dataset or is the dataset inherently difficult to 

denoise? In the next section I explore this question by comparing the performance 
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seen in the models trained on the small actin dataset with models trained on different 

datasets. 
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Figure 35 – Improving CARE performance by stopping training before overfitting 

– A) Loss curves for model trained up to three checkpoints (patch size 512x512 

pixels) on the LifeAct labelled dataset. The metrics shown on the top right refer to the 

average over the full FOV, not the inset. (Scalebars: full image: 5μm, inset: 1μm.) B) 

Example test images, predictions, and error maps for each checkpoint of the model 

trained in A. C) Quality metrics evaluated for CARE models on the above actin 

dataset for each checkpoint.  
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While performance could be improved by adapting epoch numbers and patch size for 

training, the performance on the actin dataset remains low, with issues in 

reconstructing the filamentous actin structure even after fine-tuning.  

To test whether there are inherent difficulties in denoising actin, CARE 2D models 

were trained on two other datasets, using parameter settings that yielded good 

performances on the actin dataset after 100 epochs (batch size 16, patch size 128, 100 

patches, 100 epochs, 10% validation split). The datasets chosen were from HeLa cells 

labelled for mitochondria (labelled via TOM20 at outer mitochondrial membrane) 

and tubulin (using a fluorescently tagged β-tubulin subunit). Both datasets were 

significantly larger than the actin dataset used in the previous section (60 images for 

tubulin and 63 for mitochondria). The image dimensions were also adjusted so that 

the images were 1024x1024 pixels. To control for these differences in dataset size, 

training was performed both, on reduced versions of these datasets, with 22 training 

images, and on the full datasets. Alternatively, the actin dataset could have been 

augmented by 3, yielding approximately the same number of images as the other 

datasets (22x3=66). However, in that case, it would be the only dataset containing 

augmentations, which may not represent the full biological variability contained in a 

natural dataset. Furthermore, for testing performance by dataset, the scale of the 

dataset may not be of significance, provided that the models achieve at least minimal 

convergence. 

The differences between the models’ performance on their respective datasets are 

immediately notable in the loss curves. The models trained on mitochondrial and 

tubulin labels converged smoothly without overfitting after 100 epochs (Fig. 36A). 

The performance also differs significantly when visually inspecting the models' 

output (Fig. 36B). The performance of the models denoising the mitochondrial and 

tubulin-labelled datasets offers a clear improvement without obvious errors. The error 

maps improve the input data compared to the ground-truth even clearer. In both 

mitochondrial and tubulin datasets, the difference in colour between the input-target 

and prediction-target pairs is clearly visible and reflected in both background and the 

labelled structures. This suggests that the improvement of the inputs upon denoising 

by CARE 2D is better for the tubulin and mitochondrial images than for the actin 

dataset. 
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These differences can also be quantified in the ZeroCostDL4Mic notebook. When 

examining the models’ prediction on the full test datasets, the metrics suggest that the 

mitochondrial dataset achieves the best performance as indicated by the highest SSIM 

and PSNR and lowest NRMSE values (Fig. 36C). The model trained on microtubule 

labels reaches a slightly lower peak in these metrics, but still significantly outscores 

models trained to denoise the signal from the actin label. The high performance on 

the mitochondrial dataset may be partly explained by the higher similarity between 

the images in the training pairs, as lower discrepancies between these pairs likely 

make it easier to learn this task. However, this is likely not the only reason for the 

improved performance, as the microtubule training pairs have a similar discrepancy 

as the actin training pairs, according to the three quality metrics. The performance 

was pronounced for datasets of identical dataset size, and as expected, performance 

further improved, although only slightly, when trained on the full tubulin and 

mitochondrial datasets.  This minor improvement upon a nearly 3-fold increase of the 

dataset suggests that increasing the dataset size for the actin dataset, which was not 

possible as no further images could be acquired, would not have significantly boosted 

the performance of the model trained on this dataset. The poor performance on the 

actin data is thus unlikely to be purely a result of its limited size. 
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Figure 36 – CARE models perform differently on different datasets – A) Loss 

curves for three different datasets evaluated with a patch size of 128x128. B) 

Example images, predictions, and error maps for test datasets for CARE 2D models 

trained with three different labels, with a training patch size of 128x128. The metrics 

in the top right corner are the average values for the whole FOV shown. (Scalebars: 

LifeAct full FOV: 5μm, inset: 1μm, β-tubulin and TOM20: full FOVs: 20μm, insets: 

5μm) C) Average quality metrics evaluated for entire test datasets for actin (n=8), 

tubulin (n=8) and mitochondria (n=9). D) Comparison of quality metrics results in C 

(here in orange) with models trained with larger datasets (green), small datasets: 22 

training pairs, full datasets: TOM20 – 63 training pairs, tubulin – 60 training pairs. 
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Hence, there may be an inherent difficulty in denoising the actin dataset instead of a 

problem related to the dataset’s size. However, these results do not indicate whether 

the inherent difficulties in denoising arise from the structure depicted on the images 

themselves, i.e. the actin cytoskeleton, or if they result from the type of noise in the 

data which may be difficult to remove. 

The noise level can be artificially controlled to assess whether the noise itself rather 

than the biological structure may contribute to these difficulties. To control the noise, 

new datasets were created where 10% Gaussian noise was added to the target images 

from all three datasets that were previously normalised to values between 0 and 1. 

CARE 2D models were then trained with the ‘noised’ images as inputs and the 

normalised targets. Suppose the differences in performance initially arose primarily 

due to differences in noise between different datasets caused by differences in the 

acquisition conditions, rather than differences inherent in the acquired biological 

structures. In that case, these should disappear when the noise is similar in all images. 

However, the models trained on these artificial denoising datasets continue to 

perform poorly on the actin-labelled dataset when compared to both mitochondria and 

microtubule labels (Fig. 37A). This supports the hypothesis that the difficulties are 

inherent in the image content rather than in the statistical distribution of the image 

noise. 

However, another interesting conclusion can be drawn from the results of this 

investigation. As the input images are all denoised to the same degree, it could be 

expected that the QC metrics would show almost identical results for all three 

datasets. This is the case for NRMSE and PSNR, both of which fundamentally 

calculate a pixel-wise error on the images (Fig. 37B). However, the SSIM metric 

appears to record a clear difference between the actin dataset and the other datasets. 

Inspecting the error maps suggests that this effect could be caused by the relative 

ratio of background and foreground on the images, with background areas 

consistently brighter than ‘structure’ on the image. Although it is difficult to quantify 

this as the allocation of ‘foreground’ or ‘background’ could introduce bias into the 

analysis, the colour of the structures in all datasets is similar, suggesting that 

denoising performance is not different between structures. However, images differ in 

terms of their structure content, which may explain the differences in SSIM between 

inputs and targets, which are smaller for the actin dataset than for the others. 
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Fig. 37 – CARE control with artificial noise – A) Example for test images, 

predictions, and error maps for models trained on three different datasets. 

(Scalebars: LifeAct full FOV: 5μm, inset: 1μm, β-tubulin and TOM20 full FOVs: 

20μm, inset: 5μm.) B) Boxplot of the average quality metrics for the full test datasets 

for each label. 

 

Since this effect does not depend on the predictions of the CARE model, it could be 

verified on a larger sample of images by introducing the same noise as above, but to 

the training datasets.  

Here, the QC section in the notebook was slightly adapted to allow comparisons 

between images without a model for predictions by simply commenting out the code 

lines used to calculate metrics on a model’s prediction (see Fig. 20 in chapter II.). 

When QC is performed on the full training datasets between inputs and targets, the 

results of the smaller sample appear to be confirmed (Fig. 38). While the PSNR and 

NRMSE scores show that the noise leads to a near-identical measured difference 

between the images, the SSIM score for images containing the LifeAct label shows 

the same bias as seen above, likely due to the higher fraction of foreground signal 

which SSIM inherently measures as more similar between inputs and targets than 
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background. This experiment also showed that the QC section can be used 

independently from the DL methods implemented in the notebooks, to investigate 

datasets, without intermediary DL models. Indeed, the QC methods for image 

comparisons are now also available as an independent notebook, created by the 

Jacquemet group. 
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Figure 38 – CARE and quality metrics on images with noise controls – A) Example 

images, predictions and error maps from test datasets for three different labels, with 

input images obtained by adding Gaussian noise to the ground-truth (GT) images, 

metrics refer to the average metrics evaluated over the full FOV. (Scalebars: LifeAct: 

10μm, β-tubulin and TOM20: 200μm) B) Average quality metrics evaluated over the 

full test datasets (prediction vs. GT), for three different labels for models using input 

images with added Gaussian noise. C) Target images from the training datasets of 

the three different labels, the resulting noisy image after Gaussian noise is added, 

and error maps for the difference between these images. D) Average quality metrics 

evaluated over the full training datasets after all targets had Gaussian noise added. 

The metrics compared these noisy inputs with the original ground-truth images. 
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III. 5. QC for an artificial labelling task in ZeroCostDL4Mic 

In label-free prediction, model training is implemented differently to the other 

methods in the ZeroCostDL4Mic project. Instead of dividing the dataset into batches 

and letting the neural network repeat gradient descent on the same set of batches over 

multiple epochs, the dataset in fnet is divided into many batches each of which the 

model ‘sees’ only once during training. For each step, a batch is created from patches 

sampled from the images in the dataset. Using the batch_size parameter the user can 

choose how many patches are contained within each batch. Since each batch contains 

a unique set of patches from the dataset and the number of steps determines how 

many batches are used for training, the patch size and batch size should be set 

reasonably to avoid excessive oversampling. However, in most DL-methods, the 

neural network will encounter each training pair once per epoch, and this may be 

repeated over 100 times (or more), without necessarily leading to overfitting models, 

as seen above. Hence, when training fnet which is based on the U-net architecture as 

in StarDist and CARE, the dataset can likely contain some redundancy without 

resulting in an overfitting model. Here, the following assumptions were made to 

determine an initial set of parameters to test how patch size can affect the models’ 

performance. 

First, it was assumed that since other models can be trained to roughly 100 epochs 

without overfitting on smaller datasets than the one used here (83 images for training, 

9 for validation, dimensions of 512x512x32) that oversampling images by a factor of 

100 should be equivalent to training a model for 100 epochs, as long as each sample 

is ‘seen’ only once. Given that batch size is limited by Colab’s RAM and that larger 

batch sizes require longer training times, I decided to use a batch size of 2 for the 

largest patch size I wanted to test (256x256x32). Given that there are 4 unique 

patches for an image of size 512x512x32 for this patch size and allowing 

oversampling of 100 (see above), I calculated the number of steps to be used during 

training as follows: 

 

𝑠𝑡𝑒𝑝𝑠 =

𝑝𝑎𝑡𝑐ℎ𝑒𝑠
𝑖𝑚𝑎𝑔𝑒

∗ 100 ∗ 𝑖𝑚𝑎𝑔𝑒𝑠

𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒
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For the above parameters, this gives a step number of 16.600. Keeping the number of 

steps equal for the other patch_sizes and using the same considerations regarding the 

number of patches per image for the patch sizes of 128x128x32 and 64x64x32 can be 

achieved by changing the batch size. Using the above formula and using the same 

number of steps, gives batch sizes of 8 and 32, for the above patch sizes, respectively. 

Using these parameters, several fnet 3D models were trained. In addition, to increase 

the likelihood of observing quality differences between models, further models were 

trained with lower (8300) and higher numbers (33200) of steps, while keeping all 

other parameters stable. This should only increase the number of samples picked from 

the datasets and should therefore be equivalent to a larger number of epochs in other 

models. The first notable observation from the training of these models is that for step 

numbers higher than 8300, all models overfit, with the validation loss stabilising after 

roughly 5000 epochs for all patch sizes, and the training loss continuing to decrease. 

As the patch size grows larger the training losses initially decrease slower, and with 

more variation, eventually reaching lower values at the end of training than models 

trained on the lower patch sizes. Validation losses while stable in all models are 

slightly lower for the batch sizes of 128x128x32 and 256x256x32 than for the 

64x64x32 patch size (Fig. 39A). These results suggest that the model does not 

perform well on this training dataset and does not appear to improve performance 

significantly between patch sizes according to validation loss. 

This is partly confirmed when examining the models’ predictions on the test dataset. 

Yet, on first sight, all models produce visually compelling predictions which show 

many of the structures present in the ground-truth which would likely be difficult to 

predict by eye (Fig. 39B). In this respect, the model succeeds in predicting 

fluorescent signals. However, upon closer inspection and using the error maps 

produced in the QC section, the predictions show clear artefacts in the form of signal 

not present in the ground-truth. For the larger two patch sizes and the largest step 

number, there is some indication that the models predict fewer artefacts, with slightly 

improved SSIM scores (0.683 for 128x128x32 at 33200 steps vs. 0.655 for the same 

patch size at 8300 steps). However, these improvements are minor and much of the 

prediction performance appears to be a result of correctly predicting the background 

rather than a signal of the structure of the mitochondrial TOM20 label (Fig. 39B). 

In terms of content, the SSIM maps again show that background areas appear to be 

generally well predicted by models, appearing much brighter than the areas 
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containing structure. The SSIM maps clearly highlight areas with discrepancies as 

darker regions, while correctly predicted structures are shown a lighter colour. 

However, the SSIM maps appears to enlarge these regions around their edges which 

helps to highlight small errors but simultaneously blurs out some of the details in 

more crowded areas. In structures that appear well-predicted the SSIM maps also 

reveal that the fnet 3D models appear to slightly mis-predict the edges of the 

mitochondrial structure which is depicted as dark edge around the overall correct 

location of the structures. The RSE maps show the misrepresented areas with 

relatively more precision, making incorrect predictions more clearly demarcated than 

in the SSIM maps and making smaller artefacts more challenging to spot. 

On the full test dataset, the model's performance can be evaluated on the full test 

stacks, i.e. the average of the errors on all predicted slices of the stacks or by the 

individual slice. When measuring the performance along with both metrics, it 

becomes clear that none of the models clearly stands out in terms of performance on 

the test dataset. Only small differences are evident as step number increases, with all 

metrics measuring small increases for an increasing number of training steps (Fig. 

39C). For the patch size of 64x64x32, this improvement is most consistent. It is most 

clearly resolved by the SSIM metric, which shows distinct differences between 

models trained for a different number of steps. In contrast, the other metrics do not 

resolve the differences as distinctly. The differences between patch sizes are subtle, 

and models trained on larger patches scored higher than those trained on smaller 

patches. These results suggest that despite overfitting, the smaller training losses at 

the end of training for larger patch sizes correlate to a slightly better prediction 

performance on unseen datasets. 

A difficulty in training fnet in notebooks is that it takes significantly longer to train a 

single model than in all the other notebooks. At 33200 steps, depending on the 

allocated GPU of the Colab notebook, training often exceeded 10 hours of training, 

and models had to be re-trained when the runtime disconnected in the training time. 

Hence, increasing the step number, leading to better models, becomes difficult in the 

notebooks. 
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Figure 39 – Artificial labelling using label-free prediction (fnet) and training using 

different patch sizes and for different numbers of training steps – A) Loss curves for 

fnet models trained on different patch sizes (displayed above the curves). B) Example 

of test images, predictions, and error maps for fnet models trained on different patch 

sizes and numbers of steps on HeLa cells containing a mitochondrial label (TOM20). 

The full FOV is shown only for the test input and targets. The quality metrics in the 

top right corners refer to the full FOV, not the inset. Only the first slice of the full 

stack (z=32) is shown. (Scalebars: Full FOV: 10μm, inset: 5μm) C) – Average quality 

metrics evaluated for the full test dataset (n = 8) for fnet models trained for different 

patch sizes and number of training steps. The plots show both the evaluation per slice 

in the image stacks (blue) and the average score per stack (orange). 
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In the publication, the authors of fnet trained their models for 250,000 steps for the 

reported results (although they also use a larger dataset)114. Since performance 

improvement was marginal for the tested step numbers, one further trial on the largest 

patch size was performed with 100,000, which likely represents somewhat of a limit 

of what is a realistic use-case of the Colab environment for small to medium 

bioimaging projects. Training for this model required several runtimes and took five 

days to be trained using a free Google account. The losses for this model diverge 

slightly later than seen in the other models, but again suggest overfitting. However, 

training losses tend lower towards the end of training than in any previous model 

(Fig. 40A). Visually, the model predictions are slightly brighter with sharper edges 

around predicted structures, for both correctly predicted ones and artefacts, leading to 

a slightly ‘cleaner’ predicted image (Fig. 40B). However, the performance of this 

model as suggested by the error maps and metrics calculated on the example test 

image only shows a small improvement in SSIM and no improvement in the other 

metrics (NRMSE and PSNR) compared to the set of the models trained before (Fig. 

40B). When evaluated on the full dataset, the quality metrics similarly do not suggest 

a significant improvement although the model reaches the best average PSNR, second 

best average SSIM and the joint lowest average NRMSE score (Fig. 40C). This 

suggests that additional training can enhance the predicted signal over the background 

noise, which may corroborate the impression from the prediction, but does not offer a 

significant improvement in terms of detected structure or precision. 
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Fig. 40 – Does performance in fnet improve when the training step number is 

increased? – A) Loss curves for the fnet model trained on the dataset from Fig. 39, 

for 100000 steps. B) Example test images from the test dataset (n = 8), same as in fig. 

39., with only the first slice of the stack shown. Quality metrics refer to the full FOV. 

(Scalebars: Full FOV: 10μm, inset: 5μm) C) Average quality metrics evaluated for 

the full test dataset for slices per stack (blue) and averages for the full stacks 

(orange). 
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III. 6. Discussion 

Most published DL methods give little advice to users on how to assess the quality of 

trained models, and few provide methods which can be easily used to perform QC. 

