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Abstract

Medical image analysis is a critical and challenging field that can be

significantly enhanced using deep learning techniques. However, these

models require large amounts of annotated data, which can be costly

and time-consuming to obtain. Additionally, deep learning models often

suffer from overconfidence and poor generalisation, leading to incorrect

diagnoses and negative clinical outcomes. The primary objective of this

thesis is to address these challenges by proposing methods that reduce

annotation costs and improve diagnostic accuracy using deep learning.

The first contribution of this thesis is an active learning framework

designed to increase annotation throughput for histopathology patches.

Histopathology is the gold standard for cancer diagnosis, but it requires

manual examination by pathologists, which is labour-intensive and prone

to errors. To address this issue, this thesis proposes an active learn-

ing framework that selects regions for annotation composed of multi-

ple patches, which is expected to increase annotation throughput. This

framework is evaluated with various query strategies for nuclei classifica-

tion using convolutional neural networks (CNN) trained on small patches

containing single nuclei.

This thesis proposes a multi-directional modification to the contrastive

predictive coding (CPC) method for unsupervised representation learning

for histopathology patches. Recent advancements in deep learning have

had a significant impact on digital pathology, however a significant chal-

lenge is the large amounts of annotated data needed. Unsupervised rep-

resentation learning aims to learn meaningful and transferable features

from unannotated data, which can be useful for downstream tasks such

as classification. The proposed method uses an alternative mask to con-

struct a latent context and a multi-directional PixelCNN autoregressor,

to learn effective deep feature representations for improved classification

accuracy in digital pathology compared to the standard implementation

of CPC.

The third contribution of this thesis is a study on calibration tech-

xii
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niques evaluated on a multi-class dermatology dataset and a binary

histopathology dataset. Calibration is critical for medical image anal-

ysis, where overconfident or underconfident predictions can have serious

consequences for patient care. The study applied the temperature scal-

ing method and alternative calibration metrics to networks trained with

one-hot encoding, cross-entropy loss, focal loss, and label smoothing. The

findings suggest that temperature scaling of networks trained with focal

loss and appropriate hyperparameters demonstrated strong performance

in terms of both calibration and accuracy across both datasets.

This thesis investigates selective classification methods with asym-

metrical misdiagnosis costs for skin lesion images. Selective classification

is a decision-making framework that allows a model to reject images when

it is uncertain or unconfident, which can reduce the risk of misdiagno-

sis and improve patient safety. However, most existing selective clas-

sification methods assume that all types of misclassification have equal

costs, which is not realistic in medical image analysis. This thesis eval-

uates various methods of uncertainty estimation with neural networks

and probability calibration. Additionally, a modification to SelectiveNet,

called EC-SelectiveNet, is proposed, which discards the selection head

during testing and relies on expected costs to make decisions. The re-

sults demonstrate the advantages of training for full coverage, even when

operating at lower coverage, and show that EC-SelectiveNet outperforms

other selective classification methods, in both symmetric and asymmetric

cost settings.

The fifth contribution of this thesis is a study on dataset fine-tuning

for skin lesion image datasets. Dataset fine-tuning is challenging for

medical image analysis due to the heterogeneity and variability of data

sources. This study utilises four diagnostic image datasets, including two

locally sourced datasets from NHS Tayside and NHS Forth Valley and

two publicly available datasets. The study emphasises the importance of

assessing the generalisability of deep learning algorithms for macroscopic

skin lesion images in real-world settings and highlights the potential ben-

efits of utilising large public macroscopic datasets for pre-training and

fine-tuning.

xiii



Chapter 1

Introduction

1.1 Research Motivations

In recent times, contemporary artificial intelligence (AI) techniques have

exhibited remarkable results across various fields (Sarker, 2021). The

upsurge in deep learning, a machine learning approach where a model

with deep layers learns meaningful representations and task-specific out-

puts (such as classification tasks) jointly, is the primary reason for this

progress (LeCun et al., 2015). By eliminating the need for complex fea-

ture engineering, this approach leads to enhanced model performance,

with the learned representations being more task specific. In the medical

domain, researchers have explored the potential of AI and deep learn-

ing algorithms to improve the performance of medical image analysis

tasks, including classification, segmentation, and detection across dif-

ferent modalities. Integrating these techniques intelligently into clinical

workflows can aid in enhancing efficiency by automating complex and

time-consuming tasks requiring expert knowledge.

An example of AI integration in a clinical domain can be observed

in the realm of digital pathology—an increasingly burgeoning discipline

encompassing the application of digital tools and methodologies for the

analysis and interpretation of medical images. AI has found practical

utility within the digital pathology clinical pipeline by providing auto-

mated analyses, thereby alleviating the time-consuming burden for clin-

icians, and aiding in diagnostic decision-making processes. A notable

challenge encountered by clinical pathologists pertains to the evaluation

of entire slide images due to their sheer size, rendering a comprehensive

assessment daunting. Nevertheless, AI algorithms demonstrate compe-

tence in analysing entire slides, identifying critical regions of interest,

1
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and furnishing supplementary information, such as nuclei counts by clas-

sification, thereby facilitating the diagnostic process (Dimitriou et al.,

2019). Significant strides in this area encompass the development of

Spatially Constrained Convolutional Neural Network for nucleus detec-

tion (Sirinukunwattana et al., 2016) and the Camelyon digital pathology

challenge—an open science initiative aimed at developing algorithms for

detecting cancer metastasis in whole slide images of lymph node sec-

tions (Bejnordi et al., 2017).

Artificial intelligence is rapidly becoming a realistic prospect in der-

matology. Empirical investigations have demonstrated that AI algo-

rithms exhibit diagnostic accuracy comparable to that of skin cancer

experts when it comes to diagnosing skin lesions in dermoscopic images

(Liopyris et al., 2022). Dermoscopy, as a method for capturing images of

skin lesions, finds utility in the interface between primary and secondary

care. However, reviewing these referred images poses a substantial time

burden for dermatologists, making it an area where AI’s implementation

could significantly alleviate their workload, thereby allowing them to de-

vote more attention to more complex cases. Nonetheless, the integration

of AI in dermatology is a multifaceted endeavour due to the intricate na-

ture of patient pathways within the domain. Hence, the comprehensive

evaluation of AI interventions mandates clinically-led research studies.

A notable illustration of ongoing work in the realm of AI for dermatol-

ogy lies in the efforts of the International Skin Imaging Collaboration

(ISIC) 1, an organization dedicated to collecting and disseminating im-

ages for clinical and computer vision research.

Although deep learning algorithms have demonstrated significant im-

provement in performance for medical image analysis tasks, they necessi-

tate large, annotated datasets to train models and construct meaningful

representations necessary for optimal performance. However, acquiring

annotations for medical images can be an expensive process, requiring

specialised training and a substantial amount of time, compounded by

the need for multiple annotations due to inter-observer variability. This

challenge has been acknowledged as a primary issue in utilising deep

learning algorithms for medical image analysis tasks, as reported in a

survey conducted by Litjens et al. (2017).

1International Skin Imaging Collaboration: https://www.isic-archive.com/
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1.2 Cost of Annotations

The limited capacity for annotation in medical image analysis has prompted

the exploration of methods designed to address this challenge. One such

approach is active learning (Settles, 2009), a machine learning technique

that entails iteratively selecting informative samples from a large unan-

notated dataset to be annotated by an expert, with the aim of enhancing

the performance of a predictive model (Figure 1.1). The primary objec-

tive of active learning is to achieve high accuracy while utilising fewer

annotated examples than conventional supervised learning techniques.

For instance, in the field of dermatology, active learning can be em-

ployed to identify representative samples from a vast pool of unannotated

images, which can then be annotated by dermatologists. By adopting

this strategy, the dermatologist can concentrate on the most informative

images, instead of annotating images at random. Despite limitations

in the amount of annotated data that can be generated, which is often

due to financial or temporal constraints. Consequently, by selectively

annotating the most informative images, active learning has the poten-

tial to enhance the performance of the resulting machine learning model,

thereby reducing the need for additional annotated examples.

Active learning has demonstrated its efficacy in traditional machine

learning environments (Settles, 2009), but its applicability in conjunction

with deep learning algorithms is subject to limitations that can poten-

tially impede its effectiveness. A particular issue that arises is a selection

bias problem (Sener and Savarese, 2017), as active learning algorithms

tend to prioritise the selection of the most informative samples. This

can engender a biased dataset that is not reflective of the entire popula-

Figure 1.1: Pool-based active learning framework.
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tion, ultimately resulting in a deep learning model that acquires feature

representations that are not generalisable to unseen data. Consequently,

suboptimal classification performance can occur.

Active learning has been shown to be effective in mitigating issues

arising from the limited annotation budget; however, further improve-

ments in performance can be achieved by maximising the utility of the

unannotated pool. One approach to achieving this is through unsuper-

vised representation learning, which is capable of learning representative

features from unannotated images (Bengio, Courville and Vincent, 2013).

The acquired representation can then be transferred to other models,

thereby reducing the amount of annotated data required to produce a

high-performing model. This can help to alleviate the burden on the

active learning algorithm in balancing the selection of representative and

informative samples. Unsupervised representation learning is typically

achieved using either reconstruction or self-supervised methods.

A reconstruction method aims to learn by generating new examples,

such as an autoencoder model that compresses its input data into a lower-

dimensional latent space and then reconstructs the original data. The

learned latent space can be reused as an encoder in a classification model,

which can then be trained in a supervised fashion. In contrast, a self-

supervised representation method uses a pretext task to learn represen-

tational tasks in a supervised fashion. One example of this is the RotNet

method (Gidaris et al., 2018), which involves rotating images and hav-

ing the model predict the rotation of the image. In order to predict the

rotation of an image the model has to learn to represent localise salient

objects in the images and their relationship to other objects in the image.

These learned representations can then be subsequently be transferred

to other tasks such as classification. By leveraging these unsupervised

representation learning methods, it is possible to extract meaningful fea-

tures from unannotated data, thereby reducing the burden of annotation

and improving the performance of downstream machine learning tasks.

1.3 Triage Misdiagnosis

The limited annotation and the utilisation of techniques to enhance the

performance of a specified task may compromise the model’s robustness

towards images that are outside its training data, such as new disease

classifications or diverse image capture conditions. Consequently, the

1.3. Triage Misdiagnosis 4
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model must be trained to acknowledge the uncertainty of its predictions,

which presents a challenge for deep learning algorithms due to their lack

of interpretability (Zhang and Zhu, 2018) and inadequately calibrated

predictive probabilities (Gal and Ghahramani, 2016). Therefore, it is

imperative to investigate methods to better calibrate deep learning al-

gorithms and adopt selective classification approaches to reject images

that the model is ill-equipped to handle when making a prediction on

new image.

Calibration denotes the systematic procedure of conforming the antic-

ipated probabilities of a model with the authentic probabilities of the tar-

get variable. When applied in the realm of deep learning, this procedure

necessitates adapting the model’s output to match the actual distribu-

tion of outcomes in the population under consideration (Guo et al., 2017).

Generally, three distinct methodologies are utilised to improve the cali-

bration of deep learning algorithm outputs, namely model regularisation,

post-hoc calibration, and Bayesian neural networks. Model regularisation

involves the imposition of regularisation during the training phase, while

post-hoc calibration entails fine-tuning the output probabilities after the

model has undergone training. Additionally, Bayesian neural networks

are acknowledged to be intrinsically superior for calibration purposes.

The use of asymmetrical costs is a modification that can be imple-

mented to address the varying costs associated with misclassifications

stemming from false positives and false negatives. False positives refer

to cases where a healthy patient is incorrectly diagnosed as having a

disease, while false negatives denote instances where a patient with a

disease is erroneously identified as healthy. The consequences of these

types of misclassifications can be vastly dissimilar. In the context of a

skin lesion classification scenario, a false positive may lead to unnecessary

and potentially harmful interventions such as biopsies, additional test-

ing, and heightened anxiety. Conversely, a false negative could result in

delayed treatment, missed diagnoses, and ultimately, a worsened patient

outcome. The integration of selective classification alongside asymmet-

rical costs may yield selective classification systems that reject images

that could lead to higher costs if misdiagnoses, thereby minimising the

costs associated with such misclassifications.

Selective classification, or classification with a reject option (Chow,

1957), represents a machine learning approach that entails the assignment

of one of several conceivable labels to an input image or region of interest,

while also incorporating an extra option to reject the image (Figure 1.2).
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The integration of a reject option in the classification process permits

the system to circumvent erroneous diagnoses or recommendations when

the input image’s classification is uncertain. In lieu of making an in-

correct prediction, the system can request supplementary information or

refer the image to a human expert for further evaluation. One prevalent

strategy for selective classification involves establishing a threshold on

the confidence score generated by the classifier; if the confidence score

falls below the threshold, the image is discarded.

Figure 1.2: Selective Classification framework.

1.4 Dataset Fine-Tuning

The majority of research in the field of medical image analysis employs

open-source datasets (Wu et al., 2022). Open-source datasets are pub-

licly released datasets intended to facilitate further research. While such

datasets have aided advancements in this area, the resulting machine

learning models are often not amenable to generalisation across disparate

datasets captured at different sites when fine-tuned (Chin et al., 2022). It

is essential for machine learning models to generalise across medical data

from distinct capture sites when fine-tuned to achieve broad applicability

and effectiveness in diverse clinical contexts. Failure to do so may result

in suboptimal performance and inaccuracies that can adversely impact

clinical decision-making in medical applications where precision and ac-

curacy are paramount. For example, if a model trained on imaging data

from one hospital is applied to imaging data from a different hospital that

1.4. Dataset Fine-Tuning 6
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employs distinct imaging technology, it may generate erroneous results

that could lead to incorrect diagnoses and treatments.

1.5 Research Questions and Contributions

Drawing from the aforementioned motivations, this thesis centres on the

following research questions:

• How can a deep learning model be effectively trained to achieve

optimal performance when faced with a scarcity of annotations, and

a large corpus of unannotated data?

• To what extent can selective classification techniques be applied in

order to mitigate the costs associated with asymmetrical misdiag-

nosis of skin lesion images?

To provide solutions to the questions, this thesis presents the following

contributions.

• An active learning framework specifically for histopathology patches,

which serves to enhance annotator efficiency and optimise the vol-

ume of nuclei annotations (Chapter 2).

• Multi-Directional Contrastive Predictive Coding, a modification to

a state-of-the-art unsupervised representation learning algorithm,

specifically tailored for pathology images that lack a discernible

directionality (Chapter 3).

• An empirical investigation of deep learning calibration techniques

for both multi-class dermatology and binary histopathology patches,

encompassing Bayesian neural networks, model regularisation, and

post hoc methods (Chapter 4).

• A comparative analysis of selective classification techniques, in both

binary and multi-class scenarios that encompasses Bayesian neural

networks, calibrated neural networks, and specialised models de-

signed for selective classification (Chapter 5).

• A study of deep learning algorithms, specifically their capacity to

generalise across various dermatology datasets from distinct sources

when fine-tuned, some of which were referred for dermatologist ex-

amination, and larger open-source dermatology datasets (Chapter 6).

1.5. Research Questions and Contributions 7
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1.6 Thesis Structure

This thesis is organised into separate chapters corresponding to the major

contributions made. Each chapter includes an exposition of the underly-

ing motivations, a survey of the pertinent literature, and an account of

the conducted experiments. This section presents a succinct overview of

the individual chapters:

Annotator Efficient Active Learning

With the increasing popularity of deep learning in medical image analysis

and digital pathology (Tizhoosh and Pantanowitz, 2018), it has become

increasingly important to develop methods that can reduce the need for

costly data annotations. Active learning is a promising approach to min-

imising the amount of annotated data required to train machine learning

models (Settles, 2009). However, the effectiveness of traditional active

learning strategies with deep learning is limited (Wang et al., 2016). In

patch-based machine learning systems, active learning methods typically

request annotations for individual small patches, which can be laborious

and expensive for annotators who must rely on visual context. To address

this issue, Chapter 2 proposes an active learning framework that selects

tiles for annotation that are composed of multiple patches, which is ex-

pected to increase annotation throughput (Carse and McKenna, 2019).

This framework is evaluated with various query strategies on the task of

nuclei classification, using convolutional neural networks (CNNs) trained

on small patches containing single nuclei. Traditional query strategies

performed worse than random sampling.

Unsupervised Representation Learning

Recent advancements in deep learning algorithms have had a significant

impact on digital pathology tasks. However, a significant challenge in

this field is the need for large amounts of annotated data. To overcome

this issue, unsupervised learning techniques, particularly contrastive pre-

dictive coding (CPC) (van den Oord et al., 2018), have been proposed to

leverage abundant but unannotated data for training classifiers. In Chap-

ter 3, a modification to the CPC framework for use in digital pathology

patch classification is purposed, which involves the use of an alternative

mask to construct the latent context and a multi-directional PixelCNN

autoregressor (van den Oord et al., 2016). Using the Path Camelyon
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histology patch dataset (Veeling et al., 2018), it is demonstrated that

this proposed method can produce effective deep feature representations

for improved classification accuracy in digital pathology when compared

to the standard implementation of CPC (Carse, Carey and McKenna,

2021).

Predictive Probability Calibration

It is well established that deploying deep learning classifiers for medical

image analysis tasks requires careful consideration of issues related to

predictive calibration (Maron et al., 2019). Mis-calibration, defined as

the discrepancy between predictive probability (confidence) and classifi-

cation correctness (Guo et al., 2017), can significantly impact the abil-

ity to make cost-sensitive and selective decisions (Carse, Süveges, Hogg,

Trucco, Proby, Fleming and McKenna, 2021). To understand the ef-

fectiveness of various calibration methods, Chapter 4 reports empirical

study was conducted on two medical image datasets: one for multi-

class dermatology classification and one for binary histopathology im-

age classification. The chapter applied the temperature scaling method,

in which the temperature parameter is optimised using various calibra-

tion measures instead of the standard negative log-likelihood, to networks

trained with one-hot encoding and cross-entropy loss, as well as networks

trained with focal loss and label smoothing. The results of these methods

were compared to those obtained using two Bayesian neural network ap-

proaches. The findings suggest that while alternative calibration metrics

may not offer significant advantages for tuning temperature, temperature

scaling of networks trained with focal loss and appropriate hyperparam-

eters demonstrated strong performance in terms of both calibration and

accuracy across both datasets (Carse et al., 2022).

Asymmetrical Selective Classification

Skin lesion classifiers must enable decision-making that is sensitive to

cost. Chapter 5 investigates techniques for selective, cost-sensitive clas-

sification in both binary triage and multi-class disease classification sce-

narios, using misclassification costs provided by clinical dermatologists

based on healthcare economics. The chapter evaluates various meth-

ods of uncertainty estimation with neural networks and probability cal-

ibration. Additionally, a modification to SelectiveNet (Geifman and

El-Yaniv, 2019), called EC-SelectiveNet (Carse, Süveges, Hogg, Trucco,
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Proby, Fleming and McKenna, 2021) is proposed, that discards the selec-

tion head during testing and relies on expected costs to make decisions.

The results demonstrate the advantages of training for full coverage, even

when operating at lower coverage, and show that EC-SelectiveNet out-

performs standard CNNs using temperature scaling (Guo et al., 2017)

or Bayesian neural networks using different measures of uncertainty, in

both symmetric and asymmetric cost settings.

Evaluating Dataset Fine-Tuning

Chapter 6 examines the fine-tuned generalisability of deep neural network

classifiers for macroscopic skin lesion images in the UK NHS. Although

deep learning has shown promise in dermatology, its ability to accu-

rately diagnose macroscopic skin disease images that lack dermoscopic

information remains a significant challenge (Jones et al., 2022). To ad-

dress this, four diagnostic image datasets were utilised, including two

locally-sourced datasets and two publicly available datasets. Two types

of neural network models were trained and evaluated on each dataset,

with pre-training on the SD-260 (Yang et al., 2019) dataset followed by

fine-tuning on the target domain data showing the most promising re-

sults. This chapter emphasises the importance of assessing the generalis-

ability of deep learning algorithms when fine-tuned for macroscopic skin

lesion images in real-world settings and highlights the potential bene-

fits of utilising large public macroscopic datasets for pre-training and

fine-tuning. Future research is necessary to evaluate the generalisability

of these algorithms across different populations and acquisition settings

when fine-tuned.

Conclusions and Discussions

This chapter briefly articulated and introduced the research conducted,

elucidating its contributions and limitations. It highlighted the potential

for cost-effective annotation and predictive triage diagnosis in the realm

of medical image analysis, with particular emphasis on histopathology

and dermatology. This thesis lays groundwork for future research to build

upon. This chapter underscores the criticality of mitigating annotation

costs and triage misdiagnose, to promote the widespread utilisation of

medical image analysis systems in clinical settings.

1.6. Thesis Structure 10



Chapter 2

Annotator Efficient Active

Learning

2.1 Introduction

2.1.1 Active Learning for Medical Image Analysis

Active learning is a type of machine learning that hypothesises that hav-

ing a learning algorithm select the data that is used during training can

reduce the amount of data needed for training (Settles, 2009). Active

learning is used within modern applications to reduce the quantity of

data that needs to be annotated by selecting unannotated data to be an-

notated and added to the dataset used to train the model. Limiting the

amount of data annotations needed can reduce annotation costs (which

can be expensive when dealing with specialised data such as histopathol-

ogy) and computation costs as the models can be trained with fewer data.

In a pool-based scenario, the learning algorithm has access to a large pool

of unannotated data. Over multiple iterations, the learning algorithm se-

lects the most beneficial data from the pool to be annotated and added

the training dataset, as shown in Figure 1.1. One of the main advantages

of pool-based active machine learning for medical image analysis is its

ability to reduce the amount of human labour required. Medical image

analysis often involves manual annotation, which can be time-consuming

and labour-intensive. By using pool-based active learning, the burden

of annotation is greatly reduced, as the algorithm can identify the most

informative samples and prioritise them for labelling.

Active learning algorithms utilise query strategies to select data for

annotation. While some popular query strategies, such as uncertainty

11
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sampling, have been demonstrated to be effective on deep learning algo-

rithms (Gal et al., 2017), the unique feature-representation learning pro-

cess of deep learning algorithms can present challenges. Specifically, the

selection of only difficult examples for training can lead to a lower-quality

model due to the resulting features not being representative of the en-

tire data distribution. This issue is illustrated by Pop and Fulop (2018),

who demonstrate the occurrence of mode collapse when using a Bayesian

uncertainty query strategy to train a CNN. To address these challenges,

batch-aware query strategies that make use of clustering methods have

been shown to be effective in deep learning environments (Sener and

Savarese, 2017, Zhdanov, 2019, Kirsch et al., 2019). These strategies

optimise the selection of batches of images for annotation rather than

individual data points.

2.1.2 Deep Active Learning for Digital Pathology

To save computation time, it is common practice in digital pathology

to use patches from whole slide images when applying machine learning

algorithms. These patches can be efficiently processed by deep learning

algorithms like CNNs, and do not require the entire slide image to be

annotated. However, using patch-based methods with patches for tasks

such as nuclei detection and classification can be problematic when using

active learning to query for annotation. This is because patches are more

time-consuming and labour-intensive to annotate, and may lack sufficient

spatial context for accurate annotation, even for expert pathologists.

To improve annotation efficiency and reduce costs, this chapter pro-

poses a modified active learning framework to improve annotator through-

put by selecting large tiles of whole-slide images made up of multiple

nuclei patches to be annotated rather than annotating individual nuclei

patches. This modified framework was tested using various active learn-

ing query strategies on a nuclei detection and classification task using

the CRCHistoPhenotypes dataset (Sirinukunwattana et al., 2016).

This work was presented at the European Congress on Digital Pathol-

ogy 2019 and published as part of its proceedings (Carse and McKenna,

2019).

2.1. Introduction 12
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2.2 Review of Active Learning for Medical

Images

In recent years, active learning has undergone significant development

in various areas, including query strategies for deep learning algorithms,

techniques to reduce annotator workload, and application to medical im-

age analysis tasks. This section provides an overview of key contributions

in these domains that inform the present chapter’s contribution.

2.2.1 Pool-Based Active Learning Query Strategies

In pool-based active learning, a large pool of unannotated data and a

small set of labelled data are utilised (Settles, 2009). Query strategies

are employed to identify the most useful unannotated data for anno-

tation and incorporation into the learning algorithm (Figure 1.1). This

approach is particularly relevant in the context of medical image analysis,

given the abundance of such data that is often collected and stored, but

only a limited portion of which has been thoroughly annotated for use

in machine learning applications. This review focuses on query strate-

gies for pool-based active learning in both traditional and deep machine

learning algorithms.

Traditional Machine Learning Query Strategies

As the focus of this chapter is limited to deep learning algorithms, only a

brief review of pool-based active learning query strategies for traditional

machine learning approaches will be performed.

Uncertainty sampling is a query strategy in which the learning

algorithm focuses on data points it is most uncertain about to improve

model performance (Lewis, 1995). Uncertainty can be measured using

techniques such as entropy or distance to the decision boundary. It allows

the algorithm to selectively request labels for the most informative data

points, leading to more efficient and effective learning.

Query by committee is a query strategy in which a committee of

multiple classifiers make predictions on unlabelled data (Seung et al.,

1992). If their predictions are diverse or conflicting, the learning algo-

rithm may request a label for that data point. Query by committee can

help reduce overfitting and improve generalisation.

