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Abstract

As more and larger event stream datasets for professional sports become available, there is growing

interest in modeling the complex play dynamics to evaluate player performance. Among these mod-

els, a common player evaluation method is assigning values to player actions. Traditional action-

values metrics, however, consider very limited game context and player information. Furthermore,

they provide directly related to goals (e.g. shots), not all actions. Recent work has shown that re-

inforcement learning provided powerful methods for addressing quantifying the value of player

actions in sports. This dissertation develops deep reinforcement learning (DRL) methods for esti-

mating action values in sports. We make several contributions to DRL for sports.

First, we develop neural network architectures that learn an action-value Q-function from sports

events logs to estimate each team’s expected success given the current match context. Specifically,

our architecture models the game history with a recurrent network and predicts the probability that

a team scores the next goal. From the learned Q-values, we derive a Goal Impact Metric (GIM) for

evaluating a player’s performance over a game season. We show that the resulting player rankings

are consistent with standard player metrics and temporally consistent within and across seasons.

Second, we address the interpretability of the learned Q-values. While neural networks provided

accurate estimates, the black-box structure prohibits understanding the influence of different game

features on the action values. To interpret the Q-function and understand the influence of game

features on action values, we design an interpretable mimic learning framework for the DRL. The

framework is based on a Linear Model U-Tree (LMUT) as a transparent mimic model, which facil-

itates extracting the function rules and computing the feature importance for action values.

Third, we incorporate information about specific players into the action values, by introducing a

deep player representation framework. In this framework, each player is assigned a latent feature

vector called an embedding, with the property that statistically similar players are mapped to nearby

embeddings. To compute embeddings that summarize the statistical information about players, we

implement a Variational Recurrent Ladder Agent Encoder (VaRLAE ) to learn a contextualized

representation for when and how players are likely to act.

We learn and evaluate deep Q-functions from event data for both ice hockey and soccer. These are

challenging continuous-flow games where game context and medium-term consequences are crucial

for properly assessing the impact of a player’s actions.

iii



Keywords: Action-Value Q-function; Deep Reinforcement Learning; Mimic Learning; Regression

Tree; Deep Representation Learning; Variational Auto-Encoder.

iv



Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Oliver Schulte, for his

consistent support and and invaluable guidance throughout my Ph.D. study. All of his patience, mo-

tivation, enthusiasm, and immense knowledge encouraged me to finish my research. His insightful

vision and profound knowledge led me to become an independent researcher. The great role he sets

for me will always inspire me to pursue the real knowledge in the rest of life.

I am very grateful to all the other committee members, including Prof. Tim Swartz as the su-

pervisor, Prof. Kangkang Yin as the internal examiner, Prof. Jesse Davids as the external examiner,

and Prof. Nick Summer as the chair. They provided constructive comments and helpful feedback to

my Ph.D. thesis, which effectively encourages my future study and research.

My sincere thanks also goes to all of those with whom I have had the pleasure to work during

this project and other related work, especially Fangxin Wang, Yudong Luo, Xiangyu Sun and Mohan

Zhang. Each of them has provided me additional personal and professional guidance and I learned

a lot about both scientific research and life in general from them.

Last but not least, nobody has been more important to me in the pursuit of this degree than my

family members, in particular Grace Bi. I would like to thank my parents, whose love and guidance

are always with me in whatever I pursue.

v



Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements v

Table of Contents vi

List of Tables x

List of Figures xiii

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Related Work 5
2.1 A Review of Action-Value Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Single Action-Value Counts . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Multiple Actions-Value Counts . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Value-Above-Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 A Review of Sports Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Box Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Play-by-Play Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Game Tracking Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Video Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Preliminaries 13
3.1 Markov Model for Sports Games . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Partially Observable Markov Decision Processes . . . . . . . . . . . . . . 13

3.1.2 Markov Game Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.3 Play Dynamics in Sports Games . . . . . . . . . . . . . . . . . . . . . . . 14

vi



3.2 Domain Knowledge: an Introduction to the Game Rules . . . . . . . . . . . . . . . 15

3.2.1 Ice Hockey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Soccer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 The Play-by-Play Sports Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 The Ice Hockey Datatset . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 The Soccer Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Learning an Action-Value function for Evaluating Ice Hockey players with Deep
Reinforcement Learning 20
4.1 Introduction: Valuing Actions of Ice Hockey Players . . . . . . . . . . . . . . . . 20

4.2 Task Formulation and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Play Dynamics in NHL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Learning Q values with DP-LSTM Sarsa . . . . . . . . . . . . . . . . . . . . . . . 23

4.4.1 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4.2 Illustration of Temporal Projection . . . . . . . . . . . . . . . . . . . . . . 24

4.4.3 Illustration of Spatial Projection . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 Player Evaluation Metric Based on Q values . . . . . . . . . . . . . . . . . . . . . 25

4.5.1 Goal Impact: Deriving Action Values from Q-values. . . . . . . . . . . . . 26

4.5.2 Q Value Above Average Replacement . . . . . . . . . . . . . . . . . . . . 27

4.5.3 Rank Players with GIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.6.1 Comparison Player Evaluation Metrics . . . . . . . . . . . . . . . . . . . 30

4.6.2 Season Totals: Correlations with standard Success Measures . . . . . . . . 30

4.6.3 Round-by-Round Correlations: Predicting Future Performance From Past

Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6.4 Future Seasons: Predicting Players’ Salary . . . . . . . . . . . . . . . . . 32

4.6.5 Cross-Season Correlations: Measuring the consistency of GIM between sea-

sons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Extending the Action-Value Function for Evaluating Soccer Players 36
5.1 Introduction: Valuing Actions of Soccer Players . . . . . . . . . . . . . . . . . . . 36

5.2 Learning Q Values: Model Architecture and Training . . . . . . . . . . . . . . . . 37

5.2.1 Model Architecture: Function Approximation with Neural Network . . . . 37

5.2.2 Weight Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Model Validation: Q Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.1 Illustration of Temporal and Spatial Projection. . . . . . . . . . . . . . . . 39

5.3.2 Calibration Quality for the learned Q-function . . . . . . . . . . . . . . . . 42

5.4 Player Ranking: Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4.1 All-Actions Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



5.4.2 Action-Specific Assessment . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5 Player Ranking: Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5.1 Comparison Player Evaluation Metrics . . . . . . . . . . . . . . . . . . . 46

5.5.2 Season Totals: Correlations with Standard Success Measures . . . . . . . . 47

5.5.3 Round-by-Round Correlations: Predicting Future Performance From Past

Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Understanding the Action Values with Interpretable Mimic Learning 51
6.1 Introduction: Mimic a Deep Reinforcement Learner . . . . . . . . . . . . . . . . . 51

6.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.1 Mimic Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.2 U-Tree Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 Mimic Learning for Sports Environment . . . . . . . . . . . . . . . . . . . . . . . 53

6.3.1 Mimic Learning with a Regression Tree . . . . . . . . . . . . . . . . . . . 53

6.3.2 Mimic Learning with a Linear Model U-Tree . . . . . . . . . . . . . . . . 59

6.4 Mimic Learning for Active Deep Reinforcement Learning . . . . . . . . . . . . . 67

6.4.1 Mimic Learning Framework for DRL . . . . . . . . . . . . . . . . . . . . 67

6.4.2 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Embedding Player Information with Representation Learning 76
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.3 Player Representation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3.1 Contextual Variables for Ice Hockey Players . . . . . . . . . . . . . . . . . 78

7.3.2 Player Representation via Player Generation . . . . . . . . . . . . . . . . . 79

7.4 A Variational Agent Encoder for Learning Agent Representations . . . . . . . . . 80

7.5 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.5.1 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.5.2 Generative Performance of Embedding Models: On-Puck Player Identification 83

7.5.3 Predictive Performance On Application Tasks . . . . . . . . . . . . . . . . 84

7.5.4 Posterior Collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8 Conclusion, Discussion, and Future Directions 89
8.1 Summary of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.2.1 The Sparsity of Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.2.2 Model Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

viii



8.2.3 Learning Contextualized Representations. . . . . . . . . . . . . . . . . . . 91

8.2.4 Shrinkage Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.2.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.3.1 Model Game History with Attention Mechanism . . . . . . . . . . . . . . 92

8.3.2 Information Bottleneck Method for Mimic Learning . . . . . . . . . . . . 93

8.3.3 Multi-Agent Embedding for Player Representations . . . . . . . . . . . . . 93

Bibliography 94

A Appendix 102
A.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.2 VAEP Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.3 Ranking for the Premier League . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.4 Actions Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.5 Generating the Spatial Projections . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.6 A Spatial Illustration for the Shot Attempts . . . . . . . . . . . . . . . . . . . . . 105

ix



List of Tables

Table 2.1 A summary of the previous +/- based approaches. . . . . . . . . . . . . . . 6

Table 2.2 A summary of the previous XG based approaches. . . . . . . . . . . . . . . 7

Table 2.3 A summary of the multiple actions-value counts approaches. . . . . . . . . . 7

Table 2.4 An example of box scores for NBA players. It summarizes the player perfor-

mance of a game and reports the basketball statistics including playing Min-

utes (Min), points (PTS), field goals made/attempted/percentage (FGM/FGA/FG%)

and three-point field goals made/attempted/percentage (3PM/3PA/3P%). . . 10

Table 2.5 An example of box scores for NBA teams. It summarizes the team perfor-

mance of a game and reports the basketball statistics including playing Min-

utes (Min), points (PTS), field goals made/attempted/percentage (FGM/FGA/FG%)

and three-point field goals made/attempted/percentage (3PM/3PA/3P%). . . 10

Table 2.6 An example of a play-by-play data sample featuring team scoring: a sequence

of events where home team scores and then away team scores. The rewards

[1,0,0] and [0,1,0] indicate the scoring event of the home team and away team

respectively. We skip some events in the middle due to space issues. . . . . . 11

Table 3.1 Dataset statistics for the Ice Hockey dataset. The basic unit of this dataset is

an event, which describes the game context and the on-the-ball action of a

player at a time step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Table 3.2 The complete feature list for an observation, where the manpower situation

is marked by Event Strength (ES), Short-Handed (SH) and Power Play (PP). 18

Table 3.3 Dataset Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Table 3.4 Derived Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Table 3.5 Complete feature list. For the feature manpower situation, negative values

indicate short-handed, positive values indicate power play. . . . . . . . . . 19

Table 3.6 Dataset statistics. The basic unit of this dataset is an event, which describes

the game context and the on-the-ball action of a player at a time step. . . . . 19

Table 4.1 2015-2016 Top-20 Player Impact Scores . . . . . . . . . . . . . . . . . . . 29

Table 4.2 Correlation with standard success measures. . . . . . . . . . . . . . . . . . 31

Table 4.3 Correlation with Players’ Contract . . . . . . . . . . . . . . . . . . . . . . . 32

x



Table 4.4 The pearson correlation coefficient of the players’ GIMs between two con-

tinuous seasons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 5.1 Calibration results for the spatial illustration of tackle values. . . . . . . . . 41

Table 5.2 Calibration Results. TT_Home and TT_Away report the average scoring prob-

ability Q̂team(A) estimated by our TTDP-LSTM model. Here we compare

only Q values for pass and shot as they are frequent and well-studied actions.

TT_MAE is the Mean Absolute Error (MAE) between estimated scoring

probabilities from our model and empirical scoring probabilities. For com-

parison, we also report a Markov_MAE which applies the estimates from a

discrete-state Markov model [85]. . . . . . . . . . . . . . . . . . . . . . . 43

Table 5.3 2017-2018 season top-10 Player Impact Scores for players in EFL Champi-

onship game season. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 5.4 Top-10 soccer players with largest shot impact in 2017-2018 EFL Champi-

onship game season. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 5.5 Top-10 soccer players with largest pass impact in 2017-2018 EFL Champi-

onship game season. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 5.6 Correlation with standard success measures for all the players. We bold the

highest correlations and underline the lowest ones for penalties. . . . . . . . 47

Table 5.7 Correlation with standard success measures for players in the EFL Champi-

onship. We bold the highest correlations and underline the lowest ones for

penalties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 6.1 Performance of General Mimic Regression Tree (RT) with different Mini-

mum Samples in each Leaf node (MSL). We apply ten-fold cross validation

and report the regression result with format: Mean Square Error (Variance) . 54

Table 6.2 Top 10 features for Q values. . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 6.3 Feature importance for the impact of shot. . . . . . . . . . . . . . . . . . . 55

Table 6.4 Feature importance for the impact of pass. . . . . . . . . . . . . . . . . . . 55

Table 6.5 Exceptional Players Based on Tree Discretization . . . . . . . . . . . . . . 59

Table 6.6 Partition Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 6.7 Fidelity to Deep Model: RMSE on Test Set . . . . . . . . . . . . . . . . . . 64

Table 6.8 Top 10 Features for the Shots for Ice Hockey Players. . . . . . . . . . . . . 65

Table 6.9 Top 10 Features for the Shots for Soccer Players. . . . . . . . . . . . . . . . 65

Table 6.10 Result of Mountain Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table 6.11 Result of Cart Pole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table 6.12 Result of Flappy Bird . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table 6.13 Game Playing Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 6.14 Feature Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xi



Table 7.1 Results for acting players identification. We report both Accuracy and Log-

Likelihood (LL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Table 7.2 Expected goal results applying different player embeddings. . . . . . . . . . 86

Table 7.3 The test set game prediction error between predicted and final score differ-

ences for the entire game. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Table A.1 2017-2018 season top-10 Player Impact Scores for players in Premier League

season. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Table A.2 Top-10 soccer players with largest shot impact in 2017-2018 Premier League

season. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Table A.3 Top-10 soccer players with largest pass impact in 2017-2018 Premier League

season. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xii



List of Figures

Figure 2.1 A tree diagram to position previous works about action-value based player

evaluation metric. An important factor is whether a metric considers all

actions or only a subset of them. . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2.2 An example of video tracking: at each video frame, the tracking system

dynamically locates the position of on-the-ball player (in blue frame) with

the object detection algorithm and records the player action. The system

might require manually labeling the position of the ball (or the puck) for

the sports with a large pitch (or rink). . . . . . . . . . . . . . . . . . . . 12

Figure 3.1 Ice Hockey Rink. The hockey rink It measures 200 feet (60.96 m) by 85

feet (25.91 m), which can be divided into three zones by two blue lines.

The zone between two blue lines is referred to as a neutral zone. The zone

with the team’s own goal is called a defensive zone. The zone toward which

a team’s play flows (or attacks) is the offensive zone. . . . . . . . . . . . 16

Figure 3.2 Soccer pitch layout with adjusted coordinates. Coordinates are adjusted so

that for the home/away team performing an action, its offensive zone is on

the right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 4.1 System Flow for Player Evaluation . . . . . . . . . . . . . . . . . . . . . 22

Figure 4.2 Our design is a 5-layer network with 3 hidden layers. Each hidden layer

contains 1000 nodes, which utilize a relu activation function. The first hid-

den layer is the LSTM layer, the remaining layers are fully connected.