However, QC is crucial to achieving the best DL performance and is inevitable if 

these tools are used in research. Since the reliability of DL is central to its trust and 

use in the community and one of the goals of this project was to improve access to 

reliable DL methods, it became central to the project to integrate QC as a step in the 

workflow. This section explores the merits of the QC metrics available for the models 

trained in ZeroCostDL4Mic. This was necessary to demonstrate that the platform 

introduced in the previous chapter could tackle a serious problem hindering the 

uptake of DL methods in bioimaging, the ‘reliability problem’. While this aim acted 

as a starting point for this chapter, several related questions could be answered in its 

pursuit, and additional questions arose which will continue to inspire further work. 

The first key question explored in this section was to which degree the models trained 

on the platform can fulfil their intended functions. Can the QC section of the 

notebooks show if the models learn the tasks they were designed and trained for? 

As the first element of the QC the user will access in the notebooks is a graphical 

representation of the losses, validation losses and (for YOLOv2) mAP scores 

accumulated during training, this was also the first step in analysing the quality of the 

models trained here. The first immediate observation was that all models showed 

overfitting to the training datasets to some degree. However, when analysing the 

models' predictions and comparing them with the ground-truth via visual inspection 

of error maps and quality metrics, this does not mean that the models could not be 

trained for their respective tasks. Indeed, all the methods could be used for their 

respective tasks and evaluated using the QC section. Not all models performed 

equally well but the QC section tended to flag weaknesses. The most helpful aspect of 

the QC section in this regard were the error maps as these can highlight features that 

are not captured using quality metrics. For example, this helped identify cells that 

were not labelled in the ground-truth in the StarDist segmentation dataset which 

under the use of quality metrics only would have been highlighted as a ‘false 

positive’ even though models correctly predicted and segmented the nucleus. In the 

denoising task, the error maps for the SSIM and RSE scores highlighted areas of the 

images that were not correctly predicted, either via artefacts or missed objects, 
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specifically for the actin dataset, which appeared to represent a difficult case for the 

CARE models trained here. Fnet also performed its task relatively well even though 

training was limited by its time to train individual models. Visually, it performed 

relatively well in extracting the mitochondrial structure from the brightfield images. 

However, it failed to resolve details in mitochondrial structures and predicted 

artefacts, the identification of which was helped by the error maps. For the YOLOv2 

notebook, error maps are not provided in the notebook. This was a deliberate choice 

when designing the notebook, as the overlay of bounding boxes from different images 

can be confusing, especially when many objects are found in an image. Hence, 

predictions and ground-truth labels are shown side-by-side which was sufficient to 

identify the weaknesses of the trained models. Here, the quality metrics actually were 

more insightful as the quantification of mistakes made by the models could be 

evaluated with more clarity than by inspecting the images by eye. 

 

The second question explored in this section was whether the metrics could help to 

fine-tune the models trained through the platform, thus optimising them for specific 

tasks for which parameter changes or dataset adjustments may be required. 

As mentioned above, an apparent problem for models trained for this chapter was a 

tendency to overfit. This problem acts as a good first target for optimisation of model 

training. Indeed, for almost all methods, the parameters or options in the notebooks 

could be used to mitigate this problem, most notably in CARE and YOLOv2 where 

early stopping and augmentation helped prevent overfitting during training and 

improve model performances as measured by quantitative metrics, respectively. The 

observation that overfitting could be compensated for in YOLOv2 by augmentation is 

an indication that this problem may arise from the small dataset sizes used here. In 

the other models the reasons for overfitting were not as clear. While dataset size may 

be the main underlying cause, there may be other reasons as well, especially since 

methods such as CARE and fnet were shown in publication to perform well when 

trained on datasets with comparable sizes113,114. In the CARE 2D and StarDist 2D 

notebooks, overfitting behaviour changed when the patch size was changed, with a 

larger patch size usually leading to less overfitting during training. In contrast, in fnet 

3D, patch size changes did not improve validation loss, the reasons for which are 

unclear. However, it should be noted that in the original publication, validation is not 

implemented in fnet by default, and it is also not shown in publication, which 
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suggests that the model may have overfit in the original publication as well and yet 

performed well on unseen data. Indeed, when the models for the three methods were 

tested on an unseen QC dataset in the notebooks, validation loss was not always an 

indicator for performance measured by the quantitative metrics. In CARE 2D, 

performance deteriorated with a larger patch size despite reduced overfitting. 

However, it was noted that while overfitting was less pronounced, the validation loss 

continued to decline. Because model weights are saved each time the validation loss 

decreases, and he lowest validation losses occur after overfitting, this may explain 

why model performance may be lower for these models (trained on 256x256 and 

512x512 patch sizes. Indeed, when training was stopped for this patch size before 

overfitting, performance according to quality metrics, improved. This showed that 

overfitting can take two forms: validation loss continues to ‘improve’ after 

overfitting, likely leading to models that perform worse on unseen data, and one in 

which validation losses remain stable or increase after overfitting. In the latter case, 

since only the lowest-validation-loss-weights are saved, this form of overfitting may 

not necessarily reduce performance of the trained model which is suggested by the 

CARE 2D model trained on a patch size of 128x128, which performs better than the 

model trained on 512x512 patch sizes despite overfitting quite dramatically. Training 

may be less prone to overfitting on a larger patch size may be related to the nature of 

actin in the dataset. As the patch sizes increase more details of the relatively fine actin 

filaments remain after down sampling the patches in the neural network of CARE, 

leaving more information to be learned, while this information may disappear for 

smaller patch sizes. 

In StarDist 2D, overfitting unexpectedly increased with augmentation. It is not clear 

what causes this behaviour, but the input images may contain some unique features 

that are amplified by augmentation and that are not representative of the full data 

diversity. However, the reasons for this were not pursued further, as the performance 

of the model trained on the augmented dataset was very good in terms of 

segmentation accuracy and detection sensitivity, improving over models trained on 

smaller patch sizes. Again, the overfitting on the dataset appears to be of the type that 

leaves validation losses constant. The weights leading to the best validation loss are 

saved before overfitting, as in the above CARE 2D models.  

The observations on training losses and their effects on model performance as 

evaluated using different quality metrics allows two preliminary conclusions about 
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the ZeroCostDL4Mic platform. First, models can indeed be trained in the 

ZeroCostDL4Mic notebooks to converge on relatively small datasets. In the case of 

StarDist 2D, performance on the test data was so high after augmentation that it is 

unlikely to increase much beyond even after further training. The second result is that 

all models showed improvements in parameter changes that could be identified in 

losses during training and performance evaluation using QC metrics. This means that 

the features implemented in the notebooks can indeed be used to fine-tune models via 

dataset or parameter adjustments, which was one of the key aims of this section. 

 

Yet, there were also shortcomings and differences in the value of the quality metrics 

for different tasks, which raise some questions about using some of these metrics for 

evaluating model performance. For tasks based on object detection and segmentation 

challenges, the widely used TP, FP, and FN measure image- and dataset-wide metrics 

which give an accurate evaluation of objects which can be easily confirmed by 

visualisation of examples. For YOLOv2, the evaluation of these metrics in the QC 

section clearly showed which models performed better on detecting certain classes, 

which could be quickly confirmed by displaying instances of the predictions side-by-

side with the ground-truth. This also allowed identifying class imbalance as a 

potential cause of difficulties, as adjustments in the number of classes per training 

clearly improved performance both visually and in the quality metrics. Similarly, 

though perhaps less clearly than in the YOLOv2 models, the StarDist evaluation of 

TP, FP, FN and IoU provides intuitive insights into how well the model performs 

across entire images and datasets. For instance, missed objects or inaccurate 

segmentations are immediately visible by analysing the metrics and by eye in the 

target and prediction overlay maps.  The quality metrics are readily interpretable for 

these tasks and provide reliable insights into model performance. Indeed, these 

metrics can be used for evaluating higher-level metrics such as F1 and mAP which 

make different models comparable with single metrics. Because these metrics provide 

relatively accurate estimates of model performance, they have also been widely used 

in object detection and segmentation challenges in the computer vision community 

and are optimised for these tasks. 

 

This stands in contrast to the image quality metrics SSIM, NRMSE, and PSNR for 

models that reconstruct full images, such as CARE and fnet. These metrics have been 
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used frequently in tasks for image reconstruction in bioimaging, and in the results 

from the QC section, they suggest that the denoising and artificial labelling models 

appear to improve their performance according to some intuitive parameter changes 

discussed above. However, in terms of interpretability these metrics are far less 

insightful than their counterparts for object detection and segmentation. For example, 

can it truly be concluded from the evaluation of the models in figures 34-35 that the 

predictions from the CARE 2D models on actin represent successful removal of 

image noise or object reconstruction from the input images? The metrics suggest a 

small improvement of the predictions when compared to the input images. However, 

these improvements are not clear from inspecting the predictions of the model which 

appear to show smoothing and a lack of detail for very fine details of the actin 

cytoskeleton. Therefore, the predictions themselves suggest that the denoising 

performance is not as good as intended, making the evaluation by the metrics difficult 

to interpret. 

Indeed, all metrics used in the QC for image reconstruction methods measure features 

other than denoising, namely the pixel-wise error between two images (NRMSE and 

PSNR) or the similarity of structures in the images (SSIM). SSIM likely has more 

value here as denoising tasks are inherently more concerned with structural 

information than pixel-wise precision e.g. in prediction of intensities. This can be 

seen when artificial noise is added to ground-truth images. Structures are clearly still 

present in the image containing noise, the MSE metric does not consider the 

similarity of these structures as most of it is obscured by pixel-wise noise and gives a 

relatively high error for the whole image. 

 

The observations suggest that these metrics are poor predictors of denoising 

performance by themselves. However, the shortcomings can be compensated or 

interpreted by the availability of each metric’s error map in the ZeroCostDL4Mic 

notebooks. These clarify some of the issues but also the strengths of the metrics, 

which are not apparent from the values alone. In the case of the actin dataset, a clear 

problem from inspecting the predictions was that the model performs poorly on 

unseen images. While the image metrics that are calculated across entire images 

suggest a small image improvement, the SSIM map clearly shows how artefacts were 

introduced and the RSE map, which forms the basis for the NRMSE metric, 

highlights actin filaments that were not predicted. The error maps thus nicely 
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complement each other in showing issues with the predictions. Yet, on average all 

metrics measure an improvement. How is this explained? This becomes clearer when 

comparing the performance of the CARE 2D model on actin with that of models 

trained on different datasets. 

When comparing noisy input images to targets, SSIM, NRMSE and PSNR appear to 

identify structures, i.e. areas where signal dominates noise on images very well, and 

gives low (SSIM) or high (RSE) values for background regions, likely because the 

structure of the noise is very unlike the mostly structureless background area in the 

ground-truth image. In contrast, when the image is denoised and compared to the 

target, SSIM in background regions is extremely high, and RSE low, likely because 

the model easily predicts background signals as dark areas, while the structured areas 

see a smaller improvement. These attributes of SSIM and RSE mean that they are 

biased towards datasets with more background areas and make the metrics across 

whole images challenging to use as the sole indicators of denoising performance. 

While this problem is present for both metrics it appears to be more pronounced in 

the SSIM metric, likely because it is designed to identify ‘structure’ which is 

inherently more difficult to reconstruct via denoising or artificial labelling than 

background regions. This is one reason why the actin dataset, which has very little 

background per FOV, stands out when virtually identical noise is added to it as to the 

other investigated datasets depicting microtubule and mitochondrial labels, and SSIM 

appears less sensitive in highlighting the differences between low-noise and high-

noise instances. 

 

Despite the conceptual challenge in interpreting what the image quality metrics 

measure, they do appear to provide an indication of model performance which 

matches inspection of the predictions and error maps by eye. Therefore, the metrics 

suggest that the CARE 2D models do not denoise actin, tubulin and mitochondria, 

which is reflected in the overall lower scores between the prediction and the targets 

for this dataset than for the other datasets. While factors such as background and 

foreground need to be considered when evaluating the values of SSIM which is 

helped by error map consultation, when models need to be fine-tuned for a specific 

dataset, the average metrics can help to identify patterns in performance when visual 

inspection fails to find significant differences. For example, if different models are 

used on the same image, and the background is interpreted roughly in the same way 
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by different models, then differences measured by SSIM or NRMSE do correspond to 

differences in the quality of structural predictions.  

For the case of fnet 3D, it was virtually impossible to discern the differences between 

model performance for different parameter settings by eye alone, even when the error 

maps were considered. Yet, when the full test dataset was evaluated small but clear 

differences between the models emerged which helped in optimising the training in 

the notebook. 

 

The results from this chapter show that the main quality metrics used for DL-methods 

in image reconstruction do not carry the same informational value as those used for 

object detection. The reasons for this may lie in the origin of these metrics and the 

tasks they were designed to analyse. While the metrics for object detection are 

intuitive and relate essentially to a binary problem (objects are either correctly 

classified/detected or not), they also do not differ between macroscopic or 

microscopic objects. For image reconstruction problems this equivalence does not 

hold. MSE, PSNR and SSIM are metrics developed essentially to determine how 

image data compression deteriorates image content and has been tested primarily on 

macroscopic images in computer vision. In macroscopic images, the differences 

between background and foreground are usually not as pronounced and not as 

relevant as for microscopic images, specifically fluorescent microscopy images. The 

problem here lies in the fact that all methods create an average metric across entire 

images when a distinction between fore- and background is crucial to determine the 

performance of the algorithm. The metrics also do not have a ‘count’ for missed 

objects or introduced artefacts which would be more akin to the FP or FN metrics in 

object detection or segmentation tasks. In this project, the metrics which were 

implemented in the QC section, and which were shown here were chosen because 

they play a role in democratisation. Since these metrics are widely used in the 

community, they represent a 'standard' that will help users put any results from the 

platform in perspective. However, this standard should perhaps be scrutinised and 

adjusted to reflect the needs of the bioimaging community, which are distinct from 

those of standard computer vision tasks. In this project, the best solution to the 

problem with some QC metrics was to display them via pixel wise representations on 

the error-maps. Currently, for image reconstruction methods, this appears to be the 

safest option for users to judge whether their models can be used safely on unseen 



184 
 

datasets. The alternative, using the metrics themselves as is commonly done for DL-

methods in bioimaging cannot be deemed as a suitable quality control for these 

methods from the observations in this chapter. 

However, it is not inconceivable that metrics exist which are better predictors for 

model performance and can be more intuitively interpreted without additional human 

visual confirmation. In the cycleGAN and pix2pix notebooks, also part of the 

ZeroCostDL4Mic project, the LPIPS metric206 is implemented on an experimental 

basis, as generator output may be of any type of data, which makes such outputs 

difficult to assess with existing methods such as SSIM and NRMSE. LPIPS uses the 

weights of a pretrained neural network trained to mimic humans in determining the 

differences between two images which has previously been shown to perform better 

in certain image-to-image tasks than the more ‘traditional’ metrics like SSIM or 

NRMSE. However, LPIPS is trained primarily on images of macroscopic objects, and 

it is questionable if it can be applied well to microscopic data, which has yet to be 

thoroughly explored. This may continue to be an issue with other future metrics, 

which are developed primarily by computer vision groups for use on macroscopic 

images. Hence, a future focus of the bioimaging community using DL-tools for image 

reconstruction should be the development of quality metrics which can be used more 

safely and intuitively on bioimages than those in use today. This argument could even 

be extended to other aspects of DL-tools in bioimaging, such as the use of loss 

functions from methods developed for computer vision tasks on ‘natural images’. It is 

conceivable that accommodating features typical of bioimages, such as clear 

background-foreground distinctions or images with few colours, into all aspects of 

the DL pipeline, including QC metrics, could yield better results than methods 

adapted from ‘natural image’-based computer vision tasks. Another common datatype 

in bioimage data which has hardly been addressed in terms of quality metric design is 

the analysis of 3D data. In this project, this was done by performing QC on the slices 

of a stack and then averaging the scores to estimate the result for the entire stack. 

Although it can be useful for the user to evaluate their models in this way, it may 

miss important aspects of model performance in the reconstruction of volumetric 

information. Again, the metrics which are borrowed from computer vision tasks 

which are primarily concerned with 2D data, may need to be improved for better QC 

to be performed for DL-models working on 3D data which is very common in 

bioimaging. 
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II. 7. Results Chapter 2 - Summary 

To summarise, the QC section in the ZeroCostDL4Mic notebooks is suitable to give 

users useful insight into the quality of the models trained in the notebooks. It achieves 

this by firstly, integrating it easily into the workflow and providing a rich set of 

information which allows parameter adjustments to be made to fine-tune the models. 

This is crucial for novice users to explore how model behaviour changes and how it 

affects the predictions on unseen data. The analysis which gives qualitative and 

quantitative feedback to the user provides some transparency to DL-methods which 

can quickly produce undesirable predictions or appealing ones with errors that are 

difficult to detect by eye. Therefore, it fulfils its purpose in the context of this project 

in enabling a new type of user to access DL tools and in providing an avenue to 

improve the reliability of DL tools, thus addressing two of the previously outlined 

problems for DL adoption, the 'knowledge' and ‘reliability’ problems. 