Expected model change is a query strategy in which the learning

algorithm estimates the change in overall performance after labelling a
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particular data point and prioritises data points with the greatest ex-

pected impact (Settles et al., 2007). This allows the algorithm to focus

on data points most likely to improve performance.

Expected error reduction is a method in active learning in which

the learning algorithm estimates the reduction in error rate after labelling

a particular data point, and prioritises data points with the greatest

expected impact (Roy and McCallum, 2001). This allows the algorithm

to focus on data points most likely to improve performance.

Variance reduction is a method in active learning in which the

learning algorithm prioritises data points that are expected to have the

greatest impact on reducing the variance of the predictions (Cohn et al.,

1996). This can be achieved by calculating the variance of the predictions

for a particular data point.

Density-weighted methods for active learning involve selecting

data samples based on the density of the samples in the feature space,

to select samples that are underrepresented or less dense (Settles and

Craven, 2008). These samples are likely to be more informative and valu-

able for the model to learn from, which can improve its performance and

generalisation. There are several ways to implement density-weighted

methods, including using a density estimate or weighting samples based

on their informativeness and density.

Deep Learning Query Strategies

The application of active learning to deep learning algorithms has been

met with various challenges (Ren et al., 2021). One such challenge is

the increased data requirements of deep learning models, as they must

concurrently learn both representative features and a classifier. Addition-

ally, deep neural networks often experience issues related to confidence

calibration, which can hinder the effectiveness of uncertainty-based ac-

tive learning approaches due to the unreliable nature of softmax predic-

tions as a measure of certainty as demonstrated in the work from Gal

and Ghahramani (2016). Within the field of deep active learning, two

main categories can be identified: scoring query strategies, which select

data for annotation based on a particular metric, and batch-aware query

strategies, which select the optimal batch of data for annotation.
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Scoring Query Strategies

To address the need for more representative data annotations, Wang et al.

(2016) proposed the Cost-Effective Active Learning (CEAL) algorithm.

This algorithm is an extension of the standard uncertainty-based active

learning method, which selects data for annotation based on uncertainty

in the model’s prediction (epistemic uncertainty). CEAL integrates a

process called pseudo-labelling (Lee et al., 2013), in which data with low

uncertainty used their predicted labels to augment the annotated data,

resulting in a more diverse training set that includes both difficult, un-

certain samples that can aid in classifier improvement, as well as certain

samples that contribute to the development of a more generalised feature

representation. The name CEAL reflects the cost-effective nature of this

active learning approach, as it allows for the incorporation of new anno-

tations without the associated labelling costs. The effectiveness of CEAL

was evaluated in comparison to supervised learning, random active learn-

ing, and Triple Criteria Active Learning (TCAL) (Demir and Bruzzone,

2014) on the Cross-Age Celebrity Dataset (Chen et al., 2014). The re-

sults showed that CEAL achieved convergence with supervised learning

using only 60% of the data, outperforming both TCAL and random query

methods in terms of convergence speed.

Gal and Ghahramani (2016) demonstrated that deep learning models

employing softmax activation functions are unable to capture model un-

certainty. Softmax-based uncertainty estimate primarily captures aleatoric

uncertainty, which is connected to data randomness. It does not, how-

ever, reflect epistemic uncertainty, which results from the model’s lack of

knowledge or ambiguity about the data distribution. When the model

hasn’t seen a variety of examples or is unsure about the underlying re-

lationships in the data, epistemic uncertainty is significant. To address

this limitation, they introduced a method for approximating Bayesian in-

ference using dropout in deep CNNs. Specifically, they applied dropout

to each weight layer in the CNN during both training and testing and

used the sample variance of the resulting prediction feedforward, which

was repeated B times, to estimate the model uncertainty. This process

is depicted in Equation (2.1), where w represents the learned weights, x

denotes the input, and ŷ(b) is the CNN output obtained with dropout

patten b applied to each layer.
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Gal et al. (2017) used Bayesian CNNs to evaluate a variety of active

learning query strategies, including max entropy of the Bayesian sam-

ples (Shannon, 1948), variation ratios as a measure of uncertainty across

the Bayesian samples (Freeman, 1965), mean standard deviation across

the Bayesian samples (Kampffmeyer et al., 2016), Bayesian active learn-

ing disagreement (BALD) (Houlsby et al., 2011), and random sampling.

The results indicated that variation ratios performed the best, followed

closely by BALD and max entropy, while mean standard deviation per-

formed similarly to the random baseline. However, the authors noted

that the variation ratios method did not generalise well to more complex

datasets, such as the ISIC skin lesion dataset (Gutman et al., 2016). In

contrast, the BALD acquisition method demonstrated improved perfor-

mance on these other datasets, and the use of Bayesian CNNs overall

resulted in a significant improvement in performance compared to max

entropy.

The Deep-Fool active learning method, proposed by Ducoffe and Pre-

cioso (2018), employs a strategy based on margin theory for sampling

unannotated data that is close to decision boundaries. This approach,

which has been previously discussed in the literature (Settles, 2009),

leverages adversarial attacks to determine the distance of a given data

point to a decision boundary by adding small perturbations to the input

image and measuring the resulting change in prediction (Kurakin et al.,

2018). The query strategy subsequently selects the data closest to the

decision boundary to be labelled, adding the labelled data and its ad-

versarial counterparts to the training set. According to the authors, this

method exhibits competitive performance compared to core set active

learning, while also being significantly less computationally complex and

more efficient.

Batch-Aware Query Strategies

Sener and Savarese (2017) observed that when using CNNs, selecting a

single piece of data can be detrimental to the training process due to

its minimal statistical impact. They concluded that an active learning

algorithm working with a CNN should choose an optimal batch of data

for annotation. To achieve this, they treated the problem as a core-
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set selection problem, in which a small subset of data is selected to be

representative of the entire dataset. This problem is equivalent to a

k-center problem (Farahani and Hekmatfar, 2009), in which a set of n

points is chosen to cover all remaining data points while minimising the

radius from each data point, as illustrated in Figure 2.1.

Figure 2.1: A visual illustration of the core-sets query strategy, in which

four points are selected that cover all other data points and minimise

δ (Sener and Savarese, 2017).

To compare their method to others, they conducted experiments with

different selection methods, using Ladder Networks (Rasmus et al., 2015)

as a method for weakly supervised learning, as these can be trained on un-

labelled data at each iteration. They discovered that for all selection algo-

rithms tried weakly supervised learning significantly improved model per-

formance. Results on the CIFAR 10 and CIFAR 100 datasets (Krizhevsky

et al., 2009) demonstrate that the core set method significantly outper-

formed the other methods evaluated.

Kirsch et al. (2019) introduced BatchBALD, a batch-aware extension

of BALD (Gal et al., 2017), which selects data points that exhibit high

mutual information between model parameters and model output. To

achieve this, the authors modify the definition of mutual information to

incorporate both the general uncertainty of the model and the expected

uncertainty for a specific set of model parameters. Submodularity is

then utilised to identify the optimal set of data points that maximise

mutual information. The authors demonstrate that BatchBALD outper-

forms BALD on multiple datasets, including MNIST (LeCun et al., 1998),

EMNIST (Cohen et al., 2017) and CINIC-10 (Darlow et al., 2018). How-

ever, the authors also acknowledge certain limitations of BatchBALD,

including its reduced effectiveness on unbalanced datasets and the noise
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introduced using Monte Carlo dropout.

Zhdanov (2019) introduced Diverse mini-batch active learning (DBAL),

which combines uncertainty and diversity sampling to identify an opti-

mal batch of data. The data is first encoded and then clustered using

K-means, with data points closest to the centre of each cluster being se-

lected. To incorporate uncertainty, weighted K-means is utilised, where

each data point is assigned a weight based on an uncertainty function (in

this case, margin-based uncertainty, which the authors found to be par-

ticularly effective). To improve computational efficiency, they pre-filter

the unlabelled data points by uncertainty and only cluster the remaining

data points. The authors demonstrated that DBAL outperforms other

methods when tested on multiple datasets, including the MNIST (LeCun

et al., 1998) and CIFAR-10 (Krizhevsky et al., 2009) datasets.

2.2.2 Application of Active Learning for Medicine

Active learning has the potential to significantly reduce annotation costs

in medical image analysis tasks, which has very expensive annotation

costs (Budd et al., 2021). This is demonstrated by the PanNuke dataset

(Gamper et al., 2019, 2020), which was generated through a combination

of machine learning algorithms trained on public datasets, and active

learning methods to refine the annotations. Specifically, the authors used

the algorithm to detect and classify nuclei in whole slide images, and then

applied active learning techniques to measure the epistemic uncertainty

and select the images for expert annotation. Through this approach, the

authors were able to annotate 205,343 nuclei with 5 classification labels,

with only 10% of the data requiring manual annotation from pathologists.

This serves as a compelling example of the utility of active learning in

digital pathology, enabling the efficient construction of large and detailed

datasets.

The survey of deep active learning for medical image analysis by Budd

et al. (2021), covers a significant body of research. This research encom-

passes a diverse range of medical image analysis tasks, including but

not limited to MRI segmentation (Konyushkova et al., 2019, Zhao et al.,

2019), skin lesion classification and segmentation (Shi et al., 2019, Gorriz

et al., 2017), ultrasound classification Liu et al. (2020), and histopathol-

ogy whole slide image segmentation (Folmsbee et al., 2021, Jin et al.,

2021). Despite this extensive research on active learning, the majority of

the literature assumes that all annotations are equally costly, with little
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effort being made to account for the potential variations in annotation

costs.

2.2.3 Active Learning for Annotation Efficiency

Active learning is a widely researched methodology in the field of machine

learning that emphasises the selective annotation of a subset of data,

rather than annotating all available data, to improve the performance of

machine learning algorithms while also reducing annotation costs. The

traditional approach to active learning has been to assume that the costs

of annotating all data are the same. However, recent research has indi-

cated that this is not always the case in practice, with some data being

more difficult to annotate than others (Settles et al., 2008). In order to

address this issue, various methods have been proposed to increase anno-

tation efficiency, particularly in the context of deep learning algorithms.

One such method is the cost-effective active learning approach tailored

to multi-class semantic segmentation, known as CEREALS, which was

proposed by Mackowiak et al. (2018).

The Cost-Effective Region-based Active Learning for Semantic Seg-

mentation (CEREALS) method reduces annotation costs by identifying

informative image patches that have low annotation costs. The authors

accomplished this by developing information maps and estimated an-

notation cost maps for each image, which were then fused to extract

patches that maximise information while minimising annotation cost.

The uncertainty for each pixel was calculated using vote entropy across

Bayesian samples of the model, generated through the use of Monte

Carlo dropout (Gal and Ghahramani, 2016). Based on how many clicks

were necessary to annotate the image, the annotation costs were ap-

proximated. Although the approximation has limitations, the authors

chose to use it because there were no other datasets with annotation

costs available. Evaluation of the CEREALS method on the Cityscapes

dataset (Cordts et al., 2016) showed that it achieved high mean Intersec-

tion over Union (mIoU) scores while also requiring fewer annotator clicks

when compared to other active learning methods. Building upon this ap-

proach, Colling et al. (2020) proposed a similar method but modified the

definition used to estimate the cost of annotating and demonstrated a

reduced annotation cost compared to other algorithms that don’t take

into account variable annotation costs.
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2.3 Annotator Efficient Active Learning for

Histopathology

Annotation of medical images, particularly histopathology tasks, poses a

significant challenge due to the cost and lack of expert annotators. For in-

stance, tasks such as nuclei detection and classification necessitate anno-

tators to meticulously select and categorise nuclei in whole slide images.

A notable example of this can be observed in the annotation procedure

for the CRCHistoPhenotypes dataset (Sirinukunwattana et al., 2016), in

which annotators had to examine 500x500 pixel patches extracted from

100 H&E slides (0.55 µm/pixel, equivalent to 20x optical magnification)

and assign each nucleus a classification of epithelial, inflammatory, fibrob-

last, or miscellaneous. The annotations were collected by experienced

pathologists and graduate students supervised by the same pathologists,

highlighting the costly nature of such annotation efforts, given the finan-

cial requirements for expert annotators. This illustrates the potential

for applying active learning methods that incorporate considerations of

annotation cost.

2.3.1 Tile-Based Active Learning

Patch-based approaches are widely used in digital pathology and medical

image analysis. However, applying active learning to these methods can

be laborious, particularly in systems that utilise small patches. These

patches can be challenging to annotate in isolation, even when provided

with spatial visual context. To address this, this chapter proposes a

tile-based approach that requests annotations over larger tiles containing

multiple small patches. Working with larger tiles reduces the burden

on the annotator and can increase the annotation collection throughput.

This modification enables a learning algorithm to be trained on small

patches, while treating the data as larger tiles only when querying the

unannotated data to be annotated (Figure 2.2).

The proposed query strategy involves a simple modification to an

existing query strategy, as outlined in Algorithm 1 and visualised in

Figure 2.3. In this algorithm, S represents an existing query strategy,

which is called at the end of each active learning iteration once a model

has been trained on the current annotated data. The algorithm extracts

all patches from each unannotated tile and generates predictions for each

patch, which are then averaged to obtain a prediction for the overall tile.
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Figure 2.2: Example tiles that contain annotated nuclei to be extracted

as patches and utilised for the purpose of training the model.

These tile-level predictions can then be utilised within an active learning

query strategy, such as entropy uncertainty sampling, to sample tiles

based on uncertainty values. This approach can also be applied to more

complex query strategies, such as core-set sampling, by solving the K-

centre problem for the tile predictions rather than for individual data

point feature representations.

Figure 2.3: Block diagram of Algorithm 1.
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Algorithm 1: Tile-based active learning

Input : θ : trained model,

δ : prediction algorithm,

S : active learning query strategy,

U : set of unannotated data,

A : set of annotated data,

Y : empty set of tile averages

Output: U ′ : updated set of unannotated data,

A′ : updated set of annotated data

TileQueryStrategy θ, δ, S, U,A, Y

foreach tile r in U do
P ← ExtractPatches(r) extract patches from tile

O ← δ(θ, P ) predictions on extracted patches

O′ ← Average(O) average the patch predictions

Y ← Append(Y,O′) append tile average to array

end

n← S(Y ) selects tile from list

U ′ ← Remove(U, n) removes selection from unannotated set

n′ ← Annotate(n) annotator annotates the selected tile

A′ ← Append(A, n′) appends the selection to annotated set

return U ′, A′

2.4 Active Learning Experiments

This section describes the datasets, training parameters, experimental

setup, and results for the experiments on nuclei classification using tile-

based active learning on whole slide image patches. The code and com-

plete results for these experiments are available in the project GitHub

repository1.

2.4.1 Dataset

The publicly available CRCHistoPhenotypes dataset (Sirinukunwattana

et al., 2016) was used to evaluate the proposed tile-based active learn-

ing approach, as it consists of a large number of annotated nuclei from

large patches extracted from whole slide images, making it well-suited

for this type of active learning. The dataset, which has also been utilised

in multiple nuclei classification and detection studies, as well as active

1GitHub Repository: github.com/jmcjacob/Patch-Active-Learning-Pathology
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Figure 2.4: Three example images from the CRCHistoPhenotypes

dataset Sirinukunwattana et al. (2016) are shown, each containing mul-

tiple nuclei that will be extracted into patches and augmented.

learning experiments (Shao et al., 2018), comprises 22,444 annotated nu-

clei from 100 500x500 pixel non-overlapping patches extracted from 10

H&E whole-slide images of colorectal adenocarcinomas from 9 different

patients. Each nucleus is annotated with its coordinates and correspond-

ing classification (epithelial, inflammatory, fibroblast, or miscellaneous).

The dataset includes 7,722 epithelial, 5,712 fibroblast, 6,971 inflamma-

tory, and 2,039 miscellaneous annotated nuclei. 2,500 images were gen-

erated by dividing the patches into 100x100 pixel tiles, from which each

nucleus was extracted into a 30x30 patch for use in training the CNN

model. During training, data augmentation was employed by randomly

applying Gaussian blurring and horizontal and vertical flipping.

2.4.2 Training Parameters

This experiment employed a CNN inspired by the architecture used in the

nuclei classification benchmark for the CRCHistoPhenotypes dataset (Sir-

inukunwattana et al., 2016). The network consisted of two convolutional

layers, the first with 36 4x4 filters and the second with 48 3x3 filters,

each followed by a 2x2 max pooling layer. The convolutional layers were

followed by two fully connected layers with 1200 and 512 neurons, re-

spectively. This architecture is summarised in Table 2.1. Each hidden

layer utilised Rectified Linear Unit (ReLU) activation functions, while

the fully connected layers employed dropout regularisation (Srivastava

et al., 2014) with a drop rate of 0.5. Dropout was utilised during train-

ing to enable the use of Monte Carlo sampling after training.

During the active learning process, the training environment is con-

tinuously evolving as the training data is incrementally expanded. To

accommodate this dynamic situation, the Adadelta adaptive gradient
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Table 2.1: The Convolutional Neural Network architecture employed for

nuclei classification in the tile-based active learning experiments.

Type
Filter

Dimensions

Input/Output

Dimensions

Input 30 x 30 x 3

Convolutional 4 x 4 x 1 x 36 26 x 26 x 36

Max Pooling 2 x 2 12 x 12 x 36

Convolutional 3 x 3 x 36 x 48 10 x 10 x 48

Max Pooling 2 x 2 5 x 5 x 48

Fully Connected 5 x 5 x 48 x 1200 1 x 1200

Fully Connected 1 x 1 x 512 x 512 1 x 512

Output 1 x 1 x 512 x 4 1 x 4

descent algorithm (Zeiler, 2012) was chosen, as it does not require man-

ual tuning of the learning rate as it adjusts automatically to the gradients

of the model. To prevent overfitting to the constantly changing train-

ing data, which may be limited in size, early stopping was employed.

The approach proposed by Prechelt (2012) compares the generalisation

loss and training progression until a specified threshold of GL(t)
Pk(t)

> α is

reached. The generalisation loss (Equation 2.2) is calculated by compar-

ing the validation loss at each epoch Lval(t) to the minimum validation

loss across all epochs, while the training progression (Equation 2.3) is

calculated by analysing the training losses Ltr(t) over a batch of recent

epochs of size k.

GL(t) = 100 ·

 Lva(t)

min
t′≤t

Lva(t′)
− 1

 (2.2)

Pk(t) = 1000 ·

( ∑t
t′=t−k+1 Ltr(t

′)

k ·mint
t′=t−k+1Ltr(t′)

− 1

)
(2.3)

2.4.3 Experiment Setup

A series of experiments were conducted to evaluate the effectiveness of

the proposed tile-based active learning approach in conjunction with var-

ious query strategies. The experiments exclusively employed a tile-based

active learning framework due to the inherent challenge of directly com-

paring it with the traditional patch-based active learning. The query

strategies utilised in these two approaches are not directly comparable,
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necessitating a more comprehensive experimental design, which would be

better suited for future research endeavours. The query strategies evalu-

ated included several basic methods, which served as baselines, as well as

deep learning-specific query algorithms. The baseline strategies included

random querying, least confident uncertainty, margin uncertainty, and

entropy uncertainty sampling. The deep learning-specific query strate-

gies tested were K-Centre sampling (employing greedy approximation),

core-set sampling (Sener and Savarese, 2017), and BALD using Monte

Carlo dropout (Gal et al., 2017). These methods were selected due to

their state-of-the-art status in the field of deep active learning.

In each experiment, all available data was initially treated as unan-

notated, and then two randomly selected tiles were annotated to form an

initial training dataset. During each active learning iteration, two addi-

tional tiles were chosen from the pool of unannotated tiles and added to

the training dataset. A randomly initialised model (using uniform Xavier

initialisation, as proposed by Glorot and Bengio (2010)) was then trained

on the updated dataset. This process was repeated for 50 active learn-

ing iterations, resulting in a final training set of 102 tiles out of 2,500 in

each experiment. To account for random variations, each experimental

condition was run five times, with different seeds used to generate ran-

dom elements such as model weight initialisation and initial annotated

patches.

2.4.4 Results

The performance of the various query strategies was assessed by eval-

uating the trained models on a fixed test set after each active learning

iteration. Table 2.2 presents the mean test accuracy and cross-entropy

loss over five runs, after 50 iterations, for each of the query strategies.

As shown, only the K-Centre sampling approach yielded higher average

accuracy than a random sampling baseline. The core-set sampling strat-

egy produced results that were similar to those of the random sampling

approach, while the other query strategies all performed worse.

Figures 2.5, 2.6, and 2.7 illustrate the test accuracy, mean class ac-

curacy, and cross-entropy loss for models trained with annotated data

selected using each of the query strategies after each active learning iter-

ation, averaged over five runs. The figures also include the results for a

model trained using all 1487 annotated training tiles; a fully supervised

CNN trained on the entire annotated dataset achieved an accuracy of
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Figure 2.5: Average test accuracy of trained models using different

amounts of annotated tiles selected through various query strategies.

68.53% and a cross-entropy loss of 1.111. In contrast, the model trained

with the K-Centre query strategy achieved an accuracy of 61.41% and a

cross-entropy loss of 1.137, using only 7% of the annotated data.

2.5 Conclusion

This chapter presents a method for mitigating the annotation burden in

patch-based nuclei classification systems using deep active learning. The

results reported in Section 2.4.4 indicate that traditional active learning

approaches are less effective when applied to deep learning models, and

that specialised active learning techniques for deep learning also fail to

outperform random sampling baselines. This phenomenon, which has

Table 2.2: Test results for each query strategy after 50 active iterations.

For Accuracy and Mean Class Accuracy higher is better and Loss lower

is better.

Query

Strategy
Random

Least

Confident
Margin Entropy K-Centre Core-Set BALD

Accuracy 58.25 48.92 45.84 32.37 61.41 57.33 48.23

Mean Class

Accuracy
53.50 47.36 42.40 41.07 54.39 52.50 46.14

Loss 1.154 1.243 1.268 1.39 1.123 1.157 1.247
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Figure 2.6: Average test mean class accuracy of trained models using dif-

ferent amounts of annotated tiles selected through various query strate-

gies.

Figure 2.7: Average test loss of trained models using different amounts

of annotated tiles selected through various query strategies.

2.5. Conclusion 27



Chapter 2. Annotator Efficient Active Learning Jacob Carse

been previously noted in the literature on active learning for deep learn-

ing (Ren et al., 2021), highlights the need for more robust active learning

methods in this domain.

The phenomenon under consideration can be elucidated as follows:

traditional query strategies, which prioritise sampling challenging exam-

ples, have resulted in the final annotated dataset employed for training

lacking representativeness with respect to the overall dataset distribu-

tion. Consequently, for a deep learning model, it becomes essential to

train on a dataset that is not only representative but also informative.

This is because deep learning models simultaneously learn representative

features and classifiers. On the other hand, conventional machine learn-

ing methods would gain greater advantage from adopting such a strategy

when employing static hand-crafted features.

The most effective query strategies observed in this chapter were the

k-centre and core set approaches. These strategies were designed to en-

sure that the selected batches of samples maintain both representative-

ness and informativeness. Such an approach is particularly well-suited

for neural networks, as it facilitates the acquisition of representative fea-

tures along with a discriminative classifier. However, it is noteworthy

that even though these intelligent query strategies demonstrated supe-

rior performance, the baseline approach, employing random sampling for

querying, yielded comparable results. This finding suggests that the lim-

ited size of the dataset negatively impacts the overall model performance,

despite the utilisation of sophisticated query strategies.

To address this limitation and enhance the model’s performance, two

potential solutions can be considered. First, incorporating a supplemen-

tal strategy like CEAL (Wang et al., 2016). Alternatively, leveraging

unsupervised representative learning prior to active learning can be ad-

vantageous. This entails training the model on the unannotated dataset

to learn feature representations, which can then be utilised during the

active learning phase, potentially improving the model’s ability to gen-

eralise and perform better in a data-limited scenario.

Reducing the cost of annotating data is crucial for enabling the devel-

opment of deep learning systems for digital pathology and medical im-

age analysis, particularly for organisations with limited resources. While

active learning holds promise as a means of addressing this challenge,

further research is required to achieve meaningful improvements on tasks

such as those presented in this chapter. This has motivated the investi-

gation of unsupervised learning techniques as a complementary approach
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for leveraging unannotated data, potentially in conjunction with active

learning.
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Chapter 3

Unsupervised Representation

Learning

3.1 Introduction

The application of modern deep learning algorithms has demonstrated

significant improvements in digital pathology tasks such as nuclei detec-

tion and disease classification (Litjens et al., 2017), as previously dis-

cussed in Section 2.1.1. The ability to jointly learn deep representations

and discriminative classifiers or regressors through end-to-end training

allows for feature representations that are specifically tailored to a given

task. However, this approach necessitates a significant amount of anno-

tated data for adequate generalisation, which poses a major challenge for

digital pathology (Madabhushi and Lee, 2016) and other medical image

analysis domains. In an effort to address this challenge, we previously

explored the use of active learning (Chapter 2), however, the limitations

of this approach were highlighted in Section 2.5 and subsequently led to a

focus on unsupervised representation learning as a means to extract infor-

mation from unannotated images. Unsupervised representation learning

can be utilised to improve generalisation, decrease data dimensionality,

improve computational performance, and initialise deep supervised learn-

ing models when access to annotated data is limited (Bengio, Courville

and Vincent, 2013).