Temporal-difference learning looks ahead to the next goal, and the LSTM

memory traces back to the beginning of the play (the last possession change). 24

Figure 4.3 Temporal Projection of the method. For each team, and each game time,

the graph shows the chance the that team scores the next goal, as estimated

by the model. Major events lead to major changes in scoring chances, as

annotated. The network also captures smaller changes associated with ev-
ery action under different game contexts. . . . . . . . . . . . . . . . . . 25

xiii



Figure 4.4 Spatial Projection for the shot action: The probability that the home team

scores the next goal after taking a shot at a rink location, averaged over

possible game states. Figure 4.5 shows the positions of shots behind the

goal, which explains the distribution of Q values around the goal. . . . . 25

Figure 4.5 Shots behind the opponent’s goal in the 2015-16 NHL game season. . . . 26

Figure 4.6 Correlations between round-by-round metrics and season totals. . . . . . 33

Figure 4.7 Player GIM vs. Value of new contracts in the 2016-17 (left) and 2017-18

(right) NHL season. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 4.8 The scatter plot of players’ GIMs between 15-16 and 16-17 NHL season. . 34

Figure 4.9 The scatter plot of players’ GIMs between 16-17 and 17-18 NHL season. . 34

Figure 4.10 The scatter plot of players’ GIMs between 17-18 and 18-19 NHL season. . 35

Figure 5.1 The architecture of our Two-Tower Dynamic Play LSTM (TTDP-LSTM).

The figure shows how the model processes two generic time instances, one

where the home team acts—which is analyzed by the home tower—and

another where the away team acts—analyzed by the away tower. . . . . . 38

Figure 5.2 Temporal Projection of the learned Q-function. The game is between Ful-

ham (Home) and Sheffield Wednesday (Away), which has happened on

Aug.19th, 2017. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 5.3 Spatial Projections for estimated Q values: Q̂Home(s, shot), Q̂Home(s, pass),

Q̂Home(s, cross) and Q̂Home(s, tackle) over the entire soccer pitch. We

use the adjusted coordinate described in Section 3.3.1. . . . . . . . . . . 40

Figure 5.4 Spatial illustration of all goal-scoring shots under the adjusted coordinates

(with our dataset). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 5.5 Spatial illustration of tackle under the adjusted coordinates (with our dataset)

in 100 randomly sampled game. We label these tackles by whether the team

that performs the tackle manages to score the next goal. . . . . . . . . . . 42

Figure 5.6 Correlations between round-by-round metrics and season totals for all play-

ers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 5.7 Correlations between round-by-round metrics and season totals for the

players in EFL Champion. . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 6.1 Interpretable Mimic Learning Framework . . . . . . . . . . . . . . . . . 54

Figure 6.2 Regression tree for the impact of shot. . . . . . . . . . . . . . . . . . . . 56

Figure 6.3 Regression tree for the impact of pass. . . . . . . . . . . . . . . . . . . . 57

Figure 6.4 The impact values for passes v.s. Game Time Remain. We randomly sam-

ple 10 games and plot the impact values for all passes. . . . . . . . . . . 57

Figure 6.5 Partial Dependence Plot for Time Remaining (left), X Coordinate (middle)

and X Velocity (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 6.6 An example of Linear Model U-Tree (LMUT). . . . . . . . . . . . . . . . 60

xiv



Figure 6.7 Model Tree Example With 4 Layers for Action Values of Shots in Soccer . 66

Figure 6.8 Rule Example 1 for Action Values of Shots in Ice Hockey. The model tree

for ice hockey produces a prediction for the Q-probability that the home

team scores the next goal after a shot. . . . . . . . . . . . . . . . . . . . . 66

Figure 6.9 Rule Example 2 for Action Values of Shots in Ice Hockey . . . . . . . . . 66

Figure 6.10 Rule Example for Action Values of Shots in Soccer . . . . . . . . . . . . 67

Figure 6.11 Experience Training Setting . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 6.12 Active Play Setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 6.13 Coverage v.s. Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 6.14 Consecutive Testing of LMUT . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 6.15 Super pixels in Flappy Bird . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 6.16 Examples of Rule Extraction for Mountain Car and Cart Pole. . . . . . . 74

Figure 6.17 Flappy Bird input images with Super-pixels (marked with red stars). The

input order of four consecutive images is left to right. . . . . . . . . . . . 75

Figure 7.1 Our VaRLAE model includes a conditional Ladder-VAE at every RNN

cell. VaRLAE applies a top-down dependency structure ordered as the sports

causal relationship (Section 7.3.1). The thick/dash lines denote logical-

functions /stochastic-dependence. The shaded nodes are given. . . . . . . 80

Figure 7.2 Embedding visualization. Each data point corresponds to a player em-

bedding conditioning on the game context at the current time step t. The

player embeddings are labelled 1) player positions (on the left column, in-

cluding Center (C), Defense (D), Left-Wing (LW) and Right-Wing (RW)

and Goalie (G)) 2) 5 selected defence men (on the middle column) and 3)

player locations (on the right column, including Defence Zone (DZ), Neu-

tral Zone (NZ) and Offensive Zone (OZ)). The embeddings are computed

by VaRLAE (top plots) and CAERNN (bottom plots) respectively. . . . . 85

Figure 7.3 Embedding visualization. Each data point corresponds to a player embed-

ding conditioning on the game context at the current time step t. The player

embeddings are labelled by the action types. The embeddings are com-

puted by VaRLAE (top plots) and CAERNN (bottom plots). . . . . . . . . 85

Figure 7.4 Temporal illustrations of the absolute error between predicted score differ-

ences and final score differences. The plots report mean (left) and mean±variance

of the differences (right). Figure 7.5 shows the separated plots for each

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xv



Figure 7.5 Temporal illustrations of the absolute error between predicted score differ-

ences and final score differences. We report mean±variance of the error at

each time step for all compared methods. . . . . . . . . . . . . . . . . . . 87

Figure 7.6 The KLD between the posteriors and the priors during training for VaR-

LAE , CVRNN and CVAE (from left to right). . . . . . . . . . . . . . . . 88

Figure A.1 The spatial illustration of shot attempts on a hockey rink. We apply the ad-

justed coordinate and the play always flows from left to right. Blue circles

represent unsuccessful shots and red stars indicate successful shot. . . . . 106

xvi



Chapter 1

Introduction

1.1 Overview

The past decades have seen booming interest in evaluating the player performance in professional

team sports. Recently, with the advancement of high-frequency optical tracking systems and ob-

ject detection systems, more and larger event stream datasets have become available for a vari-

ety of professional team sports. These datasets elaborate both spatial and temporal features (e.g.,

player locations and game time) of game events at dense time intervals. The rich yet complicated

data sources bring numerous opportunities for large scale machine learning algorithms to model

complex sports dynamics. Such models significantly facilitate computing or learning metrics for

player evaluation. Among the recently proposed metrics, the most common approach has been

to quantify players’ influences on the scoring probabilities and winning chance with action val-

ues [85, 80, 84, 21, 63, 29, 32]. These values have strong real-world impacts, for example, they

provide professional teams an empirical basis for deciding which players to trade or draft during a

game season.

Previously proposed metrics for evaluating the actions of players are commonly limited in the

following aspects:

Limited Game Context: When assigning values to the action of players, traditional works

often consider a limited context of the acting player. For example, a previous work [80] built a

Markov model for representing the ice hockey game context. The states of the Markov model were

defined by only three features: period, goal differential, and manpower differential. However, in

professional sports, the relevant context is very complex, including specific game time, positions of

players, speed of the ball and duration of the actions, etc. The states in the previous Markov models

contained only the current observations whereas the influence of action often relies on game history

in the real sports match, for example, a block after a shot should be more important than a pass-

blocking. Omitting the contextual features and the game history will significantly compromise the

performance of the underlying sports models.

Insufficient Action Look-Ahead: Many traditional sports models assess only the actions that

have an immediate impact on goals (e.g. shots), but not the actions that create these scoring opportu-
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nities (e.g. pass, reception). A typical example is the Plus-Minus (+/-) metric. +/- awards a player +1

if a goal is scored by the player’s own team when the player is on the pitch, and -1 if the other team

scores. Some more advanced +/-’s [86, 67, 88, 52] modeled the game context and weighted goals

by their importance on game-winning, but they considered only goal scoring, not other actions that

also have major impacts on scoring (e.g., assist, pass and block, etc.). Some recent works [29, 82]

have proposed assessing an action by whether it can lead to a goal within a fixed window size (e.g.,

20 seconds). Their systems can assign values to the actions before a scoring event (e.g., pass, assist,

etc.,), but they have limited ability to evaluating many defensive actions that have a medium-term

effect on goal scoring.

Opaque Model Structure: Many recent works have applied a black-box model (e.g., neural

model and random forest) to represent the play dynamics in team sports. For example, a recent

work [32] trained a deep neural network to compute the Expected Possession Values (EPVs) for

evaluating the actions of players in soccer games. The opaque neural model structure, however, pro-

hibits understanding 1) how a game feature influences the expected action values and 2) which are

the most important game features for improving the impact of an action. The difficulty of under-

standing the knowledge learned by the black-box sports models significantly influences the confi-

dence of coaches and fans on these models and the corresponding action values.

Omitting the In-game Influence of Individual Players on Action Values: When estimating

action values, previous sports models based on reinforcement learning often pool observations of

different players without capturing the specific roles and behaviors of each athlete who is perform-

ing the action. Neglecting the special characteristics of individual players significantly compromises

the model performance for many application tasks, such as predicting the game-winner and estimat-

ing the expected goals [68]. A previous work [33] proposed embedding a player’s information with

a continuous value vector following an Auto-Encoder structure. Their deterministic player embed-

ding, however, only considered very limited game context which prohibits their embedding model

from generalizing to a large number of player in a sports league.

1.2 Summary of Contributions

In this dissertation, we introduce our approaches to handling the above challenges. This section

summarizes the contributions in the following aspects.

Learning the Q-function with Deep Reinforcement Learning (DRL): To model the complex

game context, we build a Markov Game Model [61] for professional sports games and compute a

Q-function, representing the chance that a team scores the next goal, for all actions. The Q-function

assigns values to actions on the same scale by looking ahead to expected outcomes and effectively

reflect the match context of evaluated action. Unlike the previous MDP models [84, 85] that required

pre-discretizing game features, we utilize a deep reinforcement learning (DRL) approach to learn an

action-value Q function for capturing the current match context. The neural network representation

can easily incorporate continuous quantities like rink location and game time.
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Evaluating Players using the Deep Q-function: Given a Q-function, we define the impact of

action as the change in Q-value due to the action and introduce a novel Goal Impact Metric (GIM)

to evaluate a player’s performance by aggregating the impact of all actions of a player. We evaluate

the performance of GIM in both ice hockey and soccer environments by studying its correlation

with standard success measures and consistency within an entire game season. To our knowledge,

this is the first player evaluation metric based on DRL. The context-aware Q-function can capture

the spatio-temporal complexity of the home and away teams separately in a sports game. Based on

the Q-function, the GIM metric measures both players’ offensive and defensive contribution to goal

scoring.

Interpreting the Q-function with Mimic Learning: A promising method for interpreting deep

models is mimic learning. To understand the influence of game features on players’ action values,

we introduce a mimic learning framework for DRL and examine the approach of training regression

trees as mimic models for interpreting the Q-function. Our baseline mimic model is a traditional

Classification And Regression Tree (CART), with which we explain our approach of computing

the feature importance and finding exceptional players. We then introduce a novel Linear Model

U-Tree (LMUT), which adds a linear model at each leaf node to improve its representative power

and generalization ability. LMUT learning is based on an online U-tree [99, 69] algorithm specially

designed for Q-values in reinforcement learning . We not only evaluate LMUT as a general DRL

interpreter under the virtual game environment but also study its performance for ice hockey and

soccer. To our best knowledge, this is the first work that extends interpretable mimic learning to

Reinforcement Learning.

Learning Player Representation with a Variational Encoder: To incorporate player infor-

mation into sports statistics, we propose a novel player representation framework that learns player

representations via player generation. The basic idea is to model which player is likely to be the

acting player given a current match state/context and a current action. The generation process fol-

lows the design of Conditional Variational Auto-Encoder (CVAE): we learn a context-specific prior

as a representation for game context, which allows deriving an approximate posterior as a contex-

tualized representation for the observed acting player. Based on this framework, we introduce a

Variational Recurrent Ladder Agent En-coder (VaRLAE). VaRLAE applies a ladder structure and

learns a hierarchy of latent variables distributions to represent the player information . Unlike the

traditional CVAE model that considers only the current observation, VaRLAE models the game

history with the RNN design. We evaluate the performance of our VaRLAE on a massive National

Hockey League (NHL) dataset containing over 4.5M events. To study how much the learned player

representations improve downstream applications, we evaluate two major tasks in sports analytics:

estimating expected goals and predicting final match score differences. Our empirical evaluation

shows the improvement in predictive accuracy after incorporating the embeddings generated by

VaRLAE.
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1.3 Thesis Organization

The remainder of this dissertation is organized as follows:

• Chapter 2 introduces the background and related work on action-value metrics for player

evaluation. We introduce the metrics based on single/ multiple action-value counts as well as

Value-Above-Replacement approaches in Section 2.1. Section 2.2 also provides a review for

the available dataset for sport analytic, including the box scores, the play-by-play dataset, the

game tracking dataset, and the videos.

• Chapter 3 contains the preliminaries in this dissertation, covering the Markov model for pro-

fessional team sports (Section 3.1), the domain knowledge for the evaluated game environ-

ments (Ice Hockey and Soccer, Section 3.2), as well as a detailed introduction to the sports

dataset (Section 3.3) applied in this dissertation.

• In Chapter 4, we introduce our approach of learning the action-value Q-function with the Deep

Reinforcement Learning (DRL) approach. We compute an action impact from the learned Q-

function, based on which we define a Goal Impact Metric (GIM) (Section 4.5) for evaluating

the player performance for the entire game season.

• In Chapter 5, we extend the DRL model and learn the Q-function for the soccer game, which

has a large pitch with more player and sparser rewards than Ice Hockey. We present a fine-

tuning method to model the league-specific player performance.