While attempting to show that the models trained here can be evaluated using the QC 

metrics, it was incidentally observed that the metrics used to evaluate different DL-

tasks differ strongly in their informational value to the user, with metrics for 

classification and segmentation tasks providing relatively good predictors of model 

performance as estimated by visual inspection of model outputs, and metrics for 

image-to-image tasks requiring careful additional analysis of the output images to 

give insight into true model performance. The difficulty of assessing how well DL-

models perform in certain tasks calls for the community to set standards for model 

evaluation and to focus on developing new standards and metrics for a class of 

algorithms which is likely to be widely used for imaging tasks in the future. 
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II. 8. Methods 

Metrics 

Mean-squared error (MSE) 

The MSE between a ground-truth image (GT) and a corresponding predicted image 

(P) is defined as: 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝐺𝑇𝑖,𝑗 − 𝑃𝑖,𝑗)

2
𝑁

𝑖,𝑗

 

Where i and j represent coordinates of pixels in the ground-truth and predicted images 

and N represents the total number of pixels in the image. In the notebook this error is 

further simplified by taking the root of this value which becomes the root-mean-

squared error (RMSE): 

  

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝐺𝑇𝑖,𝑗 − 𝑃𝑖,𝑗)

2
𝑁

𝑖,𝑗

 

Since the images predicted by the trained model may not correspond to the same 

dynamic range as the ground-truth image, the predicted image is normalised with 

respect to the ground-truth by percentile normalisation as follows: 

𝑃𝑖𝑗
𝑛𝑜𝑟𝑚 =

𝑃𝑖𝑗 − 𝑃99.9

𝑃99.9 − 𝑃0.1
 

where 𝑃𝑖𝑗
𝑛𝑜𝑟𝑚 represents the normalised intensity value at pixel (i,j), 𝑃𝑖𝑗 the intensity 

to be rescaled, 𝑃99.9 the value of the pixel which lies in the 99.9th percentile of pixel 

values in the image and 𝑃0.1 the pixel value of the pixel in the 0.1th percentile of the 

pixel values in the image. This percentile-based normalisation (instead of using 

minimal and maximal pixel values) is aimed at preventing the influence of dead or 

hot pixels which are common in microscopy images and may distort the useful 

dynamic range of the image upon normalisation. 

The linear regression normalisation is done the same way as in CARE, based on least 

square minimisation, defined as: 
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(𝛼𝑜 , 𝛽𝑜) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼,𝛽 ∑ (𝐺𝑇𝑖𝑗 − (𝛼𝑃𝑖𝑗 + 𝛽))
2

𝑁

𝑖,𝑗

  

where 𝐺𝑇𝑖𝑗 and 𝑃𝑖𝑗 are the respective pixels in the ground truth and prediction and α 

and β the parameters which rescale the prediction to the dynamic range of the ground-

truth. 

The normalised image is then calculated as: 

𝑃𝑛𝑜𝑟𝑚 = 𝛼𝑜𝑃 + 𝛽𝑜 

Using this normalisation protocol, we can calculate the final error metric, the 

normalised root-mean-squared error (NRMSE): 

𝑁𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝐺𝑇𝑖,𝑗 − 𝑃𝑖,𝑗

𝑛𝑜𝑟𝑚)
2

𝑁

𝑖,𝑗

 

The NRMSE metric gives a positive value between 0 and 1, where small values 

correspond to a smaller detected error between the images. Since this metric is 

calculated in a pixel-dependent manner, it can be valuable to visualise the calculated 

errors per pixel to produce an error map. This can be done simply by adapting the 

formula for the RMSE to evaluate each pixel and plot the value in an array, giving a 

root squared error (RSE): 

     𝑅𝑆𝐸𝑖𝑗 = √(𝐺𝑇𝑖𝑗 − 𝑃𝑖𝑗
𝑛𝑜𝑟𝑚)

2
 

 

Peak-signal-to-noise ratio (PSNR) 

PSNR measures the same quantity as the MSE, the pixel-wise error between a 

ground-truth image and a prediction. Intuitively, the PSNR is the ratio the between 

the maximal (peak) expected signal in the image and the error (MSE) between 

prediction and ground-truth, meaning the PSNR becomes higher the lower the MSE 

becomes compared to the maximal dynamic range of the signal. Given the potentially 

large dynamic ranges at certain bit-depths or very low MSE, PSNR is usually given in 

decibels, i.e. at a logarithmic scale. It is thus defined as follows: 
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𝑃𝑆𝑁𝑅 = 20 log10

max (𝐺𝑇)

√𝑀𝑆𝐸(𝐺𝑇, 𝑃)
 

where max(GT) represents the maximum pixel intensity of the ground-truth, which is 

usually defined by the bit-depth of the image, i.e. 255 for an 8-bit image. MSE(GT,P) 

represents the mean squared error between the GT and the predicted image, defined 

as above. 

Structural Similarity (SSIM) 

The SSIM between two images X and Y is calculated as introduced by Wang et al.: 

𝑆𝑆𝐼𝑀(𝑋, 𝑌) =  
(2µ𝑥µ𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(µ𝑥
2 + µ𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 

where µ𝑥 and µ𝑦 refer to the mean pixel intensity, 𝜎𝑥
2 and 𝜎𝑦

2 to the variance of pixel 

intensities and 𝜎𝑥𝑦 to the covariance of the pixel intensities between the images. 𝐶1 

and 𝐶2 are introduced to avoid instability for small denominators and are determined 

using the bit-depth L of the images as follows: 

𝐶1 = (𝐾1𝐿)2 

𝐶2 = (𝐾2𝐿)2 

With 𝐾1= 0.01 and 𝐾2= 0.03 as suggested in one of the original SSIM publications193. 

In the notebooks, this is implemented using the skimage metrics structural_similarity 

package. 

To ensure that SSIM can be calculated without effects related to different dynamic 

ranges of predictions and ground-truth images, before QC the images are normalised 

to values between 0 and 1, first by percentile normalisation on all data (source, target, 

and prediction): 

       𝐼𝑖𝑗
𝑛𝑜𝑟𝑚 =

𝐼𝑖𝑗−𝐼99.9

𝐼99.9−𝐼0.1
 

where 𝐼𝑖𝑗
𝑛𝑜𝑟𝑚 is the normalised intensity of the pixel with coordinates i, j. 𝐼𝑖𝑗 is the 

intensity to be rescaled at the pixel coordinates i, j.  𝐼99.9 and 𝐼0.1 are the intensities of 

the pixels lying in the 99.9th and 0.1th percentiles of intensities in the image, 

respectively. 
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A further normalisation is performed on source and predicted images via linear 

regression compared to the target as proposed by the authors of CARE113 as: 

(𝛼𝑜 , 𝛽𝑜) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼,𝛽 ∑ (𝐺𝑇𝑖𝑗 − (𝛼𝐼𝑖𝑗 + 𝛽))
2

𝑖,𝑗

  

where 𝐺𝑇𝑖𝑗 and 𝐼𝑖𝑗 are the respective pixel coordinates in the ground truth and 

predicted images and α and β the parameters which rescale the prediction to the 

dynamic range of the ground-truth. 

These parameters then rescale/normalise the image I as: 

𝐼𝑛𝑜𝑟𝑚 = 𝛼𝑜𝐼 + 𝛽𝑜 

After rescaling, any pixels with intensities above 1 and below 0 are thresholded to 1 

and 0, respectively. 

The SSIM map is calculated on a local window around the pixel of interest. The 

window size is set to 11x11 pixels and a Gaussian weighting function of 1.5 pixels 

standard deviation. The global SSIM metric is calculated by averaging the SSIM 

value over the entire SSIM map. 

Intersection over Union (IoU) 

IoU is calculated by dividing the number of pixels shared between predicted and 

ground-truth masks by the total number of pixels in the union of the two masks: 

𝐼𝑜𝑈 =
𝐼 ∩ 𝐺𝑇

𝐼 ∪ 𝐺𝑇
 

where 𝐼 represents the predicted image and GT the ground-truth image. 

Average precision (AP)  

To calculate AP in the QC section, three metrics in the model's output are used: 

bounding box coordinates, predicted class labels, and the confidence, i.e. the 

likelihood the model estimates for its predicted class label to be correct. All object 

detections of a class are ranked and listed by confidence from highest to lowest. This 

list is used to calculate the precision and the recall of the model per object: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

True positives were defined as detections with correct class labels and predicted 

bounding boxes with a minimum IoU to the ground truth bounding boxes of 0.3. 

As more objects on the list are evaluated, the precision and recall values change, with 

both values logged for each object. The recall and precision values are then plotted 

against each other beginning at the top of the list, meaning the objects with the lowest 

confidence are found furthest to the right on the p-r plots.  

In ZeroCostDL4Mic QC, the AP is calculated as proposed in the PASCAL VOC 

challenge by interpolating precision scores. This means that precision at recall r is 

equal to the maximum precision for any 𝑟′ ≥ 𝑟, leading to a step-like shape of the 

curve. This reduces the effect of individual detections in the data on the AP. 

The mean average precision (mAP) is calculated as the average AP of all classes (n) 

the model predicts: 

𝑚𝐴𝑃 =  
1

𝑛
∑ 𝐴𝑃𝑖

𝑛

𝑖

 

where i represents an individual class. 

F1 score 

The F1 score is the harmonic mean of precision and recall: 

𝐹1 = 2  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
  

As the highest values for precision and recall are 1 the best possible score for F1, i.e. 

when the false positive and false negative rates over the entire test dataset are zero, is 

also 1. 

Panoptic quality 

Panoptic quality is a metric that was developed to score tasks which perform semantic 

segmentation and instance segmentation simultaneously. This means that objects are 

not only distinguished by class but also from one another within each class (“stuff” 

and “things”)205. The metric is therefore designed to account for both, the precision of 
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detections as well as the quality of the segmentations for each object. It is calculated 

as: 

𝑃𝑄 =  
∑ 𝐼𝑜𝑈(𝑝, 𝑔𝑡)𝑝,𝑔𝑡 𝜖 𝑇𝑃

|𝑇𝑃| +  
1
2

|𝐹𝑃| +
1
2

|𝐹𝑁|
 

Where p and gt are the predicted and ground-truth segmentations, respectively and 

other symbols are defined as above. The panoptic quality can also be interpreted as a 

combination of the summed IoU score over the sum of TP and the F1 score of the 

detected objects, by multiplying by 
|𝑇𝑃|

|𝑇𝑃|
: 

𝑃𝑄 =
∑ 𝐼𝑜𝑈(𝑝, 𝑔𝑡)𝑝,𝑔𝑡 𝜖 𝑇𝑃

|𝑇𝑃|
 𝑥 

|𝑇𝑃|

|𝑇𝑃| + 
1
2

|𝐹𝑃| +
1
2

|𝐹𝑁|
 

PQ ranges from 0 (worst) to 1 (best), and gives an intuitive understanding of the 

model’s overall performance in detection and prediction. 

 

Analysis of QC results 

The values for the metrics of the CARE and fnet experiments were extracted from the 

QC_results.csv files using the csv Python module and then plotted using the seaborn 

Python library. 

Notebooks 

The ZeroCostDL4Mic notebooks used in this chapter were the StarDist2D (v1.13), 

YOLOv2 (v1.13), CARE2D (v1.13) and fnet_3D (v1.13) notebooks, which can be 

found and accessed through the ZeroCostDL4Mic project GitHub page: 

https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki 

Datasets 

YOLOv2 

The dataset used here is the same as described in chapter 1. To change the number of 

classes in the dataset, the original PASCAL VOC files created for the 

ZeroCostDL4Mic publication198, were copied and edited using a Python script to 

create several new datasets with annotations for only the specified number of classes. 

https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki


192 
 

StarDist 2D 

This dataset is part of the ZeroCostDL4Mic datasets acquired by Guillaume 

Jacquemet and Johanna Jukkala and its creation is described in the methods of the 

original publicaton134,199 Briefly, the nuclei of DCIS.COM LifeAct-RFP cells were 

labelled using a SiR-Hoechst label and acquired for 14 hours on an inverted Zeiss 

Axio Observer Z1 spinning disk confocal microscope with a 20x (0.8NA) dry 

objective. A set of images was then hand-labelled in Fiji using the ROI manager and 

the LOCI plugin as described in more detail on the project’s wiki page: 

https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki/Stardist 

CARE 2D 

LifeAct 

This dataset is part of the ZeroCostDL4Mic project and was acquired by Guillaume 

Jacquemet. Its creation is also described in the original publication134,197. Briefly, 

DCIS.COM lifeact-RFP cells were grown to confluence, washed in PBS, and labeled 

with phalloidin 488 at 4 degrees overnight. Images were acquired on a DeltaVision 

OMX v4 microscope (GE Healthcare Life Sciences) microscope with a ×60 Plan-

Apochromat objective (1.42 NA). To acquire high SNR images, cells were imaged 

for the phalloidin label using the SIM modality, with 5 phases and three rotations. 

The low SNR images were acquired in widefield settings and for the endogenous 

LifeAct-RFP label. The dataset consists of maximum intensity projections of the 

images. 

β-tubulin and TOM20 

These datasets were kindly provided by Christoph Spahn, at Goethe University, 

Frankfurt. This protocol is derived from him. Briefly, HeLa cells were grown on 

fibronectin and labelled with an Alexa Fluor 594 antibody for the mitochondrial outer 

membrane domain TOM20, and for β-tubulin using AbberiorSTAR 635SP. The cells 

were acquired on a Leica SP8 confocal microscope with a 100x (1.4NA) oil 

immersion objective (HC PL APO CS2), using a photomultiplier tube for capture. 

High and low SNR images were acquired using 8x an 1x line averaging during 

acquisition and 1% and 0.1% laser power, respectively. 

Label-free prediction – fnet 3D 

https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki/Stardist
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This dataset is part of the ZeroCostDL4Mic project and was acquired by Christoph 

Spahn. Its creation is described in detail in the publication134,201. Briefly, HeLa ATCC 

cells were fixed and labelled for the mitochondrial membrane domain TOM20 with a 

rabbit anti-TOM20 primary antibody (sc-11415, Santa Cruz, USA) and a donkey-

anti-rabbit-secondary antibody with a conjugated AlexaFluor 594 fluorescent label. 

The cells were washed in PBS and images were acquired on a Leica SP8 confocal 

microscope with 63x (1.40NA) oil immersion objective. 25 stacks with dimensions of 

1024x1024x32 were acquired and split into smaller FOVs of dimensions 512x512x32 

to create the training dataset containing 92 images for training and 8 for quality 

control.  
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IV. Results Chapter 3 –  

A ZeroCostDL4Mic showcase for an 

image analysis challenge 

IV. 1. Establishing unmixing as an imaging task for DL 

In the previous two chapters, I outlined the creation of the ZeroCostDL4Mic 

platform, and how the implemented quality control (QC) methods help in confirming 

the implemented DL-tools work as expected in the Colab environment and that the 

platform allows model fine-tuning for the intended tasks. Having created a platform 

which improves ease-of-access to DL-tools and showing that the outputs can be 

quality-tested, in this chapter I will demonstrate how the platform can be used for a 

custom bioimage analysis challenge. This final step is needed to show that the tool is 

indeed suited to and versatile enough to allow users to develop new and custom tasks 

that employ DL for their research. 

I aim to achieve this by showing the use of DL methods implemented in 

ZeroCostDL4Mic for the unmixing of different biological structures from the same 

imaging channel, which is related to the key challenges in microscopy, outlined in the 

introduction of this work. I show how the ZeroCostDL4Mic platform is suited to set 

up a study to find a suitable method for this challenge, and how the results can even 

aid the user to explore datasets in ways which may be difficult without the DL and 

QC methods implemented in this project. 
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To understand why the above challenge was chosen for this chapter, we can first 

define what channel unmixing entails and where this challenge may be encountered. 

Biological specimens are often imaged using two or more channels, usually with 

fluorescent labels tagged to a specific subcellular structure of interest, through 

endogenous expression or targeted labels, such as antibodies or dyes. Imaging cells in 

multiple channels is done for various purposes. One example is the study of the 

interaction between different structures, for example protein complexes, which may 

or may not colocalize, giving insight into their functional relationships207. Other 

reasons may be more pragmatic. For example, for studies involving cell tracking a 

nuclear label is often employed in addition to other labels of interest, as each cell 

usually has only one nucleus and because nuclei can be easily detected with 

computational methods45,208. Multichannel imaging studies are usually performed by 

using multiple fluorophores that have emission spectra with clearly separable peaks, 

meaning that there is little overlap between emission spectra. This reduces the risk of 

the so-called bleed-through that occurs when different biological structures appear in 

the same channel as the structure of interest and is caused when the emissions of 

different fluorescent labels are detected in the same detector. If unidentified, bleed-

through can result in misleading images of biological structure and erroneous 

conclusions about localisation or function. However, if the emission spectra do not 

overlap significantly, they can be imaged simultaneously for example using 

wavelength-specific filters. Alternatively, channels can be imaged separately. The 

latter approach means a short time delay between channels, which can hinder some 

fast live-imaging experiments, as this could lead to channels misaligning in the 

resulting timelapses. 

Multichannel imaging is often assisted by computational methods, which can aid in 

separating channels with overlapping emission spectra and is thus often used to 

compensate for bleed-through. The most popular method is linear spectral 

unmixing209. Here, the total image signal is assumed to be a linear combination of 

each fluorophore’s emissions. When the signal and emission spectra for each 

fluorophore are known, the contribution of each can be estimated by solving a 

relatively simple differential equation209. For linear unmixing to work, the emission 

spectra of all fluorophores need to be known and the number of detection channels 

must be at least equal to the number of fluorophores in the sample. This means the 
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number of channels for which unmixing is done is generally limited to the number of 

detection channels in the microscope. As explained above, this form of unmixing is 

mostly used to reduce the effects of bleed-through which tend to be relatively small 

and significant overlap between labels can make linear unmixing much more 

difficult. 

More recently, some groups used a DL approach to perform spectral unmixing. 

McRae et al. show that an unsupervised model can learn to unmix overlapping 

channels in an image with significant overlaps between channels210. The paper 

provides an ImageJ plugin which can be relatively easily employed for custom 

datasets. As in linear unmixing, the primary purpose of the tool is to reduce bleed-

through effects in imaging tasks.  