One approach to reducing the need for large, annotated datasets

is through the use of unsupervised representation learning and trans-

fer learning. This is accomplished by using the weights of a deep en-

coder, trained on a large pool of unannotated data, to initialise another

model (Weiss et al., 2016). Contrastive predictive coding (CPC) is a

30



Chapter 3. Unsupervised Representation Learning Jacob Carse

(a) (b)

(c) (d)

Figure 3.1: (a) An example image from the ImageNet dataset (Deng

et al., 2009). (b) Extracted overlapping patches with those used to pro-

duce context and autoregressor direction highlighted. (c) An example

image from the Patch Camelyon dataset (Veeling et al., 2018). (d) Ex-

tracted overlapping patches with those used to produce context and au-

toregressor direction highlighted.
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state-of-the-art method for unsupervised representation learning (van den

Oord et al., 2018). It involves training an autoregressive model to predict

future data representations in a sequence, using a loss function with noise-

contrastive estimation (NCE) and importance sampling components, to

preserve the density ratio between each sample and its representation.

Although originally developed for sequential data, CPC has been adapted

for images by splitting each image into overlapping patches and using an

encoder to produce a matrix of feature representations. A mask is then

applied to the matrix so that an autoregressive model can only see a sub-

set of the feature representations in order to predict the representations of

the masked patches from the context available to it. This framework has

been applied successfully to object detection and Imagenet classification

tasks with modifications to model capacity, layer normalisation, predic-

tion directions, and patch-based augmentations (Henaff, 2020). However,

in previous implementations, the autoregressive model’s predictions were

made in multiple directions individually, which can be inefficient when

dealing with images, such as in digital pathology, where the orientation

of the image is arbitrary and does not carry useful information. Fig-

ure 3.1(b) illustrates an example of this framework applied to an image.

The current chapter builds upon the idea that unsupervised represen-

tation learning can be utilised to learn deep representations, which can

then be used in conjunction with transfer learning to train a discrimina-

tive classifier with limited annotated data (as depicted in Figure 3.2). By

implementing this approach, the need for complex deep learning-specific

active learning query strategies is mitigated and instead allows for a fo-

cus on uncertainty-based querying. In order to realise this approach, a

state-of-the-art unsupervised representation learning algorithm for digi-

tal pathology images was required. To this end, a multi-directional CPC

Figure 3.2: Proposed active learning framework with learnt representa-

tions from unsupervised representation learning on unannotated data.
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extension was proposed, which includes an alternative mask for building

latent context and a new extension to the autoregressive model Pixel-

CNN (van den Oord et al., 2016) for multi-directional predictions (as

depicted in Figure 3.1(d)). The effectiveness of this modification was

demonstrated using the PatchCamelyon dataset (Veeling et al., 2018),

derived from the Camelyon16 dataset (Litjens et al., 2018), where it was

shown that classification can be performed with less annotated data when

utilising representations learned in this way.

This work was presented at the IEEE International Symposium on

Biomedical Imaging 2021 and published as part of its proceedings (Carse,

Carey and McKenna, 2021).

3.2 Unsupervised Representation Learning

for Computer Vision

This is a brief review of deep unsupervised representation methods for

computer vision applications covering generative/reconstructive and self-

supervised methods. In the field of deep learning, methods have shown

exceptional performance in tasks involving abundant annotated data.

However, their performance is known to suffer in scenarios where the

supervision is limited. One solution to this issue is to utilise unsupervised

learning techniques to learn highly structured data representations, which

can lead to more data-efficient models (Lake et al., 2015).

Deep learning models typically consist of layers that are used for

specific tasks, such as classification or regression, and others that are

used to encode the data into feature representations, known as encoders.

Unsupervised representation learning in deep learning focuses on learning

the parameters of the encoder. Once trained, the encoder can be used

for transfer learning and applied to tasks such as classification, object

detection, or segmentation (Weiss et al., 2016).

In the context of computer vision, there are two main approaches

to deep representation learning: generative methods and self-supervised

learning (Bengio, Courville and Vincent, 2013). Generative methods aim

to learn representative feature encodings by attempting to reconstruct

images. On the other hand, self-supervised learning involves training

models in a supervised manner using auto-generated annotations for clas-

sification or regression tasks.
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3.2.1 Generative and Reconstructive Methods

Unsupervised representations can be learned through reconstructive meth-

ods by encoding input data into a lower-dimensional latent space and sub-

sequently reconstructing the original data from the latent representation.

The optimisation of encoder and decoder parameters is achieved through

the use of a reconstruction error as a learning signal. In contrast, gener-

ative models are capable of generating new data samples that resemble

the training data. Specifically, within the realm of medical image analy-

sis, generative models have been employed for image-to-image translation

tasks such as converting images from one modality to another (Kaji and

Kida, 2019). The surge in popularity of generative models in medical

image analysis can be attributed to their ability to learn useful repre-

sentations from vast quantities of unannotated data, which can then be

leveraged to enhance performance on tasks such as segmentation and

classification (Yi et al., 2019).

Autoencoders

Autoencoders are a class of reconstructive model that employ an encoder

to reduce the dimensionality of the input data and a decoder to recon-

struct the original data from the reduced representation (Kramer, 1991).

Transfer learning can be achieved by utilising the parameters learned by

the encoder and training a new classifier with the encoded representa-

tions. One of the most widely used types of autoencoders is the under-

complete autoencoder, which is trained to minimise the reconstruction

error by learning a compressed feature representation (Goodfellow et al.,

2016). Other variations of autoencoders include sparse autoencoders,

which are designed to learn sparse representations that have been shown

to improve performance when used for transfer learning (Makhzani and

Frey, 2013). Denoising autoencoders, on the other hand, are trained by

corrupting the input data with noise and the goal of the network is to

reconstruct the original data without the added noise. This denoising

training process forces the encoder and decoder to implicitly learn the

underlying structure of the data, which can be beneficial for transfer

learning (Bengio, Yao, Alain and Vincent, 2013).

The final category of autoencoder is the regularised autoencoder,

which modifies the traditional autoencoder architecture in order to en-

hance the model’s ability to learn more informative representations and

capture relevant information. One of the most widely employed forms of
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regularised autoencoder is the variational autoencoder, as proposed by

Kingma and Welling (2013). This variant of autoencoder ensures that

the latent space possesses desirable properties that enable a generative

process by encoding an input image as a distribution over the latent

space, as opposed to encoding it into a single point in the latent space.

A variational autoencoder is trained by sampling from the encoded la-

tent distribution and decoding it into an output image. The loss function

for this model is based on the reconstruction error of the output image

and the Kulback-Leibler divergence (Kullback and Leibler, 1951) as the

regularisation term.

Most recent work with autoencoders in medical image analysis has

been using variational autoencoders as they have shown a high level or

performance and have been used for multiple tasks (Wei and Mahmood,

2020). Akrami et al. (2020) used a combination of variational autoen-

coders and transfer learning to build unsupervised lesion detection mod-

els for MRI brain scans images and showed their robustness when working

with training and testing datasets with different parameters (Thiagara-

jan et al., 2020).

Generative Adversarial Networks

Generative adversarial networks (Goodfellow et al., 2014) are a class of

deep learning models that are designed to generate new samples of data

that resemble existing samples from a given dataset. They consist of two

main components: a generator network, which produces new samples,

and a discriminator network, which attempts to distinguish the gener-

ated samples from the real samples. The two networks are trained in

an adversarial manner, with the generator attempting to produce sam-

ples that the discriminator cannot distinguish from real samples, and

the discriminator attempting to correctly identify the generated sam-

ples. However, generative adversarial networks are known to be difficult

to train, one common problem when training generative adversarial net-

works is mode collapse, where the generator produces a limited set of

outputs that fail to capture the full diversity of the real data distri-

bution. Several techniques, such as Wasserstein generative adversarial

networks (Arjovsky et al., 2017) and gradient penalty (Gulrajani et al.,

2017) have been proposed to stabilise the training process.

In the context of representation learning, generative adversarial net-

works can be used to learn a compact, low-dimensional representation of
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the data that captures the underlying structure of the dataset. This can

be achieved by training the generator to produce samples that are simi-

lar to the real samples, but in a lower-dimensional space. The generator

can then be used as a feature extractor, mapping the real samples to

their corresponding low-dimensional representations. Additionally, the

discriminator can be used as a classifier, allowing the learned represen-

tations to be used for downstream tasks such as classification (Srivastav

et al., 2021) or clustering (Mukherjee et al., 2019).

A variant of generative adversarial networks is BigBiGAN (Donahue

and Simonyan, 2019), which is designed to generate high-quality images

from a compact, low-dimensional representation of the data. It is based

on the idea of BiGAN (Donahue et al., 2016) and the primary difference

between BigBiGAN and the original BiGAN is the scale of the model.

BigBiGAN is trained on a large dataset such as ImageNet, which con-

tains millions of images, whereas BiGAN is trained on smaller datasets.

The increased size of the dataset allows BigBiGAN to learn a more pow-

erful and expressive representation of the data. BigBiGAN consists of

three main components: an encoder network, a generator network, and

a discriminator network. The encoder network maps the input data to a

low-dimensional representation, which is then used as input to the gen-

erator network to produce a reconstructed sample.

3.2.2 Self-supervised Methods

Self-supervised learning for representation learning is a subset of machine

learning that aims to learn meaningful representations of data without

the need for explicit annotations. A prevalent method for self-supervised

representation learning in medical imaging is to employ a pretext task, a

task that is simple to solve through the utilisation of the features learned

by the model, but also serves as a means to learn relevant features for the

ultimate task of interest. The utilisation of self-supervised pre-training

techniques is rapidly gaining popularity in medical image analysis, as it

enables the learning of useful features from large amounts of unannotated

data, which can then be applied to enhance performance in tasks such

as segmentation and classification (Shurrab and Duwairi, 2022).

RotNet

RotNet, as proposed by Gidaris et al. (2018), is a novel unsupervised rep-

resentation learning technique that utilises rotation as a self-supervised

3.2. Unsupervised Representation Learning for Computer Vision 36



Chapter 3. Unsupervised Representation Learning Jacob Carse

task for learning useful representations of images. The fundamental con-

cept behind RotNet is that by training a neural network to predict the

rotation of an image, the model can learn features that can be utilised

in other tasks such as image classification. The RotNet model comprises

of a convolutional neural network that takes an image as input and pre-

dicts the angle of rotation. The output of the last convolutional layer,

prior to the fully connected layers, is used as the representation of the

image. This technique enables the model to train on a large dataset of

unannotated images, which can then be utilised for other tasks such as

image classification as demonstrated by Zhou et al. (2021).

Deep Clustering

DeepCluster, as proposed by Caron et al. (2018), is a technique for unsu-

pervised representation learning that combines the utilisation of cluster-

ing algorithms as a form of self-supervision to train deep neural networks.

The method starts by initialising the weights of a deep neural network

randomly and subsequently utilising the network to extract features from

a dataset of unannotated images. These features are then employed to

cluster the images into different groups using a clustering algorithm, such

as k-means. Upon completion of the clustering process, the annotations

generated by the clustering algorithm are used as pseudo-annotations for

the images. The neural network is then fine-tuned using these pseudo-

annotations to enhance the representations of the images. This process is

repeated multiple times, with the neural network being fine-tuned using

the updated pseudo-annotations generated by the clustering algorithm.

Non-Parametric Instance-Level Discrimination

Non-parametric instance-level discrimination (Wu et al., 2018) is an un-

supervised representation learning approach that prioritises the learn-

ing of feature representations capable of capturing similarity among in-

stances, rather than similarity between classes. To accomplish this, the

method frames the learning task as a non-parametric classification prob-

lem at the instance level, in which discrimination is focused on indi-

vidual instances. To train the model, the authors utilised the NCE loss

function (Gutmann and Hyvärinen, 2010) to address computational chal-

lenges associated with the large number of instances. Furthermore, they

employed a proximal regularisation method (Parikh et al., 2014) to pro-

mote smoothness during the training process. The effectiveness of this
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approach was demonstrated by achieving state-of-the-art performance

compared to other recent methods across different CNN models, using

considerably less data. Specifically, the method achieved 10% higher top-

5 accuracy on ImageNet (Deng et al., 2009) with only 1% of the data.

Local Aggregation

In their work, Zhuang et al. (2019) proposed a method for unsupervised

representation learning using local non-parametric aggregation in the la-

tent feature space. The proposed method is based on training an en-

coder to produce latent features, and encouraging similar data instances

to move together and dissimilar instances to separate in the latent fea-

ture space. To achieve this, the method employs a clustering technique.

Specifically, multiple passes of k-means clustering are performed for each

latent encoding to determine its close neighbours and background neigh-

bours. The loss function used to train the model is based on the negative

log-likelihood of an encoding being recognised as a close neighbour, given

that it is recognised as a background neighbour. The effectiveness of the

proposed method is demonstrated through experiments on the Imagenet

dataset (Deng et al., 2009). The results show that the model trained with

this method exhibits substantial ability to recognise high-level visual con-

text without the need for any dataset annotations. This highlights the

potential of the proposed method for unsupervised representation learn-

ing in computer vision tasks.

Momentum Contrast

He et al. (2020) proposed a method for unsupervised representation learn-

ing called momentum contrast. This approach leverages dynamic dictio-

naries and employs a contrastive loss framework to yield notable advance-

ments in unsupervised learning within the domain of computer vision.

Momentum contrast’s use of dynamic dictionary in contrast to static

dictionaries continually evolves to encompass key representations drawn

from a queue of data samples. This adaptability enables the method to ef-

fectively navigate the intricate expanse of high-dimensional visual space,

capturing intricate relationships between features and patterns of the

underlying data distribution. A contrastive loss function is used during

training that represents the alignment between an image representation

and key representation from the dynamic dictionary. By minimising this

distance, the encoder is induced to acquire discriminative features that
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can be used to obtain superior performance in downstream tasks. This is

supported by the experimental results presented in the work, which show

that the learned feature representations can be used to pre-train encoders

for a variety of tasks such as classification, detection, and segmentation.

This highlights the potential of the momentum contrast method for un-

supervised representation learning in computer vision tasks.

Pretext-Invariant Representations

Misra and Maaten (2020) illuminates the drawbacks intrinsic to the util-

isation of pretext tasks for self-supervised representation learning. Usu-

ally pretext tasks are instructed to solve a specific task that lacks corre-

lation with the downstream tasks and instead of improving performance

for downstream tasks may lead to overfitting and constrained generalisa-

tion. To address this issue, the authors proposed a novel approach called

pretext-invariant representation learning. This method involves applying

a transformation, such as a rotation, to an input image, and then encod-

ing both the original and transformed images using a shared encoder.

The final embeddings are generated using separate prediction heads. To

further improve the robustness of the learned representations, the authors

employed a noise contrastive estimator (Gutmann and Hyvärinen, 2010)

as the loss function, which aims to reduce the similarity between the

original and transformed image’s feature representation, while maximis-

ing the similarity between the transformed image and randomly sampled

negative images.

In their experiments the authors used a ResNet (He et al., 2016)

architecture to function as the encoder for representation generation.

To substantiate the effectiveness of their approach, the authors sub-

ject their method to a comparative evaluation against a jigsaw pretext

task (Noroozi and Favaro, 2016). The jigsaw pretext task entails the ar-

rangement of shuffled patches within an image, with its objective being

the capture of spatial relationships and contextual cues. The pretext-

invariant representation learning technique surpasses the performance of

this pretext task, attaining state-of-the-art outcomes.

Deep InfoMax

Deep infomax, first proposed in (Hjelm et al., 2018), is a self-supervised

deep learning approach for learning compact and informative represen-

tations of data through the optimisation of mutual information between
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the data and the learned representations. Mutual information is a mea-

sure of the dependence between two random variables and quantifies the

amount of information that one variable contains about the other. In the

case of deep infomax, the data is considered as one random variable and

the learned representation as the other. The mutual information between

the data and the learned representation is estimated using a variational

lower bound.

An extension of this approach, Augmented Multiscale Deep InfoMax

(AMDIM) (Bachman et al., 2019), aims to learn hierarchical represen-

tations of data by utilising a multiscale architecture. This architecture

is composed of multiple sub-networks, each responsible for learning rep-

resentations at a different scale. The decoder network also comprises of

multiple sub-networks, each responsible for reconstructing the data from

the representations at a corresponding scale. Like deep infomax, the

mutual information between the data and the learned representations is

estimated using a variational lower bound. The key difference between

deep infomax and AMDIM is that the latter utilises multiple scales to

learn hierarchical representations, while the former only uses one scale.

The authors of the paper have demonstrated state-of-the-art results using

transfer learning to train classifiers.

3.2.3 Unsupervised Representation Learning for

Medical Image Analysis

In the field of digital pathology, transfer learning is a widely used tech-

nique for various tasks (Srinidhi et al., 2021), as it has been shown to

accelerate the convergence of deep learning models (Bayramoglu and

Heikkilä, 2016). Studies have also demonstrated the effectiveness of util-

ising representation learning to initialise a CNN in situations where the

learning task may be challenging due to a lack of annotated data (Hou

et al., 2016). This approach can also be extended to active learning,

where limited annotations make it difficult to learn features effectively (Carse

and McKenna, 2019).

Instead of relying on features trained on general computer vision data,

some researchers have explored the use of more general histology features

for cell-level tasks (Hu et al., 2018). One method for achieving this is

by training a unified generative adversarial network with a modified loss

function for cell-level representation learning. Another approach is to

use multi-scale convolutional sparse coding, which aims to jointly learn
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features at different scales with enforced scale-specificity (Chang et al.,

2017).

Many of the methods under consideration depend on utilising an im-

age’s inherent orientation. However, this approach can prove challenging

in instances where an image lacks a natural orientation, such as with

histopathology patches or dermoscopic skin lesions. Consequently, there

is a need to modify existing methodologies to better accommodate these

types of medical images.

3.3 Multi-Directional Contrastive Predic-

tive Coding

3.3.1 Contrastive Predictive Coding

CPC is an unsupervised method of feature representation that effectively

extracts information from sequential data (van den Oord et al., 2018).

The fundamental principle of CPC is to learn ’slow representations’ that

accurately capture the input data distribution over an extended period,

rather than focusing on low-level, local representations. This is achieved

by encoding a target variable, denoted by x, and a context variable, de-

noted by c, into compact distribution vector representations that maxi-

mally preserve information, as shown in Equation (3.1). By maximising

I(x; c) between the encoded representations, the underlying latent vari-

ables between inputs can be extracted.

I(x; c) =
∑
x,c

p(x, c)log
p(x|c)
x

(3.1)

A CPCmodel comprises two essential components, namely an encoder

and an autoregressive model. Specifically, the encoder function, denoted

by genc, is responsible for encoding each element xt of the input sequence

X into latent representations at time step t, which are represented as

zt = genc(xt). On the other hand, the autoregressive model function,

gar, summarises the elements of the latent representation sequence up to

a including t, z≤t, into a latent context representation, which is repre-

sented as ct = gar(z≤t). Rather than utilising the autoregressive model

to predict future samples, a density ratio is modelled to maintain the

mutual information between xt+k and ct, as elucidated in Equation (3.2).

By utilising density ratios, the model avoids the need to learn from the

high-dimensional input distribution.
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fk(xt+k, ct) ∝
p(xt+k|ct)
p(xt+k)

(3.2)

The direct evaluation of p(x) or p(x|c) is not feasible, and therefore,

it is necessary to approximate these values using sampling techniques

such as NCE (Gutmann and Hyvärinen, 2010) or importance sampling.

The joint training of encoder and autoregressive models using NCE with

importance sampling can be facilitated by the InfoNCE loss function

(Equation (3.3)) (van den Oord et al., 2018), which was introduced by a

previous study. Specifically, the InfoNCE loss function involves optimis-

ing the density ratio that maintains the mutual information between the

context vector ct and future observations, given a set X = {x1, . . . , xN}
consisting of one positive sample from p(xt+k|ct) and N negative samples

from the proposed distribution p(xt+k). The InfoNCE loss is defined as

the cross-entropy of classifying the positive sample correctly.

LN = −E
X

[
log

fk(xt+k, ct)∑
xj∈X fk(xj, ct)

]
(3.3)

3.3.2 Contrastive Predictive Coding for Computer

Vision

CPC is a method originally proposed for sequential data, and its ap-

plication to computer vision involves first dividing an input image into

overlapping patches. Each patch is then encoded, and an autoregressive

model is employed to generate a context vector from the patch repre-

sentations at the top of the image (as depicted in Figure 3.3, where the

top 3 rows of patches were utilised (van den Oord et al., 2018)). This

approach treats each column of the image as a sequence, with the context

vector from the top of the image used to model the density ratio with

patch representations below. This technique has been demonstrated to

achieve data-efficient results on high-level computer vision classification

datasets, such as Imagenet (Deng et al., 2009).

3.3.3 Pixel Convolutional Neural Network

PixelRNNs and PixelCNNs, as described by van den Oord et al. (2016),

represent two classes of generative neural networks that excel in creating

images through a sequential prediction process. These models leverage

their capacity for sequential generation to create images by progressively
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Figure 3.3: Example of how CPC works by dividing input images into

overlapping patches and the columns of patches are then treated as se-

quences and tasked with predicted the patch representations with the

top three rows being using as the context vector.

predicting individual pixels across two spatial dimensions. In essence,

they build images one pixel at a time, capturing the intricate interde-

pendencies present in the pixel data. Both PixelRNNs and PixelCNNs

are designed with a primary objective: to model the discrete probabil-

ity distribution of raw pixel values within images. This characteristic

makes them adept at comprehensively capturing the underlying statis-

tical properties of image datasets. By considering the raw pixel values

directly, these models are able to capture both low-level details and high-

level structures that constitute the visual content of images.

PixelCNNs, in particular, are notable for their utilisation of autore-

gressive connections in the image generation process. This distinctive fea-

ture allows PixelCNNs to meticulously model images on a pixel-by-pixel

basis, enabling the decomposition of the complex joint distribution of im-

age data into a product of conditional distributions. This decomposition

is pivotal in achieving the generation of images that closely resemble the

training data. The autoregressive approach ensures that each pixel’s gen-

eration depends only on previously generated pixels, effectively capturing

intricate patterns and textures characteristic of the training images.

An aspect where PixelCNNs hold a advantage over PixelRNNs lies

in training efficiency. This efficiency stems from the inherent parallelis-

ability of convolutional operations, which are central to the PixelCNN

architecture. Convolutional layers facilitate simultaneous processing of

image regions, leading to substantially faster training times when dealing

with sizeable image datasets. This efficiency contributes to the popular-

ity and efficacy of PixelCNNs in the realm of generative image modelling.
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3.3.4 Multi-Directional Contrastive Predictive Cod-

ing

The approach of treating columns of the representation matrix as indi-

vidual sequences (as described in Section 3.3.2), can negatively impact

performance when working with images where image orientation is ir-

relevant, such as histology patches or dermoscopic skin lesion images.

While the orientation of certain histology whole slide images can be bi-

ologically meaningful, the orientation of image patches, such as those

shown in Figure 3.1(c) (sentinel lymph node), is not important. In such

cases, the autoregressive model can struggle to predict patch represen-

tation from the provided context as the vertical image axis is arbitrary,

unlike Imagenet where it correlates with the direction of gravity acting

upon the image content.

Figure 3.4: Architecture of a multi-directional masked block, wherein

four distinct rotational transformations of the initial input are generated.

These transformed inputs are fed into the PixelCNN masked blocks, re-

sulting in the derivation of four outputs. These output are concatenated,

which is succeeded by the employment of a 1x1 convolutional operation.

To address this limitation, this work proposes two modifications in-

spired by image in-filling: an alternative latent mask for producing a con-
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text vector, and modification to PixelCNN (van den Oord et al., 2016) for

multi-directional context building. The proposed multi-directional CPC

utilises these two modifications to more effectively learn representations

from images where image rotation is uninformative.

The modified version of the PixelCNN is used as the autoregressive

model in a multi-directional CPC model. This modification replaces each

masked convolutional block of the PixelCNN architecture with a multi-

directional masked blocks (Figure 3.4). Each multi-directional masked

block takes a single input image and by rotating 0°, 90°, 180°and 270°,
produces four versions of the original input. A masked block, as described

in van den Oord et al. (2016), is then applied to each of them. The four

outputs from the masked blocks are then concatenated and put through

a final 1x1 convolutional layer for dimensionality reduction.

This multi-directional autoregressive model is used to learn a latent

context from multiple directions at the same time. To take advantage

of this, an alternative latent mask inspired by in-filling is introduced.

With this mask (illustrated in Figure 3.1(d), the autoregressive model

only has access to the patch representations around the perimeter of

the patch representations. This means that images, where rotation is

unimportant, can be better represented than with features learned using

a single-directional CPC.

3.4 Unsupervised Representation Learning

Experiments

This section presents a description of the datasets, training parame-

ters, experimental setup, and results from experiments with the pro-

posed multi-directional contrastive predictive coding approach on digital

pathology whole-slide patches. The methodology, experimental results

and detailed information on the datasets used in this chapter are provided

in a transparent and reproducible manner. The codes and full results

used in this section can be accessed on the project’s GitHub repository1

for further validation, replication and testing by the research community.