• Chapter 6 introduces the mimic learning framework for interpreting the Q-function learned

by the DRL model. We present a novel Linear Model U-Tree (LMUT) as a mimic model,

from which we can extract the knowledge and understand the influence of game features on

the Q-function. We evaluate the LMUT under both the virtual game (Section 6.4) and sport

environments (Section 6.3).

• Chapter 7 proposes our player representation framework (Section 7.3) and our Variational

Recurrent Ladder Agent Encoder(VaRLAE , Section 7.4). We validate the performance of

VaRLAE in two practical applications: estimating the expected goals and predicting the final

score differences.

• Chapter 8 summarizes the major contributions of this dissertation (Section 8.1). We discuss

the advantages and limitations of the methods (Section 8.2) in this dissertation. We describe

some future directions (Section 8.3) for improving our action-value function, the mimic learn-

ing framework, and the player representation model.
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Chapter 2

Background and Related Work

2.1 A Review of Action-Value Metrics

The most common application of action values is evaluating players’ performance. In this section,

we provide a review of the action-value metrics for players evaluation. A recent work [2] provides

several up-to-date survey articles on player evaluation. As it is shown in Figure 2.1, the action-

value based player evaluation metrics can be generally divided into two categories: 1) Action-Value

Counts and 2) Value-Above-Replacement:

Player Performance Evaluation

Value-Above-Replacement Action Value Counts

Goals Only:
+/-

Shots Only:
XG All Actions:

Classifier:
VAEP

Win-Focus:
WAR

V.S.

Pass: +0.2 Shot: +0.7Avg. PlayerMatej Vydra

Q-Function:
SI

Goal-Focus:
GAR

Stochastic Model:
EPV

Regression:
ThoR

Figure 2.1: A tree diagram to position previous works about action-value based player evaluation
metric. An important factor is whether a metric considers all actions or only a subset of them.

2.1.1 Single Action-Value Counts

Probably one of the simplest approaches to qualifying a player’s contribution is counting the number

of goals that he or she manages to score during a sports game. Following this intuition, to evaluate

a player’s performance, traditional player evaluation metrics focus only on the actions that have

an immediate impact on the scoring probabilities, for example shooting and passing. Among all the
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single-action evaluation metrics proposed in recent years, the most popular and well-studied metrics

are Plus-Minus and Expected Goal:

Plus/Minus (+/- or PM). +/- is a commonly applied player evaluation metric that is applicable to

almost every professional sport. It qualifies the influence of a player’s presence on the goal-scoring

opportunity for his or her team. The basic version awards a player +1 if a goal is scored by the

player’s own team when the player is on the pitch, and -1 if the other team scores.

Some recent works proposed several effective modifications to the basic plus-minus metric. In-

stead of assigning equal importance to each goal, [86] weighted the goals basing on opponents’

strength and the importance of a particular goal on expected win probability (e.g. game time and

game frequency). A previous work [67] also proposed an adjusted plus-minus statistic for NHL

players by applying a weighted least squares regression to estimate an NHL player’s effect on his

team’s success in scoring and preventing goals. The weighting approach incorporates the influence

of team performance and game environment into the basic +/-, and thus provides a more compre-

hensive evaluation of a player’s overall performance. Another previous work [88] enhanced the

adjusted +/- by ridge regression in which the data is combined with a prior belief regarding reason-

able ranges for the parameters. In order to produce more accurate +/-, a recent work [52] applied

machine learning and survival models to estimate both expected goals and expected points to assess

a player’s defensive and offensive influence. Table 2.1 shows a summary of these modifications.

Approaches Summary
Basic +/- +1/-1 if a goal is scored / lost.

Weighted +/- [86] Weight the goals by their importance and opponents’ strength.
Adjusted +/- [67] Adjust +/- statistics with weighted least squares regression.
Enhanced +/- [88] Enhance the adjusted +/- statistics with ridge regression.

Expected Goals +/- [52] Estimate expected goals for computing +/-.
Expected Points +/- [52] Estimate expected points for computing +/-.

Table 2.1: A summary of the previous +/- based approaches.

Expected Goals (XG). XG quantifies the value of a shot by the probability of the shot leading to

a goal. A common method to compute the XG values is training a goal prediction model with shot

features (e.g. x,y coordinates, or angle to goal) and assigning the soft outputs (expected goals) to

players’ shots. Players can be ranked by the summation of their total expected goals [6]. A recent

work [68] extended the traditional XG by applying statistics (e.g. faceoffs and hits) as predictor

variables in addition to goals, shots, missed shots, and blocked shots, to predict goals. They used

ridge regression to estimate a player’s contribution to his team’s XGs.

Passing Quality. To study the effect of actions other than shots, several recent works have ex-

tended the application of traditional XG and evaluated players by measuring the quality of their
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Approaches Summary
Basic XG [6] A goal prediction model that assigns values to shots.

Extended XG [68] Estimate the XGs with more statistics by ridge regression.

Table 2.2: A summary of the previous XG based approaches.

passes. Passing is one of the most strategic and frequent actions in many team sports, such as soccer

and basketball. For each pass, a previous work [17] measured its value as the estimated probability

of resulting in a successful shot. Another recent work [15] evaluated each pass by the difference

between the goal-scoring probability before and after the pass.

2.1.2 Multiple Actions-Value Counts

The single action-value based metrics evaluate the players by measuring only one type of action with

an immediate impact on the scoring. However, to evaluate a player’s overall performance, we should

not only measure players’ offensive influence (e.g. increasing their team’s scoring chance) but also

consider their defensive contribution ( e.g. preventing their opponent scoring). Several recent works

have proposed some more advanced action-value metrics that assess players by evaluating all their

actions, including both offensive actions (e.g. shot, assist) and defensive actions (e.g. block and

tackle). We provide a summary of the major multi-action-value metrics:

Approaches Summary
EPV [21, 51] Modele the evolution of a sports possession with a stochastic process model.

Deep EPV [32] Build a neural model to compute the expected possession values for all players.
VAPE [29] Evaluate an action by its impact on scoring probabilities within a few future steps.
THoR [82] Evaluate an action by the probability that it leads to a goal (within 20s).

SI [80] Compute action impacts with the Markov model and the dynamic programming.
SI-Loc [84, 85] Improve SI by incorporating location information of players into evaluation.

Table 2.3: A summary of the multiple actions-value counts approaches.

Expected Possession Value (EPV). EPV [21] evaluates all the players’ actions within a contin-

uous possession by estimating the expected number of points that will be score during the current

possession. They modeled the evolution of a complete sports possession with a stochastic process

model, which was implemented at multiple levels of resolution, differentiating between continuous,

infinitesimal movements of players, and discrete events such as shot attempts and turnovers. A pre-

vious work [51] applied a similar EPV-based framework to estimate the expected point value for

starting possessions in different field locations during a professional rugby league match-play. They

also compute the mean expected points for each subsequent play during the possession. Based on

the EPV framework, a recent work [32] built a deep model from the full resolution spatial-temporal

data of 22 soccer players on the pitch and computed the expected possession values for all actions
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during a game. They study the action impacts of individual soccer players under different game

situations. Computing the EPV-based often requires tracking data that has the complete observabil-

ity of all players. Many play-by-play datasets, however, provide only partial observability of game

context: they record only actions of the players who possess the ball at a given time.

Valuing Actions by Estimating Probabilities (VAEP). The VAEP framework [29] evaluates all

on-the-ball actions of soccer players based on their influence on the game outcome. They also

proposed a new language SPADL for describing individual player actions on the pitch. Applying

SPADL, their model considers a set of hand-crafted action features from the recent game history and

evaluates an action by its impact on scoring probability within a constant number of future steps. To

quantify a player’s overall performance, their model computes the change in scoring and conceding

probability after a player’s action and summarizes the probabilities overall the entire season. Total

Hockey Rating (THoR) [82] applied a similar method and they determined the impact of each play

by the probability that it leads to a goal for a player’s team (or their opponent) in the subsequent 20

seconds. Their rating that accounts for all on-the-ice players as well as the impact of where a shift

starts and of every non-shooting events such as turnovers and hits.

Scoring Impact (SI) SI [80] measures a player’s performance by summarizing their impact

over a game. The impact is the difference of scoring probabilities before and after the player

controls the ball (or puck in ice hockey). To compute the scoring probabilities, [80] formulated

an ice hockey play-by-play dataset into a Markov Game Model [61], where actions record the

player movements and states capture the game context. They modeled event data of the form

s0, a0, r1, s1, a1, . . . , st, at, rt+1, st+1, at+1: environment state st (represented by three features:

Goal Differential, Manpower Differential and Period) occurs, an action at is chosen, resulting in a

reward rt+1 and state st+1. At the next time step, another action at+1 is chosen. The data are often

separated into local transitions of the form T {s, a, r′, s′, a′}. Under this setting, a model-based

Reinforcement Learning (RL) approach [94] has been applied to calculate the action values for

each players. The RL approach computes the expected scoring probabilities of player actions under

different game context by a Q-function using dynamic programming [76] based on the Bellman

equation and calculate the impacts of player actions by:

Q(s, a) = Es′,a′ [r′ +Q(s′, a′)|s, a] =
∑
r′

p(r′|s, a)r′ +
∑
s′

Pa(s′, s)
∑
a′

π(a′|s′)Q(s′, a′) (2.1)

impact(s, a) = Q(s, a)− V (s) and V (s) =
∑
a

π(a|s)Q(s, a) (2.2)

The recurrence allows us to estimate the Q value at a current context s, a given an estimate for

the next Q values and transition probabilities. Applying similar approaches, continuing works[84,

85] further added location information to the Markov model (by discretizing a hockey rink according
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to action distributions). They applied maximum likelihood estimates for the resulting discrete tran-

sition probabilities. The discretization leads to loss of information and undesirable spatial-temporal

discontinuities in the Q-function. These drawbacks prohibit the model from generalizing to the un-

observed part of state space.

2.1.3 Value-Above-Replacement

Value-Above-Replacement (VAR). VAR evaluates players by measure how much they outper-

form the average player in their league. The most common VARs include Goals Above Replace-

ment (GAR) and Wins Above Replacement (WAR) which measures the player’s contribution to his

or her team by estimating the difference of team’s scoring or winning chances when the target player

plays, vs. replacing him or her with an average player. GAR and WAR have been applied as player

evaluation metrics for team sports like baseball 1, basketball 2, ice-hockey 3 and American football,

there has not been an agreed-upon definition for soccer 4, because soccer has a more complex game

context including a large football pitch over 7k square meters and 22 on-the-pitch players.

2.2 A Review of Sports Data

In this section, we provide a detailed review of the available sports datasets by 1) describing the

data format, 2) showing some data examples, and 2) discussing the approach of applying them for

Sports Analytics.

2.2.1 Box Scores

Box scores (or player/team statistics) are commonly applied in team sports like baseball, basketball,

football, and ice hockey, showing a structured summary of the results from professional sports

games. A box score often summarizes the game score as well as individual and team achievements

in the game or during a game season (e.g. goal score, assistants, etc.).

Figure 2.4 and Figure 2.5 show the examples of box scores for players and teams respectively.

Box score directly uses counting numbers to demonstrate teams’ and player’s performance in each

game. These numbers can be aggregated along an entire game season to analyze a team or a player’s

general performance. The main drawbacks of box scores are 1) instead of concluding a player’s over-

all performance with one metric, box score often applies different numbers to represent a player’s

ability in different aspects (e.g., defensive and offensive performance). 2) Box scores, based on ac-

tion counting, assign the same value to each action or goal and neglects the influence of manpower

1https://library.fangraphs.com/misc/war/

2https://www.nbastuffer.com/analytics101/wins-above-replacement-player-warp/

3https://hockey-graphs.com/2019/01/16/wins-above-replacement-history-philosophy-and-objectives-part-1/

4https://www.americansocceranalysis.com/home/2019/1/11/points-above-replacement
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or game time (some previous [86, 67] works about weight/adjusted +/- metrics have discussed the

similar issue). 3) As the summary of the player’s or team’s success, box scores often omit the context

features and thus lose much key information.

Player Team Date MATCHUP W/L MIN PTS FGM FGA FG% 3PM 3PA 3P%
Trae Young ATL 03/01/2019 ATL vs. CHI L 56 49 17 33 51.5 6 13 46.2

Damian Lillard POR 03/18/2019 POR vs. IND W 40 30 9 16 56.3 4 9 44.4
Bradley Beal WAS 01/13/2019 WAS vs. TOR L 55 43 17 36 47.2 6 12 50.0
James Harden HOU 01/03/2019 HOU @ GSW W 44 44 13 32 40.6 10 23 43.5
Bradley Beal WAS 12/22/2018 WAS vs. PHX W 54 40 17 33 51.5 4 12 33.3

De’Aaron Fox SAC 11/01/2018 SAC @ ATL W 34 31 9 14 69.2 3 4 75.0

Table 2.4: An example of box scores for NBA players. It summarizes the player perfor-
mance of a game and reports the basketball statistics including playing Minutes (Min), points
(PTS), field goals made/attempted/percentage (FGM/FGA/FG%) and three-point field goals
made/attempted/percentage (3PM/3PA/3P%).

Team Date MATCHUP W/L MIN PTS FGM FGA FG% 3PM 3PA 3P%
DEN 10/17/2019 DEN vs. POR W 241 110 41 89 46.1 8 28 28.6
MEM 03/20/2019 MEM vs. HOU W 265 126 41 89 46.1 13 37 35.1
HOU 03/08/2019 HOU vs. PHI W 239 107 42 85 49.4 13 41 31.7
IND 02/23/2019 IND @ WAS W 240 119 47 83 56.6 11 25 44.0
TOR 02/05/2019 TOR @ PHI W 239 119 41 89 46.1 11 31 35.5
DEN 01/13/2019 DEN vs. POR W 239 116 45 81 55.6 9 22 40.9

Table 2.5: An example of box scores for NBA teams. It summarizes the team perfor-
mance of a game and reports the basketball statistics including playing Minutes (Min), points
(PTS), field goals made/attempted/percentage (FGM/FGA/FG%) and three-point field goals
made/attempted/percentage (3PM/3PA/3P%).

2.2.2 Play-by-Play Dataset

A Play-by-play dataset consists of the logs of discrete action events specifying various properties

of the action (e.g. action type, acting player, time, and location). The dataset tracks action events

around the ball from the beginning until the end of a game. An action event often records the actions

of on-the-ball players as well as the spatial and the temporal context features.

Table 2.6 shows an example of the play-by-play soccer dataset, where each event records context

features including X-Y coordinate, manpower, score differential, and game time remains. Compared

to the box scores, a play-by-play dataset provides more detailed context features for each action.