Though useful for many users, this misses the potential that DL-powered unmixing 

could have if exploited in more extreme cases, for example, if channels are purposely 

acquired in the same detector and the same colour. If DL could be trained for tasks 

where all or some labels are acquired in the same channel, i.e. with significant 

spectral overlap, it would allow multiple different biological structures to be imaged 

using only one fluorescent label or multiple labels with overlapping excitation 

spectra. This has the potential to reduce the light dose that a biological sample is 

subject to per acquired frame, thus reducing the risk of damaging the specimen 

through phototoxicity. This approach could also be used beyond the pure reduction of 

phototoxicity as it could be exploited to image additional biological structures, which 

would otherwise be difficult to acquire simultaneously. For instance, if a cell’s 

nucleus and mitochondrial network can be distinguished via DL, there would be no 

requirement to label them using different fluorophores, and instead an additional 

structure could be acquired in the channel previously occupied for the imaging of 

mitochondria or nucleus. Depending on how many channels can be successfully 

‘unmixed’ by a DL algorithm in this way, the number of structures which could be 

labelled in a single imaging experiment could quickly be extended with applications 

e.g. for drug-screens.  

Another advantage is that unless the respective microscope has a multiple bandpass 

filter which allows several different colour channels to be imaged simultaneously, 

DL-enabled ‘unmixing’ could reduce the time required to capture a multichannel 
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image, as neither light-source nor filter would need to be changed during frame 

acquisition. This could improve the speed of timelapse acquisitions and increase 

temporal resolution and potentially make multichannel imaging more feasible on 

microscopes without band-pass filters. 

Given these potential advantages of a computational approach to distinguish 

biological structures and since there is limited literature on this challenge in a DL 

context, this acts as an example of a task a bioimage analyst or microscopist may 

encounter and for which DL may be an avenue worth exploring. In this chapter, I 

show how the tools implemented in ZeroCostDL4Mic provide such an avenue and 

allows users to test and evaluate DL tools for such novel imaging challenges. 

To demonstrate the feasibility of the approach, I created a custom dataset with three 

channels from a publicly available resource and tested three methods available in the 

ZeroCostDL4Mic platform for the above-defined unmixing task. The methods were 

then evaluated using the QC section for image-to-image comparison as described in 

the previous chapter. For some of the methods, I show how fine-tuning can improve 

performance in this task. Beyond the performance of the models themselves, there 

were other key aspects which are important in determining whether the platform 

created in this project succeeds in facilitating this task. A key question for users of the 

platform is whether it is feasible to train a model to the highest possible performance 

without timeouts and whether small performance improvements justify significantly 

longer training times or the risk of frequent timeouts. For the ZeroCostDL4Mic 

platform or its tools implemented to facilitate democratisation, as is the aim of this 

project, notebooks should be able to allow users to perform these tasks even if the 

resources on Colab may be limited compared to custom DL workstations. 

In the final section of this chapter, I discuss how the above results help to understand 

the applicability of the ZeroCostDL4Mic platform for the bioimaging community and 

the challenges that remain. Ultimately, these considerations will be used to assess in 

how much the tool contributes to the democratisation of DL for microscopy, which 

this project attempted to achieve. 
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IV. 2. Creating a ZeroCostDL4Mic dataset for channel unmixing 

To demonstrate that channel unmixing is achievable using the DL methods on the 

ZeroCostDL4Mic platform, a publicly available dataset was used which was 

originally published for the label-free prediction method (fnet)114 and used three 

fluorescently labelled structures, namely nucleus, mitochondria and membrane to be 

used in the unmixing experiment. This dataset was chosen because its size was 

suitable for the ZeroCostDL4Mic platform and allowed testing of both 3D and 2D 

networks and because it was difficult to acquire such images during the pandemic. 

The structures of interest that were chosen from this dataset represent three 

commonly labelled structures in bioimaging, thus, structures that are likely targets for 

a task that requires channel unmixing. The labels were chosen because they occupy 

different regions of the cells, which would be expected to facilitate the task and 

reduce the risk of failure. 

The dataset contained 75 3D stacks which were divided into a dataset of 68 stacks for 

training and 7 for quality control. The stacks were cropped to a format of 512x512x32 

to ensure that each image and the full dataset could be loaded into the RAM of any 

ZeroCostDL4Mic notebook. The images were normalised as 16-bit images. To create 

the combined channels which the DL-methods were to ‘unmix’ the pixel intensities 

were combined by simple pixel-wise addition, with values above the value of 65335 

clipped to this value. To create 2D datasets, each stack was split into individual slices, 

giving a training dataset of 2176 image pairs for training and 224 for QC. 

The combination of channels in this way simulates the case where multiple structures 

are acquired using fluorescent labels with the same or nearly the same emission 

peaks. This means that the labels show significant overlap in some areas of the 

images (see Fig. 41) with all labels contributing equally to the whole signal. 
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IV. 2. 1. Parameter choices 

First, all networks were trained on the task of recovering individual labels from the 

merged labels. As the different neural networks underlying the methods and the way 

the data is handled in each method differ significantly, some additional considerations 

were necessary before comparing the models for this task. The main consideration 

when choosing parameters for the models was how long it would take to train the 

models, since the datasets were large in relation to the datasets used in the previous 

chapters. First, a small patch size of 128x128 pixels was chosen for the 2D models 

and 128x128x32 pixels for the 3D models to minimise the memory footprint in the 

notebook environments. Furthermore, although performance improvements could be 

expected from the results of the previous chapter and those seen in the publication, 

the datasets were not augmented for training, initially. All models were trained on a 

patch size of 128x128 pixels (for 2D methods) and 128x128x32 (for 3D methods). 

Since fnet patches the dataset automatically, and CARE does not, for CARE the 

number of patches was set to 16 for all experiments, as this should cover the full field 

of view of each image, and which should be the same as in fnet. The validation split 

was 10% for both the CARE and fnet models. For the pix2pix models these 

considerations were not made as these models do not use a validation split. 

Furthermore, the pix2pix models do not accept a patch size smaller than 256x256, 

which means that the same patch size could not be used for this model. More 

generally, the pix2pix method is an outlier as it requires images in .png format which 

necessarily means training on a lower bit-depth (8-bit) than the other models which 

use 16-bit .tifs. Hence, the performance of the pix2pix models needs to be considered 

somewhat separately from the other models. 

To determine the settings for epochs or steps, the main considerations are to avoid 

overfitting in CARE, which was a problem in the previous chapter, and to determine 

a suitable number of steps (batches for the fnet model). For the former, training was 

initially performed with 100 epochs for the experiment. However, from the first trial, 

models began overfitting significantly earlier, which meant that better performances 

of the models would likely be reached earlier, also allowing faster completion of the 

training for each method. Thus, the number of epochs was reduced to 50 for the 2D 

models and 30 for the 3D models which led to models less prone to overfitting on the 

datasets.  
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For fnet, assuming 61 stacks for training and 7 for validation, the number of steps was 

calculated as in Chapter 2, for the 2D notebook: 

(61 images x 32 slices x 16 patches per image / batch size 64 ) x 100 = 48800 

steps 

And for the fnet 3D notebook: 

 (61 images x 16 patches per image / batch size 8) x 100 = 12200 steps. 

These batch sizes were chosen to maximise the RAM capacity of the notebooks. For 

CARE the batch size parameter is not as relevant as it simply adjusts the number of 

steps per epoch. Hence, for CARE batch size was simply kept at the default value of 

16. 

The parameter settings for the initial experiments were kept as similar as possible in 

the initial experiment, as one result of interest was which method would perform best 

on the unmixing tasks. Hence, it was necessary to eliminate sources which could 

explain performance differences. However, since the architectures differ, some 

models may have been favoured by this initial choice of parameters. After the initial 

experiment with the above settings, the performance of each method was improved 

by fine-tuning the parameters of the notebooks. The results of that experiment are 

shown in the second part of the chapter. 
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IV. 2. 2. Visual analysis and example data 

In the first experiment, models were trained to predict one label, either the nuclear, 

membrane, or mitochondrial label, from a composite image of all three. This task 

requires the network to learn the differences between the structure of interest and 

those to be filtered from the image. The performance of the models can be measured 

using different metrics. The first are the quality metrics which were introduced in the 

previous chapter, and the second is the assessment of the time it needs the models to 

reach the performance. The latter assessment is unique to Colab because of its 

inherent limitations. If the unmixing task or similar tasks are to be performed on the 

platform, it is of interest for example if the training can be performed within Colab’s 

runtime limitations and with the allocated GPUs. To facilitate the analysis of the 

results, the models’ performance is assessed for each label separately before 

comparing the models’ overall performance. The analysis of the results follows the 

guidelines of the notebooks, with visual analysis followed by quantitative analysis. 

This is also based on the results from the previous chapter which suggests that the 

metrics across the dataset are more reliably interpreted when combined robust visual 

controls of example predictions and error maps. The losses of the models are not 

shown in this section as they will be of more interest when finetuning the parameters 

and will therefore be shown in the section below (Finetuning) for some of the models 

trained here. 

 

IV. 2. 2. a. Unmixing 3 labels to nucleus 

The first impression from inspection of the predictions is that all models perform 

well, visually, at reconstructing the nuclear signal from the composite image, with 

both large-scale and small-scale structures well-recovered from the input. Differences 

between predictions are difficult to see. One notable difference is that the 3D methods 

appear to recover smaller foci of nuclear label better than 2D models which mainly 

omit these labels or show them as vague blurs. 

Differences between the models are more apparent on the error maps. The U-net-

based networks, CARE 2D and 3D and fnet 2D and 3D, are better at predicting the 

nuclear signal from the composite than the pix2pix model, which is based on a GAN 

architecture and training. However, this performance mismatch appears to be mainly 

due to the slightly worse performance of pix2pix in reconstructing the background 
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signal than the nuclear structure, which appears to be very similar to the ground truth 

in both pix2pix and the other models (Fig. 41). Next, the error maps confirm the 

initial visual impression that in both CARE and fnet, the 3D methods perform better 

than the equivalent 2D methods. According to the error maps which show fewer 

misrepresented areas and are overall brighter in the SSIM map, suggesting higher 

similarity, and darker in the RSE maps, suggesting fewer pixel-wise errors. Overall, 

the performance of the fnet models appears slightly superior to the CARE models, 

with the best prediction achieved by the fnet 3D model. While CARE 3D is superior 

to fnet 2D, it appears to predict the outlines of the nuclei less accurately than fnet 3D 

which is most apparent in the SSIM error map which shows a dark (dissimilar) edge 

around the nuclei in the CARE 3D case. 

As a second assessment criterion, it can be asked how easily it was to train the models 

for this task in Colab. Here, the CARE models are by far the models which required 

the least training. On the fastest allocated GPU (Tesla P100C), CARE 2D models 

trained in 45 minutes for this task, with the fnet 2D models trained in 3 hours 45 

minutes (48800 steps, batch size 64). The 3D methods required more time for 

training, with CARE requiring 58 minutes (batch size 8, 30 epochs) and fnet 8 hours 

and 46 minutes (12200 steps, batch size 8). The pix2pix model was trained in 1 hour 

and 34 minutes. The QC for the methods was comparably fast for the CARE and fnet 

methods, requiring less than 5 minutes for the analysis of the full test datasets. In 

contrast to the other methods, pix2pix takes longer for this step as it is not as memory 

efficient in QC. This is because its control in the ZeroCostDL4Mic notebook requires 

every 10th checkpoint from the models’ training to be assessed for each test image 

which requires significantly more time than the other methods. It is also not as 

memory efficient and requires significantly more drive space. Indeed, the pix2pix QC 

could quickly exceed the Google drive limit of a basic account, and for further 

models to be trained required additional drive memory to be purchased. 
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Figure 41 – Unmixing the nuclear channel from a three-channel composite – Top: 

Example of a test image pair, with the input image containing three channels 

(membrane, nucleus, mitochondria) and the output image containing only the nuclear 

channel. Lower panel: Top: Predictions from different models trained to filter nuclei 

from composite images. Middle: Error maps, showing the pixel-wise SSIM between 

the predictions in the above row and the target shown in the top panel. Bottom: Error 

maps, showing the pixel-wise RSE between predictions in the above row and the 

target shown in the top panel. The metrics in shown in the error maps represent the 

value for the shown example image only. (scale: 20μm) 
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IV. 2. 2. b. Unmixing 3 labels to membrane 

The reconstruction of the membrane label is largely successful. All models perform 

well in identifying the small foci in the membrane channel which appear throughout 

the image, even in relatively crowded areas in the composite image (Fig. 42 – top 

row). However, some models also incorrectly predict foci where there are none in the 

target (see bottom left corner of the example image). The membrane itself is also 

recovered in all images, however, to different degrees. In the CARE models and 

pix2pix, the membrane is predicted with relatively ‘fuzzy’ edges and contains some 

discontinuities. This is particularly apparent in the predictions of the CARE 3D 

model, where many of the membrane structures appear to merge with the 

background. In contrast to the recovery of the nuclear signal, the CARE 3D model 

performs worse than the 2D model on this image, which does not predict as many 

artefacts between the membrane structures. The fnet models perform comparatively 

better. Again, this is more apparent in the error maps, particularly the SSIM maps 

(Fig. 42 – middle row). The 2D fnet model predicts fewer artefacts than the 2D 

CARE model and achieves much better contrast between the edges of the membrane 

structure and the background. The fnet 3D model is clearly the model achieving the 

highest similarity with the ground-truth, showing fewer of the dark outlines around 

the membrane filaments and predicting fewer ‘false’ foci than the other models. 

Overall, performance appears to be lower than that for the recovery of the nuclear 

label, according to the quality metrics. This may suggest that this task is more 

challenging to learn for all methods. 

The method training time was identical to the previous task, as the images had the 

same file size and bit depth. 
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Figure 42 – Unmixing the membrane channel from a three-channel composite – 

Panels as in Fig. 41, with the target membrane. (scale: 20μm) 
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IV. 2. 2. c. Unmixing 3 labels to mitochondria 

The mitochondrial channel appears to be the most difficult to recover from the 

composite image. Although all models predict the general localization of the 

mitochondrial network correctly from the composite image, much of the small-scale 

detail in the structures is not correctly predicted (Fig. 43 – top row). However, these 

differences are difficult to identify from the predictions. Although the error maps 

suggest that the 3D models have a higher similarity to and smaller discrepancies with 

the ground-truth than in the 2D models, this appears primarily through the better 

recovery of the background rather than the signal of the mitochondrial label (Fig. 43 

middle row). The SSIM maps show many errors within the predicted structures, 

which is unlike the recovery task for the previously shown labels where the errors 

were primarily located outside the predicted structures, i.e. in the background. Both 

CARE models predict artefacts in the form of dim signal between the mitochondrial 

structures, reducing the contrast between mitochondria and background. In the fnet 

models, this effect is less pronounced but still notable. Furthermore, the thinnest and 

smallest structures in the ground-truth are missed partly in the 3D models and nearly 

totally in the 2D models’ predictions. The pix2pix model’s prediction is revealed in 

the error maps to have significant structural artefacts. This may be explained by the 

manner in which the pix2pix model was chosen. The best model checkpoint for this 

pix2pix model according to the QC was the tenth checkpoint. Thus, the observed 

artefacts may be the result of the early training stage from which the model was 

picked and may disappear in later training points. This again highlights that the visual 

inspection of the predictions and error maps implemented in the ZeroCostDL4Mic 

platform is crucial in interpreting model performance.  
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Figure 43 – Unmixing the mitochondria channel from a three-channel composite – 

Panels as in Fig. 41, with the target being mitochondria. (scale: 20μm) 
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IV. 2. 2. d. Unmixing membrane + nucleus 

Initial experiments in ‘unmixing’ individual channels from a composite of three 

showed that DL tools in the ZeroCostDL4Mic project could be used for this task, 

with some limitations, as seen, e.g, for the prediction of mitochondrial signal. As 

multiple channels overlapping one another can be a confounding factor for models 

learning the identity of the structures to remove from the image, in the next set of 

experiments, I tested if performance could be improved by removing an additional 

channel from the input images. This was done to identify which channels that overlap 

may be more difficult to distinguish in the composite image than others. For the 

mitochondrial label, it was of interest to know if the removal of an additional channel 

could improve the performance of unmixing in any of the models. To perform these 

experiments, three additional datasets were constructed from the above data which 

contained the following label-pairs: Nucleus-Membrane, Mitochondria-Nucleus, and 

Membrane-Mitochondria. For each experiment, two models of each method were 

trained. One of the 2-channel datasets was used as an input channel and one of the 

constituent channels was used as target for one of the two models, respectively. This 

led to a total of 6 models per method for this experiment. Below I go through the 

results for each channel pairing and the models’ predictions. 

In the first dataset, the mitochondrial channel was removed from the composite 

image. As expected, all models improve in their unmixing performance once the 

mitochondrial label is removed (Fig. 44). The membrane channel predictions appear 

to have higher contrast and fewer artefact foci, especially in the CARE models, when 

compared to the previous predictions of this channel (Fig. 42 – top panel). The CARE 

3D model predicts the membrane structure with more contrast against the background 

than in the previous experiment and with fewer blurred edges around the membranes. 

The performance improvement is most visible in the error maps which show fewer 

dark areas in the SSIM maps and fewer bright spots in the RSE maps (Fig. 44 – top 

panel: middle and bottom rows). It can also be observed that the fnet models 

outperform the CARE models and their own predictions from the three-channel 

unmixing. The pix2pix model improves over the previous performance by the largest 

margin in terms of SSIM and RSE but remains the model predicting images with the 

lowest similarity to the ground-truth. As in the previous experiment the fnet 3D 

model clearly outperforms the 2D version while the CARE 2D and 3D methods do 
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not appear to differ much, with the 2D method potentially being even better at this 

task, at least on the example image. 

In the prediction of the nuclear signal, a significant improvement is clear for all 

models from the first inspection of the data (Fig. 44 – lower panel). The similarity 

between prediction and target is high for all models, with an improvement 

specifically apparent for the CARE 2D and pix2pix models compared to the previous 

experiment (Fig. 41). All models in this experiment now predict the smaller nuclear 

labels located between nuclei which previously was mainly achieved by the fnet 3D 

model. The error maps also indicate that the internal structure of the nuclei is 

recovered more closely to the ground-truth than in the previous experiment, with 

fewer errors being highlighted inside the nuclei (Fig. 44 – lower panel: middle row). 