1GitHub Repository: github.com/UoD-CVIP/Multi_Directional_CPC_

Histology
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3.4.1 Dataset

The publicly available open-source dataset Patch Cameleyon from Veel-

ing et al. (2018) was chosen for its suitability to evaluate the proposed

method. This dataset was selected due to its large number of non-

overlapping whole-slide image patches that possess no inherent direction-

ality, making it a suitable benchmark for evaluating rotation-invariant

representations. It was previously used to evaluate Rotation Equivari-

ant CNNs (Veeling et al., 2018). The patches were extracted from 400

whole-slide image scans of sentinel lymph node sections from the Came-

lyon16 dataset (Litjens et al., 2018). These whole-slide images were col-

lected from two centres in the Netherlands (Radboud University Medical

Center2 and University Medical Center Utrecht3) and digitised using an

objective of 40x magnification, resulting in a pixel resolution of 0.243

microns. Each patch has been annotated with a binary annotation in-

dicating the presence or absence of metastatic tissue, by determining if

the centred 32x32 pixels of the patch contains at least one pixel of tu-

mour. The dataset is balanced between the two binary classification. The

dataset contains a total of 327,680 patches which were split into train-

ing and testing sets, with a ratio of 90:10. To improve generalisation,

data augmentation was applied during training, by randomly rotating,

flipping vertically, and flipping horizontally each patch during sampling.

3.4.2 Experiment Setup

In order to evaluate the proposed multi-directional contrastive predictive

coding approach, an ablation study was conducted using different com-

binations of the single or multi-directional autoregressive models, and

top-down or in-filling style latent masks. To evaluate the learned rep-

resentations from the CPC models, the trained encoders were used to

initialise the encoder weights of 9 CNN classifiers. These CNN classifiers

were then trained on a smaller, annotated subset of the training data,

which was varied in size from 10 to 100,000 patches in logarithmic scale.

This was repeated 3 times, each time with a different subsample of the

training data to validate the robustness of the results. The test set was

held static across all experiments.

2Radboud University Medical Center: www.radboudumc.nl
3University Medical Center Utrecht: www.umcutrecht.nl
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(a) Negative Examples

(b) Positive Examples

Figure 3.5: Example images from the Patch Cameleyon dataset (Veeling

et al., 2018, Litjens et al., 2018).

3.4.3 Training Parameters

The CPCmodels were trained using a method that involved splitting each

input image into overlapping 24x24 patches that overlapped their neigh-

bours by 12 pixels. A ResNeXt architecture with 101 layers was utilised

as the encoder, followed by an additional convolutional layer to pro-

duce a 128-dimensional feature vector for each 24x24 patch in the image.

The autoregressive model of the CPC was composed of 6 masked con-

volutional blocks to produce the context vector and predict the masked

feature vectors. Additionally, 16 randomly selected images were used as

negative samples for the CPC InfoNCE loss function. These parameters

were taken from the original implementation of CPC for computer vision

tasks (van den Oord et al., 2018).

The Adam optimisation algorithm was utilised to train the CPC and

CNN models, with an initial learning rate of 1e-4. The Adam opti-

miser (Kingma and Ba, 2014) is based on adaptive estimation of first and

second-order moments in the parameter gradients to adjust the learning

rate during training. The CPC model was trained for 10 epochs with a

batch size of 64 and the CNN models were trained for 50 epochs with

a batch size of 258. 20% of the available training data was used as the

validation set to prevent overfitting, and early stopping was implemented
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by saving the model when the loss was lowest on the validation set.

The CPC models took an average of 33 hours to train using a single

Nvidia GeForce RTX 2080 Ti using 16-bit precision. The training loss

over the epochs (Figure 3.6) suggests that the use of a multi-directional

autoregressive model was more efficient at reducing the InfoNCE loss

than a single-directional top-down autoregressive model. The in-filling

style latent mask in combination with the multi-directional autoregressive

model stabilised the CPC training process.

Figure 3.6: Training loss each epoch with the CPC Models.

3.4.4 Results

The research conducted a comprehensive evaluation of CNN classifiers’

performance using a held-out testing dataset consisting of 32,768 images.

These CNN classifiers were initialised with different sets of weights and

biases transferred from various CPC encoders. To ensure robustness of

the results, the experimentation process was repeated three times, with

100 bootstraps sampled from the metrics from these runs. This technique

helps to capture the inherent variability in model performance due to

different initialisations and data splits. The key metrics used to gauge

the effectiveness of the different models were the mean accuracies and

their associated 95% confidence intervals. These metrics were presented

in both a tabular format (Table 3.1) and a graphical format (Figure 3.7).

The mean accuracies provide a general overview of how well the models
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Table 3.1: Mean test accuracies of the CNN classifiers with different pre-

training (95% confidence intervals in parentheses).

Training

Examples

No

Pretraining

Single

Directional

Normal Mask

Single

Directional

Infilling Mask

Multi

Directional

Normal Mask

Multi

Directional

Infilling Mask

10 0.500 (0.0000) 0.558 (0.0042) 0.557 (0.0083) 0.547 (0.0062) 0.590 (0.0094)

32 0.563 (0.0106) 0.563 (0.0044) 0.603 (0.0040) 0.541 (0.0076) 0.580 (0.0077)

100 0.653 (0.0103) 0.592 (0.0016) 0.629 (0.0080) 0.598 (0.0071) 0.657 (0.0082)

316 0.692 (0.0058) 0.589 (0.0095) 0.740 (0.0013) 0.715 (0.0037) 0.709 (0.0057)

1000 0.725 (0.0013) 0.758 (0.0012) 0.739 (0.0015) 0.760 (0.0014) 0.773 (0.0005)

3162 0.750 (0.0002) 0.775 (0.0027) 0.774 (0.0011) 0.784 (0.0006) 0.785 (0.0014)

10000 0.786 (0.0005) 0.787 (0.0008) 0.777 (0.0012) 0.792 (0.0033) 0.781 (0.0017)

31624 0.781 (0.0011) 0.774 (0.0003) 0.770 (0.0008) 0.785 (0.0005) 0.784 (0.0008)

100000 0.775 (0.0006) 0.774 (0.0011) 0.786 (0.0003) 0.784 (0.0006) 0.784 (0.0009)

performed, while the confidence intervals offer insights into the stability

and variability of the predictions. A baseline approach was included that

involved training CNN without any pretraining. It’s important to note

that these baseline results cannot be directly compare to the outcomes

presented in Chapter 2 since the experiments presented there focuses on

different distinct tasks with other datasets.

The results revealed several patterns, including the CNN that were

trained using a small amount of annotated data showed higher accuracies

when initialised with parameters from CPC models that used the multi-

directional PixelCNN autoregressor. This implies that the CPC-based

pretraining is particularly advantageous when dealing with limited la-

belled data when access to annotated data is limited. The standard

CPC approach faced challenges in learning representations suitable for

transfer learning and instead lead to instances where the accuracy of

the model initialised with CPC parameters was worse when compared

to a CNN initialised randomly. As the number of annotated images

increased, the advantage of using CPC pretraining diminished. This im-

plies that the benefits of transfer learning from CPC encoders become

less prominent when a larger annotated dataset is available, and in some

cases, randomly initialised weights might be sufficient or even outperform

CPC-based initialisations.

Table 3.1 depicts the ablation results obtained by employing two com-

ponents: the use of an infilling style mask and the incorporation of a

multi-directional PixelCNN autoregressive model. The finding empha-

sised that the infilling style mask played a crucial role, as the CNN mod-

els initialised with CPC models trained with infilling style masks consis-
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Figure 3.7: Mean class testing accuracies of the CNN classifiers trained

using varying amounts of training examples, with 95% confidence inter-

vals shown using error bars.

tently achieved the best results with limited annotated data. However,

the CPC model combining a multi-directional PixelCNN autoregressive

model with a normal single directional mask demonstrated optimal per-

formance when dealing with larger subsets of the dataset. The confidence

intervals reported in Table 3.1 provided insights into the stability of the

methods’ predictions. They showed that the model predictions were rel-

atively stable, with slightly more variability arising from the additional

components of the multi-directional CPC approach. This added variabil-

ity was balanced by an increase in the mean performance, suggesting a

slight trade-off between stability and performance enhancement.

3.5 Conclusion

The findings presented in Section 3.4.4 shed light on the performance

of the original CPC implementation as applied to patch-based digital

pathology tasks. The research conducted in this chapter, which builds

upon the work of van den Oord et al. (2018), uncovers that the initial

version of CPC does not exhibit desirable outcomes within the context

medical image analysis. However, in response to this limitation, a novel

approach involving multi-directional modifications to the CPC frame-
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work was proposed and examined.

This innovative adaptation led to significant improvements in results,

as evidenced by enhanced classification accuracies, especially in scenarios

where access to annotated data was constrained. Although there was a

slight trade-off between stability and accuracy was observed in the exper-

iments. This shows that the potential of the proposed multi-directional

CPC modifications could be a valuable tool in scenarios when dealing

with rotation invariant medical images and annotated data is scarce.

This chapter brings to the forefront the notion that methods built

upon the presumption of inherent image directionality may not be op-

timal when applied to images devoid of such directional cues, as is of-

ten the case in certain biomedical imaging settings. General purpose

algorithms should be evaluated on diverse datasets instead of the stan-

dard computer vision datasets such as CIFAR (Krizhevsky et al., 2009)

and ImageNet (Deng et al., 2009) that are rooted in image direction-

ality. The implications of the research findings are not confined solely

to patch-based digital pathology tasks. Rather, they propose a broader

application of the multi-directional CPC methodology to a diverse array

of visual tasks in which the concept of image orientation holds little rele-

vance. This encompasses various scenarios within the realm of biomedical

imaging, as well as potentially extending to other domains where image

directionality is not a crucial factor. In essence, the chapter advocates for

the integration of this innovative approach as a versatile solution for tasks

that involve images characterized by their orientation-agnostic nature.
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Chapter 4

Predictive Probability

Calibration

4.1 Introduction

Deep learning algorithms have been widely adopted for medical image

analysis tasks and have even outperformed medical specialists in certain

contexts, such as the binary classification of dermoscopic melanoma and

nevi images (Maron et al., 2019). However, to ensure reliable translation

of these classifiers to clinical settings, further improvements are necessary.

As discussed in previous chapters 2 and 3, a known challenge with deep

learning algorithms is poor calibration, which often leads to overconfident

predictions. Mis-calibration, or the deviation between confidence and

correctness, can impair the model’s ability to accurately identify uncer-

tainty in its predictions. To support cost-sensitive and selective clinical

decision-making (Chapter 5) and avoid adverse outcomes, well-calibrated

probabilistic outputs are helpful. Calibrated predictions are also relevant

for applications such as active learning (Chapter 2), reinforcement learn-

ing (Dai et al., 2020), and out-of-distribution detection (Ulmer et al.,

2020).

There have been numerous reports in the literature on techniques

aimed at improving the calibration of deep learning classifiers in medical

image classification. However, the effectiveness of these methods can be

variable and there is a lack of clear guidance on which approach is most

appropriate for a particular task or dataset. This chapter reports an em-

pirical study which contributes to the existing body of evidence in this

area by evaluating the performance of various calibration methods on

medical image classification datasets from dermatology and histopathol-
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ogy.

Temperature scaling (Guo et al., 2017) is a widely used technique for

calibrating modern neural networks, due in part to its post-hoc nature,

ease of implementation, and demonstrated effectiveness. This method

involves scaling output logits using a temperature parameter that is op-

timised on a validation set. The original implementation of tempera-

ture scaling utilised negative log-likelihood to optimise the temperature

parameter. However, some researchers have proposed the use of other

calibration metrics for this purpose, suggesting that this may lead to im-

proved calibration (Mukhoti et al., 2020, Frenkel and Goldberger, 2021)

but omitting to provide empirical evidence to support. This chapter aims

to evaluate this claim empirically, using density-based and maximum

calibration error estimators as metrics for assessing the performance of

temperature scaling with various optimisation approaches.

Section 4.2 describes various measures of calibration which have been

proposed and studied in the literature. This chapter investigates the im-

pact of using different metrics to optimise temperature in the context of

deep learning classifiers for medical image analysis. The analysis includes

networks trained using both traditional cross-entropy loss with one-hot

encoded target labels, as well as more recently proposed methods such

as focal loss and label smoothing.

In this chapter, the effectiveness of various calibration methods is

also compared to that of two Bayesian neural network approaches: one

based on Bayes-by-Backprop and the other utilising a Laplace approxi-

mation method. These methods are described in detail in Section 4.3.

The experimental design and details of the chapter are provided in Sec-

tion 4.4. The results of the analysis, which includes evaluations on the

ISIC 2019 multi-class dermatology dataset (Codella et al., 2018, Com-

balia et al., 2019, Tschandl et al., 2018) and the large Patch-Camelyon

binary histopathology dataset, are presented in Section 4.4.4. These re-

sults provide insight into the relative performance of the different meth-

ods in terms of both calibration and accuracy on two distinct medical

image classification tasks.

This work was presented at the Uncertainty for Safe Utilization of Ma-

chine Learning in Medical Imaging 2022 (UNSURE) workshop hosted at

Medical Image Computing and Computing Assisted Intervention (MIC-

CAI) in Singapore and published as part of its proceedings (Carse et al.,

2022).
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4.2 Measures of Calibration

Reliability diagrams are graphical representations that compare the pre-

dicted probabilities from a model to the frequencies of the outcome vari-

able. The ordinate of the reliability diagram depicts the empirical fre-

quency of the outcome variable within a specific predicted probability

bin, while the abscissa represents the predicted probability values for

each bin. The optimal reliability diagram will exhibit a diagonal line,

signifying that the predicted probabilities correspond precisely with the

empirical frequencies. To construct a reliability diagram, The predicted

probabilities are partitions into a set of equally sized probability bins.

For instance, if there are 10 predicted probabilities ranging from 0 to 1

inclusive, these probabilities may be subdivided into 10 bins representing

distinct ranges of predicted probabilities. For each bin the corresponding

empirical frequency of occurrence each probability is plotted. Figure 4.1

illustrates an example of a reliability diagram.

Figure 4.1: Example reliability diagram.

There are several metrics that can be used to assess the calibration of

a machine learning model. One such measure is the expected calibration

error (ECE) (Guo et al., 2017), which quantifies over n samples the dis-

crepancy between predictive confidence (p̂i) and classification accuracy

(1(ŷi = yi)) over M number of bins B (Equation (4.1)). A commonly

used estimator for ECE involves dividing the range of predicted prob-

abilities into a set of equally spaced bins and computing the weighted

average of the absolute differences between the accuracy of the predic-

tions in each bin and the mean of the probabilities in that bin. Another

metric, known as the maximum calibration error (MCE), is obtained by

taking the maximum of the error across all bins (Equation (4.2)). This
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measure can be particularly useful in high-stakes situations where the

worst-case calibration is of particular concern.

ECE =
M∑

m=1

|Bm|
n

∣∣∣∣∣
(

1

|Bm|
∑
i∈Bm

1(ŷi = yi)

)
−

(
1

|Bm|
∑
i∈Bm

p̂i

)∣∣∣∣∣ (4.1)

MCE = max
m

∣∣∣∣∣
(

1

|Bm|
∑
i∈Bm

1(ŷi = yi)

)
−

(
1

|Bm|
∑
i∈Bm

p̂i

)∣∣∣∣∣ (4.2)

Histogram-based estimation of ECE, which involves dividing the range

of predicted probabilities into equally spaced bins, has been widely used

to evaluate model calibration (Müller et al., 2019). However, this ap-

proach has been criticised for its inherent bias and statistical inefficiency,

leading to the development of methods that adapt the number and sizes

of bins (Roelofs et al., 2022). An alternative approach is to use continu-

ous density estimators, such as kernel density estimation (KDE) (Parzen,

1962), to estimate the densities of accuracy and confidence in place of

histograms. This method, known as KDE-ECE (Zhang et al., 2020), has

been shown to offer improved data efficiency compared to histogram-

based approaches. In this chapter, a triweight kernel was used when

calculating KDE-ECE.

The negative log-likelihood loss function is a common choice for op-

timising deep neural network classifiers because it assesses the capac-

ity of a probabilistic model to accurately predict the true conditional

distribution. Beyond its use as an optimisation objective, the negative

log-likelihood can also serve as a measure of a model’s calibration.

4.3 Review of Calibration Methods

There are several approaches that have been proposed to improve model

calibration. These can be broadly grouped into three main categories:

regularisation methods, post-processing methods, and methods that in-

herently account for model uncertainty, such as Bayesian neural net-

works (Gawlikowski et al., 2021). Regularisation methods aim to im-

prove calibration by adding constraints or regularises to the model dur-

ing training, while post-processing methods involve adjusting the model’s

predictions after training has been completed. Bayesian neural networks,

on the other hand, are designed to explicitly incorporate uncertainty into

the model, enabling more robust and well-calibrated predictions.
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4.3.1 Model Regularisation For Calibration

Model regularisation aims to improve the generalisation and calibration

of a machine learning model by modifying the objective function used

to optimise the model or by altering the training data in a way that en-

courages the model to be more robust. Dataset regularisation methods,

such as data augmentation (Hendrycks et al., 2019) or the inclusion of

out-of-distribution data in the training set (Hendrycks et al., 2018), are

widely used to achieve this goal. In this chapter, data augmentation is

employed in all experiments, and the effects of two additional regularisa-

tion techniques, label smoothing and focal loss, on model calibration are

also investigated.

Neural network classifiers are typically trained using one-hot label en-

coding, in which the objective is to minimise the expected cross-entropy

between the target outputs tk and the network outputs yk, where tk = 1

for the true class and tk = 0 for all other classes. An alternative ap-

proach, known as label smoothing, involves modifying the target class

distribution by minimising the expected cross-entropy with modified tar-

gets t̂ = (1 − α)t + α
C
, where C is the number of classes and α is a free

parameter (Szegedy et al., 2016). The parameter α controls the degree

of smoothing, with α = 1 resulting in a uniform distribution and α = 0

corresponding to one-hot encoding. Label smoothing has been shown to

improve calibration and robustness to out-of-distribution data in medical

image analysis tasks (Islam and Glocker, 2021) and is popular due to its

ease of implementation and minimal computational overhead.

Focal loss is a loss function that was originally designed to improve

the performance of object detection by encouraging the model to focus

more on samples with lower confidence (Lin et al., 2017). It has been

shown to improve model calibration in some cases (Mukhoti et al., 2020).

Focal loss weights the predictions based on their confidence, with the goal

of forcing the model to learn more from examples that are close to the

decision boundary. This can reduce overconfidence, improve calibration,

and lead to better performance on unbalanced datasets. Focal loss can

be expressed as FL(y) = −α(1− y)γ log(y), where the factor (1− y)γ is

included with the cross-entropy loss to weight the predictions. The hy-

perparameters γ > 0 and α ∈ [0, 1] control the weighting of less confident

examples and improve numerical stability, respectively.
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4.3.2 Post-Hoc Calibration

Temperature scaling is a widely used post-hoc calibration method for

modern neural networks, including in medical image analysis applica-

tions (Guo et al., 2017, Liang et al., 2020). It is a single-parameter

variant of Platt logistic scaling (Platt, 1999) that applies a learned tem-

perature parameter, T > 0, to rescale the output logits z of a neural

network before applying a softmax activation function to obtain proba-

bilistic predictions ŷ (see Equation (4.3)). When T = 1, the standard

softmax activation is recovered. As the temperature parameter is used

to scale all of the logits, the output ŷ has a monotonic relationship with

the unscaled output, meaning that classification accuracy is unaffected

by temperature scaling.

ŷ =
ez/T∑J

j=1 e
zj/T

(4.3)

The original implementation of temperature scaling optimises the

temperature parameter T by minimising the negative log-likelihood of

the predictions (expected cross-entropy) on a validation set. In the ex-

periments described in Section 4.4, alternative measures for optimising T

are considered. It is hypothesised that optimising T using a calibration

measure on a validation set will result in improved test calibration when

evaluated using that same measure. Further details on the experimental

design and results are provided in Section 4.4.

4.3.3 Bayesian Approximation

Bayesian neural networks are a type of machine learning model that infer

distributions over their weight parameters, as opposed to the traditional

approach of obtaining point estimates. This allows for the use of Monte

Carlo sampling to approximate predictive distributions and compute es-

timates of predictive means and uncertainty measures, such as variance.

Bayesian neural networks have been applied in medical applications for

the purpose of improving calibration and estimating uncertainty (Kwon

et al., 2020).

Bayes-by-Backprop (Blundell et al., 2015) is a method for training

Bayesian neural networks that combines the use of backpropagation to

calculate gradients with variational inference to approximate the poste-

rior distribution q(w|θ) over the model’s weights. The parameters of this

distribution, θ, are determined by minimising the KL divergence between
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the variational posterior and the true posterior, which is estimated using

Monte Carlo sampling of the evidence lower bound (ELBO) as shown in

Equation (4.4). Here D is the dataset and N is the number of Monte

Carlo samples.

ELBO(D, θ) ≈
N∑

n=1

log q(wi|θ)− log p(wi)− log p(D|wi) (4.4)

To train a Bayesian neural network, the ELBO is typically combined

with the cross-entropy loss to form a composite loss function. When

doing so, the ELBO is weighted by a factor of πm = 2M−m

2M−1
, where M is

the total number of batches and m is the current batch. This weighting

scheme gives more influence on the Bayesian complexity term during the

early stages of training, while allowing the model to learn more from the

data as training progresses.

Laplace approximation (MacKay, 1992) is a method to produce Bayesian

neural networks from neural networks by approximating the posterior

distribution over a model’s parameters by fitting a Gaussian distribution

with a mean equal to the maximum a posteriori (MAP) of the parame-

ter, and variance equal to the observed fisher information. The curvature

of this Gaussian is estimated using approximations to the Hessian ma-

trix at the maximum (Botev et al., 2017). Laplace approximation can

be applied post-hoc to a trained neural network, allowing for the sam-

pling of probabilistic predictions at low computational cost compared to

other methods such as Bayes-by-Backprop (Daxberger et al., 2021). This

makes it a popular choice for Bayesian inference in practice.

4.4 Calibration Experiments

This section presents the details of the datasets, training parameters,

experimental setup, and results. The code and complete results for these

experiments can be found in the project GitHub repository1.

4.4.1 Datasets

Two datasets were used: the ISIC 2019 challenge dataset (Codella et al.,

2018, Combalia et al., 2019, Tschandl et al., 2018) and the Patch Came-

lyon (PCam) dataset (Veeling et al., 2018). The ISIC 2019 dataset con-

1GitHub Repository: github.com/UoD-CVIP/Medical_Calibration
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sists of 25,331 dermoscopic skin lesion images belonging to eight diag-

nostic classes: melanoma, melanocytic nevus, basal cell carcinoma, ac-

tinic keratosis, benign keratosis, dermatofibroma, vascular lesion, and

squamous cell carcinoma (example images of each classification in Fig-

ure 4.2). The PCam dataset consists of 327,680 96x96 pixel image patches

extracted from whole-slide images of H&E-stained lymph node sections

from the Camelyon16 dataset (Bejnordi et al., 2017) (example images in

Figure 3.5). The datasets were split into training, validation, and test-

ing sets with proportions 6:2:2. As the ISIC 2019 images vary in size

each image was pre-processed by cropping their width to be equal to

their height and resizing to 256 × 256 pixels. Both datasets were aug-

mented through normalisation of each image channel, random horizontal

and vertical flipping, and random rotation by multiples of 90°.

4.4.2 Experiment Setup

Seven different types of CNN classifiers were trained on both the ISIC

2019 and the PCam datasets. In the case of ISIC 2019, each classifier was

trained three times using different random seeds, which altered the data

splits and weights initialisations for the training, validation, and testing

sets. The first classifier, referred to as the baseline model, was trained us-

ing a standard cross-entropy function with one-hot label encoding. The

next two classifiers used label smoothing with cross-entropy, with alpha

values of 0.1 and 0.2, respectively. An additional two classifiers were

trained using focal loss, with gamma values of 2.0 and 5.0, respectively.

Temperature scaling was applied to each of these model types after train-

ing, with the temperature parameter optimised using a Limited-memory

BFGS optimiser (Liu and Nocedal, 1989) for various measures of calibra-

tion, including the negative log-likelihood, KDE-ECE, MCE, and combi-

nations of these three measures. For comparison, two types of Bayesian

neural networks were also trained, using Bayes-by-Backprop and Laplace

approximation, respectively.

4.4.3 Training Parameters

An EfficientNet encoder with a compound coefficient of 7, pre-trained on

ImageNet, was utilised as the CNN model in this chapter. The encoder

was followed by a fully connected hidden layer with a width of 512 neu-

rons before the output layer. For Bayesian convolutional neural networks,

the final hidden and output fully-connected layers were replaced with
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(a) Melanoma (b) Melanocytic Nevus

(c) Basal Cell Carcinoma (d) Actinic Keratosis

(e) Benign Keratosis (f) Dermatofibroma

(g) Vascular Lesion (h) Squamous Cell Carcinoma

Figure 4.2: Example images from the ISIC Challenge 2019

dataset (Codella et al., 2018, Combalia et al., 2019, Tschandl et al.,

2018).