The fine-grained data allows a more advanced machine learning algorithm to model the spatial

and temporal features. For example, a previous work [85] built a Markov model where they used

the context features (including manpower, score differential, and game time) to define the states and

computed the transition probabilities between those states according to the occurrences of these state

in the play-by-play dataset. However, a major drawback of the play-by-play data is that it provides

only partial information. Instead of recording the actions and the locations of all the players on
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the court, the data often records only the action of the on-the-ball player (player who controls the

ball) and neglect the position and movement of other players. This issue becomes more serious

for the team sport with a complex game context (e.g. soccer). To alleviate the partial observability,

some previous works [29] have attempted to include the play history into the evaluation, but what

information should be included and how to include this information still remain unsolved.

MP=Manpower, GD=Goal Difference, OC = Outcome, S=Succeed, F=Fail, H=Home, A=Away,
T=Team who performs action, GTR = Game Time Remain, ED = Event Duration

GTR X Y MP GD Action OC Velocity ED Angle T Reward
35m44s 87 26 Even 1 simple pass S (2.2, 1.7) 11.0 0.19 H [0,0,0]
35m42s 90 17 Even 1 standard shot F (1.5, -4.5) 2.0 0.11 H [0,0,0]
35m42s 99 44 Even 1 save S (0, 0) 0.0 0.06 A [0,0,0]
35m9s 100 1 Even 1 cross S (0.0, -1.3) 33.0 0.0 H [0,0,0]
35m7s 85 56 Even 1 simple pass S (-7.3, 27.6) 2.0 0.39 H [0,0,0]
35m5s 92 67 Even 1 simple pass S (3.6, 5.4) 2.0 0.28 H [0,0,0]
35m4s 97 50 Even 1 corner shot S (5.1, -16.2) 1.0 1.74 H [0,0,0]
35m4s 100 50 Even 1 goal S (0, 0) 0.0 0.0 H [1,0,0]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3m41s 62 96 Even 2 long ball F (4.5, 9.3) 9.0 0.08 A [0,0,0]
3m39s 19 89 Even 2 clearance S (-21.5, -3.2) 2.0 0.07 H [0,0,0]
3m35s 24 100 Even 2 throw in S (1.3, 2.7) 4.0 0.09 A [0,0,0]
3m33s 27 96 Even 2 simple pass S (1.1, -2.2) 2.0 0.1 A [0,0,0]
3m31s 12 95 Even 2 cross S (-7.5, -0.5) 2.0 0.07 A [0,0,0]
3m28s 6 46 Even 2 simple pass S (-1.7, -16.3) 3.0 0.79 A [0,0,0]
3m26s 14 48 Even 2 standard shot S (3.8, 1.3) 2.0 0.44 A [0,0,0]
3m26s 0 50 Even 2 goal S (0, 0) 0.0 0.0 A [0,1,0]

Table 2.6: An example of a play-by-play data sample featuring team scoring: a sequence of events
where home team scores and then away team scores. The rewards [1,0,0] and [0,1,0] indicate the
scoring event of the home team and away team respectively. We skip some events in the middle due
to space issues.

2.2.3 Game Tracking Dataset

A game tracking dataset is constructed by video-tracking techniques (e.g. activity recognition [46]),

recording the locations of players (including the players controlling or not controlling the ball/puck)

and the game time. Compared to the play-by-play data, the game tracking data records the location

of each player at more dense time intervals. Figure 2.2 shows an example of tracking the location

of on-the-ball player from the broadcast video frames. The broadcast video, however, contains only

part of the players on the pitch, and thus provides only partial observability of the game. To over-

come this limitation, SPORTLOGiQ 5 provides a multi-camera hardware solution. By installing

multiple cameras around stadiums and extracting players’ action data from the collected video with

computer vision techniques (e.g. object detection [46]), they achieve full observability of all 22 soc-

5https://sportlogiq.com/en/
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Figure 2.2: An example of video tracking: at each video frame, the tracking system dynamically
locates the position of on-the-ball player (in blue frame) with the object detection algorithm and
records the player action. The system might require manually labeling the position of the ball (or
the puck) for the sports with a large pitch (or rink).

cer player on the pitch. The tracking data fuels many models that requiring the full observability of

a game at every time step (e.g. EPV).

2.2.4 Video Dataset

Video dataset consists of broadcast videos (records part of the players on the court, for exam-

ple, the video frames in Figure 2.2) or multi-camera videos (records all the players on the court).

These videos contain the richest information about a sports game, but computing the action values

from videos is challenging, because of the large numbers and the huge dimension of raw images.

Existing action-value metrics often require an extra data preprocessing step that extracts human-

understandable game features from these videos, during which much important information is lost.

In future work, we discuss the approach of learning a deep latent representation from raw images

with Variational Auto-Encoder. The learned latent representation is interpretable with significantly

fewer dimensions than raw images. This approach enables a complex machine learning model to

directly run on the complex video data.
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Chapter 3

Preliminaries

3.1 Markov Model for Sports Games

We use the classical framework of Markov games [61] to model the sports game. A Markov game

extends the general formulation of Partially Observable Markov Decision Processes (POMDP) to

the multi-agent setting. In this chapter, we provide an introduction to the POMDP and the approach

of extending it to a Markov Game Model.

3.1.1 Partially Observable Markov Decision Processes

A Markov Decision Process (MDP) [45] is a discrete-time stochastic control process that models the

relationship between an agent and its environment. In a sports game, a POMDP can be defined by a

six-tuple 〈S,A,P,R,Ω, γ〉. At each time step t, an agent performs an action at ∈ A at a game state

st ∈ S after receiving an observation o ∈ Ω. The observation received by the agent describes only

partial information of a game state, for example, a player can only observe the players around him

(without knowing the complete actions and locations of all other players). This process generates

the reward 1 rt ∼ R(st, at) and the next state st+1 ∼ Pat(st+1, st) (P defines the conditional

transition probabilities between states: p(st+1|at, st)). γ ∈ (0, 1] is discount factor for a player’s

total return. In this dissertation, we assume the goals have equal importance, so we set γ = 1. A

DRL agent determines actions according to a policy. The policy π of a player can be defined as a

distribution over actions given states: π : A × O → [0, 1]. Under the general control setting, the

goal of a player is to find a policy π mapping a given game state to a current choice of action to

maximize an expected cumulative of discounted reward, which is given by an action-value function

1In this dissertation, ∼ indicates "is sampled from" or "has the distribution of".
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Qπ(st). The Q function can be given by:

Qπ(st, at) = Er
{ ∞∑
j=0

γjrt+j |st, at
}

(3.1)

Given a transition of the form [s, a, r′, s′, a′], we can estimate the value function by applying

dynamic programming [76] based on the Bellman equation:

V π(s) =
∑
a

π(a|s)Qπ(s, a) (3.2)

V π(s) =
∑
a

π(a|s)[
∑
r′

p(r′|s, a)r′ +
∑
s′

Pa(s′, s)V π(s′)] (3.3)

3.1.2 Markov Game Model

A Markov game [61] extends the general formulation of POMDP to the multi-agent setting. A

Markov Game can be represented as a six-tuple G = 〈S,A,P,R,Ω, γ〉, where S is a finite set

of states, A = (a1, . . . , aK) is a collection of finite action sets, one for each agent 1, . . . ,K. At

a discrete time t, a Markov game model defines a real-valued reward for each agent: r1,...,K,t ∼
R(st, a1,t, . . . , aK,t). The discount factor γ = 1 are shared across different agents. The transition

function captures the dynamics in sports environment: st+1 ∼ Pa1,t, . . . , aK,t(st+1, st). Under the

traditional controlling environment, the goal of an agent k is maximizing the expected cumulative

of discounted reward, which is estimated by a value function:

Vk,t = E{
∞∑
j=0

γjri,t+j} (3.4)

3.1.3 Play Dynamics in Sports Games

We introduce our approach of formulating the sports game into a Markov Model. For each game,

based on the Markov Game model, we consider event data of the form [(o0, pl0 , a0 , r0 ), (o1 , pl1 , a1 , r1 ),
. . . , (ot, pl t , at , rt), . . .]: at time t, after observing ot , player pl t takes a turn (possesses the puck)

and chooses an action at, which produces a reward rt denoting whether a goal is scored. The o, a

and r are determined by:

• In each sport game, we represent an observation ot by a feature vector for discrete time step

t that specifies a value for the features listed in Table 3.2 (for ice-hockey) and Table 3.5 (for

soccer). To alleviate the partial observability, similar to [41], We use the complete sequence

st = [ot, at−1,ot−1, at−2,ot−2, ...] as the state representation at time step t [71].

• The action at denotes the movements of players who control the ball. Our model applies a

discrete action vector using one-hot encoding, where we represent the action by a 0-1 vec-
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tor. The number of vector dimension equals the number of action types. We label 1 for the

represented action and 0 for others.

• The reward rt is a vector of goal values gt that specifies which team (Home,Away) scores.

We introduce an extra Neither indicator for the eventuality that neither team scores until the

end of a game. For readability, we use Home,Away,Neither to denote the team in a 1-of-3

vector of goal values rt = [gt,Home, gt,Away, gt,Neither ] and gt,Home = 1 indicates the home

team scores at time t (see Table 2.6).

• The player pl t records the identity of the current acting player. We represent a discrete player

vector with the one-hot encoding.

• In this dissertation, we explore different options of defining agents: 1) In the Chapter 4, Chap-

ter 5 and Chapter 6, we only consider two agents, Home and Away, representing the teams of

players. 2) In the Chapter 7, we expand this definition and consider modeling the behavior of

each individual players. Under this setting, the number of agents equals the number of player

in a professional league.

3.2 Domain Knowledge: an Introduction to the Game Rules

This dissertation mainly studies two sports games: Ice Hockey and Soccer. In this section, we

provide an introduction to the rules for these sports domains.

3.2.1 Ice Hockey

Ice hockey is a fast-paced team sport, where two teams of skaters must shoot a puck into their op-

ponent’s net to score goals. This dissertation mainly studies professional ice hockey in the National

Hockey League (NHL) which is one of the major and the most popular ice hockey league in the

world. In this section, we provide an introduction to the NHL game rules.

Game Environment. Figure 3.1 shows an ice-hockey rink where a game is played. An NHL game

has a total of 60 minutes of game time. The entire game is split into three periods and each period

has 20 minutes. During normal play, both sides (the visiting team and the home team) can have 6

players on the ice. The positions of these players are Centre (one man), Left/Right Wing (two men),

defensemen (two men), and Goalie (one man).

Game Winning Rules. During an NHL game, a goal is scored if one team shots the puck (a disk

made of vulcanized rubber) into the goal of their opposing team. To win the game, a team must

score more goals than its opposing team. If a game is tied after the regular game time, there is

overtime and whoever scores the first goal will win the game. If no goal is scored after the overtime,
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Figure 3.1: Ice Hockey Rink. The hockey rink It measures 200 feet (60.96 m) by 85 feet (25.91 m),
which can be divided into three zones by two blue lines. The zone between two blue lines is referred
to as a neutral zone. The zone with the team’s own goal is called a defensive zone. The zone toward
which a team’s play flows (or attacks) is the offensive zone.

during the regular season, the game moves into a shootout: three players for each team in turn take a

penalty shot. The team with the most goals during the three-round shootout wins the game. During

playoffs, overtime is repeated until a goal is scored.

Penalty. NHL referee can call a penalty to punish infringement of the NHL rules. Most penalties

are enforced by sending the offending player to a penalty box for a set number of minutes. The

offending team may not replace the player on the ice, leaving them Short-Handed and their opposing

team being on a Power Play. The power-play team can have one more player on the ice than the

short-handed team.

3.2.2 Soccer

Soccer (or association football) is a team sport played with a spherical ball on a rectangular field (a

pitch with a goal at each end). In this dissertation, we mainly study the professional soccer in the

European Soccer Leagues and introduce the corresponding domain knowledge as follows:

Game Environments. Figure 3.2 shows a soccer pitch. A standard football match consists of two

halves of 45 minutes each. After a full-time match, the referee may make an allowance for time

lost through substitutions, injured players requiring attention, or other stoppages. Both teams (the

visiting team and the home team) can have 11 players on the pitch, usually including a goalkeeper,

two fullbacks, two center backs, five midfielders/wingers and a striker.

Game Winning Rules. Similar to the ice hockey game, to win a soccer match, the players must

score more goals by shooting a ball to the goal of their opposing team. There is overtime or extended

play period in league play.
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Figure 3.2: Soccer pitch layout with adjusted coordinates. Coordinates are adjusted so that for the
home/away team performing an action, its offensive zone is on the right

Penalty. To make players play the game in a fair manner, the referee can call fouls. The penalty

from a foul depends on the type and severity of the foul. The minor offenses award an indirect free

kick to the opposing team. For the more serious offenses, the opposing team is awarded a direct

free kick. This will become a penalty kick if it occurs within the penalty area. A yellow card can

be given for repeated fouls. The second yellow results in a red and expulsion from the game (The

player must leave the game and cannot be substituted for). A red card leaves a short-handed situation

for the offending team and a power-play for their opposing team.

3.3 The Play-by-Play Sports Dataset

To study the action values for ice hockey and soccer, we utilize an NHL and a European soccer

play-by-play dataset. In this section, we provide a brief introduction to these datasets.

3.3.1 The Ice Hockey Datatset

The ice hockey dataset that we utilize is constructed by SPORTLOGiQ 2 with computer vision

techniques. It provides information about game events and player actions. Table 3.1 shows the

statistics. Table 3.3 shows an excerpt. The data tracks events around the puck, and record the identity

and actions of the player, with space and time stamps, and features of the game context. The unit for

space stamps are feet and for time stamps seconds. We utilize adjusted spatial coordinates, where

negative numbers refer to the defensive zone of the acting player, positive numbers to his offensive

zone. Adjusted X-coordinates (XAdjcoord) run from -100 to +100, Y-coordinates (YAdjcoord) from

42.5 to -42.5, and the origin is at the ice center. We include data points from all manpower scenarios,

not only even-strength, and add the manpower context as a feature. We did not include overtime data.

Period information is implicitly represented by game time. The complete feature set in Table 3.2.

2https://sportlogiq.com/en/

17



Season Events Players Teams
2015-16 3,502,317 1,164 30
2016-17 4,320,566 1,230 31
2017-18 4,643,224 1,271 31
2019-20 4,534,017 1,196 31

Table 3.1: Dataset statistics for the Ice Hockey dataset. The basic unit of this dataset is an event,
which describes the game context and the on-the-ball action of a player at a time step.