Another indicator for the good performance of the models is that both background 

and foreground structures have an almost identical appearance in the SSIM map. This 

means that the models do not boost their performance by learning primarily to 

recover the background, as was seen in some images in Chapter 2. This also suggests 

that the scores of the metrics more closely relate to the performance in the desired 

task, unmixing, than in denoising. 
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Figure 44 – Unmixing the membrane and nuclear channels from a two-channel 

composite – Top: The images represent the same example image pair as the above 

panels. The input image contains the composite channels, with the middle and right 

images showing the target channels of the respective unmixing tasks. Middle panel: 

results of the first unmixing task for the composite image, with predictions on top and 

SSIM and RSE error maps below representing the errors between predictions and 

target of the same label (membrane). Lower panel: To be read as the middle panel, 

with predictions and error maps for the second task (Nucleus) (scale: 20μm). 
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IV. 2. 2. e. Unmixing membrane + mitochondria 

The omission of the nuclear label from the composite has a similar effect to the 

unmixing performance as the previous example. The recovery of the membrane label 

visually appears improved against the prediction from the full composite image, with 

higher similarity and lower error of predictions to ground-truth for all models (Fig. 45 

– top panel). The performance of the models for the membrane recovery in this task is 

better than in the previous task, with the models performing better when the nuclear 

label is not present in the dataset. The CARE models show this quite clearly, with the 

scores approaching those of the fnet models more than in the previous experiment 

(compare Fig. 44 and 45). 

The mitochondrial structure is significantly better restored in this challenge than in 

the three-channel task for all models. The predictions now include many of the 

smaller details which were missed when unmixing from the full composite image 

(Fig. 45 – lower panel). The error maps and metrics show that even the 2D methods 

now clearly outperform the 3D methods from the full experiment (Fig. 43), with 

improvements in both background and structural unmixing. While some larger 

artefacts are still present within the mitochondrial network in the predictions from the 

2D methods, these are much smaller in the 3D methods, which likely contributes to 

their improvement. However, the artefacts remain mostly inside the mitochondrial 

structures, unlike the membrane predictions where artefacts appear to surround the 

predicted structure while the membrane itself is predicted with high similarity. 
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Figure 45 – Unmixing the membrane and mitochondrial channels of a two-channel 

composite, to be read as Fig. 44. Middle panel: results of the first unmixing task for 

the composite image, with predictions on top and SSIM and RSE error maps below 

representing the errors between predictions and target of the same label 

(Membrane). Lower panel: To be read as the middle panel, with predictions and 

error maps for the second task (Mitochondria) (scale: 20μm). 
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IV. 2. 2. f. Unmixing nucleus + mitochondria 

Unmixing of nuclei from a composite of mitochondria and nuclei appears slightly less 

accurate visually than from the membrane-nucleus image (Compare Fig. 46 and 44). 

Here, many of the smaller areas of nuclear label are not recovered, even by the fnet 

3D method. The error maps and metrics conversely suggest a slight overall 

improvement in unmixing nuclei from mitochondria than from the membranes, 

except for fnet 3D which surprisingly deteriorates for this task, at least for the 

example image. The error maps, especially the RSE maps show that the models 

struggle to effectively remove the mitochondrial label from the ‘background’ to 

recover the nuclei (Fig. 46 – top panel: bottom row). This is particularly pronounced 

in pix2pix which deteriorates dramatically compared to the same task for the 

membrane-nucleus image. The nuclei themselves in all model predictions (especially 

on the right side of the example image) have many details of their interior 

misrepresented, which is not obvious from the predictions but clear on the SSIM 

maps (Fig. 46 – top panel: middle row). 

The mitochondrial channel is visually relatively well recovered from the composite, 

but in contrast to the mitochondrial and membrane composite the predictions of most 

models again miss the smaller mitochondrial structures (Compare Fig. 46 and 45). 

However, in contrast to the former experiment, the main contribution to the error 

appears to be the poor removal of the nuclear signal from the background, notable in 

the SSIM maps where the area occupied by the nuclei has a comparatively low 

similarity to the ground-truth compared with the result from unmixing mitochondria 

from the membrane (Compare Fig. 46 and 45). The mitochondrial structures 

themselves seem to have a higher similarity in the predictions and with fewer errors 

than for the previous task. In contrast to the reverse unmixing task (Fig. 46 - top 

panel), in this task (Fig. 46 – lower panel) the 3D models perform clearly better than 

the 2D models, and fnet 3D better than CARE 3D as in the previous examples. 
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Figure 46 – Unmixing the nuclear and mitochondrial channels from a two-channel 

composite – to be read as Fig. 44. Middle panel: results of the first unmixing task for 

the composite image, with predictions on top and SSIM and RSE error maps below 

representing the errors between predictions and target of the same label (Nuclei). 

Lower panel: To be read as the middle panel, with predictions and error maps for the 

second task (Mitochondria) (scale: 20μm). 
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IV. 2. 2. g. Quantitative analysis 

Since the number of test images was relatively high and only individual image slices 

can be analysed visually at one time, the quantitative assessment provided by the 

average scores of the error metrics over the entire images is crucial in this experiment 

to verify if the observations made on individual slices hold for the entire test dataset 

which consisted of 7 stacks with 32 slices each, making the full test dataset contain 

224 images. 

The analysis was performed for each label, with models compared for each condition 

which resulted in the prediction of the target label. This allows a comparison of the 

same method on different training datasets and a comparison of different methods 

trained on the same training datasets. The analysis also allows insights into which 

labels were easier to unmix and which ones were more difficult and whether there are 

differences in performance for certain tasks by certain models. The results of this 

analysis are displayed in Fig. 47A.  

The first key observation from the quantitative analysis of the error metrics is that 

they appear to agree with each other. This can be concluded from the performance of 

the different methods and the performance of the models on different tasks ranked in 

the same order by all metrics, with few exceptions. This suggests that the 

interpretation of model performance is invariant to the error metrics used for 

evaluation. Hence, in some of the analysis below, the main metric used for reporting 

will be SSIM as a proxy for the quality of the models. However, there are some 

differences in how well the metrics detect differences between the models. 

Specifically, the NRMSE scores appear to be less sensitive to differences between 

models in the nuclear recovery task (Fig. 47A – middle row, left). For example, the 

differences in the NRMSE distributions for the Membrane-Nucleus-to-nucleus and 

the Mito-Nucleus-to-nucleus experiments in CARE 3D are indistinguishable with 

almost identical means, whereas the SSIM and PSNR distributions for the same 

datasets are clearly separable. 

Next, it can be observed that as expected, the models generally perform better, i.e. 

with higher SSIM, lower NRMSE and higher PSNR, when fewer labels need to be 

removed from the input image. There appears to be one exception to this rule. The 

fnet 3D model trained for the recovery of nuclear signals which appear to be better at 
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recovering the nuclear label when membrane is present in the input image than when 

it is not. Although an outlier, this difference is not significant (p=0.37, Mann-

Whitney U-Test). 

The next key observation is that the nuclear label appears to be the one that is best 

recovered when comparing only models trained to predict one label from a compound 

image of three channels, with average SSIM scores in the range of 0.66, 0.67, 0.68 

and 0.74 for CARE 2D, 3D and fnet 2D, 3D, respectively, and 0.54 for pix2pix. 

However, only fnet 3D and pix2pix stand out significantly, at the upper and lower 

end of performance, respectively, with the other results not significantly different 

from one another (p<0.01, two-tailed Mann Whitney U-test). The average SSIM 

scores for the recovery of the membrane channel 0.46, 0.46, 0.5, 0.56 and 0.27 and 

for the mitochondrial channel 0.39, 0.44, 0.42, 0.5 and 0.3 for CARE 2D, CARE 3D, 

fnet 2D, fnet 3D and pix2pix, respectively. The significance tests of the differences 

are shown in Fig. 47B. 

Although the nucleus is the label that is most easily recovered, it appears to be the 

most difficult to remove from the image. In the two-label to one-label experiments, 

the presence of the nuclear label made the recovery of another label worse than if the 

membrane or mitochondria needed to be removed from the image. In turn, this means 

that membrane and mitochondria are more easily ‘unmixed’ from one another than 

either is from the nuclear label. The membrane label appears to be the easiest to 

remove from the images. When the membrane was the structure to be removed from 

either nuclear or mitochondrial structures, the models showed stronger performance 

than when removing the other respective labels. The prediction of nucleus from 

membrane-nucleus composites was the most successful operation of all the tested 

conditions, with average SSIM on this task for CARE 2D and 3D and fnet 2D and 3D 

being 0.76, 0.77, 0.78, and 0.82, respectively, and 0.7 for pix2pix (see Fig. 7B for 

significance of these results). 

In terms of the performance of the different models against each other, the 

quantitative analysis supports the observations made when visually inspecting the 

predictions and error maps of the models. The first key observation is that the U-net 

based methods perform better than the GAN-based method pix2pix. As mentioned 

above, it is difficult to interpret this result as the pix2pix method was trained on 8-bit 



220 
 

.pngs while the other models were trained 16-bit .tifs, giving significantly less 

information per image to train on for this model. Hence, this result is somewhat 

expected which is why it is also treated apart from the other models. 

The other observation is that the 3D models for the other two methods, Fnet and 

CARE, appear to be generally better at the unmixing task than the 2D models of the 

same methods. However, for CARE models, these performance differences are not 

always significant with p<0.01 whereas they are for most fnet tasks (Fig. 47B). 

Finally, the visual observation that the fnet methods appear to offer a slight 

improvement over the CARE methods for this task can also be supported by the 

quantitative analysis performed here. Both fnet methods outrank the CARE methods, 

with fnet 2D often slightly superior to CARE 3D’s predictions. This difference is 

particularly pronounced for any predictions of membrane labels where fnet 2D 

consistently and significantly outperforms CARE 3D, whereas for the other tasks, the 

overall quality of the predictions is nearly indistinguishable between these methods. 

fnet 3D is better than all other methods under all conditions, except for the 

exceptional case mentioned above. 
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Fig. 47 – Results from the QC step for all unmixing tasks on the full datasets and 

significance evaluation – A) Each row of boxplots shows the evaluation of one error 

metric, each column represents the target label of the respective unmixing 

experiments (see legends below). The 3D models performed predictions on the full 

stacks, which were then split into slices for analysis. The whiskers encompass the 

range between the 1st and 3rd quartiles of the distributions, with the median shown as 

solid and the mean as a dotted black line. B) p-values calculated via Mann-Whitney 

U-test, evaluated by method and task. P-values < 0.01 and p-values > 0.01 shaded in 

blue and red, respectively. 



222 
 

Another notable feature of the quantitative analysis of the full test dataset is that there 

is a considerable spread in the values of the quality metrics. Although the median and 

average performance of the models shows relatively high similarities of the 

predictions to the targets for some unmixing tasks, even in the best performing 

models there appear to be several images which the model performs poorly for. Even 

in one of the best fnet models, trained to detect nuclei in the composite of membrane 

and nuclei channels, several images only have a similarity of 0.2 to 0.4, suggesting 

relatively poor performance. The NRMSE and PSNR metrics show similarly low 

performance for some images. For the task of unmixing to be considered successfully 

completed, it is important to understand why the models perform poorly on some 

images and conversely when they perform well. A likely explanation in this case is 

that the models perform better on images that lie in the central plane of the cell, with 

poorer performance in regions that lie outside this region and are comparably blurry. 

However, similarly it must be ensured that the opposite is not true, i.e. models do not 

perform better on relatively trivial tasks, i.e. predicting a blurry image from another 

blurry image with high similarity, in which case the unmixing task may not be 

considered successfully completed. 

The data gathered in the quality control section of the notebooks can be used to 

explore this question, as the metrics are evaluated and stored for each individual 

image. To determine which images the models perform better and more poorly on, 

the .csv files exported in the QC step for all models were searched for the images 

with the lowest SSIM, highest NRMSE and lowest PSNR values to determine the 

images yielding the worst performance from the models and the opposite (highest 

SSIM, lowest NRMSE, highest PSNR) to determine which yield the best. Since the 

training and quality control was performed for different datatypes for the U-net based 

models (CARE 2D/3D and fnet 2D/3D), using 16-bit .tif images, and the pix2pix 

model, using 8-bit .pngs, the results of the analysis are presented separately in Fig. 

48, for clarity. 

The results of the search for the best and worst performance on the datasets for the 

CARE and fnet models are shown in Fig. 48A. The high proportion of slices from the 

tops and bottoms of the stacks yielding the lowest performances suggests that as 

hypothesized, the models perform poorer on areas of the stacks that are out of focus. 

However, this may be contradicted by the presence of some ‘extreme’ slices in the 
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columns collecting the best models’ performances, although notably never from the 

same stack. In Fig. 48B, two examples are shown for images yielding the lowest and 

highest performance for a task (membrane-nucleus to nucleus). These slices were 

chosen because the models agree broadly that these images yield extremely high and 

low performances across metrics as they both represent the outermost slices of their 

image stack. The image yielding the worst performances is blurry and provides little 

detail in the input or the target for the models to unmix. The image with the best 

performance shows all the main structures expected in the image, in input and target 

and yields visually accurate predictions (error maps are not shown in this example). 

The fact that despite the differing content, the images both represent the edges of their 

stacks suggests that the stacks were not completely aligned in the z-direction during 

acquisition. When creating the dataset for these experiments, this may have led to 

some stacks being cropped nearer to the central plane of the cells than others. Hence, 

it can be assumed that the upper and lower slices yielding high SSIM values in the 

QC are similar to the one shown in the figure, and similar to the more ‘central’ slices 

which make up the majority of the images resulting in the peak-performances for the 

models. 

A similar behaviour can be observed for the pix2pix models, although these do not 

agree with the other models in terms of the identities of the images yielding the 

poorest and best performances. Here, the example images are chosen for the 

agreement across all metrics that these images represent the extremes for this task. As 

before, the model performs worse on the blurry image and better on the image 

containing clear structures. Unlike the above models the pix2pix model for the 

membrane-nucleus to membrane task predicts significant and obvious artefacts in the 

blurry image which significantly differ from the target which may explain why this 

prediction is ranked relatively low. 

Although only one example image was chosen for the CARE/fnet and pix2pix 

models, respectively, the observation that the ‘extreme’ slices lead to poor 

performance according to the quality metrics suggests that the models generally 

perform better on the images which provide richer detail. This means that for the key 

task of unmixing channels from images with detailed structural information, the 

models may perform slightly better than the averages or medians of the above-shown 

distributions suggest. 
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Another interesting observation is that the metrics often agree on the images that 

yield the best and worst performances from the models for specific tasks. This 

somewhat validates the choice of interpreting the above performance primarily using 

only one metric, the SSIM metric, although the metrics do not measure the same 

quantities. 
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Figure 48 – Worst and best performance examples of the unmixing tasks – A) The 

table shows the names of the images which yielded the worst and best performances 

of the models by task and metric. The image names can be interpreted as: Image-

StackID_slice.tif. The highlighted areas indicate the images which are at the highest 

or lowest slice in their stack (in grey) or the second-highest or second lowest (blue). 

B) Top Row: Image identified from above table representing a case of low 

performance of the models; Lower Row: Image identified from above table 

representing a case of high performance of the models. C) Table to be interpreted as 

above for performance of the pix2pix model. D) As C for the pix2pix model (scales: 

10μm) 
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IV. 3. Finetuning 

The above results suggest that the DL models implemented in the ZeroCostDL4Mic 

notebooks can perform the unmixing task, with differences depending on the 

combination of labels in the composite and the target image. To be of interest as a 

tool for a user, e.g. in freeing up an imaging channel in their imaging experiments, it 

is important to maximise the performance of the chosen tool, to ensure that the 

predictions are as rich in information and contain as few errors as possible. In the 

initial experiment, the models were trained with as much of the same parameters as 

possible to allow an initial comparison between the different methods while using 

settings that would allow the notebooks to be used within the limitations of Colab. 

However, the chosen parameters which were partly informed by the results in chapter 

2 could have been ill-suited for the optimal training performance of the methods, and 

thus, further adjustments could potentially improve the performance further and 

potentially remove some of the differences between the different methods. 

However, fine-tuning all the above models is challenging for two reasons. As 

explained previously, exhaustive fine-tuning of the parameters available in the 

notebooks is beyond the scope of the project, as the number of possible combinations 

for the parameters is very high and thus difficult to realise even for a single method. 

For fine-tuning, I focused on key parameters which were expected to improve the 

performance for each model instead of tuning every parameter in the notebooks, 

similar to and inspired by the previous chapter. A further difficulty encountered in 

this experiment is that due to the size of the test dataset of 224 images, the QC step is 

memory intensive, as it leads to 224 predictions and at least 2 error maps for each 

prediction resulting in 672 files for each quality control step for each model. For the 

pix2pix models, this is increased by an additional factor the size of which depends on 

the number of epochs the model is trained for. For the pix2pix models trained for this 

chapter each pix2pix model has 15 checkpoints for each of which QC is performed 

with the above dataset. This is extremely memory intensive and limited the potential 

for in-depth QC without needing to remove previously trained models from the 

Google Drive. 

Hence, the focus for finetuning was on either boosting the performance of the best 

models to investigate the limits of the tools for this task or improving the models for 
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those label combinations for which performance was low. With these considerations, 

the fine-tuning was performed for the task of Membrane-Nucleus to nucleus, the task 

which yielded some of the peak scores in the above experiment, and the Membrane-

Nucleus to membrane task, which yielded some of the lowest scores. 