Bayesian fully-connected layers that learn distributions for the weights

and biases to be sampled from. Cyclical learning rate scheduling was

employed, with scheduling between 10−4 and 10−1. The batch size for

the ISIC 2019 data was 16, and the batch size for the PCam data was
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64. Bayes-by-backprop used a weighted loss function that combined the

expected lower bound from 10 forward-propagation passes and the cross-

entropy of the 10 predictions. The Laplace approximation was optimised

post-hoc by fitting it to a trained convolutional neural network model on

the output layer of the model using a full Hessian structure. Each model

was trained for 40 epochs, and the model with the best validation loss

was selected for evaluation.

4.4.4 Results

The results for the ISIC 2019 and PCam datasets are presented in Ta-

ble 4.1. The table is divided into sections showing the results for each

trained model with the temperature set to one, followed by the results

with the temperature optimised for various measures of calibration. It is

important to note that temperature scaling does not affect accuracy. The

results for the ISIC 2019 dataset are reported as the mean and standard

deviation, estimated from three runs.

On the multi-class skin lesion classification task, temperature scal-

ing consistently improved calibration. The largest improvement in mean

KDE-ECE when using the baseline CNN model was from 0.046 to 0.012;

other temperature scaling measures yielded similar results. Label smooth-

ing achieved better accuracy, but the calibration was inferior to temper-

ature scaling with one-hot labels. When temperature scaling was added

to label smoothing, it tended to improve calibration, but it was not as

effective as temperature scaling without label smoothing in this regard.

Optimising for MCE was ineffective.

Focal loss with a value of γ = 2.0 and temperature optimised for KDE-

ECE achieved calibration and accuracy that were competitive with, or

perhaps slightly better than, the cross-entropy model with temperature

scaling. Both of the focal loss models showed behaviour similar to that

reported in Mukhoti et al. (2020), in that temperature optimisation for

KDE-ECE resulted in better calibration with a significant impact on

KDE-ECE compared to temperature optimisation for NLL.

On the binary classification task using the PCam dataset, a differ-

ent behaviour was observed when using temperature scaling. The base-

line CNN model did not benefit from temperature scaling in terms of

calibration, regardless of the calibration measure used to optimise the

temperature.

Calibration using label smoothing appears to be better than that
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Table 4.1: Calibration and accuracy results for ISIC 2019 and PCam

datasets. ISIC 2019 results are means and standard deviations over three

iterations. Each section reports results from a single model type; TS

denotes temperature scaling. For KED-ECE, MCE and NLL lower is

better. For ACC higher is better.

ISIC 2019 PCam

KDE-ECE MCE NLL ACC
KDE-

ECE
MCE NLL ACC

Baseline CNN 0.046± 0.017 0.112± 0.042 0.514± 0.015 0.836± 0.012 0.123 0.187 0.543 0.848

TS nll 0.015± 0.002 0.037± 0.014 0.471± 0.017 0.836± 0.012 0.123 0.187 0.543 0.848

TS ece 0.017± 0.007 0.038± 0.010 0.472± 0.017 0.836± 0.012 0.123 0.204 0.585 0.848

TS mce 0.016± 0.004 0.042± 0.009 0.471± 0.018 0.836± 0.012 0.123 0.197 0.567 0.848

TS nll+ece 0.012± 0.002 0.043± 0.012 0.471± 0.017 0.836± 0.012 0.122 0.210 0.603 0.848

TS nll+mce 0.018± 0.002 0.038± 0.010 0.472± 0.018 0.836± 0.012 0.123 0.210 0.605 0.848

TS ece+mce 0.014± 0.021 0.041± 0.014 0.472± 0.017 0.836± 0.012 0.123 0.193 0.557 0.848

TS nll+ece+mce 0.015± 0.003 0.042± 0.011 0.472± 0.017 0.836± 0.012 0.123 0.187 0.543 0.848

LS α = 0.1 0.039± 0.001 0.065± 0.001 0.495± 0.011 0.855± 0.005 0.116 0.146 0.398 0.848

TS nll 0.028± 0.003 0.087± 0.021 0.483± 0.013 0.855± 0.005 0.123 0.244 0.536 0.848

TS ece 0.029± 0.003 0.134± 0.023 0.504± 0.013 0.855± 0.005 0.124 0.346 1.112 0.848

TS mce 0.053± 0.016 0.070± 0.016 0.505± 0.004 0.855± 0.005 0.121 0.198 0.423 0.848

TS nll+ece 0.028± 0.003 0.086± 0.020 0.048± 0.013 0.855± 0.005 0.123 0.237 0.551 0.848

TS nll+mce 0.033± 0.006 0.071± 0.016 0.490± 0.015 0.855± 0.005 0.121 0.198 0.423 0.848

TS ece+mce 0.032± 0.006 0.072± 0.016 0.489± 0.016 0.855± 0.005 0.121 0.198 0.423 0.848

TS nll+ece+mce 0.031± 0.004 0.070± 0.010 0.488± 0.014 0.855± 0.005 0.121 0.199 0.424 0.848

LS α = 0.2 0.105± 0.005 0.173± 0.050 0.562± 0.015 0.862± 0.009 0.097 0.142 0.370 0.852

TS nll 0.037± 0.001 0.145± 0.006 0.503± 0.013 0.862± 0.009 0.118 0.307 0.601 0.852

TS ece 0.036± 0.001 0.134± 0.023 0.504± 0.013 0.862± 0.009 0.113 0.226 0.396 0.852

TS mce 0.095± 0.018 0.129± 0.032 0.553± 0.015 0.862± 0.009 0.113 0.226 0.396 0.852

TS nll+ece 0.036± 0.001 0.148± 0.009 0.503± 0.013 0.862± 0.009 0.117 0.284 0.508 0.852

TS nll+mce 0.051± 0.006 0.099± 0.006 0.514± 0.012 0.862± 0.009 0.113 0.226 0.396 0.852

TS ece+mce 0.047± 0.003 0.106± 0.019 0.511± 0.011 0.862± 0.009 0.113 0.226 0.396 0.852

TS nll+ece+mce 0.046± 0.007 0.113± 0.012 0.510± 0.010 0.862± 0.009 0.114 0.243 0.409 0.852

FL γ = 2.0 0.057± 0.020 0.097± 0.027 0.491± 0.013 0.840± 0.004 0.122 0.101 0.356 0.854

TS nll 0.031± 0.004 0.078± 0.018 0.484± 0.007 0.840± 0.004 0.100 0.155 0.371 0.854

TS ece 0.011± 0.003 0.061± 0.021 0.492± 0.004 0.840± 0.004 0.101 0.180 0.388 0.854

TS mce 0.014± 0.002 0.062± 0.021 0.497± 0.010 0.840± 0.004 0.101 0.180 0.392 0.854

TS nll+ece 0.014± 0.003 0.062± 0.018 0.489± 0.007 0.840± 0.004 0.100 0.170 0.385 0.854

TS nll+mce 0.013± 0.003 0.063± 0.018 0.490± 0.008 0.840± 0.004 0.101 0.180 0.393 0.854

TS ece+mce 0.012± 0.003 0.062± 0.021 0.494± 0.008 0.840± 0.004 0.101 0.179 0.391 0.854

TS nll+ece+mce 0.026± 0.020 0.085± 0.034 0.497± 0.013 0.840± 0.004 0.101 0.179 0.392 0.854

FL γ = 5.0 0.180± 0.007 0.250± 0.010 0.615± 0.011 0.823± 0.002 0.229 0.289 0.530 0.835

TS nll 0.061± 0.010 0.123± 0.022 0.551± 0.011 0.823± 0.002 0.068 0.063 0.382 0.835

TS ece 0.024± 0.005 0.084± 0.026 0.589± 0.016 0.823± 0.002 0.070 0.077 0.391 0.835

TS mce 0.031± 0.009 0.074± 0.007 0.621± 0.046 0.823± 0.002 0.069 0.069 0.387 0.835

TS nll+ece 0.032± 0.008 0.101± 0.026 0.561± 0.011 0.823± 0.002 0.069 0.071 0.387 0.835

TS nll+mce 0.031± 0.009 0.102± 0.024 0.562± 0.010 0.823± 0.002 0.069 0.069 0.387 0.835

TS ece+mce 0.025± 0.005 0.079± 0.012 0.593± 0.029 0.823± 0.002 0.069 0.069 0.387 0.835

TS nll+ece+mce 0.028± 0.007 0.094± 0.025 0.569± 0.009 0.823± 0.002 0.069 0.069 0.387 0.835

Bayes-by-B’prop 0.118± 0.006 0.260± 0.021 0.886± 0.062 0.795± 0.069 0.115 0.208 0.551 0.857

Laplace approx. 0.041± 0.016 0.101± 0.037 0.507± 0.010 0.837± 0.012 0.122 0.210 0.603 0.848

obtained by the baseline model without temperature scaling. Adding

temperature scaling to label smoothing appears to slightly worsen the

calibration performance on this dataset. It can be observed that the
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(a) ISIC 2019 Dataset

(b) Patch Camelyon Dataset

Figure 4.3: Calibration metrics of models calibrated using temperature

scaling optimised on different calibration metrics (y axis). (a) ISIC 2019

results (b) Patch Camelyon results.

calibration measures as functions of temperature had shallow minima,

and the optimised temperature values obtained using the validation set

differed from those that would have been optimal for the test set.

For the LS model with α = 0.2, the model is encouraged to assign

a prediction of 0.8 when it is confident about the prediction. While the

accuracy of the model is around 80%, the predictions of the model will

be better calibrated.

Focal loss with γ = 2.0 had higher accuracy and similar calibration

to the baseline model without temperature scaling. However, unlike the

baseline, both focal loss models benefited from temperature scaling in

terms of calibration. Focal loss with γ = 5.0 and temperature scaling
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achieved the best calibration of any of the models on the PCam dataset.

The measure used to optimise the temperature made little or no difference

in the results.

Bayes-by-Backprop performed relatively poorly on the ISIC 2019 dataset

in terms of both calibration and accuracy. This could be due to the ad-

ditional complexity involved with training a multi-class Bayesian neural

network using back-propagation. On the other hand, Bayes-by-Backprop

achieved the highest accuracy on the PCam dataset and had a lower

KDE-ECE than the baseline network. Nevertheless, temperature scaling

of networks trained with focal loss achieved comparable accuracy and

better calibration in terms of both KDE-ECE and MCE.

The Laplace approximation outperformed Bayes-by-Backprop on the

ISIC 2019 dataset and is also computationally less expensive. However,

it was not competitive with temperature scaling in terms of calibration.

On the larger PCam dataset, the Laplace approximation did not provide

an advantage over the baseline model.

4.5 Conclusion

This chapter centres on the investigation and enhancement of deep neural

network calibration for medical image classification. The primary objec-

tive of this chapter was to contribute to the existing body of knowledge

by assessing the efficacy of diverse calibration methods across various

tasks and datasets. The findings highlight the importance of carefully

selecting a calibration approach that is appropriate for the task at hand.

The investigation encompassed two discrete datasets: the ISIC2019

dataset and the PCam dataset. Notably, the calibration enhancements

rendered by temperature scaling consistently manifested within the con-

fines of the ISIC2019 dataset. This augmentation was particularly con-

spicuous in instances where networks were trained employing either cross-

entropy loss or focal loss. In stark contrast, the application of tempera-

ture scaling to networks trained with cross-entropy on the PCam dataset

did not yield calibration improvements. However, a constructive calibra-

tion effect became evident upon the incorporation of temperature scaling

in conjunction with focal loss.

Although an assumption may be held that the introduction of cali-

bration measures to adjust temperature using validation data would be

invariably improve calibration performance, the empirical results of this
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chapter contradicted this (as seen in Figure 4.3). The influence of opti-

misation measures on calibration performance was often marginal. Al-

though the amalgamation of focal loss and temperature scaling surfaced

as a robust strategy for cultivating desirable calibration outcomes. This

could be attributed to the intricate interplay between the focused loss’s

concentration on intricate training examples and temperature scaling’s

capacity to exploit this concentration, thereby yielding heightened per-

formance in binary classification instances. It is vital to highlight that

this pattern may be more useful for binary classification, as multi-class

scenarios increase the prediction space’s complexity.

Subsequent study could explore deeper into the implications of hy-

perparameters, such as the focal loss parameter γ, in this context. Such

research could lead to a better understanding of the significance of these

hyperparameters in affecting calibration performance. Further to this, an

avenue for inquiry lies in the exploration of alternative calibration meth-

ods. Ongoing developmental efforts are predominantly directed towards

post-hoc calibration methods, favoured for their practicality and ease of

implementation. For example, the potential advantages of employing an

ensemble of temperature scaling techniques for the calibration of predic-

tions related to specific classes (Zhang et al., 2020). Future work could

investigate, calibration in proximity to decision boundaries presents op-

portunity for research to improve calibration outcomes.
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Chapter 5

Asymmetrical Selective

Classification

5.1 Introduction

5.1.1 Robust Selective Classification for Skin

Lesions

The utilisation of automated image analysis for the assessment of skin

lesions holds great promise in enhancing diagnostic accuracy and stream-

lining clinical workflows within the field of dermatology. By employing

lesion classifiers that generate class probability distributions, it becomes

possible to estimate the associated costs of clinical decisions, such as

referral recommendations, thereby facilitating informed decision making.

It is important to note that the costs resulting from misclassification

are typically asymmetric, with a greater impact associated with falsely

categorising a malignant lesion as benign compared to the reverse. To

achieve optimal decision making, it is crucial that the predicted class

probabilities are properly calibrated. Additionally, a clinically practical

system should possess the ability to determine its own level of training,

which is integral to both robustness and clinical viability. Furthermore,

the classifiers should exhibit selectivity, declining to analyse images that

fall outside of their capabilities, particularly relevant for lesion types that

may not be adequately represented within the training data.

In this chapter, methods for cost-sensitive and selective classification

of skin lesions using binary and multi-class deep classification models are

investigated. An experimental design that includes both binary (malig-

nant vs benign) and multi-class classification tasks. The images utilised
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in this chapter were sourced from the ISIC 2019 dataset (Codella et al.,

2018, Combalia et al., 2019, Tschandl et al., 2018).

To add selectivity to a machine learning model, selective classification

can be utilised, where the classifier has the option to reject an image if

it does not meet certain criteria. The goal of selective classification is to

reduce the number of incorrect classifications and decrease the occurred

costs of the predictions. In selective classification, a classifier decides

whether to accept or reject an input then if accepted makes a prediction

on the input. Sometimes the prediction is made first and is used to inform

the rejection decision, for example thresholding the prediction confidence.

The threshold can be set based on the desired false positive rate or other

performance metrics. If the confidence score of the classifier is below the

threshold, the image is rejected and not assigned a class label.

Asymmetric misclassification costs are important in the machine learn-

ing arena because they provide a framework for dealing with the issues

that arise from uneven consequences of classification failures. The reper-

cussions of false negatives and false positives are intrinsically unequal in

the context of medical imaging. In the diagnosis of skin lesions, for exam-

ple, failing to detect a malignant lesion (false negative) has considerably

more serious repercussions than incorrectly recognising a benign lesion

as malignant (false positive). The former can result in delayed crucial

care, potentially jeopardising the patient’s health or life, whilst the latter

can result in unnecessary stress and follow-up operations, albeit with less

severe consequences.

Using Asymmetrical Misclassification Costs entails attributing higher

costs to false negatives than false positives; this paradigm acknowledges

the increased importance of reducing severe errors. This strategic cost

allocation directs the classifier’s decision-making process. The increased

cost of false negatives motivates the classifier to favour increased sensi-

tivity - the ability to correctly identify true positives. As a result, the

classifier is purposefully built to be more careful and meticulous dur-

ing classification, with a strong emphasis on minimising false negatives.

While attempting to improve sensitivity over specificity, the model may

demonstrate a tendency to overestimate its predictive powers. This can

show as overconfidence in its forecasts, resulting in a distorted proba-

bility distribution. The model’s proclivity to assign high probability to

its predictions may jeopardise calibration, resulting in a misalignment

between projected and actual outcomes.
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5.1.2 Summary of Work

The experiments in this chapter focus on the use of empirical coverage

and selective costs to evaluate the performance of selective classifica-

tion methods in skin lesion analysis. The significance of considering the

asymmetry of misclassification costs in both binary (benign vs malig-

nant) and multi-class disease classification scenarios is emphasised. An

extensive evaluation of various selective classification methods, including

predictive probability calibration, uncertainty estimation, and selective

classification models, is carried out. A novel selective classification model,

Expected Cost SelectiveNet (EC-SelectiveNet), is introduced and anal-

ysed. EC-SelectiveNet is based on the SelectiveNet model (Geifman and

El-Yaniv, 2019) and makes selection decisions based on expected costs,

rather than on the image rejection rate. EC-SelectiveNet discards the ad-

ditional heads used in SelectiveNet (selection and auxiliary heads) and

relies solely on the expected costs for image selection.

An earlier version of this work was presented at the Uncertainty

for Safe Utilization of Machine Learning in Medical Imaging 2021 (UN-

SURE) workshop hosted at Medical Image Computing and Computing

Assisted Intervention (MICCAI) in Strasbourg, France and published as

part of its proceedings (Carse, Süveges, Hogg, Trucco, Proby, Fleming

and McKenna, 2021).

5.2 Literature Review

Selective classification was initially introduced by Chow (1957), who ex-

plored the concept of a rejection option. Subsequently, this notion was

further characterised as a risk-coverage trade-off in the literature (El-

Yaniv et al., 2010). Various authors have endeavoured to construct algo-

rithms that can optimally achieve the best trade-offs. The majority of the

research in this area has focused on traditional machine learning meth-

ods, such as support vector machines and nearest neighbours (Hellman,

1970, Fumera and Roli, 2002, Wiener and El-Yaniv, 2015). More recently,

Cortes et al. (2016) proposed a method for jointly learning prediction

and selection functions instead of relying on conventional confidence-

based rejection. The authors demonstrated that their approach yielded

promising outcomes when compared to other selective classification ex-

periments without having to rely on methods that produce noise-free

confidence predictions.
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Geifman and El-Yaniv (2017) were the pioneers of applying selective

classification to deep learning algorithms by proposing a rejection mech-

anism from the model and an automatic threshold selection method to

achieve the desired risk. They utilised the reject options of either the soft-

max response (maximum softmax prediction) or Monte Carlo dropout.

Subsequently, Geifman and El-Yaniv (2019) introduced SelectiveNet, a

deep learning model that can jointly learn the prediction and selection

functions, trained for a specific target coverage. The authors asserted

that their model’s selective classification performance outperformed the

methods against which they compared it, namely, softmax response and

Monte Carlo dropout.

The utilisation of predictive probability outputs from neural networks

for selective classification can pose a challenge due to the weak calibration

of these probabilities, which arises from the softmax function. As such,

it is imperative to calibrate the predictions prior to their use in selective

classification, as delineated in Chapter 4. The uncertainty inherent in

calibrated predictions can serve as a selection criterion by rejecting sam-

ples exhibiting high levels of uncertainty. Bayesian neural networks offer

a means of quantifying uncertainty in neural networks and can be trained

via a range of methods, including Monte Carlo dropout techniques (Gal

and Ghahramani, 2016), backpropagation with weights treated as ran-

dom variables (Blundell et al., 2015), and fitting a Gaussian distribution

to the weights for posterior probabilities (MacKay, 1992). By sampling

Bayesian neural networks, uncertainty can be measured from the samples

using various methods (Gal et al., 2016).

5.3 Asymmetrical Selective Classification

The process of selective classification involves two key components: the

selection function and the prediction function. The selection function,

denoted as σ(x), determines whether or not an image x should be clas-

sified. If an image is rejected, then σ(x) = 0, and if it is selected, then

σ(x) = 1. The empirical coverage, ϕ(σ|S), is defined as the proportion

of images selected for classification, calculated as the mean of the selec-

tion function over the images in the data set S. The prediction function,

P (x), is used to make a classification decision for each selected image,

and each decision incurs a cost. The average cost over the selected images

is referred to as the empirical selective cost.
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The mis-classification costs can be specified in a matrix C, where Cjk

is the cost of assigning class k when the true class is j. These costs are

specific to the deployment setting and are influenced by various factors

such as health economics, quality of life considerations, and available

treatments. In many reported experiments on dermatology image clas-

sification, a symmetric cost matrix is used, i.e., C = 1 − I, where 1 is

a matrix of ones and I is the identity matrix. However, this assumption

of symmetry is unrealistic, and in many medical classification tasks, the

costs are highly asymmetric.

For instance, in the binary classification of malignant (class 1) and

benign (class 0) lesions, the cost matrix may reflect that mis-classifying

a malignant lesion as benign is much more costly than the reverse mis-

classification. In this scenario we might have, C1,0 = 10.0, C0,1 = 1.0,

C1,1 = 0.0, and C0,0 = 0.0 for example. For multiple lesion classes, the

cost matrix may be more complex and should be decided in consultation

with relevant stakeholders such as general practitioners, patient repre-

sentative groups, and health economists. It is important to note that

the values used for asymmetric costs should vary depending on the spe-

cific clinical setting and should be determined through discussions with

relevant experts.

(a) (b)

Figure 5.1: Cost matrices for the classes of the ISIC 2019 dataset. (a)

A symmetrical cost matrix, in which the costs of misclassification are

equivalent. (b) An asymmetrical cost matrix, where the costs of misclas-

sification are differentiated based on various factors.

Optimising classifiers for a particular cost matrix may seem like a

viable solution, however, it is not recommended due to the potential
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changes in the cost matrix after implementation. This would necessitate

the frequent retraining of the classifiers, which can become a tedious and

time-consuming process.

Given a trained classifier that outputs a calibrated posterior distri-

bution P (x, θ) over classes T for an image x using the model param-

eters θ, the expected costs of classification can be utilised to make a

decision on the image’s classification (Ferrer, 2022). In the binary clas-

sification scenario of benign (t = 0) and malignant (t = 1) classes, the

expected cost of a benign classification is defined as R0 = C10P (t = 1|x),
while the expected cost of a malignant classification is expressed as

R1 = C01P (t = 0|x). The image x is classified as malignant if R1 < R0,

otherwise it is classified as benign. In the case of multiple classes, the

expected cost for each class is calculated as the sum of costs incurred

for each class assuming it to be the true class, and the class ĵ with the

minimum expected cost is selected as the final decision (Equation (5.1)).

ĵ = argmin
j

T∑
t=1

CtjP (t|x, θ) (5.1)

5.4 Selective Classification Methods

5.4.1 Predictive Probabilities

The softmax response selection function σSR(x) is computed by deter-

mining the maximum value of the prediction function P (x, θ) with a

symmetrical cost matrix. This assumes that the neural network model

utilised has employed a softmax activation function to generate predictive

probabilities. While this methodology is straightforward to implement

and intuitive, it has limitations as the output probabilities from a softmax

activation are not properly calibrated and do not reflect the uncertainty

of the model, as demonstrated by Gal and Ghahramani (2016).

σSR(x) = max
t

P (t|x, θ) (5.2)

In scenarios where costs are asymmetrical, the expected costs of a clas-

sification decision, as denoted by Equation (5.1), can be utilised to for-

mulate a selective classification decision function σEC(x) through the

employment of the cost matrix C.

σEC(x) = min
j

T∑
t=1

CtjP (t|x, θ) (5.3)
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Temperature scaling is a method utilised for calibrating the output

probabilities of a neural network model (as discussed in Section 4.3.2).

This method was chosen due to its demonstrated effectiveness in cali-

brating predictive probabilities for medical images as well as its ease of

implementation. The temperature scaling technique involves scaling the

output logits of a neural network with a temperature value, which is

optimised on a validation set during the model’s training process. The

temperature value is determined from the training epoch that exhibits

the lowest validation loss. This technique can be incorporated into a se-

lection function by modifying the prediction function P (x, θ) to include

dividing the logits by a temperature value before applying a softmax ac-

tivation (Equation (4.3)) resulting in PTS(x). Equation (5.4) shows how

temperature scaled probabilities can be used for selective classification.

σTS(x) = max
t

PTS(t|x, θ) (5.4)

5.4.2 Bayesian Uncertainty

Bayesian neural networks represent a promising approach for improving

the accuracy of probabilistic predictions and for more effectively estimat-

ing uncertainty. This is achieved through the representation of model

parameters using distributions that can then be sampled from using for-

ward propagation of the network.

In this chapter, Bayesian neural networks are evaluated using two

methods, namely Bayes-by-Backprop (Blundell et al., 2015) and Laplace

Approximation (MacKay, 1992), for training the network. The resulting

Bayesian neural network can be sampled M times and the average of

the predictions (Equation (5.5)) can be used to produce more calibrated

probabilities, as demonstrated by (Jospin et al., 2022). The uncertainty

in the Bayesian neural network can be estimated through the variance of

the predictive samples (Equation (5.6)) and can be employed as a method

of selection.

σAV G(x) = max
t

1

M

M∑
m=1

P (t|x, θm) (5.5)

σV AR(x) =

∑M
m=1(P (t|x, θm)− µ)2

M − 1

µ =
1

M

M∑
m=1

P (t|x, θm)
(5.6)
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Multiple methods exist for estimating the predictive uncertainty of

Bayesian neural networks, including variation ratios (Freeman, 1965),

which measure the spread of the distribution of sample predictions around

the mode (Equation (5.7)).