Name Type Range
X Coordinate of ball/puck Continuous [-100, 100]
Y Coordinate of ball/puck Continuous [-42.5, 42.5]

Velocity of ball/puck Continuous (-inf, +inf)
Game Time Remain Continuous [0, 3600]
Score Differential Discrete (-inf, +inf)

Manpower Situation Discrete {ES, SH, PP}
Event Duration Continuous [0, +inf)

Action Outcome Discrete {Successful, Failure}
Angle between ball/puck and goal Continuous [−3.14, 3.14]

Home or Away Team Discrete {Home, Away}

Table 3.2: The complete feature list for an observation, where the manpower situation is marked by
Event Strength (ES), Short-Handed (SH) and Power Play (PP).

GID=GameId, PID=playerId, GT=GameTime, TID=TeamId, MP=Manpower, GD=Goal Difference, OC = Outcome,

S=Succeed, F=Fail, P = Team Possess puck, H=Home, A=Away, H/A=Team who performs action, TR = Time Remain,

PN = Play Number, D = Duration

GID PID GT TID X Y MP GD Action OC P
1365 126 14.3 6 -11.0 25.5 Even 0 Lpr S A
1365 126 17.5 6 -23.5 -36.5 Even 0 Carry S A
1365 270 17.8 23 14.5 35.5 Even 0 Block S A
1365 126 17.8 6 -18.5 -37.0 Even 0 Pass F A
1365 609 19.3 23 -28.0 25.5 Even 0 Lpr S H
1365 609 19.3 23 -28.0 25.5 Even 0 Pass S H

Table 3.3: Dataset Example

Velocity TR D Angle H/A PN
(-23.4, 1.5) 3585.7 3.4 0.250 A 4
(-4.0, -3.5) 3582.5 3.1 0.314 A 4

(-27.0, -3.0) 3582.2 0.3 0.445 H 4
(0, 0) 3582.2 0.0 0.331 A 4

(-30.3, -7.5) 3580.6 1.5 0.214 H 5
(0,0) 3580.6 0.0 0.214 H 5

Table 3.4: Derived Features

3.3.2 The Soccer Dataset

The soccer dataset we apply is an F24 play-by-play soccer game dataset provided by Opta 3. The

dataset records the play-by-play information of game events and player actions for the entire 2017-

2018 game season from multiple soccer leagues, including English Premier League, Dutch Eredi-

visie, EFL Championship, Italian Serie A, German Bundesliga, Spanish La Liga, French Ligue 1

3https://www.optasports.com/
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Name Type Range
Game Time Remaining Continuous [0, 100]

X Coordinate of ball Continuous [0, 100]
Y Coordinate of ball Continuous [0, 100]
Manpower Situation Discrete [-5, 5]

Goal Differential Discrete (-∞, +∞)
Action Discrete one-hot representation

Action Outcome Discrete {success, failure}
Velocity of ball Continuous (-∞, +∞)
Event Duration Continuous [0, +∞)

Angle between ball and goal Continuous [−π, +π]
Home or Away Team Discrete {Home, Away}

Table 3.5: Complete feature list. For the feature manpower situation,
negative values indicate short-handed, positive values indicate power
play.

Dataset F24
Events 4,679,354
Players 5,510
Games 2,976
Teams 164

Leagues 10
Season 2017-18
Place Europe

Table 3.6: Dataset statis-
tics. The basic unit of
this dataset is an event,
which describes the
game context and the
on-the-ball action of a
player at a time step.

and German Bundesliga Zwei. Table 3.6 shows more statistics. The dataset records the actions of

on-the-ball players and the spatial and temporal context features. The complete feature set is listed

in Table 3.5. Table 2.6 lists a series of events describing a goal sequence for the home and away

teams. The dataset utilizes adjusted spatial coordinates. Both the X-coordinates and Y-coordinates

are adjusted to [0, +100], where small numbers refer to the defensive zone of the acting player,

and large numbers refer to the offensive zone. The adjusted soccer pitch is shown in Figure 3.2,

where play flows from left to right for either team. To adjust coordinates, we reverse them when

the team in possession attacks towards the left, so in this case XAdjusted = −rescale(X) and

YAdjusted = −rescale(Y ). The adjusted coordinates accelerate model convergence during training

and improve our model’s fit for spatial features.
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Chapter 4

Learning an Action-Value function for
Evaluating Ice Hockey players with
Deep Reinforcement Learning

In this chapter we show how Q-functions obtained from deep reinforcement learning can be

used to assess the performance of professional hockey players. To make this chapter self-contained,

we summarize the main background material. For more details, please see Chapters 2 and 3.

4.1 Introduction: Valuing Actions of Ice Hockey Players

With the advancement of high-frequency optical tracking and object detection systems, more and

larger event stream datasets for sports matches have become available. There is an increasing op-

portunity for large-scale machine learning to model complex sports dynamics. Player evaluation is a

major task for sports modeling that draws attention from both fans and team managers, who want to

know which players to draft, sign, or trade. Many models have been proposed [29, 19, 67, 50]. The

most common approach has been to quantify the value of a player’s action, and to evaluate players

by the total value of the actions they took [83, 70].

However, traditional sports models assess only the actions that have an immediate impact on

goals (e.g. shots), but not the actions that lead up to them (e.g. pass, reception). And action values

are assigned taking into account only a limited context of the action. But in realistic professional

sports, the relevant context is very complex, including game time, positions of players, score and

manpower differential, etc.

Recently, Markov models have been used to address these limitations. [80] used states of a

Markov Game Model to capture game context and compute a Q function, representing the chance

that a team scores the next goal, for all actions. [20] applied a competing risk framework with

Markov chain to model game context, and developed EPV, a point-wise conditional value similar

to a Q function, for each action. The Q-function concept offers two key advantages for assigning

values to actions [84, 29]: 1) All actions are scored on the same scale by looking ahead to expected
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outcomes. 2) Action values reflect the match context in which they occur. For example, a late check

near the opponent’s goal generates different scoring chances than a check at other locations and

times.

The states in the previous Markov models represent only a partial game context in the real

sports match, but nonetheless, the models assume full observability. Also, they pre-discretized input

features, which leads to loss of information. In this chapter, we utilize a deep reinforcement learning

(DRL) model to learn an action-value Q function for capturing the current match context. The neural

network representation can easily incorporate continuous quantities like rink location and game

time. To handle partial observability, we introduce a possession-based Long Short Term Memory

(LSTM) architecture that takes into account the current play history. Unlike most previous work

on active reinforcement learning (RL), which aims to compute optimal strategies for complex

continuous-flow games [41, 71], we solve a prediction (not control) problem in the passive learning

(on policy) setting [93]. We use RL as a behavioral analytics tool for real human agents, not to

control artificial agents.

Given a Q-function, the impact of an action is the change in Q-value due to the action. Our

novel Goal Impact Metric (GIM) is computed as follows. We define the impact of an action as the

change in Q-value due to the action, and aggregates the impact of all actions of a player. To our

knowledge, this is the first player evaluation metric based on DRL. The GIM metric measures both

players’ offensive and defensive contribution to goal scoring. An alternative to the action-value

approach is to compare a player to a random or league-average player (e.g.,[20]). This compares

the expected success (e.g. the number of team wins) between the situations where the player is

fielded and the situation if the player is replaced by a random or average player. We adopt this idea

to introduce a new approach for play-by-play data that defines a natural Q-value-above-average-

replacement metric for player performance measurement. Our main theorem states that a player’s

Q-value-above-average-replacement gives the same score as their total action impact value. This

means that the DRL framework unifies the two fundamental approaches to player evaluation; the

plausibility of the average replacement approach supports our total action-value metric (GIM). For

player evaluation, similar to clustering, ground truth is not available. A common methodology [80,

75] is to assess the predictive value of a player evaluation metric for standard measures of success.

Empirical comparison between 7 player evaluation metrics finds that 1) given a complete season,

GIM correlates the most with 12 standard success measures and is the most temporally consistent

metric, 2) given partial game information, GIM generalizes best to future salary and season total

success.

4.2 Task Formulation and Approach

Player evaluation (the “Moneyball” problem) is one of the most studied tasks in sports analytics.

Players are rated by their observed performance over a set of games. Our approach to evaluating

players is illustrated in Figure 4.1. Given dynamic game tracking data, we apply Reinforcement
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Learning to estimate the action-value function Q(s, a), which assigns a value to action a given

game state s. We define a new player evaluation metric called Goal Impact Metric (GIM) to value

each player, based on the aggregated impact of their actions, which is defined in Section 4.5.1 below.

Player evaluation is a descriptive task rather than a predictive generalization problem. So there is no

separate test set and all metrics are computed on the training set only. As game event data does not

provide a ground truth rating of player performance, our experiments assess player evaluation as an

unsupervised problem in Section 4.6.

Figure 4.1: System Flow for Player Evaluation

4.3 Play Dynamics in NHL

The NHL Games Model. We apply the Markov Game Framework [61] to model the play dy-

namics for for NHL play. The basic building blocks of the model are described in preliminaries

(section 3.1.3).

The Next-Goal Q-Function. Several value functions have been used to evaluate player actions.

One option is to measure actions by whether they increase the winning chances [80]. More recent

works focus on an action’s more immediate impact regarding scoring points or goals [21, 85]. We

formalize this idea in terms of the next-goal Q function, which is defined as follows.

We divide a sports game into goal-scoring episodes, so that each episode 1) starts at the be-

ginning of the game, or immediately after a goal, and 2) terminates with a goal or at the end of

the game. The next-goal Q-function represents the probability that the home/ away team scores the

goal at the end of the current goal-scoring episode (gHome = 1/gAway = 1), or neither team scores

(gNeither = 1):

Qteam(s, a) = p(gteam = 1|st = s, at = a) (4.1)

where team is a placeholder for one of Home,Away,Neither . This Q-function represents the
probability that a team scores the next goal, given current play dynamics in a sports game [84,

80]. For player evaluation, the next-goal Q-function has several advantages over win probabilities.

• Compared to final match outcome, the Q values model the probability of scoring the next goal

that is a relatively short time away and thus easier to explain and understand.
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• Increasing the probability that a player’s team scores the next goal captures both offensive

and defensive value. For example, a defensive action like tackling decreases the probability

that the other team will score the next goal, thereby increasing the probability that the player’s

own team will score the next goal.

• The next-goal reward captures what a coach expects from a player. For example, instead of

thinking about how the game will end, a coach prefers his players to focus on defending

against their opponent’s offensive play and creating the next scoring opportunities at the mo-

ment.

4.4 Learning Q values with DP-LSTM Sarsa

We take a function approximation approach and learn a neural network that represents the Q-

function (Qteam(s, a)).

4.4.1 Network Architecture

Figure 4.2 shows our model structure. The inputs of our neural model are actions and states for ice

hockey games (check a complete description of game feature in table 3.2). Three output nodes rep-

resent the estimates Q̂Home(s, a), Q̂Away(s, a) and Q̂Neither(s, a). Output values are normalized to

probabilities. The Q̂-functions for each team share weights. The network architecture is a Dynamic

LSTM that takes as inputs a current sequence st, an action at and a dynamic trace length tl t .

We apply an on-policy Temporal Difference (TD) prediction method Sarsa [93, Ch.6.4], to es-

timate Qteam(s, a) for the NLH play dynamics observed in our dataset. The model parameters θ are

optimized by mini-batch gradient descent via back-propagation. We used batch size 32 (determined

experimentally). The Sarsa gradient descent update at time step t is based on a squared-error loss

function:

Lt(θt) = E[(gt + Q̂(st+1, at+1; θt)− Q̂(st, at; θt))2] (4.2)

θt+1 = θt + α∇θL(θt) (4.3)

where g and Q̂ are for a single team1. LSTM training requires setting a trace length tl t pa-

rameter. This key parameter controls how far back in time the LSTM propagates the error signal

from the current time at the input history. Team sports like Ice Hockey show a turn-taking aspect

where one team is on the offensive and the other defends; one such turn is called a play. We set

tl t to the number of time steps from current time t to the beginning of the current play (with a

maximum of 10 steps). A play ends when the possession of puck changes from one team to another.

1In this dissertation, Q(·; θ) indicates that the Q function is parameterized by θ.
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Figure 4.2: Our design is a 5-layer network with 3 hidden layers. Each hidden layer contains 1000
nodes, which utilize a relu activation function. The first hidden layer is the LSTM layer, the remain-
ing layers are fully connected. Temporal-difference learning looks ahead to the next goal, and the
LSTM memory traces back to the beginning of the play (the last possession change).

Using possession changes as break points for temporal models is common in several continuous-

flow sports, especially basketball [20, 73]. We apply Tensorflow to implement training; our source

code is published on-line.2

4.4.2 Illustration of Temporal Projection

Figure 4.3 shows a value ticker [30, 20] that represents the evolution of the Q function from the

3rd period of a match between the blue Jackets (Home team) and the Penguins (Away team), Nov.

17, 2015. The figure plots values of the three output nodes. We highlight critical events and match

contexts to show the context-sensitivity of the Q function. High scoring probabilities for one team

decrease those of its opponent. The probability that neither team scores rises significantly at the end

of the match.

4.4.3 Illustration of Spatial Projection

The neural network generalizes from observed sequences and actions to sequences and actions that

have not occurred in our dataset. So we plot the learned smooth value surface Q̂Home(s`, shot(team))
over the entire rink for home team shots in Figure 4.4. Here s` represents the average play his-

2https://github.com/Guiliang/DRL-ice-hockey
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tory for a shot at location `, which runs in unit steps from x_axis ∈ [−100, 100] and y_axis ∈
[−42.5, 42.5]. It can be observed that 1) The chance that the home team scores after a shot is shown

to depend on the angle and distance to the goal. 2) Action-value function generalizes to the regions

where shots are rarely observed (At the lower or upper corner of the rink). The quasi-elliptical shape

of the shot heatmap is plausible, capturing the importance of both distance and angle. The shape be-

hind the net illustrates an interesting interpolation issue with the neural network model: While shots

occur behind and very close to the net, almost no shots occur in the centre of the goal behind the net

(Figure 4.5). In this case the neural network appears to interpolate the net centre value from the net

corner values (Figure 4.4).

Figure 4.3: Temporal Projection of the method.
For each team, and each game time, the graph
shows the chance the that team scores the next
goal, as estimated by the model. Major events
lead to major changes in scoring chances, as
annotated. The network also captures smaller
changes associated with every action under

different game contexts.

Figure 4.4: Spatial Projection for the shot
action: The probability that the home team

scores the next goal after taking a shot at a rink
location, averaged over possible game states.

Figure 4.5 shows the positions of shots behind
the goal, which explains the distribution of Q

values around the goal.