IV. 3. 1. Finetuning CARE 

When comparing the CARE models with one another in the QC section, a notable 

difference between the CARE 2D and 3D methods was that the former quickly overfit 

during training while the latter did not (Fig. 49A). Hence, the first measure in 

finetuning the CARE 2D model was to augment the dataset to give the model more 

data to train on. Considering that the CARE method creates potentially overlapping 

patches (see Chapter 2), another reason for the poor performance could be overlaps 

between patches that lead to overfitting to the training data. Hence, for finetuning the 

dataset was created by reducing the number of patches per image to 8 and augmenting 

the dataset by 4, using only rotations by 90 degrees, leading to an effective 

augmentation by 2. The intention is that this would result in data with fewer overlaps 

between patches, yet more total data to train with. Reducing the number of patches 

also has the advantage that it would not break the runtime limitations of the Colab 

notebook. To test if performance could be improved in this manner, in CARE 3D as 

well, these augmentations were also performed on the 3D dataset (in the x-y plane) 

and new models were trained for both methods, with 8 instead of 16 patches per 

image.  

Comparing the loss curves of CARE 2D with and without augmentation suggests that 

these adjustments do not result in an improvement in either of the tasks (composite to 

membrane and composite to nucleus) (Fig. 49A, left panel). The predictions also 

show no clear improvement over the base model (Fig. 49B), suggesting that 2x 

augmentation does not improve CARE 2D performance for this task. In the 3D 

model, data augmentation led, first, to a small improvement in the validation loss 

achieved during training for both labels and, second, to visible improvements in 

unmixing of the membrane from the composite (Fig. 49B). For the nuclear channel 

the predictions cannot be distinguished in terms of quality between base model and 

the model trained on augmented data. 
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Since it was shown in chapter 2 that CARE performance is better if training is 

stopped before any overfitting occurs even if this means saving models with a worse 

validation loss (see Fig. 35), this approach was also tested here. A CARE 2D model 

was thus trained for only 10 epochs (reducing the number of epochs by half) on the 

original dataset to test if this could improve performance on the test dataset. While 

the losses indicate no or minimal overfitting in this training, the predictions do not 

appear better than the base model (Fig. 49B). The same was not done for CARE 3D, 

as the models’ losses did not diverge under any of the conditions. To test whether 

other measures could improve CARE 3D performance on this task, the stack size was 

halved, so that more training data would be sampled per stack. However, reducing the 

stack depth by half led to a significant deterioration of the performance (Fig. 49B). 

The membrane reconstruction shows that the nuclei are not thoroughly removed 

during the unmixing by this model. The nuclear channel reconstruction is closer to 

the base model but the artefacts within the nuclei are larger, which is evident 

particularly in the error maps. 

The visual results on the example predictions are also reflected in the quantitative 

analysis over the entire dataset (Fig. 49C). In fact, none of the CARE 2D models 

trained for these trials significantly improved the performance of the base model. 

Similarly, the performance of the 3D model only significantly improves after 

augmentation for the membrane channel (p<0.001), but not for the nuclear channel 

(p<0.2). The reduction of stack depth leads to a significant reduction in quality in the 

CARE 3D model. 
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Figure 49A – Finetuning CARE models for membrane-nucleus unmixing – Loss 

curves for CARE models trained to finetune on the unmixing task, with parameter 

adjustment shown in the titles (black – training loss, yellow – validation loss). 

 



231 
 

  

 

 

 

 

 

 

 



232 
 

 

 

 

 

 

 

 

 

 

Figure 49C – Finetuning CARE models for membrane-nucleus unmixing - QC 

metrics calculated for the full test dataset, for above models. (The whiskers show 

limits of the 1st and 3rd quartile of the distributions, median shown as solid and the 

mean as a dotted black line.) The asterisks indicate where the distributions differ 

significantly (with p<0.01, according to Mann Whitney U-test) from the base model. 

(n.s. – not significant). 

 

 

 

 

 

 

 

Figure 49B – Finetuning CARE models for membrane-nucleus unmixing –

Comparison of predictions of CARE before and after changing parameters in the 

ZeroCostDL4Mic notebooks – Top: composite input (nucleus + membrane) and 

targets (nucleus, membrane); Middle panel: predictions of membrane channel by 

CARE models (2D left, 3D right): CARE 2D predictions from: original model (same 

model as in Fig. 41 ) (left), a model trained on a twice augmented dataset (middle) 

and a model trained on fewer epochs (right) than the original model. CARE 3D 

predictions from: original model (same as Fig. 1), a model trained on a twice 

augmented dataset and a model trained with training stack depth of 16 slices; Lower 

panel: predictions of the nucleus channel by CARE models, to be read as middle 

panel. (scale: 20μm) 
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IV. 3. 2.  Finetuning fnet 

In the previous chapter, it was found that the performance of the fnet models for a 

label-prediction task could be improved by adding steps to the training of the models. 

To do this, the previously trained models were loaded into the notebook and trained 

for additional epochs on the same dataset, in both cases doubling the number of steps, 

to a total number of 97600 for fnet 2D and 24400 for fnet 3D. The fnet notebooks are 

specifically designed to facilitate retraining on the same dataset because training 

sessions can easily exceed the runtime of the notebooks, thus enabling the completion 

even of very long training. 

Differences between models are easily detected in the loss curves (Fig. 50A). All 

models continue to improve their training losses to the dataset, although overfitting 

again appears significant. However, as noted in the previous chapter, the overfitting 

seen in the losses may be a peculiarity of fnet and is not a solid predictor of the 

performance of the models on unseen data. However, when comparing the predictions 

of the trained models visually, the differences between the initially trained and re-

trained models for an example image are very small (Fig. 50B). The differences 

between all models are almost imperceptible for the membrane channel whereas the 

nuclear channel appears to show minor improvements for the fnet 3D model which 

are most visible in the SSIM error maps which show the reduction of some of the 

darker (low similarity) areas in the prediction of the models trained for additional 

steps, e.g. in the lower part of the example image. 

Although there are small improvements in the average and median scores for the 3D 

models trained for additional steps, none of the improvements are significant, i.e. 

with p<0.01, although the median SSIM of the predictions vs. ground-truths of the 

fnet 3D model for the membrane channel differ from the base model with p<0.05 

(Mann-Whitney U-test), suggesting potentially small improvements for this task. This 

suggests that the model performs slightly better for the membrane channel than the 

visual inspection suggested which may simply mean that the example is not entirely 

representative of the dataset. Although the improvements for the membrane unmixing 

in fnet 3D may not be significant, inspecting the distributions appears to show that the 

main small improvements which do occur do so in images for which the base model 

already performed well, since the lowest values do not improve in the model trained 

for additional steps. This suggests that the main benefit of additional training indeed 
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lies in improving on those images which could be of most relevance for a potential 

user (see Fig. 48). 

In the 2D models, the distributions of error metrics do not differ significantly, 

suggesting no improvement by additional training.  

 

 

Figure 50A - Finetuning fnet models for membrane-nucleus unmixing by 

additional training – Loss curves of fnet models trained for 2-label unmixing, with 

checkpoints used for evaluation shown in the curves. 
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Figure 50B - Finetuning fnet models for membrane-nucleus unmixing by 

additional training - Comparison of predictions of fnet before and after training 

for additional steps in the ZeroCostDL4Mic notebooks – Top: composite input 

(nucleus + membrane) and targets (nucleus, membrane); Middle panel: 

Predictions of membrane channel of fnet 2D models (left) and fnet 3D models 

(right), with original model predictions on the left and model predictions after 

additional training on the right of the respective models. Lower panel: 

Predictions of nucleus channel, read the same way as middle panel. (scale: 

20μm) 

Figure 50C - Finetuning fnet models for membrane-nucleus unmixing by 

additional training - QC metrics for the full test dataset for above models. (The 

whiskers encompass the range between the 1st and 3rd quartile of the distributions, 

with the median shown as solid and the mean as a dotted black line). The 

distributions of QC metrics are not significantly different according to the Mann 

Whitney U-test (with p<0.01), but for the 3D model p<0.05 for the membrane model, 

and p=0.056 for the nuclear model. 
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IV. 3. 3. Finetuning pix2pix 

Although the pix2pix model was trained on a dataset of lower bit-depth and a 

different patch size, this model also has the greatest scope for improvement. 

However, as mentioned above, the fine-tuning of the pix2pix model is somewhat 

limited by the memory footprint of the QC for this method in ZeroCostDL4Mic. A 

notable aspect of the pix2pix method is that it did not accept a patch size smaller than 

256x256 for training, suggesting that it requires a relatively large field view 

compared to CARE and fnet which can work with much smaller patch sizes. 

Therefore, the main experiment carried out for pix2pix was to increase the patch size 

by a factor of 2 per dimension, giving a training patch size of 512x512, so that the 

entire field of view of each image is covered. An additional consideration is which 

model checkpoint to use for the unmixing task. In pix2pix, unlike the other methods, 

the learning trajectory is not necessarily one that consistently leads to improvements 

but can fluctuate greatly. It may also not be suitable to save only model checkpoints 

with a low discriminator or generator loss as neither may offer the best performance 

on test data. Instead, the notebook saves a checkpoint every 10 epochs, and in the QC 

section every model is tested on the test dataset. The average SSIM for each 

checkpoint is saved and can be plotted to create a pseudo-learning curve. This allows 

the user to identify the model which scores on average the highest on the test dataset. 

Although this may not be the ideal solution to find the best model it is justified by the 

observation made above that one metric may be sufficient to give an insight into a 

model’s performance, and by the need for a memory-efficient QC step which would 

make it impossible to save and test a checkpoint for each epoch of training. 

Under these considerations, the pix2pix models chosen for this experiment were those 

with the highest SSIM score over the test datasets which can already give an 

indication of overall performance. In the task of unmixing membrane from the 

composite image, the checkpoints with the highest SSIM for the different patch sizes 

are nearly identical, while for the nucleus the larger patch size appears to lead to a 

higher peak in the SSIM scores for the best checkpoint (Fig. 51A). Visually, the 

differences between the models’ predictions are minor (Fig. 51B). The membrane 

predictions show slightly sharper edges and higher contrast between signal and 

background, which is confirmed in the error maps which reflect these small 

improvements. The nuclear channel appears to be worse after training on a larger 
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patch size, with larger and more pronounced artefacts within the nuclei. These 

impressions are reflected in the overall analysis on the test dataset where the model 

trained on membranes shows a significant improvement (p<0.01) while there are no 

significant changes in the models trained to unmix the nucleus (Fig. 51C). Indeed, the 

medians and averages for the quality metrics in this model are reduced compared to 

the base model, suggesting an even slightly worse performance in the larger patch 

size, which is surprising because the analysis by checkpoint suggested an 

improvement in the average scores. The reason for this may lie in a mistake in 

plotting the SSIM curves in the notebook. 

 

 Figure 51A - Finetuning pix2pix models for membrane-nucleus unmixing by 

patch size – SSIM by training checkpoint for each model. The red spot indicates the 

model checkpoint used for evaluation. The model curve shown in the lower right was 

trained for 150 epochs but the first two checkpoints the notebook disconnected in the 

first runtime, the SSIM for checkpoints were not higher than the ones shown in the 

figure. 
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 Figure 51B - Finetuning pix2pix models for membrane-nucleus unmixing by 

patch size – Comparison of predictions of pix2pix before and after training with 

different patch sizes in the ZeroCostDL4Mic notebooks – Top: composite input 

(nucleus + membrane) and targets (nucleus, membrane); Middle panel: Predictions 

of membrane channel (first and second columns) and nuclear channel (third and 

fourth column) of pix2pix models trained with a patch size of 256x256 (first and third 

column) and pix2pix models trained with a patch size of 512x512 (second and fourth 

column). (scale: 20μm) 



240 
 

 

Figure 51C - Finetuning pix2pix models for membrane-nucleus unmixing by patch 

size – QC metrics for the full test dataset for the models above. (The whiskers 

encompass the range between the first and third quartiles of the distributions, with 

the median shown as solid, and the mean as a dotted black line). The asterisks 

indicate where the distributions differ significantly (with p<0.01, according to Mann 

Whitney U-test) from the base model. 
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IV. 4. Results Chapter 3 - Summary 

In this chapter, I designed a task in which the potential of the ZeroCostDL4Mic 

platform could be demonstrated. In this task, models were trained for a type of 

spectral unmixing challenge, to filter out labels from a composite image. Here, this 

was done as proof-of-concept on a dataset which was constructed from the individual 

channels in a public 3D dataset adapted for this chapter. In the first part of this 

chapter, I showed the results of three different methods, CARE, fnet and pix2pix, 

trained on this task. Comparing the models using the outputs from the 

ZeroCostDL4Mic QC section showed that all models learned to perform the 

unmixing tasks, with fnet performing better than CARE and CARE better than 

pix2pix, although pix2pix could only be trained on an 8-bit instead of a 16-bit dataset, 

which could compound the results. There were also clear differences in performance 

for different labels to be unmixed, with nuclei generally better recovered than 

membrane or mitochondrial labels from a three-channel image. When models were 

trained to separate 2 channels, the models performed best for unmixing nuclei from 

membranes and worst for unmixing membranes from nuclei and membranes from 

mitochondria. 

The models perform better on those images with a lot of structures present in the 

image and worst on images with out-of-focus light, suggesting the performance does 

not depend on models learning to translate one blurry image into another. 

The differences between the models and datasets were most easily identified on the 

error maps constructed in the QC section and the analysis of the distributions of the 

QC metrics on the full dataset, whereas the predictions themselves often appeared 

extremely similar and were not suitable for model comparisons. 

In the second section, I tested how much the performance of some models could be 

improved given that the initial parameter changes may not have been suited for all 

models. To simplify this task, I focused on one of the unmixing tasks, from a 

combined nucleus+membrane composite to the constituent channels. Parameter 

tuning indeed led to some improvements, specifically in the reconstruction of the 

membrane channel. These improvements were more pronounced in the 3D models 
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than in the 2D models. However, the improvements tended to be small and, in some 

cases, not statistically significant. 

IV. 5. Discussion 

The ZeroCostDL4Mic platform is intended to be used for custom tasks designed by 

users, and thus needs to provide a range of different tools to find a suitable solution 

for users. Here, an unmixing task was designed that could easily find applications in 

bioimaging, as phototoxicity caused by inducing fluorescence, the effects of bleed-

through, the availability of imaging channels, and their acquisition are all problems 

that persist in many microscopic imaging studies. Using a DL approach instead of a 

physical filter or different wavelengths for imaging would be an attractive solution to 

such imaging challenges. In this chapter, I endeavoured to demonstrate that the 

platform created in this project can be used for such an image analysis task with 

relative ease and provides enough information for users to make informed choices 

about the applicability of DL for these tasks. 

The key aspect to determine in this task is if the effort of using a ZeroCostDL4Mic 

implemented DL-approach is worth the potential performance achieved by the trained 

models. Therefore, two questions must be considered when assessing the feasibility 

of this approach. Firstly, can models reach the desired performance on this task? 

Secondly, are the time and effort invested in training the models justified by their 

performance? 

In this chapter, three different methods, CARE, fnet and pix2pix were tested for the 

task of unmixing fluorescent channels from composite images. None of these 

methods is designed for this task but the tasks they were designed for fulfil very 

similar purposes to the one suggested here: Denoising models like CARE must learn 

to distinguish structures of interest from background, Label-free predictions (fnet) 

learn to filter out structures of interest from an input, and pix2pix should be able to 

learn nearly any image-to-image translation.  

The results of this chapter suggest that all methods can be successfully trained for this 

task, although with some caveats and to different degrees for different cellular 

structures. Unsurprisingly, the models generally performed better when fewer labels 

needed to be removed from the composite image. Hence, images with two channels 
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were unmixed more successfully than images with three channels. However, there 

were significant differences in performance for different structures in the images. For 

example, filtering the nucleus from a three-channel image was achieved with a better 

performance according to the error metrics employed in the notebooks than filtering 

either membrane or mitochondrial channels from any two-channel image. The 

performance peaks were reached for images that showed in-focus structures and were 

lowest for blurry or out-of-focus images. For use-cases of the unmixing approach this 

is an encouraging result as this suggests that for images which are of most biological 

interest the models will predict close to their peak performance. For the structures 

which were unmixed well, this means an average SSIM of between 0.7 or 0.8, for 

tasks which involve the nucleus or mitochondria. The performance of the models also 

increases primarily for images which are within focus. This was shown for each type 

of model using only one or two parameter changes in the notebooks. Any 

improvements tended to be subtle and led only to a small increase in quality, as 

measured by the quality metrics. However, the parameter search was not exhaustive 

in this chapter, and it is likely that users could further improve their DL-models if 

further parameters are adjusted, with each optimisation step having the potential to 

increment performance further. However, it will need to be determined if such 

incremental improvements are of benefit to the use-cases envisioned by the user. This 

leads to a second question, is the effort in training these models is justified by the 

performance? There are two reasons why this question could be answered positively. 

Although other tools for unmixing exist, the envisioned application of acquiring 

multiple labels in the same channel on purpose and using software for unmixing is 

well suited for a DL task. In the case of this chapter, unmixing was even performed 

without knowing the emission spectra of the labels, which would have already made 

linear unmixing difficult. This makes DL a less biased approach for this task than 

linear unmixing. Furthermore, linear unmixing tools may not even be easier to use 

than notebooks. Multiple different fiji plugins for linear spectral unmixing211,212 were 

tested to give a better insight into the performance of the approach used in this 

chapter. Unfortunately, none of them yielded relevant results due to difficulties in use 

and potential compatibility or version issues which could not be resolved by the time 

of writing. It should be noted however, that even with proper use, these tools require 

significantly more user input than the method proposed here. Both require hand-

labeled reference areas for each channel and the annotation of multiple individual 
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images. This means that the relative effort in training models in ZeroCostDL4Mic 

could be smaller than using the standard unmixing tools. However, the 

ZeroCostDL4Mic approach has the disadvantage that it is currently not integrated 

into tools such as fiji, such as the LUMoS tool developed by McRae et al.210 

Unfortunately, the tool could also not be made to work in fiji for the work in this 

chapter to compare to the results of the methods implemented in ZeroCostDL4Mic. In 

fact, the option of using unsupervised learning for unmixing tasks is extremely 

attractive compared to the relatively long training process required for the models 

presented in this chapter. Especially, the performance of the best model, fnet 3D, for 

this specific dataset came at the cost of a significantly longer training than the other 

models. However, supervised learning may have a slightly lower risk in identifying 

incorrect labels as it is strongly trained on the structures of interest. It would have 

been interesting to compare the performance of the models in this chapter with the 

LUMoS method to test this hypothesis.  