σV R(x) = 1−
∑M

m=1 11(argmaxt P (t|x, θm) = t̂)

M

t̂ = argmax
t

M∑
m=1

11(argmax
c

P (c|x, θm) = t)

(5.7)

Predictive entropy (Shannon, 1948) captures the average information

content of the distribution of sample predictions (Equation (5.8)).

σPE(X) = −
T∑
t

= 1

(
1

M

M∑
m=1

P (t|x, θm)

)
log

(
1

M

M∑
m=1

P (t|x, θm)

)
(5.8)

Mutual information (Houlsby et al., 2011) quantifies the relationship be-

tween the predictive samples and the posterior distribution over the pa-

rameters of the model (Equation (5.9)).

σMI(x) = σPE +
1

M

M∑
m=1

T∑
t=1

P (t|x, θm) logP (t|x, θm) (5.9)

5.4.3 SelectiveNet

In the context of neural networks or Bayesian neural networks, data rep-

resentations optimised for classification have been widely studied. How-

ever, Geifman and El-Yaniv (2019) posit that data representations can

also be optimised for scenarios where a portion of the data is anticipated

to be rejected. To address this issue, they introduce SelectiveNet, a

modified training approach for neural networks that enables end-to-end

optimisation for a specific target coverage (the probability mass of the

non-rejected images).

This is achieved by adding two heads to the model’s encoder, in ad-

dition to the predictive head (denoted as P (x)). These heads consist of

a selective head (denoted as G(x)) that outputs a selection score and an

auxiliary head (denoted as A(x)) that provides predictions used within

the loss function. The overall loss function used to optimise the entire

model is based on selective risk and balances the predictive and selective

heads against the auxiliary head to ensure that robust features for classi-

fication are learned while still optimising for target coverage. The Selec-
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tiveNet loss function (Equation (5.10)) is a combination of two functions

(Lp,g and La), weighted by a hyperparameter α to control the relative

importance of coverage optimisation.

L = αLp,g + (1− α)La (5.10)

The first term uses both the predictive and selective heads (Equa-

tion (5.11)) and combines cross-entropy loss l with coverage ϕ (Equa-

tion (5.12)). For selective classification, the output of the selective head

(Equation (5.13)) is utilised. The hyperparameter k represents the target

coverage for the model, while λ regulates the significance of this target

coverage. On the other hand, the auxiliary head uses a standard cross-

entropy loss (La) to encourage the model to learn robust features from

the training data.

Lp,g =

∑N
n=1 l(p(x

n, θ), y)g(xn, θ)

ϕ
+ λ ·max(0, k − ϕ)2 (5.11)

ϕ =
1

N

N∑
n=1

g(xn, θ) (5.12)

σSN(x) = G(x) (5.13)

5.4.4 Expected Cost SelectiveNet

Expected costs serve as a method for selection in both the CNN and the

SelectiveNet model, as evidenced by Equation (5.1). A new approach to

selection is proposed, referred to as Expected Cost SelectiveNet, which

is based on expected costs computed from the predictive head, instead

of the selective head output utilised in SelectiveNet.

Despite the fact that SelectiveNet directly outputs a selection score,

the proposed EC-SelectiveNet method utilises the expected costs com-

puted from the predictive head for selection. The selective head is used

during training to guide representation learning but, in contrast to the

approach presented in Geifman and El-Yaniv (2019), both the selective

head and auxiliary head are discarded at test time.

5.5 Binary Classification Experiments

This section details the datasets, training parameters, experimental setup

and results for the experiments with binary asymmetric selective classi-

5.5. Binary Classification Experiments 74



Chapter 5. Asymmetrical Selective Classification Jacob Carse

fication for skin lesion triage. The code and full results used within this

section can be found on the project GitHub repository 1.

5.5.1 Dataset Processing

The ISIC Challenge 2019 (Codella et al., 2018, Combalia et al., 2019,

Tschandl et al., 2018) was employed in this chapter and consists of a to-

tal of 25,331 images spanning eight distinct classes, including melanoma,

melanocytic nevus, basal cell carcinoma, actinic keratosis, benign kerato-

sis, dermatofibroma, vascular lesion, and squamous cell carcinoma. For

the purposes of the experiments, two datasets were compiled from the

ISIC 2019 data, referred to as Sin and Sunknown.

(a) Sin

(b) Sunknown

Figure 5.2: Example images from the test data sets Sin and Sunknown.

Sin: These data encompassed the melanoma, melanocytic nevus, and

basal cell carcinoma (BCC) images from the ISIC 2019 dataset, which

were assigned to two classes for classification: malignant (melanoma,

BCC) and benign (melanocytic nevus). The Sin dataset was split into

three subsets for training, validation, and testing, containing 12432, 3316,

and 4972 images, respectively.

Sunknown: These data consisted of 4,360 images from classes that were

not present in Sin, including benign keratosis, dermatofibroma, actinic

keratosis, and squamous cell carcinoma, and were assigned to either the

malignant or benign class. The Sunknown dataset was not utilised for

training, but instead was employed to test the performance of selective

1GitHub Repository: github.com/UoD-CVIP/Selective_Dermatology
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classification on images from disease types not represented in the training

data.

The combination of the Sin and Sunknown test sets is referred to as the

Scombined dataset. Figure 5.2 provides illustrative examples from the ISIC

2019 dataset. In the current chapter, a random split strategy was em-

ployed to divide the dataset into three distinct sets: training, validation,

and testing. To ensure comparability across all images, normalisation

was performed utilising the standard deviation and mean calculation for

each colour channel of the images. Subsequently, each image underwent

resizing to 256x256, and during the training phase, data augmentation

was carried out by implementing randomised horizontal and vertical flips

and rotations of multiples of 90°.

5.5.2 Experiment Setup

Eight models were trained on the training split of Sin, utilising the vali-

dation set to identify the optimal model from the training epochs. The

performance of each selection method was then evaluated by using se-

lection methods with the appropriate model. A detailed overview of

the experimental setup is presented in Table 5.1. The evaluation of the

selection methods on the trained models was carried out utilising a sym-

metrical cost matrix that is commonly used in such evaluations, where

the cost of false positives and false negatives was set to 1.0. To inves-

tigate the effect of adjusting the level of asymmetry, the cost of false

positives was set to 10.0 and 50.0 while keeping the cost of false nega-

tives fixed at 1.0. The evaluation of the selection methods was conducted

on three different datasets: Sin was used to evaluate the in-distribution

performance, Sunknown was used to assess the generalisation performance

on unknown types of skin lesions, and Scombines used to evaluate the joint

performance on a test set containing in-distribution and unknown types

of skin lesions.

5.5.3 Training Parameters and Model Architecture

The implementation of the conventional convolutional neural network

comprises an EfficientNet (Tan and Le, 2019) encoder with a compound

coefficient of 7. This encoder is followed by an average pooling operation

that reduces the width and height by a factor of 8, thereby compressing

the encoding size from 163,840 to 2560. Subsequently, the architecture

includes a hidden layer equipped with 512 neurons and a rectified linear
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Table 5.1: Binary experiments; trained models and selection methods to

be evaluated.

Model Selection Method

CNN Softmax Response

Temperature Scaled Softmax Response

SelectiveNet k = 0.7 SelectiveNet

SelectiveNet k = 0.75 EC-SelectiveNet

SelectiveNet k = 0.8 Temperature Scaled EC-SelectiveNet

SelectiveNet k = 0.85

SelectiveNet k = 0.9

SelectiveNet k = 0.95

SelectiveNet k = 1.0

Monte Carlo Dropout Average Softmax Response

Average Prediction Variance

unit activation function, which is followed by a final output layer with 2

output neurons and a softmax activation function. To mitigate overfit-

ting, dropout regularisation is applied with a drop chance of 0.5 before

and after the hidden layer. In total, the architecture encompasses 275

layers (convolutional and fully connected) with 65,099,224 total param-

eters. Additionally, the use of dropout during training enables the simu-

lation of a Bayesian neural network through Monte Carlo dropout (Gal

and Ghahramani, 2016) by sampling the trained model with the same

dropout rates.

The SelectiveNet model architecture (Geifman and El-Yaniv, 2019),

is constructed upon an EfficientNet encoder, followed by average pooling

and a fully connected hidden layer containing 512 neurons. The predic-

tion head of the model comprises a single fully connected output layer

with 2 neurons and a softmax activation function. The selection head is

composed of an additional hidden layer with 512 neurons and a softmax

activation function, which is followed by an output layer with a single

neuron and a sigmoid activation function. The auxiliary head is simi-

larly structured to the classification head. These additional components

result in an increased number of layers in the SelectiveNet architecture,

bringing the total to 277 layers, with 65,364,449 parameters in total.

The training configurations were standardised across all experiments.

The models were trained utilising 16-bit precision to compute gradients,

and Stochastic Gradient Descent was employed to optimise the model
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parameters. The optimisation process employed a triangular cyclical

scheduler (Smith, 2017) that cyclically adjusted the learning rate between

0.00001 and 0.1 and the momentum between 0.8 and 0.9 every 2000

training steps. The experiments were performed using mini-batches of 8

images each.

During the training of the conventional convolutional neural network,

the cross-entropy loss function was utilised to evaluate the model’s perfor-

mance. To mitigate overfitting, dropout regularisation was applied with a

drop rate of 0.5 before both the hidden and output layers. By consistently

applying the same dropout pattern during both training and evaluation,

the convolutional neural network can be treated as a Bayesian Neural

Network and sampled multiple times through Monte Carlo dropout (Gal

and Ghahramani, 2016).

The SelectiveNet model’s performance is evaluated using a loss func-

tion that integrates the outputs of the three heads, predictive (p), selec-

tive (g), and auxiliary (h). The predictive and selective heads are utilised

to calculate a portion of the loss Lp,g, which optimises the model for a

specific target coverage. The auxiliary head, in contrast, calculates cross-

entropy loss Lh, and the two components are weighted together using the

parameter α (as specified in Equation 5.10). In the present set of experi-

ments, the parameter α has been set to 0.5 and multiple target coverages

have been explored. The remaining hyperparameters associated with the

SelectiveNet loss function have been set to the values recommended by

the authors in (Geifman and El-Yaniv, 2019).

5.5.4 Results

The findings presented in this section are not exhaustive, and complete

cost coverage curves for all models and methods of selective classification

are available in Appendix B.

SelectiveNet: Effect of Target Coverage

In order to examine the impact of the SelectiveNet target-coverage pa-

rameter, t, on the selection decisions made by the SelectiveNet selection

head, the cost-coverage curves were plotted for various values of t, rang-

ing from 0.7 to 1.0 with increments of 0.05, as depicted in Figure 5.3.

The curves were computed for Sin, Sunknown, and Scombined. According to

the design objectives of the target coverage parameter, a lower value of t

would result in a more effective model at lower coverages. The findings,
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however, show that training with a t = 1.0 value resulted in the lowest

test cost on Sin for coverage values as low as 0.2. As expected, the ex-

penses incurred on Sunknown were larger, and the curves did not show a

clear ordering. Nonetheless, the model trained with t = 1.0 revealed a

significant cost reduction as coverage declined. This could be because

when the model is trained with a t = 1.0, the resulting model is closer

to the best performing standard model with softmax response.

Figure 5.3: Cost-coverage curves for SelectiveNets trained with different

target coverages. From top to bottom: Sin, Sunknown and Scombined.

Does SelectiveNet Training Help?

The extent to which the target coverage t is imposed is regulated by the

weighting parameter λ. Despite being set to target full coverage (t = 1.0),

the model may, in exceptional circumstances during training, compro-

mise coverage for cost. This could be because when the SelectiveNet

model is trained with t = 1.0, penalties in the loss function promote
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coverage to reach 1.0 (see Equation 5.11) Even with these constraints

in place, the model can still compromise coverage for cost if the benefit

surpasses the penalty. As a result, the results obtained by SelectiveNet

with t = 1.0 may differ from those obtained through training a network

without selective and auxiliary heads. These networks were trained using

cross-entropy loss and only retained the softmax predictive head, making

selection decisions at test time based on the maximum softmax output.

The corresponding cost-coverage curve is plotted in Figure 5.3 (labelled

“softmax”). The results indicate that SelectiveNet trained with a target

coverage of 1.0 performed better than a standard convolutional neural

network with a softmax response for any coverage value above 0.4.

Figure 5.4: Cost-coverage curves using MC-Dropout. From top to bot-

tom: Sin, Sunknown and Scombined.
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MC-Dropout, Temperature Scaling, and EC-SelectiveNet

The impact of MC-Dropout on selective classification was analysed by

using the mean and variance of the Monte Carlo iterations as selection

scores. Figure 5.4 compares the resulting cost-coverage curves to those

obtained using a network without dropout at test time (labelled “softmax

response”). The results reveal that for the Sin data, utilising the average

of Monte Carlo samples had minimal impact, whereas the variance of

the Monte Carlo samples performed slightly worse than simply relying

on the maximum softmax response. Conversely, significant cost savings

were achieved by using the variance of the Monte Carlo samples on the

Sunknown data, where model uncertainty is expected to be high.

Figure 5.5: Cost-coverage curves for different selective classification

methods. From top to bottom: Sin, Sunknown and Scombined.

The effect of temperature scaling on a softmax network was analysed

and the results are shown in Figure 5.5. The softmax network was trained

using cross-entropy loss and temperature scaling was applied to improve
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calibration. However, the results indicated that temperature scaling had

a minimal effect on the cost-coverage curves. While temperature scaling

improves calibration, it does not capture enough information to provide

a reliable failure warning, which can then be employed in rejection, as

observed in other works (Jaeger et al., 2022). Furthermore, Figure 5.5

displays the results obtained using EC-SelectiveNet, in which the se-

lection head was omitted during testing. The results demonstrate that

EC-SelectiveNet achieved a noticeable improvement on both the Sin and

Sunknown datasets when compared to training a standard convolutional

neural network model without the auxiliary heads.

Figure 5.6: Cost-coverage curves for SelectiveNet and EC-SelectiveNet.

From top to bottom: C1,0 = 1, C1,0 = 10 and C1,0 = 50.
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Asymmetric Costs

The results of comparing SelectiveNet with EC-SelectiveNet with a target

coverage of t = 1.0 are depicted in Figure 5.6. In symmetric cost scenar-

ios, the performance of both methods was comparable, with SelectiveNet

exhibiting a slight advantage in terms of cost, yielding a reduction of

approximately 0.015 at intermediate coverage levels. However, when the

cost matrix was asymmetric, EC-SelectiveNet demonstrated significant

cost reductions of approximately 0.1 at all coverages below approximately

0.8.

Figure 5.7: Cost-coverage curves for cross-entropy training and EC-

SelectiveNet combined with temperature scaling. From top to bottom:

C1,0 = 1, C1,0 = 10 and C1,0 = 50.

The effect of temperature scaling on selective classification is pre-

sented in Figure 5.7. The methodologies of both the softmax response

and temperature scaling selection are founded on the principle of ex-

pected costs. The impact of temperature scaling was found to be minimal
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in the context of symmetrical costs, as discussed above. In the asymmet-

rical cost matrix scenario, a slight effect on selective classification was ob-

served. This effect was consistent regardless of whether EC-SelectiveNet

(t = 1.0) or a convolutional neural network trained with cross-entropy

loss was employed. As depicted in Figure 5.7, the application of temper-

ature scaling resulted in an increase in costs at high coverage levels and

a reduction in costs at low coverage levels. This could be because the

temperature parameter used for temperature scaling was designed for a

symmetrical environment, and its application in asymmetrical contexts

causes problems that worsen as the asymmetry increases. The figure also

highlights the superiority of EC-SelectiveNet in comparison to tempera-

ture scaling.

5.6 Multi class Experiments

This section details the datasets, training parameters, experimental setup

and results for the experiments with multi-class asymmetric selective

classification for skin lesion classification. The code and full results used

within this section can be found on the project GitHub repository 2.

5.6.1 Dataset Processing

In this chapter, the ISIC Challenge 2019 dataset (Codella et al., 2018,

Combalia et al., 2019, Tschandl et al., 2018) was employed. The data

was processed using a similar methodology to the one described in Sec-

tion 5.5.1. A random splitting method was utilised to divide the dataset

into three subsets: training, validation, and testing, in a 60:20:20 ratio.

Prior to the training process, the images underwent normalisation, which

involved computing the standard deviation and mean across each colour

channel. Then, the images were square cropped by evenly trimming the

horizontal sides and resized to 256x256. During the training phase, data

augmentation was applied by randomly augmenting the images at each

epoch. The augmentations consisted of 90-degree rotations and horizon-

tal and vertical flips.

2GitHub Repository: github.com/UoD-CVIP/Asymetric_Selective_

Dermatology
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5.6.2 Experiment Setup

In the multi-class set of experiments, all models and methods were sub-

jected to repetition thrice, with the final results being an average of the

outcomes from each run. In order to ensure a comprehensive evaluation,

the training, validation, and testing splits were randomised for each of

the three repetitions. A total of eleven models were trained, utilising the

validation set to determine the most suitable model. Table 5.2 shows

the different trained models and the selection methods evaluated on each

model.

Table 5.2: Multi-class experiments; trained models and selection methods

to be evaluated.

Model Selection Method

CNN Softmax Response

Expected Costs

Temperature Scaled Softmax Response

Temperature Scaled Expected Costs

SelectiveNet k = 0.7 SelectiveNet

SelectiveNet k = 0.75 Softmax Response

SelectiveNet k = 0.8 Temperature Scaled Softmax Response

SelectiveNet k = 0.85 EC-SelectiveNet

SelectiveNet k = 0.9 Temperature Scaled Expected Costs

SelectiveNet k = 0.95

SelectiveNet k = 1.0

Monte Carlo Dropout Average Softmax Response

Bayes By Backprop Average Expected Costs

Laplace Approximation Bayesian Sample Agreement

Average Variance

Predicted Class Variance

Predictive Entropy

Variational Ratio

Mutual Information

The efficacy of the selection methods employed with each of the mod-

els was evaluated using both a typical symmetrical cost matrix (Fig-

ure 5.1a) and an asymmetrical cost matrix (Figure 5.1b). The asym-

metrical cost matrix was developed by a consultant-level dermatologist,

taking into account the clinical costs associated with misdiagnosis such as
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death or unnecessary treatment. The values assigned to the asymmetric

costs are context-dependent and should be arrived at through engage-

ment with relevant experts, taking into consideration the specific clinical

setting.

5.6.3 Training Parameters and Model Architecture

The architecture of the CNN and SelectiveNet in this chapter was consis-

tent with the binary experiments outlined in Section 5.5.3. The number

of output neurons in the output layer of the CNN and the predictive and

auxiliary heads of the SelectiveNet architecture, was increased to 8, re-

sulting in a total of 65,102,296 weights for the CNN model and 65,370,593

weights for the SelectiveNet model.

Additionally, the Bayes-by-Backprop model (Blundell et al., 2015)

utilised in this chapter was implemented as a CNN, with the final two

fully connected layers replaced by fully connected Bayesian layers. In

these layers, each weight is represented by a normal distribution with a

mean randomly selected from a range of 0 to 0.1 and a standard deviation

sampled from a range of -7 to 0.1. The weight priors P (θ) was modelled

using a scale mixture of two Gaussian distributions (Equation (5.14))

where J represented the number of weights in a model with standard

deviation values (σ1 and σ2) of 0.1 and 0.4 and a π weighting the two

Gaussian distributions of 0.5.

P (θ) =
J∏

j=1

πM(θj|0, σ1) + (1− π)M(θj|0, σ2) (5.14)

The CNN and SelectiveNet models were trained with the same weights

as those presented in the binary experiments described in Section 5.5.3.

The Bayesian Neural Network model, which was trained using the Bayes-

by-Backprop method (Blundell et al., 2015), employed variational infer-

ence to approximate the posterior distribution over weights, q(θ). The

weights for the distribution, θ, were determined by minimising the KL-

Divergence between the variational posterior and the true posterior. The

true posterior was estimated through Monte Carlo sampling of the evi-

dence lower bound, as expressed in Equation (4.4), where D represents

the dataset and M denotes the number of Monte Carlo samples.

The loss function utilised for training the Bayesian Neural Network

model was a combination of the ELBO and cross-entropy. The weight

assigned to the ELBO component of the loss function was modulated
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based on the current mini-batch, as depicted in Equation 5.15, where

N represents the number of mini-batches per epoch and n denotes the

current mini-batch. This weighting approach was employed such that

the early mini-batches were more influenced by Bayesian complexity and

later mini-batches focused more on learning from the training data. In

the experiments, the Bayesian neural network model trained with the

Bayes by Backprop method was trained using a weighted combination of

ELBO and cross-entropy, with the ELBO estimated using three Monte

Carlo samples during training. All other training settings were equivalent

to those utilised for the training of the convolutional neural network

model.

πn =
2N−n

2N − 1
(5.15)

After training, a CNN model can be transformed into a Bayesian neu-

ral network using the Laplace approximation method (MacKay, 1992).

The Laplace approximation is a technique for approximating the poste-

rior of a model as a Gaussian distribution centred on the learned weights.

The curvature of the approximation is estimated through the use of ap-

proximations to the Hessian matrix (Botev et al., 2017) at the MAP.

In the experiments, Laplace approximation was applied only to the last

layer of the neural network due to hardware constraints, however, it has

been demonstrated by Kristiadi et al. (2020) that this approach can lead

to improved calibration and estimation of predictive uncertainty. After

performing the Laplace approximation, a predictive probability can be

computed by averaging Monte Carlo samples.

5.6.4 Results

The findings presented in this section are not exhaustive, and complete

cost coverage curves for all models and methods of selective classification

are available in Appendix B.

SelectiveNet, EC-SelectiveNet and Target Coverage

Figure 5.8 illustrates the outcomes of the investigation carried out on

SelectiveNet, which was trained with different target coverages ranging

from 0.7 to 1.0. The utilisation of the selective head of the SelectiveNet

model resulted in suboptimal performance for selective classification in

both settings. In contrast, using the predictive head in symmetrical
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settings led to improved performance compared to the selective head,

resulting in a similar curve shape as that of the CNN. However, it is worth

noting that the base performance, and consequently, the area under the

cost coverage curve, was worse in all cases except for SelectiveNet trained

with a target coverage of 1.0. This observation is consistent with the

results of the binary classification experiments and can be ascribed to the

SelectiveNet model’s higher number of weights, which enables it to learn a

superior model when trained with a target coverage of 1.0, as its learning

is not constrained. In an asymmetrical cost scenario, the use of predictive

heads to select based on estimated cost (EC-SelectiveNet) yielded similar

results to those of the binary experiments, where the cost coverage curves

trended upwards until they approached their target coverage and then

demonstrated better performance. The selective head’s poor performance

in multi-class asymmetrical circumstances compared to binary settings

could be attributed to a more difficult environment in which the model

struggled to learn how to reject these images. However, the predictive

head did not suffer as much in the transition from binary to multi-class

settings, probably due to the presence of more decision boundaries, which

provided the predictive head with more rejection information.

Effect of Temperature Scaling

The outcomes of the experiments involving the convolutional neural net-

work and EC-SelectiveNet (trained with a target coverage of 1.0) in both

symmetrical and asymmetrical cost scenarios are illustrated in Figure 5.9.

The choice of the EC-SelectiveNet model with a target coverage of 1.0

was predicated on its superior performance relative to other SelectiveNet

models, as evidenced in Figure 5.8. The findings demonstrate that the

utilisation of temperature scaling to improve prediction calibration had a

negligible impact on the cost coverage curves in symmetrical cost settings.

However, in multi-class situations characterised by asymmetrical costs,

temperature scaling had no effect on the convolutional neural network

but exhibited a detrimental effect when used in conjunction with the EC-

SelectiveNet model. This phenomenon could conceivably be attributed

to the process of temperature scaling, wherein predictions are system-

atically calibrated within a symmetrical setting. When presented to an

asymmetrical setting this might inadvertently entail suboptimal perfor-

mance, with the performance gap increasing as the setting becomes more

asymmetrical.
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(a) Symmetrical Costs

(b) Asymmetrical Costs

Figure 5.8: Results with experiments with SelectiveNet.

Methods Bayesian Neural Networks

In the multi-class experiments, three distinct implementations of Bayesian

neural networks were examined. For each Bayesian neural network, 100

samples were taken, and the selection was based on the average of the

Monte Carlo samples. The variance of the samples is presented in Fig-

ure 5.10. In a symmetrical cost scenario, both the sample average and

variance of Monte Carlo dropout and Laplace approximation performed
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(a) Symmetrical Costs

(b) Asymmetrical Costs

Figure 5.9: Results with experiments with temperature scaling.

similarly, with the average slightly outperforming the variance. However,

the model trained using Bayes by Backprop exhibited very poor perfor-

mance when using the sample variance, in comparison to the average. In

the asymmetrical cost scenario, the variance was found to be a signifi-

cantly better method for selective classification than the expected costs

of the sample average. The disparity in performance for the Monte Carlo

dropout and Laplace approximation methods was evident in the initial

100% to 80% coverage before the curves converge. This was not the

case with Bayes by Backprop, as the performance with sample variance

remained considerably worse than expected costs using sample average.
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(a) Symmetrical Costs

(b) Asymmetrical Costs

Figure 5.10: Results with experiments with Bayesian Neural Networks.