4.5 Player Evaluation Metric Based on Q values

In this section, we show how a player evaluation metric can be derived from the Q-function. Our

approach to measuring player performance is assigning impact values (the difference between two

consecutive Q values) to a player’s action. To provide a theoretical foundation for our impact metric,

this section introduces another Q-value-Above-Replacement metric to evaluate a player’s action. By

proving both metrics are equivalent, we show thatQ-values unify the two main approaches to player

evaluation.
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Figure 4.5: Shots behind the opponent’s goal in the 2015-16 NHL game season.

4.5.1 Goal Impact: Deriving Action Values from Q-values.

Our Q-function concept provides a novel AI-based definition for assigning a value to an action.

Similar to [85], we measure the quality of an action by how much it changes the expected total

reward of a player’s team: the difference in expected total reward before and after the player acts.

The scoring chance at a time measures the value of a state, and therefore depends on the previous

efforts of the entire team, whereas the change in value directly measures the impact of an action

by a specific player. For our specific choice of Next Goal as the reward function, we refer to goal
impact. The total impact of a player’s actions is his Goal Impact Metric (GIM).

The following equations show how the action impact can be computed for a transition T {s, a, r′, s′, a′}
given Q value estimates from our DP-LSTM model. The expected future total reward before s′, a′

is given by r′+Es′,a′ [Qteam(s′, a′)|s, a] (Our Q function computes an expected value, check Equa-

tion 3.1). The expected future total reward after s′, a′ is given by r′ +Qteam(s′, a′). Therefore:

impactteami (s, a, s′, a′) ≡ Qteami (s′, a′)− Es′,a′ [Qteami (s′, a′)|s, a] (4.4)

GIM i(D) ≡
∑

s,a,s′,a′

n[s, a, s′, a′, pl ′ = i; D] · impactteami (s, a, s′, a′) (4.5)

where D indicates our dataset, teami denotes the team of player i, and n[s, a, s′, a′, pl ′ =
i; D] is the number of times that player i performs action a′ at s′ after s, a occurs. The Bellman

equation (2.1) implies that Es′,a′ [Qteam(s′, a′)|s, a] = Qteam(s, a) − E[r′|s, a]. The expectation

can therefore be computed from estimated Q values given an expected rewards model. In our data,

scoring a goal is represented as a separate action goal , after which no transition occurs. This means

26



that for every transition T {s, a, r′, s′, a′}, we have that a 6= goal , r′ = 0 and thus E[r′|s, a] = 0.

So in this representation, the impact equation (4.4) reduces to the difference in Q values before and

after the player acts.

4.5.2 Q Value Above Average Replacement

We compare the goal impact metric to deriving a player metric from a Q-function using an above-

average-replacement framework. The fact that the same player performance ranking can be derived

using two fundamentally different approaches supports the conceptual foundations of our metric.

The QAAR metric, compares the expected total future reward given that player i acts next, to the

expected total future reward given that a random replacement player acts next:

QAARi(D) ≡
∑
s,a

n[s, a, pl ′ = i; D]
(
Es′,a′ [Qteam(s′, a′|s, a, pl ′ = i)]− Es′,a′ [Qteam(s′, a′)|s, a]

)
(4.6)

where n[s, a, pl ′ = i; D] is the number of times that player i performs an action after s, a occurs.

The QAAR metric can be computed for a dataset by using the maximum likelihood estimates of

transition probabilities. QAAR and GIM are natural definitions for the value-above-replacement

and action-value approaches, respectively. Our main result is that they are equivalent:

Proposition 1. For each player i recorded in our play-by-play dataset D, his Q-value-above-

replacement is equal to his goal impact metric: QAARiD = GIM i(D).

The complete proof is in our Appendix. This equation indicates that by summing a player’s

impact over an entire game season (GIM), we measure how much his general playing skill exceeds

that of an average player ( replacement player with average Q-value) in the same league. Thus the

same method for ranking players can be derived from a Q-function using two fundamentally differ-

ent approaches. The QAAR metric also offers an alternative interpretation of GIM as the expected

goals added by a player over a season. The next paragraph elaborates this interpretation. We also

discuss why we do not standardize the GIM metric by the number of opportunities that a player has

(e.g., dividing by their total Time-On-Ice).

GIM Interpretation in terms of Expected Goals Added. We introduce the following notation.

• Let δi[s, a] =
(
Es′,a′ [Qteam(s′, a′|s, a, pl ′ = i)]− Es′,a′ [Qteam(s′, a′)|s, a]

)
.

• Let ng[s, a, pl ′ = i; D] be the number of times that player i performs an action after s, a.

• Let N be the total number of games played by each team during the (regular) season. For

example in the current NHL system, N = 82.
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Then the QAAR metric (4.6) can be written as

GIM i(D) = QAARi(D) =
∑

g

∑
s,a

ng[s, a, pl ′ = i; D]× δi [s, a] (4.7)

The inner sum is the expected number of goals added in game g if we replace player i by a

league-average player. Therefore dividing the GIM metric by N :

GIMi(D)/N (4.8)

yields the average expected number of goals added by player i over all games in a season.

Therefore the GIM metric is related by a constant factor to a measure of how many goals a player

adds, compared to a league-average player.

Scaled or standardized variants of a sum metric like GIM are commonly used in sports analytics.

For example, instead of dividing GIM by the constant number of games N , we could consider

dividing by the player’s total number of games played, or by his total Time-on-Ice, or his total

number of actions, or more generally a measure of how many opportunities the player had to earn

credit for his actions. The drawback of standardization by opportunities is that stronger players

tend to have more opportunities since their coaches field them more. For example, if we change

in Equation (4.8) the constant N by the number Ni of games played by player i, this scaling will

tend to penalize stronger players. Therefore the opportunity-scaled variant is less likely to single out

strong players than the plain GIM total.

Another important point is that the goals-added term δi[s, a] can be both positive and negative.

Therefore positive and negative contributions by a player can cancel each other out; to achieve an

overall high GIM score, a player must most of the time make mainly positive contributions. This

is very different from, say, adding up a player’s shots: the more shots a player takes, the higher

the count. Moreover, for a positive δi[s, a] contribution, a player’s action must not only help his

team, but it must have a greater positive impact than the average player. In professional sports,

performing better than an average player is a high bar. In sum, standardizing by opportunities has the

serious drawback of penalizing strong players, and the GIM metric is not intrinsically biased towards

players who take more actions, because their actual contributions may be negative. Therefore we use

the straightforward count of action impact values (Equation (4.5)), which can also be read as a count

of expected goals added compared to a league-average player (Equation (4.6)). The next section

turns to empirical evaluation and shows some ranking examples applying GIM to rate players.

4.5.3 Rank Players with GIM

Table 4.1 lists the top-20 highest impacts players, with basic statistics. All these players are well-

known NHL stars. Taylor Hall tops the ranking although he did not score the most goals. This shows

how our ranking, while correlated with goals, also reflects the value of other actions by the player.

For instance, we find that the total number of passes performed by Taylor Hall is exceptionally
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high at 320. Our metric can be used to identify undervalued players. For instance, Johnny Gaudreau

and Mark Scheifele drew salaries below what their GIM rank would suggest. Later they received a

$5M+ contract for the 2016-17 season.

Name GIM Assists Goals Points Team Salary
Taylor Hall 96.40 39 26 65 EDM $6,000,000
Joe Pavelski 94.56 40 38 78 SJS $6,000,000

Johnny Gaudreau 94.51 48 30 78 CGY $925,000
Anze Kopitar 94.10 49 25 74 LAK $7,700,000
Erik Karlsson 92.41 66 16 82 OTT $7,000,000

Patrice Bergeron 92.06 36 32 68 BOS $8,750,000
Mark Scheifele 90.67 32 29 61 WPG $832,500
Sidney Crosby 90.21 49 36 85 PIT $12,000,000
Claude Giroux 89.64 45 22 67 PHI $9,000,000

Dustin Byfuglien 89.46 34 19 53 WPG $6,000,000
Jamie Benn 88.38 48 41 89 DAL $5,750,000
Patrick Kane 87.81 60 46 106 CHI $13,800,000
Mark Stone 86.42 38 23 61 OTT $2,250,000

Blake Wheeler 85.83 52 26 78 WPG $5,800,000
Tyler Toffoli 83.25 27 31 58 DAL $2,600,000

Charlie Coyle 81.50 21 21 42 MIN $1,900,000
Tyson Barrie 81.46 36 13 49 COL $3,200,000

Jonathan Toews 80.92 30 28 58 CHI $13,800,000
Sean Monahan 80.92 36 27 63 CGY $925,000

Vladimir Tarasenko 80.68 34 40 74 STL $8,000,000

Table 4.1: 2015-2016 Top-20 Player Impact Scores

4.6 Empirical Evaluation

We describe our comparison methods and evaluation methodology. Similar to clustering prob-

lems, there is no ground truth for the task of player evaluation. To assess a player evaluation

metric, we follow previous work [80, 75] and compute its correlation with statistics that directly

measure success like Goals, Assists, Points, Play Time (Section 4.6.2). There are two justifications

for comparing with success measures. (1) These statistics are generally recognized as important

measures of a player’s strength, because they indicate the player’s ability to contribute to game-

changing events. So a comprehensive performance metric ought to be related to them. (2) The

success measures are often forecasting targets for hockey stakeholders, so a good player evaluation

metric should have predictive value for them. For example, teams would want to know how many

points an offensive player will contribute. To evaluate the ability of the GIM metric for generalizing

from past performance to future success, we report two measurements: How well the GIM metric
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predicts a total season success measure from a sample of matches only (Section 4.6.3), and how

well the GIM metric predicts the future salary of a player in subsequent seasons (Section 4.6.4).

Mapping performance to salaries is a practically important task because it provides an objective

standard to guide players and teams in salary negotiations [47].

4.6.1 Comparison Player Evaluation Metrics

We compare GIM with the following player evaluation metrics to show the advantage of 1) modeling

game context 2) incorporating continuous context signal 3) including history.

Our first baseline method Plus-Minus (+/-) is a commonly used metric that measures how the

presence of a player influences the goals of his team [67]. The second baseline method Goal-Above-
Replacement (GAR) estimates the difference of team’s scoring chances when the target player

plays, vs. replacing him or her with an average player [34]. Win-Above-Replacement (WAR),
our third baseline method, is the same as GAR but for winning chances [34]. Our fourth baseline

method Expected Goal (EG) weights each shot by the chance of it leading to a goal. These four

methods consider only very limited game context. The last baseline method Scoring Impact (SI) is

the most similar method to GIM based on Q-values. But Q-values are learned with pre-discretized

spatial regions and game time [84]. As a lesion method, we include GIM-T1, where we set the

maximum trace length of LSTM to 1 (instead of 10) in computing GIM. This comparison assesses

the importance of including enough history information.

Computing Cost. Compared to traditional metrics like +/-, learning a Q-function is computation-

ally demanding (over 5 million gradient descent steps on our dataset). However, after the model has

been trained off-line, the GIM metric can be computed quickly with a single pass over the data.

Training Settings. We describe the player evaluation as a descriptive task rather than a predictive

generalization problem. Our training dataset contains all data in the play-by-play ice hockey dataset.

For the season total (section 4.6.2), the round-by-round correlation experiment (section 4.6.3), and

the future seasons salary experiment (section 4.6.4), we apply the 2015-2016 season ice-hockey

dataset. For the cross-season correlation experiment (section 4.6.5), we apply the 2015-2019 season

ice-hockey dataset.

4.6.2 Season Totals: Correlations with standard Success Measures

In the following experiment, we compute the correlation between player ranking metrics and success

measures over the entire season. Table 4.2 shows the correlation coefficients of the comparison

methods with 14 standard success measures: Assist, Goal, Game Wining Goal (GWG), Overtime

Goal (OTG), Short-handed Goal (SHG), Power-play Goal (PPG), Shots (S), Point, Short-handed

Point (SHP), Power-play Point (PPP), Face-off Win Percentage (FOW), Points Per Game (P/GP),

Time On Ice (TOI) and Penalty Minute (PIM). These are all commonly used measures available

from the NHL official website (www.nhl.com/stats/player). GIM achieves the highest correlation
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in 12 out of 14 success measures. For the remaining two (TOI and PIM), GIM is comparable to

the highest. Together, the Q-based metrics GIM, GIM-1 and SI show the highest correlations with

success measures. EG is only the fourth best metric, because it considers only the expected value

of shots without look-ahead. The traditional sports analytics metrics correlate poorly with almost

all success measures. This is evidence that AI techniques that provide fine-grained expected action-

value estimates lead to better performance metrics. With the neural network model, GIM can handle

continuous input without pre-discretization. This prevents the loss of game context information and

explains why both GIM and GIM-T1 performs better than SI in most success measures. And the

higher correlation of GIM compared to GIM-T1 also demonstrates the value of game history. In

terms of absolute correlations, GIM achieves high values, except for the very rare events OTG, SHG,

SHP and FOW. Another exception is Penalty Minutes (PIM), which interestingly, show positive

correlation with all player evaluation metrics, although penalties are undesirable. We hypothesize

that better players are more likely to receive penalties, because they play more often and more

aggressively.

methods Assist Goal GWG OTG SHG PPG S
+/- 0.236 0.204 0.217 0.16 0.095 0.099 0.118

GAR 0.527 0.633 0.552 0.324 0.191 0.583 0.549
WAR 0.516 0.652 0.551 0.332 0.192 0.564 0.532
EG 0.783 0.834 0.704 0.448 0.249 0.684 0.891
SI 0.869 0.745 0.631 0.411 0.27 0.591 0.898

GIM-T1 0.873 0.752 0.682 0.428 0.291 0.607 0.877
GIM 0.875 0.878 0.751 0.465 0.345 0.71 0.912

methods Point SHP PPP FOW P/GP TOI PIM
+/- 0.237 0.159 0.089 -0.045 0.238 0.141 0.049

GAR 0.622 0.226 0.532 0.16 0.616 0.323 0.089
WAR 0.612 0.235 0.531 0.153 0.605 0.331 0.078
EG 0.854 0.287 0.729 0.28 0.702 0.722 0.354
SI 0.869 0.37 0.707 0.185 0.655 0.955 0.492

GIM-T1 0.902 0.384 0.736 0.288 0.738 0.777 0.347
GIM 0.93 0.399 0.774 0.295 0.749 0.835 0.405

Table 4.2: Correlation with standard success measures.

