3,524 research outputs found

    Combining Synthesis of Cardiorespiratory Signals and Artifacts with Deep Learning for Robust Vital Sign Estimation

    Get PDF
    Healthcare has been remarkably morphing on the account of Big Data. As Machine Learning (ML) consolidates its place in simpler clinical chores, more complex Deep Learning (DL) algorithms have struggled to keep up, despite their superior capabilities. This is mainly attributed to the need for large amounts of data for training, which the scientific community is unable to satisfy. The number of promising DL algorithms is considerable, although solutions directly targeting the shortage of data lack. Currently, dynamical generative models are the best bet, but focus on single, classical modalities and tend to complicate significantly with the amount of physiological effects they can simulate. This thesis aims at providing and validating a framework, specifically addressing the data deficit in the scope of cardiorespiratory signals. Firstly, a multimodal statistical synthesizer was designed to generate large, annotated artificial signals. By expressing data through coefficients of pre-defined, fitted functions and describing their dependence with Gaussian copulas, inter- and intra-modality associations were learned. Thereafter, new coefficients are sampled to generate artificial, multimodal signals with the original physiological dynamics. Moreover, normal and pathological beats along with artifacts were included by employing Markov models. Secondly, a convolutional neural network (CNN) was conceived with a novel sensor-fusion architecture and trained with synthesized data under real-world experimental conditions to evaluate how its performance is affected. Both the synthesizer and the CNN not only performed at state of the art level but also innovated with multiple types of generated data and detection error improvements, respectively. Cardiorespiratory data augmentation corrected performance drops when not enough data is available, enhanced the CNN’s ability to perform on noisy signals and to carry out new tasks when introduced to, otherwise unavailable, types of data. Ultimately, the framework was successfully validated showing potential to leverage future DL research on Cardiology into clinical standards

    Data-Efficient Machine Learning with Focus on Transfer Learning

    Get PDF
    Machine learning (ML) has attracted a significant amount of attention from the artifi- cial intelligence community. ML has shown state-of-art performance in various fields, such as signal processing, healthcare system, and natural language processing (NLP). However, most conventional ML algorithms suffer from three significant difficulties: 1) insufficient high-quality training data, 2) costly training process, and 3) domain dis- crepancy. Therefore, it is important to develop solutions for these problems, so the future of ML will be more sustainable. Recently, a new concept, data-efficient ma- chine learning (DEML), has been proposed to deal with the current bottlenecks of ML. Moreover, transfer learning (TL) has been considered as an effective solution to address the three shortcomings of conventional ML. Furthermore, TL is one of the most active areas in the DEML. Over the past ten years, significant progress has been made in TL. In this dissertation, I propose to address the three problems by developing a software- oriented framework and TL algorithms. Firstly, I introduce a DEML framework and a evaluation system. Moreover, I present two novel TL algorithms and applications on real-world problems. Furthermore, I will first present the first well-defined DEML framework and introduce how it can address the challenges in ML. After that, I will give an updated overview of the state-of-the-art and open challenges in the TL. I will then introduce two novel algorithms for two of the most challenging TL topics: distant domain TL and cross-modality TL (image-text). A detailed algorithm introduction and preliminary results on real-world applications (Covid-19 diagnosis and image clas- sification) will be presented. Then, I will discuss the current trends in TL algorithms and real-world applications. Lastly, I will present the conclusion and future research directions

    Modeling, classifying and annotating weakly annotated images using bayesian network

    Get PDF
    International audienceIn this paper, we propose a probabilistic graphical model to represent weakly annotated images. We consider an image as weakly annotated if the number of keywords defined for it is less than the maximum number defined in the ground truth. This model is used to classify images and automatically extend existing annotations to new images by taking into account semantic relations between keywords. The proposed method has been evaluated in visual-textual classification and automatic annotation of images. The visualtextual classification is performed by using both visual and textual information. The experimental results, obtained from a database of more than 30000 images, show an improvement by 50.5% in terms of recognition rate against only visual information classification. Taking into account semantic relations between keywords improves the recognition rate by 10.5%. Moreover, the proposed model can be used to extend existing annotations to weakly annotated images, by computing distributions of missing keywords. Semantic relations improve the mean rate of good annotations by 6.9%. Finally, the proposed method is competitive with a state-of-art model

    Data-driven action-value functions for evaluating players in professional team sports

    Get PDF
    As more and larger event stream datasets for professional sports become available, there is growing interest in modeling the complex play dynamics to evaluate player performance. Among these models, a common player evaluation method is assigning values to player actions. Traditional action-values metrics, however, consider very limited game context and player information. Furthermore, they provide directly related to goals (e.g., shots), not all actions. Recent work has shown that reinforcement learning provided powerful methods for addressing quantifying the value of player actions in sports. This dissertation develops deep reinforcement learning (DRL) methods for estimating action values in sports. We make several contributions to DRL for sports. First, we develop neural network architectures that learn an action-value Q-function from sports events logs to estimate each team\u27s expected success given the current match context. Specifically, our architecture models the game history with a recurrent network and predicts the probability that a team scores the next goal. From the learned Q-values, we derive a Goal Impact Metric (GIM) for evaluating a player\u27s performance over a game season. We show that the resulting player rankings are consistent with standard player metrics and temporally consistent within and across seasons. Second, we address the interpretability of the learned Q-values. While neural networks provided accurate estimates, the black-box structure prohibits understanding the influence of different game features on the action values. To interpret the Q-function and understand the influence of game features on action values, we design an interpretable mimic learning framework for the DRL. The framework is based on a Linear Model U-Tree (LMUT) as a transparent mimic model, which facilitates extracting the function rules and computing the feature importance for action values. Third, we incorporate information about specific players into the action values, by introducing a deep player representation framework. In this framework, each player is assigned a latent feature vector called an embedding, with the property that statistically similar players are mapped to nearby embeddings. To compute embeddings that summarize the statistical information about players, we implement a Variational Recurrent Ladder Agent Encoder (VaRLAE) to learn a contextualized representation for when and how players are likely to act. We learn and evaluate deep Q-functions from event data for both ice hockey and soccer. These are challenging continuous-flow games where game context and medium-term consequences are crucial for properly assessing the impact of a player\u27s actions

    Conditional Invertible Generative Models for Supervised Problems

    Get PDF
    Invertible neural networks (INNs), in the setting of normalizing flows, are a type of unconditional generative likelihood model. Despite various attractive properties compared to other common generative model types, they are rarely useful for supervised tasks or real applications due to their unguided outputs. In this work, we therefore present three new methods that extend the standard INN setting, falling under a broader category we term generative invertible models. These new methods allow leveraging the theoretical and practical benefits of INNs to solve supervised problems in new ways, including real-world applications from different branches of science. The key finding is that our approaches enhance many aspects of trustworthiness in comparison to conventional feed-forward networks, such as uncertainty estimation and quantification, explainability, and proper handling of outlier data

    Efficient Learning Machines

    Get PDF
    Computer scienc
    • …
    corecore