Measures of Uncertainty

In the multi-class experiments, various measures of uncertainty were em-

ployed with Bayesian neural networks’ Monte Carlo samples. The results

presented in Figure 5.11 depict the outcomes of selective classification

with Laplace Approximation models, as they demonstrated the best per-

formance, as shown in Figure 5.10. The results indicate that the two

measures of variance (average over all classes and top class only) per-

form comparably, with average variance having a slight edge. Predictive

entropy emerged as the best-performing measure of uncertainty for se-

lective classification in both symmetrical and asymmetrical cost settings.

While mutual information exhibited inferior performance when compared

to variance and predictive entropy, it performed significantly worse in an

asymmetrical setting. The variational ratio was the poorest measure, it
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displayed similar performance to other metrics until 90% coverage where

the performance flattened meaning that the selections to reject are ran-

dom.

(a) Symmetrical Costs

(b) Asymmetrical Costs

Figure 5.11: Results with experiments with measures of uncertainty.

5.7 Conclusion

The aim of this chapter was to enhance comprehension of the performance

of various selective classification methods for skin lesion images, utilising

asymmetrical costs in both binary (triage setting) and multi-class (dis-

ease) classification contexts. Additionally, the effectiveness of selective

classification techniques when dealing with lesion types not present in the

training data was investigated. The experimental results indicate that

SelectiveNet, in general, was less effective compared to other selective

5.7. Conclusion 92



Chapter 5. Asymmetrical Selective Classification Jacob Carse

classification methods, and only exhibited improvement in performance

when trained with a target coverage of 1.0. Furthermore, in cases where

SelectiveNet was trained with a target coverage of 1.0, its prediction head

performed better than the CNN performance. In the asymmetrical set-

ting, EC-SelectiveNet, trained with a target coverage of 1.0, consistently

outperformed all other methods in both binary and multi-class settings.

This could be due to the selective part of the SelectiveNet loss function

being ignored during training when a target of 1.0 is used. Consequently,

using only the predictive and auxiliary heads jointly to generate a loss,

allows for a better representative encoder.

The utilisation of Bayesian neural networks had a negligible impact

when averaging the predictions in any setting. However, leveraging the

variance of the Monte Carlo samples led to superior results in the context

of asymmetric settings and yielded promising outcomes on the Sunknown

dataset. Of the three methods for Bayesian neural networks, Laplace

approximation exhibited the best performance, while Bayes by Backprop

surprisingly performed well when using the variance. It can be spec-

ulated that the samples taken from the Bayes by Backprop were too

similar, making the variance unsuitable for selective classification pur-

poses. Notably, the use of different uncertainty measures led to varying

results, with the predictive entropy measure of uncertainty surpassing all

others, particularly in an asymmetric setting, while the variational ratios

performed the worst in both symmetric and asymmetric cost settings.

The experiments reveal that the utilisation of temperature scaling for

the calibration of predictions, which aims to enhance selective classifica-

tion, resulted in elevated costs at higher coverage levels in asymmetrical

cost settings. This problem could be ascribed to temperature parameter

optimisation, which has been specifically optimised for symmetrical con-

texts, making scaled predictions unsuitable for addressing asymmetrical

circumstances. Addressing this issue could be a promising area for fu-

ture study, involving an evaluation of calibration procedures customised

to various asymmetrical settings. However, in other scenarios, the use

of temperature scaling did not have any significant impact compared to

the uncalibrated outcomes. As highlighted by Jaeger et al. (2022), this

phenomenon could be explained by the intrinsic limitation of tempera-

ture scaling in as the scaled predictions are limited in their capacity to

capture the inherent uncertainty of the model’s predictions. Address-

ing this issue necessitates further investigation and subsequent efforts

to correct this constraint. The investigation encompasses diverse selec-
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tive classification settings and underlines the necessity for further efforts

to advance selective classification methods and comprehend their perfor-

mance in asymmetrical cost settings. Such efforts will prove instrumental

in the application of classification in clinical settings, where asymmetri-

cal costs are prevalent and not all images can be classified, necessitating

the use of rejection.

The chapter’s findings highlight the importance of enhancing selec-

tive classification in order to simplify its adoption into clinical prac-

tise. This requirement is reinforced by Jaeger et al. (2022) observa-

tions, which reveal the limitations of neural networks in addressing fail-

ure detection, emphasising the constraints of selective categorization. A

promising path forward is to tailor calibration approaches to specific

decision-making scenarios. While still in its infancy, this topic has poten-

tial (Zhao et al., 2021) which introduces novel calibration methodologies

for decision-specific scenarios. This new research represents the shifting

landscape of selective classification and foreshadows transformational de-

velopments that could alter its path.
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Chapter 6

Evaluating Dataset

Fine-Tuning

6.1 Introduction

Recent years have seen significant advancements in the use of deep learn-

ing for the dermatological classification of skin lesion images (Du-Harpur

et al., 2020, Wu et al., 2022). Deep learning classifiers have been shown

to be particularly effective with large datasets, such as the ISIC archive,

which have enabled substantial progress in this field (Tschandl et al.,

2018, Wen et al., 2021). Studies utilising high-quality datasets have re-

ported performance that is comparable to or surpasses that of dermatol-

ogists in the classification of skin lesions (Esteva et al., 2017, Haenssle

et al., 2018, Han et al., 2018, Tschandl et al., 2019). Additionally, re-

search has investigated the ability of deep learning classifiers to accurately

classify macroscopic clinical images, as opposed to solely dermoscopic

images (Fujisawa et al., 2019). However, it should be noted that images

acquired from primary care settings are often of variable quality, with

wider and less consistent fields of view or focus, and may include visual

distractions.

Current deep learning classifiers for medical images have been ob-

served to exhibit poor generalisation across different healthcare systems,

acquisition protocols, and patient populations. This phenomenon has

been documented in several studies, with evaluations typically being

conducted in an internal manner, where the model training and test-

ing datasets are drawn from the same source (e.g., Han et al. (2018)).

However, there remains a significant degree of uncertainty regarding the

ability of these models to generalise across diverse domains, datasets, and
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imaging modalities.

Given the complexity of the medical imaging domain, it may be un-

realistic to expect the development of a universally applicable skin lesion

classifier. A more practical approach may involve the utilisation of local

datasets to adapt models to specific target populations and healthcare

systems. This approach would involve leveraging the knowledge acquired

from these datasets to fine-tune existing models, thus increasing their ap-

plicability and performance within specific domains. This approach has

been proposed in several studies and is considered a more realistic and

practical solution to the challenges of generalisation in deep learning-

based medical image analysis (Glocker et al., 2022).

The phenomenon of domain shift, wherein the distribution of features

in the new population diverges from the distribution of features present

in the training data, has been identified as a major obstacle in the de-

ployment of artificial intelligence systems in clinical environments. This

issue has been identified as a crucial challenge in implementing artifi-

cial intelligence systems in clinical settings, as highlighted in Kelly et al.

(2019). Additionally, this weakness arising from domain shift can re-

sult in unintended consequences such as gender or racial discrimination

bias (Glocker et al., 2022). The utilisation of medical datasets for the

training of deep learning models is often hindered by the lack of diver-

sity, which is often derived from a single source with a specific population

distribution. Domain shift can also occur due to differences in the image

capture methods, such as differences in the intensity distribution of MRI

scanners at different sites (Prados et al., 2017) or staining of histological

slides (Stacke et al., 2020). These complexities pose significant challenges

in delivering artificial intelligence systems in clinical settings.

The creation and curation of labelled datasets can be a costly and

time-consuming task, as highlighted in recent studies such as Chin et al.

(2022). To address this issue, transfer learning (Weiss et al., 2016) has

emerged as a valuable approach for utilising knowledge acquired from

large datasets in other domains and applying it to a target domain with

limited data. This method has been widely adopted in the field of medical

image analysis, as it allows for the fine-tuning of features learned from

large datasets for use in smaller datasets within the medical domain. The

effectiveness of transfer learning, however, is dependent on the similarity

between the source and target domains, as well as the deep learning

models utilised, as noted in studies such as Matsoukas et al. (2022). For

instance, the utilisation of knowledge acquired from the large ImageNet
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dataset (Deng et al., 2009) has been extensively applied in medical image

analysis, despite the visual dissimilarity between the images in ImageNet

and medical images. This approach has been demonstrated to be effective

in the deep classification of the ISIC 2019 dermoscopy dataset, with

evidence of feature re-use (Matsoukas et al., 2022).

In this chapter, the effectiveness of transfer learning between der-

matology datasets is investigated with a focus on the utilisation of deep

learning models to assist in the diagnosis of skin lesions based on commu-

nity images acquired with limited control. The effectiveness of transfer

learning is expected to be dependent on the size of the source datasets

used for pre-training, as well as the similarity between these source

datasets and the target datasets.

To explore this topic, two types of deep learning models with different

inductive biases are focused on. The performance of these models is eval-

uated in relation to two novel datasets, specifically designed to simulate

a real-world clinical setting. These datasets were gathered, trained, and

tested in the context of image referrals sent to secondary-care hospital-

based dermatologists from primary care. This use case was selected as

it represents a common scenario in dermatology in the UK and aims to

reliably identify common benign conditions in this setting.

The results from the experiments with fine-tuning between the dif-

ferent dataset shows that’s performance is based on the proximity of the

training distribution to the testing distribution. Therefore, it is criti-

cal to obtain data from the specific real-world setting in which the deep

learning will be deployed. By training, and testing on two datasets, one

from primary care and the other from referred images sent for medical

photography, aims to demonstrate that the approach is effective in a

real-world clinical setting and can be used for triage experiments.

The work discussed in this chapter is yet to be published but is

intended for submission to the British Journal of Dermatology, under

the authorship of Jacob Carse, Gillian Chin, Charlotte Proby, Emanuele

Trucco, Colin Fleming, and Stephen McKenna. The personal contribu-

tion to this collaborative effort is reflected in the experiments carried out

on the fine-tuning of the dataset.
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(a) Tayside Melanoma (b) Tayside

Melanocytic Nevus

(c) Tayside Benign

Actinic Keratosis

(d) Forth Valley

Melanoma

(e) Forth Valley

Melanocytic Nevus

(f) Forth Valley

Actinic Keratosis

Figure 6.1: Example images from the Tayside and Forth Valley datasets.

6.2 Datasets

In this chapter, two datasets of community-acquired macroscopic (non-

dermoscopic) images were curated. These datasets were extracted from

previously stored images referred from primary to secondary care in Tay-

side and Forth Valley, United Kingdom. The inclusion of these datasets

allows for the examination of a diverse range of macroscopic images ac-

quired in a community setting. Both sets of images were annotated using

the same procedure, explained in Section 6.2.3.

6.2.1 Tayside Dataset

The Tayside dataset (collected by Professor Colin Fleming), sourced from

NHS Tayside 1, is centred on community-acquired skin lesion data, that

represent real-world data capture from primary care. The images were

obtained by primary care practitioners utilising a diverse array of cam-

eras, from various cutaneous anatomical sites, utilising non-standardised

lighting, framing, focusing, and acquisition settings. The dataset is in-

tended for triage experiments, with the goal of reliably identifying com-

mon benign conditions in a real-world clinical setting. This dataset not

only represents real-world teledermatology images acquired by primary

care practitioners, but it also serves as a proxy for international skin

1NHS Tayside: nhstayside.scot.nhs.uk
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datasets, where high-quality images and dermoscopy may not be readily

available.

6.2.2 Forth Valley Dataset

The Forth Valley dataset (collected by Dr. Colin Morton) was pro-

cured by medical photographers capturing image of patients skin lesions,

who were referred by primary care practitioners for specialist assessment

within NHS Forth Valley 2. The medical photographers possess a higher

degree of expertise in the acquisition of photos of skin lesions, despite po-

tentially lacking specialised knowledge in the field of dermatology. The

medical photographers employ standard equipment, such as cameras,

lighting, and backgrounds, to ensure uniformity in image quality. Fur-

thermore, a standardised pattern of image capture is utilised to ensure

high-quality, wide-angle, and close-up macro images.

6.2.3 Annotation Procedure

The datasets underwent a comprehensive annotation process that ad-

hered to strict ethical guidelines and protocols for ensuring the quality

and clinical usefulness of the images. This annotation procedure was de-

veloped by the Dermatology department at NHS Tayside. This included

the removal of duplicate images and those that were not clinically rele-

vant, as well as the de-identification and cropping of images to highlight

any abnormalities. The images were then assigned a diagnostic label us-

ing the British Association of Dermatologists diagnostic index 3, which

corresponds to the International Classification of Diseases (version 11) 4.

The assignment of these labels was conducted by two consultant-level

dermatologists, registered on the UK General Medical Council special-

ist register of dermatologists 5, and any discrepancies were resolved by a

third consultant-level dermatologist. This decision was based on all avail-

able clinical information, including pathology reports from a consultant

pathologist. The labels represent real sources of data, with diagnoses for

malignancy being derived from pathology, and for benign lesions, based

2NHS Forth Valley: nhsforthvalley.com
3BAD Clinical Guidelines: https://www.bad.org.uk/

guidelines-and-standards/clinical-guidelines/
4ICD-11: https://icd.who.int/dev11/l-derma/en
5UK GMC Medical Register: https://www.gmc-uk.org/

registration-and-licensing/the-medical-register/
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on the opinions of consultant dermatologists. The full annotation proce-

dure is presented in detail for further reference.

1. Ensure the necessary Caldicott/Ethical approvals are in place.

2. Proceed to open the first patient record.

3. Proceed to view the images. For each image, determine whether

to retain it as potentially diagnostically useful, retain as a negative

control, or discard it.

(a) Retain as potentially diagnostically useful if any triage-level

information can be obtained from the image.

(b) Retain as negative control if a clinical image of skin without

even triage level information i.e., where photographic informa-

tion is insufficient to make a skin diagnosis. This may include

images which are blurred by background details e.g., scarring

or tattooing.

(c) Discard the image if: a. No skin clinical images present, e.g.,

a clinical letter with no images may be in your system, X-ray

image b. Duplicate image, i.e., multiple images, of which you

will choose the best single view.

4. If retaining the image, anonymise where necessary. This may in-

volve the removal of distinguishing features e.g., a tattoo, a label

with patient details, or full-face views. Minimise cropping to ensure

the remaining image has a maximum resolution.

5. Where multiple skin lesions, attempt to crop the image to ensure

one lesion per image. Minimise cropping to ensure the remaining

image has a maximum resolution.

6. For multiple skin lesions of the same disease process/widespread

disease, if not possible to crop sufficiently, ensure all skin lesions

have the same diagnostic label and are the same disease process.

7. Label the image with the diagnosis using BAD Diagnostic Index.
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6.3 Fine-Tuning Experiments

This section details the datasets, training parameters, experimental setup,

and results for the experiments with dermatology cross dataset fine-

tuning. The code and full results used within this section can be found

on the project GitHub repository 6.

6.3.1 Datasets

In this chapter’s experiments, images from two public domain skin le-

sion datasets are utilised in addition to the datasets from Tayside and

Forth Valley. These datasets were the ISIC 2019 dataset (Codella et al.,

2018, Combalia et al., 2019, Tschandl et al., 2018) and the SD-260

dataset (Yang et al., 2019). The ISIC datasets are among the largest

publicly available, with ISIC 2019 containing over 26,000 skin lesion im-

ages labelled with diagnoses. These images were acquired using dermato-

scopes, which tend to produce well-centered, zoomed in, and consistent

resolution images. In contrast, the SD-260 images were acquired in less

controlled environments with varying imaging devices, resulting in more

variation in colour, exposure, illumination, resolution, and scale (Fig-

ure 6.2). Visually, they are qualitatively similar to the Tayside and Forth

Valley datasets but are acquired from a Chinese population.

To facilitate deep learning experiments, the four skin lesion datasets

used in this chapter were intentionally restricted to a set of seven diagnos-

tic categories. The specific seven categories were chosen based on their

representation across the four datasets. For example, vascular lesions

were excluded from the ISIC 2019 dataset, and classes such as angioma

and solar lentigo were excluded from the Tayside dataset because they

were not well represented in the other two datasets. The ISIC 2019, SD-

260, Tayside, and Forth Valley data subsets used in the chapter contained

25,078, 13,814, 2,213, and 1,510 images, respectively (Table 6.1).

6.3.2 Training Parameters

In this chapter, two methods for image classification using deep learning

were employed. The first method was a CNN, specifically an EfficientNet

architecture (Tan and Le, 2019) with a compound coefficient of 7 and

an additional fully connected layer of 512 neurons preceding the output

6GitHub Repository: github.com/UoD-CVIP/Lesion-Classifier
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(a) Melanoma (b) Melanocytic Nevus

(c) Basal Cell Carcinoma (d) Actinic Keratosis

(e) Benign Keratosis (f) Dermatofibroma

(g) Squamous Cell Carcinoma

Figure 6.2: Example images from the SD-260 dataset (Yang et al., 2019).
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Table 6.1: Number of images per diagnosis in each dataset.

ISIC 2019 SD-260 Tayside Forth Valley Total

Benign

Actinic Keratosis (B52) 867 1,434 414 143 2,858

Dermatofibroma (X9002) 239 303 56 77 675

Naevus, Melanocytic (X31z) 12,875 1,401 575 530 15,381

Seborrhoeic Keratosis (X01) 2,624 1,133 537 289 4,583

Malignant

Melanoma (X41) /

Melanoma in situ

(X40)

4,522 7,094 78 204 11,898

Squamous Cell Carcinoma (X12) /

Squamous Cell

Carcinoma in situ (X11)

628 17 175 89 909

Basal Cell Carcinoma (X20) 3,323 2,432 378 178 6,311

Total 25,078 13,814 2,213 1,510 42,615

layer. The second method was a SWIN-B transformer (Liu et al., 2021),

a state-of-the-art visual transformer network for image classification.

Subsequent training sessions were conducted for 40 epochs, with the

model being saved each time the lowest validation loss was achieved. The

weights were optimised using stochastic gradient descent with batches of

16 images and a triangular2 cyclical scheduler (Smith, 2017), which al-

ternated the learning rate between 10−5 and 10−2 and the momentum

between 0.8 and 0.9. All images were pre-processed by cropping, resiz-

ing to 224 x 224 pixels, and normalising the pixel values between 0.0

and 1.0. To improve fine-tuning generalisation, data augmentation was

used, specifically a variety of geometric and photometric changes ap-

plied at random when sampling. Horizontal and vertical flips, cropping

and padding, affine transforms, Gaussian, average, and median blurring,

sharpening, adding to channels, and multiplying channels by arbitrary

amounts specifically.

Given an image, the deep network models predicted class probabil-

ities for each of the seven diagnostic classes. These probabilities were

constrained, by definition, to sum to one. Three of the seven classes

represented malignant lesions. By summing the probabilities of these

three classes, the probability that the observed lesion is malignant, as-

suming the class probabilities computed were well-calibrated (Chapter

4). This was used to evaluate the ability of the EfficientNet CNN and

SWIN transformer models to identify malignant lesions. Specifically,

ROC curves were used to quantify the sensitivity-specificity trade-offs

that can be obtained on the macroscopic image datasets.
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6.3.3 Experiment Setup

The ability of the models to classify lesion images from each dataset was

first evaluated after training on images from that same dataset. When

utilising the larger datasets, ISIC 2019 and SD-260, a disjoint split of 60%

for training, 20% for validation, and 20% for testing was employed. These

splits were static, and all training and testing with the datasets utilised

the same splits. In contrast, given the limited size of the Tayside and

Forth Valley datasets, 10-fold cross-validation was utilised to estimate

performance, with each fold containing disjoint training (70%), validation

(20%), and test (10%) sets. These splits were also static across each fold,

with the performance being estimated by averaging the 10 test results.

Subsequently, cross-dataset performance was evaluated by measuring

the class-balanced accuracy of each model when tested on data from

datasets not used for training the model. Deep classifiers pre-trained

with ImageNet (Deng et al., 2009) were trained on data from each of the

datasets and then tested on each of the datasets. The composition of the

training sets was identical to those used in the internal data classification

experiment.

Finally, the effect of transfer learning between the dermatology datasets

using an EfficientNet CNN and SWIM transformer models was evalu-

ated. It is noted that all models in the experiments were pre-trained

on ImageNet. Further pre-training was then performed on dermatology

datasets. The effect of transfer between the large ISIC 2019 and SD-

260 datasets was evaluated first. Secondly, the effect of transfer when

the target domains (test data) were Tayside and Forth Valley data was

investigated, utilising multi-dataset pre-training sequences, such as pre-

training on SD-260 data and then training on Forth Valley training data,

denoted “SD-260, Forth Valley” or pre-training on ISIC 2019 data, then

on SD-260 data, and finally on Tayside training data, denoted “ISIC

2019, SD-260, Tayside”.

Bootstrapping is used to evaluate model performance (100 bootstraps

were sampled); mean class accuracy is obtained for each bootstrap, and

the average mean class accuracy is presented together with the 95% con-

fidence and 95% tolerance intervals (intervals within which 95% of boot-

strapped test results lie). To describe the sensitivity-specificity trade-offs

obtained when categorising test pictures as benign or malignant, ROC

curves were constructed.
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6.3.4 Results

Table 6.2 presents the balanced class accuracies obtained using an Effi-

cientNet CNN and SWIN transformer models when trained and tested

on data from the four datasets. The diagonal entries, in bold, reflect the

internal accuracies obtained when disjoint test and training sets from

the same source dataset were used. The results of models trained using

the comparably smaller NHS datasets and then tested against the larger

datasets were excluded from these experiments. This omission is due to

the result not being necessary for the primary objective of this work,

which is to examine the results when the models are tested against the

moderately sized NHS datasets.

Table 6.2: Mean class accuracy test results for EfficientNet CNN and

SWIN classifiers trained on each of the four datasets. Bootstrapped 95%

confidence intervals are in parentheses.

Testing Dataset

Model Training Dataset ISIC 2019 SD-260 Tayside Forth Valley

CNN

ISIC 2019 0.975 (±0.0002) 0.810 (±0.0007) 0.823 (±0.0006) 0.850 (±0.0007)
SD-260 0.875 (±0.0004) 0.957 (±0.0005) 0.852 (±0.0006) 0.871 (±0.0006)
Tayside 0.881 (±0.0006) 0.857 (±0.0002)
Forth Valley 0.846 (±0.0002) 0.891 (±0.0007)

SWIN

ISCI 2019 0.978 (±0.0002) 0.788 (±0.0006) 0.812 (±0.0005) 0.853 (±0.0008)
SD-260 0.880 (±0.0004) 0.971 (±0.0005) 0.859 (±0.0006) 0.870 (±0.0007)
Tayside 0.876 (±0.0007) 0.864 (±0.0002)
Forth Valley 0.850 (±0.0002) 0.898 (±0.0007)

Overall, in the absence of training data from the target domains,

training on SD-260 data provided the best test accuracies on all test

datasets. Models trained on ISIC data did not generalise well to the

other datasets, while models trained on SD-260 data generalised slightly

better but still poorly. Fine-tuning generalisation between the Tayside

and Forth Valley datasets was better, with relatively small drops in test

accuracy. Models trained on Tayside data achieved test results on Forth

Valley data only 2.4% and 1.2% lower than test results on Tayside data.

Additionally, it was observed that models trained and tested on ISIC

data did not benefit from pre-training on SD-260; ISIC test results with

SD-260 pre-training were 98.5% and 98.5% for EfficientNet CNN and

SWIN, respectively. Similarly, models trained and tested on SD-260 data

did not benefit from pre-training on ISIC data. SD-260 test results with

ISIC pre-training were 97.2% and 96.2% for EfficientNet CNN and SWIN,

respectively.

This occurrence may be linked to the appearance of negative trans-
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Table 6.3: Mean class accuracy for EfficientNet CNN and SWIN classi-

fiers tested on Tayside and Forth Valley data having been trained with

various multi-dataset training sequences. 95% confidence intervals are in

parentheses.

Testing Datasets

Model Training Datasets Tayside Forth Valley

CNN

SD-260, ISIC 2019 0.827 (±0.0007) 0.847 (±0.0007)
ISIC 2019, SD-260 0.855 (±0.0006) 0.871 (±0.0008)
ISIC 2019, Tayside 0.877 (±0.0006) 0.875 (±0.0002)
SD-260, Tayside 0.885 (±0.0006) 0.877 (±0.0003)
ISIC 2019, SD-260, Tayside 0.880 (±0.0006) 0.869 (±0.0002)
ISIC 2019, Forth Valley 0.851 (±0.0002) 0.904 (±0.0007)
SD-260, Forth Valley 0.861 (±0.0002) 0.905 (±0.0007)

ISIC 2019, SD-260, Forth Valley 0.850 (±0.0002) 0.896 (±0.0007)

SWIN

SD-260, ISIC 2019 0.833 (±0.0005) 0.870 (±0.0007)
ISIC 2019, SD-260 0.856 (±0.0006) 0.874 (±0.0008)
ISIC 2019, Tayside 0.881 (±0.0006) 0.878 (±0.0002)
SD-260, Tayside 0.885 (±0.0006) 0.882 (±0.0002)
ISIC 2019, SD-260, Tayside 0.883 (±0.0007) 0.888 (±0.0007)
ISIC 2019, Forth Valley 0.856 (±0.0002) 0.905 (±0.0007)
SD-260, Forth Valley 0.862 (±0.0002) 0.911 (±0.0007)

ISIC 2019, SD-260, Forth Valley 0.857 (±0.0002) 0.908 (±0.0008)

fer, in which traits gained during the initial ISIC pre-training phase may

have deleterious consequences when applied to the subsequent SD-260

training regimen. As indicated by the existing literature (Wang et al.,

2019), negative transfer can be caused by a variety of causes, including

inconsistencies in feature alignment, discordant patterning, instances of

overfitting, and, most significantly, domain shift. In this specific context,

the perceptible disparity in the relevance of knowledge gained from the

ISIC domain versus its application to the SD-260 training domain may

underpin the emergence of optimisation challenges, potentially culminat-

ing in entrapment within local minima configurations.