Another benefit of the use of ZeroCostDL4Mic is the strong emphasis on QC which 

in this chapter led to a rich source of information about the models and the datasets 

that were readily accessible when comparing the models and the different tasks. 

Being able to use QC on this task was crucial since the predictions of all models 

appeared extremely similar and could have easily led to the assumption that certain 

unmixing tasks were well solved although they were not. 

Conversely, the QC section also indicated those unmixing tasks which may be most 

suited for exploitation in simultaneous acquisitions of labels, such as nucleus from 

different composite images or mitochondria from the membrane channel. The 

detailed results provided during QC could inform imaging experiments in which these 

channels could be imaged simultaneously in one channel with a relatively limited loss 

of information. It also allows users to weigh the risk of this approach, including the 

introduction of artefacts and misidentification of labels, against its benefits, which 

includes the potential for fewer acquisitions in multilabel-experiments or the potential 

for additional imaging channels. However, it should be stressed that even if the use of 

DL introduced artefacts into the images, the potential to acquire additional channels 

could outweigh this by increasing the content of information which could be acquired 

in an imaging experiment. In this way, DL may indeed aid instead of impeding the 

acquisition of new knowledge. 
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The results of this chapter itself offer some potentially intriguing insights into the DL 

tools used here and the datasets on which they were applied. Since the unmixing task 

shares features of denoising and label-prediction tasks, it is ideally suited to 

investigate the performance of different methods against one another using an 

equivalent experimental set-up. Overall, the fnet models perform better than the 

CARE models under the conditions tested in this chapter. Furthermore, both fnet and 

CARE models performed better than the pix2pix method, a comparison which is 

compounded by the different bit-depth of the image data used in the pix2pix model. 

Within the CARE and fnet models, both methods performed better in their 3D than in 

their 2D implementation even when the total size of the batches in terms of pixels 

remained the same. Differences between the performance of the 3D and 2D models 

could be visually detected and was also clearly visualised using the quality control 

metrics and error maps in the notebooks. The performance improvement upon 

increasing the patch dimensions in z has been reported for both fnet and CARE for 

their original tasks, and thus the performance improvement may not be surprising in 

this related task. From the experiment in CARE 3D, it further appears that deeper z-

stacks in the image patches lead to better performances of the trained model. 

Interestingly, a reduction of the patch depth to half the depth of the full stack led to a 

significant decrease in performance, even below the level of the 2D model. This may 

indicate an issue with the dataset, as some stacks may contain several slices with little 

structural information. If the smaller patch depth leads to many images with little 

structural information in the stack, perhaps this makes it more difficult for the model 

to learn the task. That the 2D network performs better may then simply be a result of 

the larger total number of examples available to the network which may compensate 

the effect of blurry images to some degree. 

In another line of questioning, the results from this chapter may also give insights into 

the data itself. Firstly, it is notable how the ranking of the models by task is identical 

across all models. For instance, it appears to be easier to unmix the membrane of 

mitochondria than the membrane of nuclei, regardless of the method used for the task. 

This suggests that there are inherent features in the data that make certain tasks easier 

to perform than others, independently of the method used to perform the task. The 

above example, where the membrane (membrane) label was more readily unmixed 

from the mitochondrial label than the nucleus, is interesting because it is not intuitive 
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and even appears contradictory to the results from the task of recovering the nuclear 

signal, which all models perform relatively well in. It can be speculated that the 

structure of mitochondria and their localisation in both 2D and 3D images is not as 

easily confused with the pattern of the membrane labels as a human observer might 

predict. The fact that this task is easier to perform for the DL than recovering nuclei 

from a composite including a membrane or mitochondria may also be due to the 

relative size of the nuclei in the images. It could be speculated that it is inherently 

more difficult to remove a larger number of pixels correctly than the relatively small 

number of pixels associated with the membrane and mitochondrial structure. 

However, this is likely not the full reason for these observations and indeed, overlap 

is a further compounding factor. In this experiment labels were chosen that largely 

occupied exclusive regions of the cells (nucleus, cytoplasm, and membrane) and even 

in this context some unmixing tasks appeared more challenging than others. In further 

experiments with other labels, it could be tested to which degree overlap may 

influence unmixing performance. Potentially, the unmixing task could then be used as 

a pretext task to identify relationships between different cellular compartments or in 

different conditions. For example, a DL model trained on a control dataset (e.g. cells 

from a wildtype model) dataset unmixing two labels may identify subtle changes in 

the labels upon genetic or chemical manipulations.  

Although the methods perform relatively well on the task designed for this 

experiment and could potentially be used in a further downstream analysis of the DL 

methods themselves or the datasets, there are also some practical caveats in the 

approach. The task developed for this chapter is similar to a multi-class semantic 

segmentation challenge where different areas of an image must be distinguished by 

the algorithm and separated for example by drawing outlines around different classes. 

Methods for performing such tasks already exist166,213,214 and give insight into how 

the presented method could be improved. For instance, unlike a multi-class 

segmentation approach or even the LUMoS method210, the models trained here can 

only output a single channel from the input image which means for a decomposition 

of input images into multiple different channels several models are necessary which 

may be unpractical for users. It would simplify the challenge for example, if a single 

model could be trained with a composite input image with all colour channels mixed 

and an RGB target image where each channel is given only one colour. While this 
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may indeed be a more practical approach, it would also require more sophisticated 

quality control methods, as each channel would need to be compared to its target. The 

design of such quality control methods for this project was not feasible in the given 

timeframe. Another potential avenue to simplify this task would be a training 

approach where, instead of training a model with image pairs, models are trained with 

an input image and a target multiplet of images. The trained model could then output 

multiple images instead of one, and images could also be predicted in grayscale with 

a higher bit-depth than used in RGB images. These approaches would be desirable for 

the development of dedicated tools for the task designed here.  

Nonetheless, this chapter shows that the methods already implemented in the 

ZeroCostDL4Mic project can be used to replicate tasks such as multi-class 

segmentation, albeit in a simplified form, and providing users with an easy-to-use 

avenue for testing the feasibility of such approaches for their datasets. Indeed, in 

publication of the tool, we already showed that a DL task, for cell tracking without 

the use of nuclear labels, which was published elsewhere without our previous 

knowledge could be replicated in the ZeroCostDL4Mic notebooks with relative ease-

of-use. The task designed for this chapter is another confirmation that there may be 

other DL approaches which can be replicated with tools implemented in the 

ZeroCostDLMic platform. Despite some of the limitations of the approaches 

identified here, the ease of use, the rich output of information in the QC and the 

versatility of the tools in this platform are all indications that some of the key aims set 

out in the first chapter were achieved. The DL tools were run entirely in a browser 

that can be replicated anywhere in the world with Internet access (1. Dissemination 

problem, 3. Hardware problem). The methods were easy in use and the workflow was 

easy to replicate between all models, with input paths and output path seamlessly 

copied and pasted between notebooks, facilitating the use of all DL tools (2. 

Knowledge Problem). The QC gave detailed insights into the models’ performance 

and ultimately the datasets themselves and potentially informs further imaging 

experiments and model finetuning. All these observations suggest that the 

ZeroCostDL4Mic method developed in this project did achieve its core objectives 

and could provide a valuable contribution to the democratisation of DL in 

microscopy. 
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IV. 6. Methods  

Creating the datasets 

The dataset used in this chapter was taken from the Allen Institute for Cell Science’s 

microscopy pipeline (see http://www.allencell.org). The dataset is the same as that 

used in the Label-free prediction method published by Ounkomol et al. The images 

show human embryonic kidney cells (HEK293), human fibrosarcoma cells (HT-

1080) human induced pluripotent stem-cells (hiPSCs) with endogenously mEGFP 

tagged cellular structures: DNA for nuclear labelling, TOM20 for mitochondrial 

labelling and CAAX-tagged mTagRFP for membrane labelling.  

After choosing the labels, the stacks of interest were cropped from this dataset with 

dimensions of 512x512x32 and converted from the Allen Institute custom format into 

the more Colab compatible .tif format using the fiji bioformat importer and saving the 

images in fiji. The individual channels were converted to grayscale and normalised to 

cover the full dynamic range of 16-bit depth, using the enhance contrast tool with 

thresholding for the top 0.3% of pixel intensities. To create the merged channels, the 

individual stacks were merged using the fiji Math tool and adding image channels to 

one another, in the following combinations for the input datasets: 

Nucleus + membrane + mitochondria, nucleus + mitochondria, nucleus + membrane, 

mitochondria + membrane. 

The target datasets consisted only of the individual channels, nucleus, membrane and 

mitochondria. 

For the 2D methods, the stacks were split along their z-axis into individual slices. For 

the pix2pix method these slices were converted to .png format in fiji. 

The datasets used to train the models in this chapter are accessible in this Google 

Drive folder: 

https://drive.google.com/drive/folders/1QNJFXul-

A69PEFgVfRKxO1L2MJzz3Q6L?usp=sharing 

Training 

All models were trained on the above datasets with the respective Colab notebooks 

provided in the ZeroCostDL4Mic project. The GPUs assigned for training were the 

http://www.allencell.org/
https://drive.google.com/drive/folders/1QNJFXul-A69PEFgVfRKxO1L2MJzz3Q6L?usp=sharing
https://drive.google.com/drive/folders/1QNJFXul-A69PEFgVfRKxO1L2MJzz3Q6L?usp=sharing
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Tesla K80, Tesla T4 and Tesla P100C. The parameters were chosen within the 

notebooks, with the exception of fnet where the patch size was changed by editing the 

training.py file within the Colab environment. The learning rates were not changed in 

the notebooks from their default settings in the notebooks, with 0.004 for CARE, 

0.002 for fnet and 0.001 for pix2pix, with CARE and pix2pix both using learning rate 

decay (although this was never triggered in the CARE models in chapter). 

Because training could take several hours and Colab allows only one simultaneous 

session, to increase the number of models trained at once, multiple Google accounts 

were used simultaneously. The results path was set to a folder shared between all 

google accounts so that models were accessible from a single google drive folder. 

Quality Control 

QC in the notebooks was performed using the tools implemented within the 

notebook. To accelerate this and reduce the memory footprint for pix2pix, lpips 

analysis was disabled for this notebook. The example images in figures 41 to 46 and 

49 to 51 were chosen after visually assessing the ground-truth stacks in the test 

dataset for high contrast and in focus structures. The same image was chosen for the 

figures in part I.2. (14th slice of stack 72) and another for the figures in I.3 (13th slice 

of stack 74) to allow the performance for the tasks to be more easily compared. For 

the 2D models, the images and error maps were downloaded from the google drive 

manually after QC, and normalised in fiji, the error maps converted using the mpl-

magma LUT in fiji. For the 3D stacks, these steps were identical, but the relevant 

slices were extracted from the stacks in fiji. 

Losses were recreated from the loss .csv files of the models for the fnet and CARE 

models. For pix2pix, the raw .png files exported by the notebook were used to display 

the checkpoints and SSIM scores as the scores were not saved in a separate 

document. 

The plots for quantitative analysis of the models on the full datasets were performed 

using the seaborn.stripplot and matplotlib.boxplot libraries. A script was written in a 

Colab notebook to extract the values for the quality metrics from the .csv file which is 

saved at the end of the QC step in the notebooks. The statistical analysis was carried 

out within the same script. Since the distributions were not assumed to be normal and 

were skewed towards higher scores, the distributions were compared using the non-
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parametric two-tailed Mann-Whitney U test, implemented using the SciPy175 stats 

module. 
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V. Summary and Discussion 

“Deep Learning” has become a buzzword in the community of biologists and 

bioimage analysts as a novel technology offering many solutions to problems which 

researchers in these fields are faced with. This includes the potential to reduce 

phototoxicity, one of the central remaining problems in live-cell imaging, by training 

DL-models to predict accurate high SNR images or to detect signals in images taken 

with live-cell friendly acquisitions, e.g. brightfield. On the analysis side, DL tools 

allow more complex data to be extracted and analysed from very large datasets some 

of which were not possible or feasible with many previously existing technologies. 

Yet, when attempting to use the ground-breaking potential of DL at the outset of this 

project, it became evident that many of the tools available for the bioimaging 

community were surprisingly difficult to wield, specifically for a novice user. 

Initially, the project was motivated simply by the need to create a DL pipeline that 

was simple in use, and importantly one that allowed models to be trained on custom 

datasets. The latter point was important because several DL tools published for 

bioimage analysis tasks such as classification did not provide clear avenues for users 

to train these models. Instead, authors often recommended using their trained models 

for analysis147,178,183,187 or give mostly instructions on how to reiterate the training 

done for the publication on datasets provided with the paper114. However, for 

microscopists aiming for example to reduce phototoxicity in their imaging pipelines 

by denoising, pretrained models are not necessarily a robust option because their 

ability to generalise to a user’s data cannot be guaranteed, something that was 

specifically shown in the ZeroCostDL4Mic paper134. Similarly, detection or 

segmentation of images will almost always improve upon training of models on the 

required data. Hence, the greatest benefit of DL to users in bioimaging comes from 

training models on their own data. This is the key aspect of DL that this project 

needed to facilitate. Initially, this meant identifying what obstacles prevented me (and 

potentially many users with similarly limited background in computer vision and 

coding) from training DL tools for imaging experiments and analysis. These are the 

five problems outlined in the introductory chapter of this work: 1. Dissemination 

problem, 2. Knowledge problem, 3. Hardware problem, 4. Reliability Problem and 5. 

Dataset problem.  
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V. 1. Chapter Summaries 

V. 1. 1. Results Chapter 1 

The main aim of this project was then to address these problems which led to the 

creation of the ZeroCostDL4Mic platform in collaboration with Guillaume Jacquemet 

and Romain Laine which is in essence a repository of Google Colab notebooks. The 

availability of these notebooks through a web browser is an immediate solution to the 

first problem which is concerned with bringing DL into the hands of novice users. 

Since most researchers today have at least access to the web via a browser, the 

notebooks are more accessible than many other tools which require downloading 

software packages or repositories, and the installation of dependencies, beginning 

often with Python which many biologists have never used. At the same time, the use 

of Colab was attractive because it came with limited but free access to GPUs, with 

the necessary software to use TensorFlow already integrated by default. Creating a 

platform around this free resource was key to achieving the goal of democratising 

DL, specifically solving the abovementioned ‘hardware problem’. 

Once the central resource for the envisioned platform was chosen and the crucial 

obstacle of GPU access resolved (albeit with limitations), the other key problems 

could be addressed. The tool needed to solve the problem that many potential users 

would not know how to use a DL-tool, which provided a challenge in designing an 

intuitive workflow users could easily follow, but also an opportunity, as this tool 

could be didactic and as an entry tool could encourage good-practice of DL. This led 

to the workflow introduced in the first chapter of this work, containing the four steps 

which is followed in all notebooks, including those steps which are necessary for the 

use of DL in Google Colab. The implementation of a consistent workflow was a key 

objective in solving the second problem (knowledge problem) as it should help to 

build familiarity and intuition with different DL-tools, which ultimately follow the 

same basic steps. The final consideration which informed the design of the 

ZeroCostDL4Mic notebooks was that without exception all DL-methods required 

coding or code interaction for models to be trained on custom datasets by users. If not 

necessarily a practical, this may yet represent a psychological barrier for some users. 

Inspired by widely used tools in bioimaging such as ImageJ/Fiji53,215, it was seen as a 

highly desirable feature for the democratisation of the platform if it could be used, at 



253 
 

least by the most novice users, completely without code-interaction via a GUI. 

Indeed, the Colab environment, unlike standard Jupyter notebooks, allowed this to be 

achieved via the so-called Colab forms module. Using this module, the entire 

workflow could be implemented without the user having to read or interact with code. 

Instead, all parameters and paths could be implemented with interactive tools. In this 

aspect, the work is one of the first to provide code-free access to DL, although 

DeepImageJ216 has achieved a similar goal through some applications running within 

the ImageJ GUI. This has the advantage that many bioimage analysts will already be 

familiar with the GUI and will benefit from the highly active community using and 

improving Fiji and ImageJ. However, crucially, and unlike DeepImageJ, the 

ZeroCostDL4Mic platform does not require users to have GPU access to train 

models. Furthermore, the availability of source-code in the Colab notebook makes 

adaptations of the code by users with some experience in coding easier to perform 

and test than in an ImageJ or Fiji tool. The ZeroCostDL4Mic workflow and notebook 

layout also invites users or developers to implement their tools or workflows within 

this format. Implementing new tools in DeepImageJ216 will likely not be as simple for 

many users and even developers as it requires their methods to be cross-compatible 

with Java, a complicating aspect since most DL is developed in Python. 