4.6.3 Round-by-Round Correlations: Predicting Future Performance From Past Per-
formance

A sports season is commonly divided into rounds. In round n, a team has finished n games in a

season, for example, the round 1 finishes when all the team in the NHL league has finished the first

game in their game season. For a given performance metric, we measure the correlation between (i)

its value computed over the first n rounds, and (ii) the value of the three main success measures,

assists, goals, and points, computed over the entire season. This allows us to assess how quickly
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different metrics acquire predictive power for the final season total, so that future performance can

be predicted from past performance. We also evaluate the auto-correlation of a metric’s round-by-

round total with its own season total. The auto-correlation is a measure of temporal consistency,

which is a desirable feature [75], because generally the skill of a player does not change greatly

throughout a season. Therefore a good performance metric should show temporal consistency.

We focused on the expected value metrics EG, SI, GIM-T1 and GIM, which had the highest

correlations with success in Table 4.2. Figure 4.6 shows metrics’ round-by-round correlation co-

efficients with assists, goals, and points. The bottom right shows the auto-correlation of a metric’s

round-by-round total with its own season total. GIM is the most stable metric as measured by auto-

correlation: after half the season, the correlation between the round-by-round GIM and the final

GIM is already above 0.9.

We find both GIM and GIM-T1 eventually dominate the predictive value of the other met-

rics, which shows the advantages of modeling sports game context without pre-discretization. And

possession-based GIM also dominates GIM-T1 after the first season half, which shows the value of

including play history in the game context. But how quickly and how much the GIM metrics im-

prove depends on the specific success measure. For instance, in Figure 5.6, GIM’s round-by-round

correlation with Goal (top right graph) dominates by round 10, while others require a longer time.

4.6.4 Future Seasons: Predicting Players’ Salary

In professional sports, a team will give a comprehensive evaluation to players before deciding their

contract. The more value players provide, the larger contract they will get. Accordingly, a good

performance metric should be positively related to the amount of players’ future contract. The

NHL regulates when players can renegotiate their contracts, so we focus on players receiving a new

contract following the games in our dataset (2015-2016 season).

methods 2016 to 2017 Season 2017 to 2018 Season
Plus Minus 0.177 0.225

GAR 0.328 0.372
WAR 0.328 0.372
EG 0.587 0.6
SI 0.609 0.668

GIM-T1 0.596 0.69
GIM 0.666 0.763

Table 4.3: Correlation with Players’ Contract

Table 4.3 shows the metrics’ correlations with the amount of players’ contract over all the play-

ers who obtained a new contract during the 2016-17 and 2017-18 NHL seasons. Our GIM score

achieves the highest correlation in both seasons. This means that the metric can serve as an objec-

tive basis for contract negotiations. The scatter plots of Figure 4.7 illustrate GIM’s correlation with

amount of players’ future contract. In the 2016-17 season (left), we find many underestimated play-
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Figure 4.6: Correlations between round-by-round metrics and season totals.

ers in the right bottom part, with high GIM but low salary in their new contract. It is interesting that

the percentage of players who are undervalued in their new contract decreases in the next season

(from 32/258 in 2016-17 season to 8/125 in 2017-2018 season). This suggests that GIM provides

an early signal of a player’s value after one season, while it often takes teams an additional season

to recognize performance enough to award a higher salary.

4.6.5 Cross-Season Correlations: Measuring the consistency of GIM between sea-
sons.

A player performance is generally consistent between two continuous seasons, consequently, a

promising player evaluation metrics should assign similar values to the same player in two season.

Figure 4.8, Figure 4.9 and Figure 4.10 illustrate the scatter plots of the players’ GIMs between two

continuous seasons. Table 4.4 shows the corresponding correlation coefficient. The computation

omits the players who quit the NHL league or have not attend the league during the any of the

two continuous seasons The correlation of GIMs between two continuous season is positive, which

proves the consistency of GIM.
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Figure 4.7: Player GIM vs. Value of new contracts in the 2016-17 (left) and 2017-18 (right) NHL
season.

Figure 4.8: The scatter plot of players’
GIMs between 15-16 and 16-17 NHL

season.

Figure 4.9: The scatter plot of players’
GIMs between 16-17 and 17-18 NHL

season.
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Figure 4.10: The scatter plot of
players’ GIMs between 17-18 and

18-19 NHL season.

NHL Season Correlations
2015-16 v.s. 2016-17 0.9281
2016-17 v.s. 2017-18 0.7609
2017-18 v.s. 2018-19 0.8409

Table 4.4: The pearson correlation coefficient of
the players’ GIMs between two continuous sea-
sons.

4.7 Summary

We applied DRL to learn complex spatio-temporal NHL dynamics. The trained neural network

provides a rich source of knowledge about how a team’s chance of scoring the next goal depends on

the match context. Based on the learned action values, we developed an innovative context-aware

performance metric GIM that provides a comprehensive evaluation of NHL players, taking into

account all of their actions. In our experiments, GIM had the highest correlation with most standard

success measures, was the most temporally consistent metric, and generalized best to players’ future

salary. Our approach applies to similar continuous-flow sports games with rich game contexts, like

soccer and basketball.
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Chapter 5

Extending the Action-Value Function for
Evaluating Soccer Players

5.1 Introduction: Valuing Actions of Soccer Players

Soccer is arguably the most challenging to analyze of all the major team sports [13]. The game con-

text of soccer is much more complicated than that of ice hockey, given that soccer has more players

(22 players), larger pitch (350 feet long and 150 feet wide) and longer playing time (90 minutes),

all of which lead to complex spatio-temporal distribution patterns for each team. In this chapter,

we apply Deep Reinforcement Learning (DRL) to learn an action-value Q-function from events in

a soccer game. We introduce a stacked two-tower LSTM to capture the playing dynamics for home

and away teams separately. Unlike the traditional control problem in reinforcement learning aim-

ing to learn the optimal policy, we solve the prediction problem in the passive learning (on policy)

setting.

Based on the learned Q-function, we use the Goal Impact Metric (GIM, see Equation (4.5) )

to evaluate player performance. GIM ranks a player by aggregating the impact of all his actions,

where the impact of an action is the change of consecutive Q values due to this action. In empirical

comparison with four comparison metrics, GIM shows the highest correlation with most standard

success measurements. Generalizing from an initial sample of season matches, GIM is the best

predictor of season total goals and assists.

To compute the action values for all players, we build a large dataset consisting of over 4.5M

action events by pooling data from several soccer leagues. This dataset allows the model to learn

general estimations for action values. However, as the game context within a specific league may

differ from that of the general soccer game, the contribution of a player varies among leagues. To

address the trade-off between generalizing across leagues and specializing to a specific one, we

propose a fine-tuning approach: begin with the general model as an initialization, then train on the

specific data from a certain league. Given the English Football League (EFL) Championship data,
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we use fine-tuning to improve the model’s fitting performance as well as the evaluation results for

players in this league.

5.2 Learning Q Values: Model Architecture and Training

This section introduces a neural network architecture and the weight training methods to learn a Q-

function (Qteam(s, a), defined in Equation (4.1)). Due to the complexity of soccer, the architecture

is more complex than the one we used for ice hockey.

5.2.1 Model Architecture: Function Approximation with Neural Network

We discuss the model architecture for learning the Q values. Given a discrete state space, it is pos-

sible to use dynamic programming for computing Q-values [85]. But our soccer model contains

continuous observation features derived from continuous time stamps and spatial locations. A com-

mon solution is to discretize spatio-temporal indices [37]. However, the resulting discontinuities

undermine the precision of state values and influence the model performance. In this chapter, we

develop a neural network approach that can directly incorporate continuous observation features.

To generate Q-values, our model applies the two-tower design to fit the data of home/away

teams separately and a recurrent neural network to capture the sequential features in play history.

Figure 5.1 shows our model structure. The model fits home and away data separately with a two-

tower structure [90], because from domain knowledge (e.g. the home team advantage [95]) we

expect the Q values to be different depending on whether a team plays at home or away. Each tower

captures the play history with a stacked LSTM, which is a multi-layer LSTM, where outputs of

LSTM cells in lower layers are used as the input for higher layers. Compared to the single layer

LSTM, stacking adds levels of abstraction for sequences’ input features. This increases the model’s

ability to generalize across complex game contexts. The complete play history of game contexts and

actions (st, at) is summarized in the last hidden state of the top LSTM layer. Our model uses a team

identifier unit to select the hidden state from the home or the away tower according to who controls

the ball in the current play. The selected hidden state values are sent to hidden layers whose outputs

are normalized by a softmax function and considered as our estimates of Q̂Home(s, a), Q̂Away(s, a),

and Q̂Neither(s, a).

5.2.2 Weight Training

We train the two-tower neural network with an on-policy Temporal Difference (TD) prediction

method Sarsa [94, Ch.6.4] and apply a dynamic-possession LSTM to control the trace length during

training. Our goal is to learn a function that estimatesQteam(s, a) for the play dynamics observed in

our dataset, with which we evaluate the performance of players instead of controlling them (which

is hard in the case of professional players). The training details are discussed below.
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Figure 5.1: The architecture of our Two-Tower Dynamic Play LSTM (TTDP-LSTM). The figure
shows how the model processes two generic time instances, one where the home team acts—which
is analyzed by the home tower—and another where the away team acts—analyzed by the away
tower.

Home/Away Tower Weight Training. At training step t, our model sends the output from the

home/away tower to the hidden layers if the home/away team controls the ball at t. During one

training step, the hidden layers estimate the Q values for two continuous actions and states within

one transition T {st, at, rt+1, st+1, at+1}. The estimated Q values are applied to compute the TD

loss:

L(θ) =
∑

team∈T
E
[
(rteam,t+1 + Q̂team(st+1, at+1; θ)− Q̂team(st, at; θ))2] (5.1)

Given this loss function, we optimize the weights of our neural model (Figure 5.1) by mini-batch

gradient descent via backpropagation. As for each transition, an error signal is sent only to either

the home or the away tower, the flow of gradients will only influence one of the two towers and thus

their weights are updated independently. This independence separates home and away signals and

helps the network to learn their impact (e.g., home advantage [95] ).

Dynamic Possession-LSTM. Team sports like soccer show a turn-taking aspect where one team

is on the offensive and the other defends; one such turn is called a play. A play ends when possession

passes from the team at time t to the opposing team at time t+1 [63]. In a sports game, events within

a play are highly correlated, but when a team loses control of the ball (meaning the play ends),

the attacking team switches to defense. The dependence between actions from successive plays is

therefore much weaker. The turn-taking aspect inspires a natural way of determining the trace length

tl t , which controls how far back in time the LSTM propagates the error signal from the current time
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at the input history. Instead of fixing the trace length, our model dynamically computes it and sets

tl t to the number of time steps from current time t to the beginning of the current play (with a

maximum of 10 steps), so that LSTM can restrict the history traces to the continuous possession of

one team. Using possession changes to define episodes for temporal models has been proven to be

successful in many continuous-flow sports, especially basketball [21, 37].

Training Settings. For our TTDP-LSTM model in Figure 5.1, both home and away towers apply

a two-layer LSTM, whose signals are sent to two hidden layers with three output nodes. The number

of nodes in LSTM hidden states and hidden layers are both 256. The max trace length of LSTM

is 10 [41]. During training, we minimize the loss function L(θ) with Adam optimizer that applies

a general learning rate of 10E-04 on the entire dataset containing over 4.5M event data and a fine-

tuning learning rate of 10E-05 on the league-specific dataset.

5.3 Model Validation: Q Values

Our case studies illustrate the learned Q-function with temporal and spatial projections. To validate

the model performance, we show that the learned Q values are well-calibrated, meaning that they

offer a satisfactory fit to empirical scoring frequencies observed under different game contexts.

5.3.1 Illustration of Temporal and Spatial Projection.

Figure 5.2: Temporal Projection of the learned Q-function. The game is between Fulham (Home)
and Sheffield Wednesday (Away), which has happened on Aug.19th, 2017.

Temporal Projection. We illustrate the estimated Q values for actions and states across game

times. Figure 5.2 shows a value ticker [21] that represents the evolution of the Q values during a
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randomly sampled game from our dataset. The figure plots values of the three output nodes rep-

resenting Q̂Home(s, a), Q̂Away(s, a), and Q̂Neither(s, a), according to which we highlight critical

events to show the context-sensitivity of the Q-function. We observe that: 1) High scoring probabil-

ities for one team decrease those of its opponent. 2) The probability that neither team scores rises

significantly at the end of the match.

Spatial Projection. To study the influence of players’ positions on scoring probability, we gener-

ate Q values for the entire soccer pitch. Our neural model can generalize from observed states and

actions to those that have not occurred in the observed game season. Our model’s generalization

ability allows us to estimate a Q value for any action performed at any position.

Figure 5.3: Spatial Projections for estimated Q values: Q̂Home(s, shot), Q̂Home(s, pass),
Q̂Home(s, cross) and Q̂Home(s, tackle) over the entire soccer pitch. We use the adjusted coordi-
nate described in Section 3.3.1.

Figure 5.3 shows the learned smooth Q-function surface Q̂Home(s, a) over possible game tra-

jectories for several actions of home team including shot, pass, cross, and tackle. We select those

actions because they are frequent and have been studied in many previous works [17, 100]. Among

the selected actions, we observe the followiong. (1) The Q value of a shot increases with closeness

to the opponent’s goal. (2) Angles from the left side of the goal appear slightly more promising

than from the right. The plots for Q̂home(s, pass) and Q̂home(s, cross) show the same phenomena.

An explanation for the first observation is that players have more chance to score when they ap-

proach their opponent’s goal. The second observation reflects the data: The numbers of successful

shots on the upper and the lower soccer pitch are 3,769 v.s. 3,544. The difference of these scoring

frequencies verifies the asymmetry captured by the neural network model. Figure 5.4 shows two

goal-scoring banana kicks (marked by a red circle) made on the upper right corner while no such
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shots on the lower corner are found in our data. Therefore the right/left foot asymmetry in player’s

shooting skills partially explains the asymmetrical scoring chance.

The asymmetrical scoring chance on a soccer pitch also explains why the defensive action tackle

made near the bottom left corner is more valuable (the last plot): tackles disturb opponents’ actions

that might lead to successful shots on their upper corner. Figure 5.5 shows the positions of tackle.

A successful tackle near the opponent’s goal will create a promising scoring opportunity. However,

most players perform tackles in the defensive zone near their own goal, and thus our DRL model

does not capture the value of tackles in the offensive zone well (due to the lack of data). To help

evaluate the model with respect to defensive tackles, Table 5.1 show the frequency of a team scoring

the next goal after performing tackle on the top or bottom half a pitch, which allows calculating that

p(Next Goal|top)=0.3373 and p(Next Goal|bottom)=0.3407. While the model captures the advantage

of bottom pitch tackles over top pitch ones, it seems to overestimate the magnitude of this effect.

Figure 5.4: Spatial illustration of all goal-scoring shots under the adjusted coordinates (with our
dataset).