Table 6.3 reports balanced class accuracies when EfficientNet CNN

and SWIN transformers were tested on Tayside and Forth Valley data

after various multi-dataset training sequences. In each case, pre-training

on SD-260 data followed by fine-tuning on data from the target domain

was found to be effective.

The results are also illustrated in Figure 6.3 which shows how test

accuracies changed when different datasets were used for training and

transfer learning. It was observed that training only on the large ISIC
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(a) Testing on the Tayside dataset.

(b) Testing on the Forth Valley dataset.

Figure 6.3: Mean class accuracy results for EfficientNet CNN (blue) and

SWIN (orange) benign-malignant classifiers tested on (a) Tayside and

(b) Forth Valley data. Bars indicate 95% tolerance intervals computed

using bootstrap. The plots on the left are from classifiers trained only

on public domain datasets. The plots on the right are cross-validation

results from classifiers pre-trained using public domain datasets and then

fine-tuned using data from the target domain, i.e., Tayside and Forth

Valley, respectively.

and SD-260 datasets gave relatively poor results, while training on a

small dataset from the target domain, after pre-training only on Ima-

geNet, performed better. The most accurate models were obtained by

pre-training on the large dermatology datasets followed by further train-

ing on data from the target domain.

Figure 6.4 illustrates the extent to which models trained for the Tay-

side domain were able to generalise to the Forth Valley domain, and
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vice-versa. The solid curves plot the accuracies obtained when training

on data from the test domain, with and without pre-training on the large

public domain datasets. Dashed curves plot accuracies when training on

data from the other test domain. The drops in accuracy when generalis-

ing between Tayside and Forth Valley dataset were 2-3% using the SWIN

transformer model.

The 95% confidence intervals shown in Tables 6.2 and 6.3 are always

small, always encompassing a range less than ±, 0.001. This result in-

dicates a higher level of statistical dependability in the estimated values

of the parameters under consideration. It specifically suggests that the

models under consideration have a remarkable amount of robustness, and

the predictions they provide have a respectable level of resilience. In con-

trast, the visual representations shown in Figures 6.3, 6.4, and 6.5 use

95% tolerance intervals rather than confidence intervals since the latter

were regarded too small. These tolerance intervals represent the upper

and lower boundaries of the generated bootstrap samples’ central 95%

distribution.

Finally, binary classification performance in the form of ROC curves

is reported in Figure 6.5. These curves were generated using models

pre-trained on SD-260 prior to training on either Tayside or Forth Val-

ley data. It was observed that the Forth Valley curves dominated the

Tayside curves, and curves for models trained on the test domain dom-

inated curves trained on the other domain. This occurrence is arguably

due to the noticeably higher quality of the Forth Valley photos, as seen

in Figure 6.1, primarily in terms of properties such as lighting, spatial

alignment, and proportional scale. As a result, the classification model

can have a concentrated focus on the knowledge of the key lesion char-

acteristics avoiding involvement with these variables.

6.4 Conclusion

It is well-established that deep learning classifiers benefit from large train-

ing sets. However, it is also known that test performance is negatively

affected by variations in image acquisition, image quality, and the pop-

ulation being imaged. This presents challenges in the development of

dermatology diagnostic systems that can be deployed in multiple sites,

as such conditions can vary geographically and over time. Curation of

large datasets can be costly at a local level, yet learning systems need to
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be attuned to local conditions.

The results suggest that the SWIN transformer should be preferred

over the EfficientNet convolutional neural network. The transformer ob-

tained accuracies of 98% and 97% on the ISIC 2019 and SD-260 test

datasets, provided it was trained on data from the same domain. How-

ever, cross-domain fine-tuning (training on ISIC 2019 and testing on

SD-260) led to a weaker 79% accuracy. Training on SD-260 and testing

on ISIC 2019 yielded a better 88% accuracy, possibly due to the more

varied nature of the SD-260 dataset (Table 6.2).

The ISIC 2019 and SD-260 datasets are relatively large, though still

not comparable to datasets used for deep learning in computer vision.

The focus of this chapter was how to obtain good performance on chal-

lenging local data with limited availability of diagnostic labels. The two

NHS datasets used to explore this question were sourced from Tayside

and Forth Valley, the latter having images of more consistent and higher

quality than the former. Transformers yielded accuracies of 88% and

90%, respectively, when trained and tested on data from these domains.

This was better than results obtained by training on the larger SD-260

and ISIC 2019 datasets (Figure 6.3), highlighting the benefit of training

with data from the local target domain. It was found that by pre-training

on SD-260 and then on data from the local target domain, further in-

creases to 89% and 91% were obtained (Figure 6.4, solid blue lines).

Given their geographical proximity, Tayside and Forth Valley data are

from similar populations, so one might expect good cross-domain fine-

tuning generalisation between them. However, training on data from

one (with appropriate pre-training for transfer) and testing on the other

gave accuracies 2-3% lower than testing on the same domain. This is

likely due to differences in image acquisition. ROC curves were used to

indicate sensitivity-specificity trade-offs (Figure 6.5). In a triage setting,

relatively low specificity can be acceptable in return for very high sensi-

tivity, especially for melanoma. A combination of pre-training on public

macroscopic data, followed by tuning to local data, gave promising re-

sults. However, further improvements are needed for deployment in a

real clinical pathway.
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(a) Testing on the Tayside dataset.

(b) Testing on the Forth Valley dataset.

Figure 6.4: Mean class accuracy results for EfficientNet CNN (blue) and

SWIN (orange) benign-malignant classifiers tested on (a) Tayside and

(b) Forth Valley data. Bars indicate 95% tolerance intervals computed

using bootstrap. The x-axis indicates the datasets used for pretraining

and the image legend indicates the fine-tuning dataset. All classifiers

were first pre-trained with ImageNet. Solid lines: fine-tuned on Tayside;

Dashed lines: fine-tuned on Forth Valley.
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(a) ROC curve for EfficientNet CNN classifiers.

(b) ROC curve for SWIN transformer classifiers.

Figure 6.5: ROC curves for (a) CNN and (b) SWIN classifiers tested on

Tayside (blue) and Forth Valley (orange) datasets. All curves were gener-

ated using classifiers pre-trained on SD-260 prior to fine-tuning on either

Tayside data (solid lines) or Forth Valley data (dashed lines). Shaded

areas indicate 95% tolerance intervals computed using bootstrap.
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Chapter 7

Conclusions and

Recommendations

7.1 Summary of Contributions

This thesis represents a contribution to the field of medical image analysis

and machine learning, pursuing two primary aims. Firstly, it aims to ad-

dress the challenge of limited annotated data, particularly for histopatho-

logical whole slide images, by utilising active learning and unsupervised

learning techniques. Secondly, it seeks to enhance the accuracy of asym-

metrical selective classification for skin lesion images. Additionally, the

thesis presents secondary contributions in the areas of predictive proba-

bility calibration and dataset fine-tuning generalisation.

7.1.1 Scarcity of Annotations

How can a deep learning model be effectively trained to achieve optimal

performance when faced with a scarcity of annotations, and a large corpus

of unannotated data?

To achieve this aim, the first choice of method investigated was active

learning, as it is a type of machine learning that seeks to select the most

beneficial unannotated data for the model to annotate (Settles, 2009).

However, this led to the identification of limitations of active learning

and its application to histopathology patches, where nuclei patches may

be difficult to annotate. Chapter 2 introduced an active-learning frame-

work designed to select tiles composed of multiple patches for annotation

with a view to making the annotation task easier and thus increasing an-

notation throughput (Carse and McKenna, 2019). The efficacy of this

framework was evaluated using various query strategies on nuclei classi-
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fication tasks by employing CNNs trained on small patches containing

single nuclei.

The results suggest that traditional active-learning approaches are

less effective when applied to deep-learning models, while specialised

active-learning techniques for deep-learning fail to outperform random

sampling baselines. This phenomenon has been previously noted in liter-

ature on active deep-learning (Ren et al., 2021) and underscores the need

for more robust active-learning methods in this domain. Although this

chapter demonstrates that active learning holds promise as a means to

address these challenges, further research is required to achieve significant

improvements on tasks such as those presented herein. This motivated an

investigation into unsupervised learning techniques as a complementary

approach.

As discussed in Chapter 2, active learning alone may not provide

representative enough features for a deep learning model to learn from

the annotated data. This leads to the investigation of unsupervised

representative learning techniques, which can enable a model to learn

generalisable representative features from the unannotated data, which

can then be fine-tuned. Chapter 3 proposed a modification to the CPC

framework (van den Oord et al., 2018) for digital pathology patch clas-

sification. The modification involved using an alternative infilling-style

mask to construct the latent context and a multi-directional PixelCNN

autoregressor (van den Oord et al., 2016).

The experiments conducted to evaluate the proposed modification to

the CPC framework revealed that the original implementation of CPC

is not well-suited for patch-based digital pathology tasks. However, the

proposed multi-directional modifications to the CPC led to better results

and improved classification accuracies on transfer learning tasks, where

access to annotated data is limited (Carse, Carey and McKenna, 2021).

Thus, the combination of active learning and unsupervised representation

learning holds promise in digital pathology tasks.

While not inherently tied to immediate clinical use, the concurrent

application of these approaches has the potential to aid engineers and

researchers in their efforts to train machine learning models specialised

for the processing of medical images. This technique could result in

cost savings and the elimination of time-consuming annotation duties for

doctors, whose engagement in data annotation would be reduced.
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7.1.2 Asymmetrical Selective Classification

To what extent can selective classification techniques be applied in order

to mitigate the costs associated with asymmetrical misdiagnosis of skin

lesion images?

Chapter 5 presents an investigation into the efficacy of selective clas-

sification as a potential solution to asymmetrical misdiagnosis in skin

lesion images. The research aims to address this issue through the explo-

ration of cost-sensitive classification techniques in both binary triage and

multi-class disease classification scenarios using a dermatology dataset.

The chapter draws on the expertise of clinical dermatologists to provide

asymmetrical misclassification costs based on healthcare economic esti-

mations. Methods for uncertainty estimation with neural networks and

probability calibration were evaluated, and a novel modification to Selec-

tiveNet (Geifman and El-Yaniv, 2019), known as EC-SelectiveNet (Carse,

Süveges, Hogg, Trucco, Proby, Fleming and McKenna, 2021), was pro-

posed.

The results suggest that SelectiveNet exhibited inferior performance

compared to other selective classification methods, except for when it

was trained with a target coverage of 1.0. In contrast, EC-SelectiveNet,

trained with a target coverage of 1.0, consistently outperformed all other

methods in both binary and multi-class settings in the presence of asym-

metrical costs. The utilisation of Bayesian neural networks had minimal

effect on the predictions when averaged in any setting. Interestingly,

the use of various uncertainty measures resulted in different outcomes,

with the predictive entropy measure surpassing all others, particularly

in an asymmetric setting, while the variational ratios performed poorly

in both symmetric and asymmetric cost settings. The data also revealed

that using temperature scaling to calibrate predictions to optimise dis-

cerning classification resulted in increased costs, particularly at higher

coverage thresholds in the context of imbalanced cost scenarios. While

this strategy may be useful in situations requiring limited coverage, its

benefits may not outweigh the negative consequences identified in sit-

uations requiring heightened coverage. The chapter evaluated diverse

selective classification settings and underscores the need for further re-

search to advance selective classification methods and comprehend their

performance in asymmetrical cost settings.

These efforts are critical in the context of adopting classification ap-

proaches in clinical settings, which are characterised by pervasive asym-
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metrical costs and an inherent limitation on the feasibility of classifying

all images. This situation emphasises the importance of incorporating

rejection mechanisms. The combination of these techniques with estab-

lished clinical workflows has the potential to yield exclusive predictions

only for data instances that can be accurately classified by the model.

Even if this threshold is only 20%, the resulting reduction in clinician

burden corresponds to a significant one-fifth reduction.

7.1.3 Secondary Contributions

Predictive Probability Calibration

Calibration denotes the systematic procedure of conforming the antici-

pated probabilities of a model with the authentic probabilities of the tar-

get variable (Guo et al., 2017). Poor calibration performance in modern

deep neural networks can hinder the calculation of a model’s uncertainty,

thereby affecting uncertainty-dependent techniques like active learning

and cost-sensitive decision-making (Carse, Süveges, Hogg, Trucco, Proby,

Fleming and McKenna, 2021). To address this, Chapter 4 presented

an empirical investigation of calibration techniques on two medical im-

age classification tasks: multi-class dermatology classification and bi-

nary histopathology image classification. The chapter implemented tem-

perature scaling, optimising the temperature parameter using various

calibration measures rather than the standard negative log-likelihood.

This method was applied to networks trained with one-hot encoding and

cross-entropy loss, as well as networks trained with focal loss and label

smoothing. Two Bayesian neural network approaches were also utilised

for comparison. The results demonstrated that while alternative cali-

bration metrics may not provide significant advantages for tuning tem-

perature, temperature scaling of networks trained with focal loss and

appropriate hyperparameters exhibited robust performance in terms of

both calibration and accuracy across both datasets (Carse et al., 2022).

The calibration techniques discussed in this thesis are directly applicable

to clinical applications, as they provide a means to improve clinicians’

understanding of prediction uncertainties and the level of trust that they

can appropriately ascribe to recommendations derived from neural net-

work analyses.
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Dataset Fine-Tuning

In chapters 2, 3, 4 and 5, open-source datasets were utilised to train

and evaluate deep learning models. However, it is important to note

that although large open-source datasets are useful for experimentation,

the models produced may not be suitable for clinical use (Wu et al.,

2022). To address this concern, Chapter 6 conducts an investigation to

determine the generalisability of models trained with open-source data

when fine-tuned to locally collected macroscopic datasets from primary

care referrals. Two types of neural networks, a CNN and a transformer,

were employed to evaluate the model’s generalisation performance on

two open-source datasets and two smaller locally collected datasets from

the NHS. The findings emphasise the significance of assessing the fine-

tuning of deep learning algorithms for macroscopic skin lesion images in

real-world settings. Moreover, the chapter highlights the potential ben-

efits of utilising large public macroscopic datasets for pre-training and

fine-tuning the algorithms with smaller local datasets. This could be

clinically useful as it means that models could be fine-tuned for individ-

ual populations instead of focusing on large general models expected to

perform on a global distribution.

7.2 Limitations and Future Work

This section describes the limitations of this thesis as well as outlining

potential avenues for further research and areas for improvement.

7.2.1 Annotator Efficient Active Learning

Chapter 2 presented an investigation into improving annotation through-

put on deep active learning methods for histopathology patches, with the

goal of expanding the volume of annotations gathered while minimising

annotation costs. The proposed approach entails simplifying the anno-

tation task to optimise annotator time allocation. Notably, there has

been limited research on enhancing annotator efficiency for medical im-

age analysis (Ren et al., 2021), and further investigation is warranted

across diverse modalities. One possible avenue for exploration involves

the application of established methods that address asymmetrical anno-

tation costs, such as CEREALS (Mackowiak et al., 2018), to tasks like

whole-slide segmentation, where the costs of obtaining annotations are

typically uniform (Budd et al., 2021).

7.2. Limitations and Future Work 116



Chapter 7. Conclusions and Recommendations Jacob Carse

The experiments relied on simulated active learning scenarios in which

annotations had already been collected and provided automatically upon

query. This approach allowed for rapid development of active learning

query strategies but did not enable investigation into how a human in the

loop would interact with the active learning scenario. Another limita-

tion of the experiments was the dataset used, which was an open-source

dataset that had been pre-filtered by selecting the best examples and

removing any challenging examples or anomalies that could arise in real-

world scenarios where an active learning query system would need to be

employed. Therefore, these experiments may not fully capture the com-

plexities and challenges of active learning in real-world settings. Both of

these can be mitigated in future by using real unannotated datasets con-

ducting a case study by having clinicians annotate sets of queried data

from different query strategies.

The evidence in Chapter 2 shows that current active learning query

strategies don’t perform much better than random querying. This sug-

gests that there is room for improvement in developing new strategies.

One promising research direction would be to explore the integration of

batch-aware active learning and semi-supervised learning. This could be

achieved by designing an active learning query strategy that places em-

phasis on improving the semi-supervised learning performance. One such

attempt has been made for a scoring query strategy like CEAL (Wang

et al., 2016), which merges softmax response active learning with the

semi-supervised method of pseudo labelling. Despite its rudimentary

nature, this approach demonstrated encouraging results and is open to

further improvement.

7.2.2 Unsupervised Representation Learning

Chapter 3 delved into the topic of unsupervised representation learning,

an area that has witnessed significant progress and continues to be a

subject of active development. Although much of the research in this

field has been centred around image datasets such as ImageNet (Deng

et al., 2009), it is important to note that the developed methods may not

be optimally suited for medical image datasets. An alternative approach

involves disentanglement methods that aim to learn a model capable of

identifying and disentangling the underlying factors in the observable

data. A recent survey paper by Liu et al. (2022) provides an overview of

such methods. In the context of histopathological patches, disentangle-
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ment can facilitate the production of feature representations that capture

variations in slide staining, among other factors. These features, when

used in conjunction with transfer learning, can yield improved accuracy

and generalisation performance on new data.

7.2.3 Predictive Probability Calibration

The experimental findings presented in Chapter 4 indicate that tempera-

ture scaling (Guo et al., 2017) optimised with any measure of calibration

can effectively enhance calibration for multi-class classification tasks. As

a post-hoc calibration method, temperature scaling is readily applica-

ble to pre-trained models and does not interfere with the model train-

ing process. These results suggest that future research should prioritise

the further development and refinement of post-hoc calibration methods.

While temperature scaling involves the learning of a single scaling value

for model calibration, recent work investigates alternative post-hoc cali-

bration methods that warrant further exploration (Song et al., 2021). In

order to assess the performance of these methods, appropriate evaluation

metrics must be developed and investigated.

The evaluation of calibration is a crucial aspect in the development

of classification systems. Despite its significance, the determination of

accurate calibration measures remains a subject of active research, al-

though efforts have been made to incorporate them into various medi-

cal image analysis studies (Maier-Hein et al., 2022). In Chapter 4, the

KDE-ECE (Zhang et al., 2020) approach was employed to quantify the

calibration of the trained models. This measure evaluates the overall cal-

ibration performance across the confidence and correctness distribution.

It is noteworthy that KDE-ECE is just one of several calibration mea-

sures and should be used in conjunction with other approaches, such as

the maximum calibration error, which indicates the maximum calibration

error of a bin rather than the weighted average of errors. Furthermore,

there is scope for exploring alternative calibration measures, such as those

proposed by Nixon et al. (2019).

7.2.4 Asymmetrical Selective Classification

In Chapter 5, experiments are presented on selective classification of

skin lesion images with both symmetrical and asymmetrical misdiagnosis

costs. The asymmetrical costs utilised in this chapter were derived from

rough estimates provided by a consultant-level dermatologist. However,
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these costs are subject to variation based on local healthcare economics

and are likely to change over time. Consequently, the development of

additional asymmetrical costs for realistic settings is necessary for the

evaluation of future algorithms in a practical environment.

The findings presented in Chapter 5 suggest that both Bayesian and

SelectiveNet (Geifman and El-Yaniv, 2019) models encountered chal-

lenges in symmetrical and asymmetrical environments during selective

classification experiments. The most effective model was found to be the

standard CNN model utilising expected costs, which exhibited good cal-

ibration and performance. Temperature scaling (Guo et al., 2017), the

only calibration method evaluated, did not meet expectations. However,

optimising decision calibration (Zhao et al., 2021) of the models could

potentially enhance selective classification performance in asymmetrical

misclassification cost environments. This could involve extending asym-

metrical decision calibration to facilitate selective classification of skin

lesions by incorporating the option to reject an image due to excessive

expected loss.

7.2.5 Dataset Fine-Tuning

In Chapter 6, the generalisability of models trained with skin lesion

datasets by fine-tuning to other datasets is investigated. Based on the

findings of this investigation, it is concluded that future research efforts

should prioritise the exploration of techniques that can effectively adapt

cross-domain models. This should be done by considering the varying

costs associated with misdiagnoses of different types, with a particular

focus on making cost-sensitive classification decisions (Guan et al., 2021,

Carse, Süveges, Hogg, Trucco, Proby, Fleming and McKenna, 2021).

To improve the accuracy of classification decisions, incorporating well-

calibrated classifiers is recommended. This approach would enable the

implementation of selective classification decisions. Furthermore, to en-

hance the performance of deep learning algorithms, it is essential to ac-

quire and annotate data in a prospective manner during dermatology

consultant triaging and clinical work. This would ultimately lead to the

creation of larger local datasets that would be beneficial in improving the

performance of the algorithms. However, it is important to acknowledge

that the findings of this chapter, similar to other studies, are limited by

the restricted number of critical diagnostic categories that are examined.

Although including more diagnostic categories comes with its own issues
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known as the long tail problem where the more diseases are included,

they are less represented in the training data (Roy et al., 2022).
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0.75, testing on the Sin distribution.
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Experiments using a SelectiveNet model trained for a target coverage of

0.75, testing on the Sunknown distribution.
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Experiments using a SelectiveNet model trained for a target coverage of

0.75, testing on the Scombined distribution.
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Experiments using a SelectiveNet model trained for a target coverage of

0.8, testing on the Sin distribution.
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Experiments using a SelectiveNet model trained for a target coverage of

0.8, testing on the Sunknown distribution.
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Experiments using a SelectiveNet model trained for a target coverage of

0.8, testing on the Scombined distribution.
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Experiments using a SelectiveNet model trained for a target coverage of

0.85, testing on the Sin distribution.
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Experiments using a SelectiveNet model trained for a target coverage of

0.85, testing on the Sunknown distribution.
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Experiments using a SelectiveNet model trained for a target coverage of

0.85, testing on the Scombined distribution.
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Experiments using a SelectiveNet model trained for a target coverage of

0.9, testing on the Sin distribution.
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Experiments using a SelectiveNet model trained for a target coverage of

0.9, testing on the Sunknown distribution.
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Experiments using a SelectiveNet model trained for a target coverage of

0.9, testing on the Scombined distribution.
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Experiments using a SelectiveNet model trained for a target coverage of

0.95, testing on the Sin distribution.
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Experiments using a SelectiveNet model trained for a target coverage of

0.95, testing on the Sunknown distribution.
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Experiments using a SelectiveNet model trained for a target coverage of

0.95, testing on the Scombined distribution.
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Experiments using a SelectiveNet model trained for a target coverage of

1.0, testing on the Sin distribution.
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Experiments using a SelectiveNet model trained for a target coverage of

1.0, testing on the Sunknown distribution.
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Experiments using a SelectiveNet model trained for a target coverage of

1.0, testing on the Scombined distribution.
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B.2 Multi-Class Classification Experiment

Results

Experiments using a standard CNN with symmetrical costs.

Experiments using a standard CNN with asymmetrical costs.
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Experiments using a SelectiveNet model with a target coverage of 0.7

with symmetrical costs.

Experiments using a SelectiveNet model with a target coverage of 0.7

with asymmetrical costs.
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Experiments using a SelectiveNet model with a target coverage of 0.75

with symmetrical costs.

Experiments using a SelectiveNet model with a target coverage of 0.75

with asymmetrical costs.
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Experiments using a SelectiveNet model with a target coverage of 0.8

with symmetrical costs.

Experiments using a SelectiveNet model with a target coverage of 0.8

with asymmetrical costs.
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Experiments using a SelectiveNet model with a target coverage of 0.85

with symmetrical costs.

Experiments using a SelectiveNet model with a target coverage of 0.85

with asymmetrical costs.
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Experiments using a SelectiveNet model with a target coverage of 0.9

with symmetrical costs.

Experiments using a SelectiveNet model with a target coverage of 0.9

with asymmetrical costs.

Experiments using a SelectiveNet model with a target coverage of 0.95

with symmetrical costs.
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Experiments using a SelectiveNet model with a target coverage of 0.95

with asymmetrical costs.

Experiments using a SelectiveNet model with a target coverage of 1.0

with symmetrical costs.
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Experiments using a SelectiveNet model with a target coverage of 1.0

with asymmetrical costs.

Experiments using a Bayesian model with Monte Carlo Dropout with

symmetrical costs.
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Experiments using a Bayesian model with Monte Carlo Dropout with

asymmetrical costs.

Experiments using a Bayesian model trained using Bayes-by-Backprop

with asymmetrical costs.
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Experiments using a Bayesian model trained using Bayes-by-Backprop

with asymmetrical costs.

Experiments using a Bayesian model trained using Laplace Approxima-

tion with symmetrical costs.
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Experiments using a Bayesian model trained using Laplace Approxima-

tion with asymmetrical costs.
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