This project’s solution to code-free interaction with DL meant that differences in the 

source code of different methods could be hidden from the user behind a consistent 

GUI, which was crucial in creating the desired workflow and intuitive layout of the 

notebooks. However, combining the goals of a consistent workflow and the 

interactivity of the notebooks was perhaps the most significant challenge encountered 

in this project because it required converting vastly different DL solutions from 

different authors into a single format. While challenging, it allowed me and the other 

developers of the ZeroCostDL4Mic platform to create a tool which would combine 

the best elements of these tools while improving potential shortcomings. Here, it 

became clear that the tools created by the CSBDeep project, specifically CARE113 

and StarDist147,187, were already designed relatively intuitively and well documented, 

making them easier to include in the ZeroCostDL4Mic platform. Specifically, the 

implementation of CARE in the ZeroCostDL4Mic notebook thus acted as guidance 

for some other methods which were more challenging in implementation, specifically 

YOLOv294 and fnet114.  
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Although the creation of the ZeroCostDL4Mic platform is the chief outcome 

documented in chapter one, the detailed review of the various methods chosen for 

implementation also revealed many practical hurdles which contribute to the second 

problem (knowledge problem). Identifying these issues could be of interest to 

projects beyond the presented one as it could act as simple guidance for developers to 

make their DL-tools more suitable for the purposes of bioimage analysis and 

microscopy. For instance, most methods do not by default provide the user with a 

readable documentation of a DL model’s training, instead providing .log files or 

simply Python history objects which may not always be human-readable. In 

ZeroCostDL4Mic, this problem was solved by having all notebooks output a 

summary pdf document which contains the most important information about the 

training of the model, including hyperparameters, loss curves and details on the 

datasets used in training. Another issue common for different DL methods is that they 

are not agnostic to file-type. This is an issue which is specifically difficult to 

overcome for bioimaging where many different image file-types are used. 

Surprisingly, most methods are not designed to accommodate different filetypes but 

are instead designed to accept either tifs, .pngs or custom filetypes such as .czi (fnet) 

for image files. This problem could not be solved within the scope of this project as it 

would have required thorough changes in the source-codes of each method which was 

not the aim of this project. However, it is an example of a relatively simple 

shortcoming in many methods encountered in this project the removal of which 

would make it significantly easier to use these tools. Since all tools ultimately create 

NumPy174 arrays to create the training tensors, it should not be difficult for 

developers to make their tools agnostic to filetype by converting various file-types 

into this format within their tools. 

Although all the methods present in the project were successfully implemented on the 

ZeroCostDL4Mic platform, some shortcomings remained in the fulfilment of a key 

goal of the project, namely consistency. Though the layout of the notebooks is 

identical it was not achieved to reach perfect agreement between the notebooks. This 

was partly due to inherent differences in the methods, e.g. YOLOv2 which uses 

completely different filetypes than the purely image-based methods, partly due to 

convenience, i.e. the retraining section in fnet is specifically designed to 

accommodate time-outs rather than transfer learning, and partly due to the 
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collaborative nature of the platform’s creation. The latter point should be highlighted 

here as the project contained many more methods than the ones presented in the three 

chapters of this work, which were those I was primarily concerned with. With each 

notebook being designed by a different developer, achieving consistency, e.g. in 

versioning, was a challenge which was met by regularly copy-pasting common text 

and code-fragments to each notebook. Yet, some small inconsistencies may still occur 

in some notebooks, e.g. in type-cases and variable names. Further adjustments will be 

necessary but also increasingly challenging as more notebooks are added to the 

repository to achieve the goal of full consistency. 

Another limitation some users may encounter is the limited choice of parameters for 

some of the notebooks. For instance, none of the notebooks allow adjustments to the 

kernel size of the convolutions of the neural networks even though this is likely to 

affect performance of the models during training. Other hyperparameters such as 

depth, the loss function, dropout rate and similar commonly adjusted parameters were 

not implemented as parameter choices in most notebooks. The main reason for this 

was that in this way the methods stayed closer to their originally published versions. 

Changing the patch size or learning rates (which are implemented in most notebooks) 

did not change the fundamental working of the published algorithm and were 

therefore included. The other reason is that adding additional parameters could 

confuse first-time users. Since the networks can be trained to fit almost all the 

challenges they were presented with in this work, the tuning of additional parameters 

is not necessary for novice users to understand and train a DL-model. However, the 

obvious disadvantage of this choice is that certain hyperparameters and the associated 

benefits in tuning them can only be accessed using the code within the notebooks and 

not through the GUI. 

V. 1. 2. Results Chapter 2 

After the core platform was created and several tools could be trained and used for 

prediction, the fourth problem, reliability, became of interest, as none of the models’ 

predictions could be inspected for errors except by eye. Here, it became evident how 

little attention many methods paid to quality control. Few methods even included 

inbuilt quality controls despite all methods being at least partially quality controlled 

in publication. This is an unexpected shortcoming since quality controls are crucial to 



256 
 

the reliability of DL tools and because their implementation is not necessarily more 

difficulty than building the DL tools themselves. 

Hence, it became a significant additional goal in this project to design an intuitive and 

powerful quality control (QC) section in which any model could be assessed on a test 

dataset and to include this as part of the core workflow in all the notebooks. In the 

ZeroCostDL4Mic QC section, the core metrics chosen were based on the existing 

literature, i.e. those metrics which were used in the majority of the methods in 

publication. This led to the use of the NRMSE, PSNR and SSIM metrics as the core 

metrics for image-to-image tasks and IoU, AP, F1 and (for StarDist) panoptic quality, 

for the instance and semantic segmentation and object detection tasks. Using QC is 

essential to detect problems and rigorously improve DL models. Hence, it needed to 

be demonstrated that the QC section could show that models in the ZeroCostDL4Mic 

platform could be trained to good performance on datasets expected users might 

intend to use DL tasks for, often relatively small datasets. Furthermore, the metrics 

implemented in the notebooks should be sensitive enough to register small 

improvements or deterioration of models and translate into useful information to the 

user. Indeed, the QC metrics provided enough evidence to suggest that models trained 

on the ZeroCostDL4Mic platform could achieve good performance even when 

trained on relatively small datasets. The analysis of the methods was at times 

hampered by the limited number of test images which made it difficult to assess 

significance in some of the tasks. Furthermore, all models could be fine-tuned to 

some degree via parameters available within the notebooks, which means users can 

improve their models until satisfied with the results, an important aspect in DL which 

is notoriously empirical. 

In implementing these metrics, a crucial observation was made regarding commonly 

used image-to-image quality metrics, which influenced the implementation of QC in 

the notebooks, and which has so far hardly been discussed in the literature. Firstly, 

the implemented image metrics alone give very little information about the 

performance of a model on an image as these are image-wide metrics and do not 

resolve problematic image areas, artefacts, or potential biases all of which would help 

understand how well the model performs. On individual images the metrics are 

therefore nearly unusable, unlike the much more intuitive IoU, AP and F1 metrics and 

p-r curves which provide a clearer picture to a user about the performance of a model 
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on an image and full image set. There are two likely reasons for this discrepancy, 

first, the nature of the tasks themselves. Classification tasks are inherently easier to 

score than regression tasks, such as image-to-image analysis where a ‘perfect’ 

prediction, i.e. identity with the ground-truth, is likely impossible except in trivial 

tasks. This means there is more room for interpretation by the user as to what 

constitutes are desirable performance of the model and makes it more difficult to 

score. The other reason may be that the field of image-to-image tasks in DL is 

comparatively small and is itself primarily concerned with segmentation tasks. This 

means the motivation to develop quality controls for tasks such as denoising or label-

prediction in bioimaging, will be limited compared to classification and even 

segmentation tasks. Growing the user-base of DL tools and finding novel applications 

and problems which DL can solve could also increase the interest in creating more 

robust quality metrics for challenging-to-score tasks in the future. This may be 

another speculative benefit of democratising the use of these methods. 

As yet such QC metrics do not exist, in this project an alternative solution was 

designed to assess image-to-image tasks. Instead of scoring models through quality 

metrics alone, the user can assess shortcomings of the models through error maps 

which resolve the differences between ground-truth and prediction in a test image 

pixel-wise. These error maps indeed provided a clearer picture for models’ 

performances and revealed, for example, a bias in CARE 2D for images with more 

background, which reached much higher scores than images containing 

proportionately more structure of interest. This means that image-to-image metrics 

widely used in the field need to be treated with caution if the test datasets are not 

adjusted for background and foreground structure. In practice, this can be difficult as 

this distinction could introduce bias, e.g. by allocating putative foreground-pixels to 

background and vice-versa. The solution provided in the notebook, i.e. with a human 

control, is currently the only feasible solution we found for reliable QC for image-to-

image tasks.  

The observations in this chapter suggest that comparisons of the same method on 

different structures which is common in the literature (e.g. CARE and fnet) may not 

be justified unless the test images are adjusted for background and foreground 

proportions. Further research in quality control of image-to-image tasks, specifically 

bioimaging tasks which differ significantly from similar tasks on macroscopic 
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objects, needs to address the biases which can be introduced via foreground or 

background-heavy datasets. 

 

V. 1. 3. Results Chapter 3 

To test that the platform fulfils its intended purpose, in the final chapter, a novel task 

with motivation from microscopy was designed as a showcase of ZeroCostDL4Mic. 

Indeed, applications beyond the core tasks implemented in this project were already 

shown in publication in the form of combining two notebooks for cell-tracking, and 

in a recent publication by a collaborator to use DL on bacterial images. However, 

none of these have attempted to showcase a novel task for DL in bioimaging and that 

it is possible to achieve this in a rigorous manner through ZeroCostDL4Mic. In 

chapter three, I show that with the tools available in the repository, multiple different 

structures can be identified and unmixed from a composite image with tools 

developed for other purposes. In the process of this showcase, the platform can be 

shown to be used firstly to train all models on a novel task successfully, to compare 

the trained models to identify the best candidate for this task, and even to draw 

preliminary conclusions on some biological or image-based features in the dataset. 

Thus, the third chapter shows that the tool can indeed be applied for novel tasks and 

in a versatile manner. It also revealed some significant challenges in using the tool 

which could be of concern for its potential of democratising DL for microscopy. Of 

primary concern is the access given to GPU time by Google. In performing the trials 

in Chapter 3, timeouts were more frequently encountered than at the beginning of the 

project, likely because Colab has a growing user base that does not scale with the 

amount of GPU-time Google provides. This means that while providing a powerful 

resource to democratise DL, Google also acts as a gatekeeper to access this tool. This 

is also true for the storage space on Google Drive. Fortunately, in this project, I was 

able to access a drive account purchased for research purposes that has unlimited 

drive space. However, for standard users, even the use of more than one pix2pix217 or 

cycleGAN218 model with a full quality control of a medium-sized test set, 100s of 

images, could be difficult to store with standard Google Drive access. This can be 

mitigated by using the ability to share folders on the Google Drive between users, 

only one of whom may need to purchase additional space on the Google Drive. 
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There are different potential solutions to these issues. Firstly, users can purchase 

Colab Pro accounts which reliably give access to the fastest GPUs although this 

means that the project no longer is ‘zero-cost’ for users. However, it also means 

losing none of the benefits of using Colab. The second option is exploring other free-

use GPU platforms as shown in the supplementary method of the ZeroCostDL4Mic 

publication although some of the GUI features will be lost. The third solution is to 

run the notebooks locally, storing files on local hard drives and training networks on 

local GPUs (https://research.google.com/colaboratory/local-runtimes.html). Although 

this solution may also not be zero-cost, it could become more feasible if GPUs 

become cheaper, which can be expected as demand and production of GPUs will 

likely continue to increase for years. This may also be a solution for more advanced 

users who may still want to use some of the shortcuts represented in the 

ZeroCostDL4Mic notebooks, such as loading dependencies, augmentations, QC 

steps, etc. 
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V. 2. Conclusions 

Here, I have built one of the first GUI-based DL-tools in any research field, adapted 

for bioimaging. The tools have an intuitive design inspired by other popular GUI-

tools such as ImageJ53,215. The tool is indeed simple in use and can be used quickly to 

train and compare many DL models. For chapters 2 and 3 alone over 500 models 

were trained, in less than a year. The project includes a quality control section which 

is currently not common in many DL workflows and automatically analyses models’ 

performances with the relevant metrics allowing both quantitative and qualitative 

assessments of models. The project can be used for novel tasks and gives outputs 

which are insightful for both the analysis of the datasets and the DL methods 

themselves. The original goal of the project to use DL to address problems in 

microscopic imaging was shown in the final chapter to be by achieved by using the 

tool for task that could significantly reduce toxicity in imaging or be exploited to 

generate additional image data.  

Although the access to Colab is important for the project, the merit of this project 

does not depend on resources provided by Google or other platforms. Several of the 

findings made throughout this project were made independently from Google’s 

resources. The workflow itself and the solutions found in this project to provide code-

free access to DL for users, could influence other tools which may be created in the 

future. By creating the ZeroCostDL4Mic repository, the community is provided with 

one potential solution to some of the issues encountered in the existing methods for 

DL in microscopy and bioimaging. 
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V. 3. Outlook  

Already the development of high-level coding tools such as TensorFlow191 and 

PyTorch190 (and others) which can be easily used in Python and which has a dynamic 

and growing user-base has made a big impact on the democratisation of DL 

technology as it can be used or learned by users of Python, one of the largest coding 

languages in the world. Yet, it cannot be assumed that many potential beneficiaries of 

DL-tools in bioimaging are proficient in either DL or Python. This is the group this 

project intended to reach. As discussed in the introductory chapter, the extent of 

democratisation is not easily measured nor is the impact of a technology on science. 

However, since the publication of the project, several correspondences with users of 

the platform and the activity on the GitHub page suggest that there is interest in this 

tool from the community. Interest for the project has come from countries such as 

Brazil where resources for research are far more limited than in many European 

countries or the U.S. Open-access and free-to-use tools are likely of even greater 

impact in countries outside the academic hotspots of the world where students and 

researchers are less likely to have access to GPUs. This gives confidence that the tool 

indeed is reaching the targeted community and may perhaps inspire more users to test 

DL in their research. 

There are also some applications which were not envisioned in the original 

publication of this paper but were developed by some early collaborators. The first of 

these is the DeepBacs219 project which represents one of the first characterisations of 

bacterial image data using DL, and prominently used the ZeroCostDL4Mic resources. 

The format of the ZeroCostDL4Mic platform is also attractive for the implementation 

of further methods, and the project continues to grow, particularly owing to the 

efforts made by the Jacquemet group which also continues to maintain the existing 

notebooks. As further methods, including novel methods, are added, the project can 

likely remain relevant even as the initial notebooks may represent older methods 

which will be surpassed in the future. 

However, there has remained an important gap in the achievements of the project 

which will need to be addressed in further research and which will be crucial for the 

further democratisation of DL in bioimaging and beyond. This gap lies in finding a 

satisfactory solution to the 5th problem identified in this project, concerning the need 



262 
 

to curate or otherwise access large, paired datasets for training and testing of DL 

methods. In the ZeroCostDL4Mic project, several features were implemented in the 

notebooks to accommodate the potential lack of large training datasets in the form 

inbuilt data augmentation, patching, and the potential to re-train models via transfer 

learning on small datasets. However, these features do not solve the crucial issue 

inherent in the supervised methods which this project mostly implements 

(Noise2Void220 and Deep-STORM131 being exceptions), which is their reliance on 

large, paired datasets. Even the creation of relatively small datasets of up to 100 

images was a significant undertaking, most significantly for those datasets which 

needed hand annotations, such as YOLOv294 and StarDist187. While StarDist 

performed well after training on a comparably small training dataset of only 28 

images, in YOLOv2, it was already evident that the model essentially failed in its task 

if the training dataset of roughly 30 images were not augmented. The annotation 

problem is a widely known and discussed subject in DL and the associated 

bioimaging communities with several solutions being put forward in recent years. 

However, there remain some key challenges. 

There are several potential avenues which can be explored to achieve this either in 

future versions of the ZeroCostDL4Mic notebooks or in a separate project. Firstly, 

can annotation be facilitated within the platform? This question could be cautiously 

answered with yes. In collaboration with Wei Ouyang, Romain Laine, one of the co-

creators of the ZeroCostDL4Mic platform has created a Colab notebook, included in 

the ZeroCostDL4Mic repository which includes the kaibu221 plugin which can be 

used to interactively view, edit and label images in the notebook. A similar web-

based tool for segmentation tasks also exists in the form of the Deep Cell Label 

project which allows 2d, 3d and 4d segmentations of datasets178. Although such tools 

are useful as this means that, at least within the ZeroCostDL4Mic notebooks files 

required for training could be generated directly in the google drive rather than being 

uploaded, they do not solve the central problem that creating segmentation data 

manually is extremely time-intensive particularly for 3D segmentations. However, 

since tools such as kaibu221 and napari222 which also allows 3D segmentations are 

Python based, it is likely feasible to include some DL-powered tools into the 

segmentation pipeline, and this is already being done in early stages 

(https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/mast

https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/Beta%20notebooks/ZeroCostDL4Mic_Interactive_annotations_Cellpose.ipynb
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er/Colab_notebooks/Beta%20notebooks/ZeroCostDL4Mic_Interactive_annotations_

Cellpose.ipynb). Such approaches might include user’s inputs being used by the 

model to generate suggestions for further annotations which could make the 

annotation of a dataset significantly faster, or even lead to the creation of a trained 

model once a few images are fully annotated. In this way, it could be imagined that 

the user's input could be used directly to train a model on the fly that improves its 

predictions as the user adds more information to the annotations. Such tasks are 

already known in machine learning as ‘active learning’ and have hardly been 

explored in the context of image annotation. Other potential candidates for a DL-

assisted labelling approach could be in simulating large training datasets if enough 

information is known about the task to create such a dataset, which could, for 

example, be done using a GAN. Indeed, this was attempted in the presented project 

but failed for unknown reasons and could not be solved within the timeframe of this 

project.  

Ultimately, the supervised learning approaches are likely to be an intermediate step in 

the advances DL-tools will make for bioimaging and it is likely that many self-

supervised or human-in the loop approaches will soon take over some of the tasks in 

this project. The ZeroCostDL4Mic project could be used as an inspiration for the 

intuitive implementation of such unsupervised methods in the future. Implementing 

such methods in an intuitive manner could be one of the next big innovations for 

bioimaging as it would offer a solution to the last crucial obstacle for the 

democratisation of DL in bioimaging. 

 

 

 

 

https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/Beta%20notebooks/ZeroCostDL4Mic_Interactive_annotations_Cellpose.ipynb
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