Scoring v.s.,
Positions

Score Next Goal
Yes No

Tackle
Position

Top 17267 33923
Bottom 17930 34698

Table 5.1: Calibration results for the spatial illustration of tackle values.
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Figure 5.5: Spatial illustration of tackle under the adjusted coordinates (with our dataset) in 100 ran-
domly sampled game. We label these tackles by whether the team that performs the tackle manages
to score the next goal.

5.3.2 Calibration Quality for the learned Q-function

The calibration measurement evaluates how well our learned Q-function fits the observed next-

goal scoring frequencies under different game contexts. Our approach to defining the game context

is dividing the continuous state space into discrete bins representing a type of game context. To

calculate empirical visiting frequencies of bins, we assign an observed state to a bin according to

the values of three discrete context features in the last observation: Manpower (Short Handed (SH),

Even Strength (ES), Power Play (PP)), Goal Differential (≤ −3, -2, -1, 0, 1, 2, ≥ 3) and Period (1

(first half), 2 (second half)). The total number of bins is 3 × 7 × 2 = 42. This partition has two

advantages. 1) The context features are well-studied and important for soccer experts [29], so the

model predictions can be checked against domain knowledge. 2) The partition covers a wide range

of match contexts, and each bin aggregates a large set of play histories. If our model exhibits a

systematic bias, the aggregation should amplify it and become detectable.

Given the set of bins where each bin A contains a total of |A| states, the empirical and estimated

scoring probabilities for each bin are defined as follows:

• Empirical Scoring Probabilities : for each observed state s, we set gteam
obs (s) = 1 if the ob-

served episode containing state s ends with a goal by team team = Home,Away or neither

(team = Neither). Then Qteam
obs (A) = 1

|A|
∑
s∈A g

team
obs (s)
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Man. Goal. P. |A| TT_Home TT_Away TT_MAE Markov_MAE
ES -1 1 73176 0.4374 0.4159 0.0052 0.1879
ES -1 2 96408 0.3496 0.3025 0.0782 0.1783
ES 0 1 356597 0.4437 0.4272 0.026 0.1908
ES 0 2 160080 0.356 0.3077 0.0814 0.1792
ES 1 1 88726 0.4402 0.4128 0.0335 0.1899
ES 1 2 119901 0.3459 0.295 0.077 0.1787
PP -1 1 876 0.4366 0.4045 0.1752 0.1937
PP -1 2 3319 0.352 0.2911 0.0668 0.1685
PP 0 1 3183 0.4414 0.403 0.1308 0.187
PP 0 2 7183 0.3579 0.2855 0.0841 0.1804
PP 1 1 1316 0.4391 0.3949 0.115 0.1825
PP 1 2 7676 0.356 0.2862 0.1121 0.1792

Table 5.2: Calibration Results. TT_Home and TT_Away report the average scoring probability
Q̂team(A) estimated by our TTDP-LSTM model. Here we compare only Q values for pass and
shot as they are frequent and well-studied actions. TT_MAE is the Mean Absolute Error (MAE) be-
tween estimated scoring probabilities from our model and empirical scoring probabilities. For com-
parison, we also report a Markov_MAE which applies the estimates from a discrete-state Markov
model [85].

• Estimated Scoring Probabilities: we apply our TTDP-LSTM model to estimate a Q value for

each observed sequence and average the resulting estimates to compute the estimated scoring

probabilities : Q̂team(A) = 1
|A|
∑
s∈A Q̂

team(s, a)

We evaluate the fit as the difference between the average empirical scoring probabilityQteam
obs (A)

and the average estimated scoring probability Q̂team(A). We show the results in Table 5.2 where

the context features (Man. Goal. and P.) define a bin, and |A| records the frequency of bin A in our

dataset. The estimated Q-function matches several well-known phenomena: 1) The chance of either

team scoring another goal decreases in the second period. 2) A clear home team advantage [95]:

Comparing two match contexts with the home and away team roles exchanged, the relative advan-

tage of the home team is greater than that of the away team. 3) Manpower advantage by the home

team means a lower scoring chance for the away team.

Our conclusions are as follows. 1) The model fit is satisfactory (The average MAE for all bins

is below 0.1), except for some relatively rare game contexts (e.g. the context whose corresponding

bin count is only 876, which indicates this context appears only 876 times out of 3M match states).

2) Our model significantly outperforms the Markov Model. This shows the value of a function

approximation model that can utilize continuous space-time information without losing information

due to discretization.
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5.4 Player Ranking: Case Study

Applying the GIM metric (Equation 4.5) defined in the previous chapter, we discuss the ranking

results for several players. We rank the EFL Championship players by their GIMs over the entire

2017-2018 game season. Our case study ranks only players in one league because they face the

same level of competition and therefore their contributions are comparable. We chose the EFL

Championship, which is just below the Premier League in the league hierarchy, because it has a

large number of players in our data set and it has been much less studied than the Premier League.

Fine-Tuning. Different leagues have their own characteristics including competition level, season

length, and playoff agenda. Therefore we apply a fine-tuning technique to achieve a better fit to the

EFL Championship games: 1) First, train a general model to evaluate actions in European soccer

with our dataset containing games from multiple European Soccer leagues. 2) Fine-tune the initial

weight values from the general model, with a smaller learning rate and using only EFL Champi-

onship game data. Fine-tuning refines the general model and improves its ability to fit the behaviour

of players. Compared to training the model from scratch, fine-tuning the general model significantly

reduces training time and prevents over-fitting. In the following assessment, we describe GIM val-

ues computed with the fine-tuned model and present both a general ranking for all actions and

action-specific rankings.

5.4.1 All-Actions Assessment

Table 5.3 lists the 10 players with highest GIM for all actions. Our ranking includes the players with

the most goals and assists. We investigate the positive correlation between our metric and standard

success measures further in the next section. Matej Vydra tops our 2017-2018 season ranking. He

dominated the scoring board of the England Championship league and won the 2017-18 Golden

Boot award1. In the next season (2018-2019), the Premier League team Burnley recognized the

talent of Vydra and signed him on a three-year deal from team Derby after the 2017-18 game

season. Another example is Tom Cairney, who has only 5 goals and 5 assists over the entire season

but ranks 6th in GIM assessment. Although he does not lead any standard success measures (Goals,

Assists), his impact was an indispensable factor of his team’s success in winning the 2017-18 EFL

playoffs. For example, he scored the only goal of the final in which Fulham beat Aston Villa by

1-0 in the Wembley stadium and earned promotion to the Premier league. As the team captain, Tom

Cairney was nominated as the EFL’s Championship Player of the Season award2.

1https://www.skysports.com/football/news/11688/11361634/

2https://www.bbc.com/sport/football/43641225
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name team GIM Goals Assists
Matej Vydra Derby 18.017 21 4
Leon Clarke Sheffield United 17.785 19 5
Lewis Grabban Sunderland 16.045 12 0
Bobby De Cordova-Reid Bristol 15.976 19 7
Diogo José Teixeira da Silva Wolverhampton 15.707 17 5
Tom Cairney Fulham 15.24 5 5
Ivan Cavaleiro Wolverhampton 14.979 9 12
Stefan Johansen Fulham 13.565 8 8
James Maddison Norwich 13.23 14 8
Gary Hooper Sheffield Wednesday 11.953 10 3

Table 5.3: 2017-2018 season top-10 Player Impact Scores for players in EFL Championship game
season.

name GIM Goal
Matej Vydra 4.747 21
Leon Clarke 4.024 19
Lewis Grabban 3.775 12
Kouassi Ryan Sessegnon 3.657 15
Harry Wilson 3.135 7
Famara Diedhiou 3.015 13
Sean Maguire 2.5 10
Joe Garner 2.44 10
Jarrod Bowen 2.408 14
Callum Paterson 2.29 10

Table 5.4: Top-10 soccer players with
largest shot impact in 2017-2018 EFL

Championship game season.

name GIM Assist
Leon Clarke 8.05 5
Matej Vydra 5.957 4
Bobby De Cordova-Reid 5.134 7
Chris Wood 4.732 1
Gary Hooper 4.694 3
Ivan Cavaleiro 4.533 12
Diogo José Teixeira da Silva 4.283 5
Gary Madine 4.202 2
Tom Cairney 4.123 5
Conor Hourihane 4.042 2

Table 5.5: Top-10 soccer players with
largest pass impact in 2017-2018 EFL

Championship game season.

5.4.2 Action-Specific Assessment

An action-specific ranking evaluates only the impacts of action of interest. We compute two GIM

rankings of EFL Championship players by shots and passes respectively. These are frequent actions

in soccer with high impact. Table 5.4 and Table 5.5 list the top 10 players. GIM computed from shots

only can be seen as an alternative to the popular expected goals (XG) metric. A shot with high impact

will significantly increase the probability of scoring and thus top players in Table 5.4 also lead the

goal scoring. For instance, Matej Vydra is the player with the highest scoring impact and he also

dominated goal scoring during 2017-18 game season. However, the relation between pass impact

and the number of assists is more complex. There is some association, because assists are often

high-value passes. On the other hand, assists are an incomplete measure of passing ability because

it neglects midfield and defensive zone passes. Our ranking, in contrast, provides a comprehensive

evaluation to all the passes of a player. For example, Conor Hourihane plays as Midfielder and
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managed only 2 assists over the entire season. But he makes many influential passes and is ranked

as a top-10 passer by our metric.

5.5 Player Ranking: Empirical Evaluation

We describe our comparison methods and evaluation methodology. Similar to clustering and rec-

ommendation problems, there is no ground truth for player ranking. To assess a player evaluation

metric, we follow previous work [80, 63] and compute its correlation with statistics that directly

measure success.

5.5.1 Comparison Player Evaluation Metrics

We compare GIM with the baseline player evaluation metrics to show the advantage of 1) modeling

game context 2) incorporating continuous context signal and history 3) separately handling home

and away state action signals. We compare GIM with the following baseline player evaluation met-

rics. i) Plus-Minus (PM) is a commonly studied metric that measures how much the presence of a

player influences the goals of his team [67]. ii) Expected Goal (XG) weights each shot by its chance

of leading to a goal. Players are ranked by their total expected goal shots. Both PM and RG consider

only very limited game context and action types. The next three baselines assign an impact value to

all actions and evaluate players according to their total action impact. iii) Valuing Actions by Esti-

mating Probabilities (VAEP) [29] applies the difference of action values to compute the impact of

on-the-ball actions. Instead of applying Temporal Difference learning to estimate Q values, VAEP

uses a classifier3 to estimate the probability that an action will be followed by a goal within the next

k (window size) events. iv) Scoring Impact (SI) is based on a Markov model with pre-discretized

spatial and temporal features (e.g. x,y coordinate and game time) [84]. Dynamic programming is

applied to estimate a Q-function and impact values for the discrete state-action space. v) We ex-

amine the option of merging the home/away towers and fitting all the states and actions with a

single-layer network. We refer to the resulting impact score as (M-GIM) for "merge".

We also conduct a league-specific study and evaluate our Fine-Tuning GIM (FT-GIM) for play-

ers in the EFL Championship. Training a separate model with only EFL Championship data from

scratch consumes more computational resources than fine-tuning the general model. Our experiment

records 4,386,894 gradient steps to learn a reliable model from initial weights while fine-tuning re-

quires only 818,120 gradient steps.

Training Settings. We describe the player evaluation as a descriptive task rather than a predictive

generalization problem. Our training dataset contains all data in our play-by-play soccer dataset.

3The classifier is implemented with a neural network rather than CatBoost (selected by [29]) due to the size of dataset.
We discuss our VAEP implementation further in the appendix.
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5.5.2 Season Totals: Correlations with Standard Success Measures

We report the correlations between player ranking metrics and commonly used success measures

over the entire 2017-18 game season and highlight the comprehensiveness of our GIM metric. The

examined success measures include Goals, Assists, Shots per Game (SpG), Pass Success percent-

age (PS%) and Key Passes per game (KeyP). We also study two penalty measures: Yellow card

received (Yel) and Red card received (Red). Table 5.6 shows the correlations between the compari-

son methods and the success/penalty measures, for the players in all 10 leagues. In addition to the

general study, Table 5.7 shows the result of a league-specific evaluation where we compare only

the correlations for players in the EFL Championship.

Our GIM achieves very good correlations compared to the other comparison methods. Among

the positive success measures, GIM has the highest correlation with 4 out of 5 success measures

(Goals, Assists, SPG, and KeyP) and a competitive result for the other (PS%). Together, the Q-

function based metrics GIM, M-GIM, and SI show the highest correlations with success measures.

XG is only the fourth best metric, because it considers only the expected value of shots and does not

correct for the team effort leading up to the shot. VAEP achieves only limited correlation with the

success measures. This is because their model assigns similar expected values to all actions, which

translates into all action impact values being close to 0. The traditional Plus-Minus metric correlates

poorly with almost all success measures. We conclude that RL techniques that provide fine-grained

expected action-value estimates lead to better performance metrics.

Comparing the different RL approaches, the neural network model allows GIM to handle con-

tinuous inputs without pre-discretization. This prevents the loss of game context information and ex-

plains why both GIM and M-GIM perform better than SI in most success measures. The higher cor-

relation of GIM compared to M-GIM also demonstrates the value of separately modeling home/away

data. For Yel and Red which reflect the number of received penalties—negative contributions by a

player—only our GIM-based metrics (GIM, M-GIM) show a negative correlation with both of them.

The model correctly recognizes that a penalty will significantly reduce the scoring probability, in-

fluencing the overall player GIM. In contrast, other metrics, focus on the actions that are likely to

lead to goals, which tends to reward aggressive players who incur more penalties.

Methods Goals Assists SpG PS% KeyP Yel Red
PM 0.284 0.318 0.199 0.288 0.218 0.001 -0.069

VAEP 0.093 0.290 0.121 -0.111 0.116 0.024 0.133
XG 0.422 0.173 0.328 0.164 0.278 0.534 0.034
SI 0.585 0.153 0.438 -0.140 0.052 0.114 -0.089

M-GIM 0.648 0.367 0.573 0.153 0.417 -0.110 -0.145
GIM 0.844 0.498 0.596 0.16 0.562 -0.181 -0.137

Table 5.6: Correlation with standard success measures for all the players. We bold the highest cor-
relations and underline the lowest ones for penalties.
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Methods Goals Assists SpG PS% KeyP Yel Red
PM 0.262 0.223 0.122 0.155 0.112 0.033 -0.046

VAEP 0.08 0.26 0.116 -0.126 0.137 -0.015 0.215
XG 0.420 0.165 0.394 0.149 0.254 0.578 -0.021
SI 0.574 0.124 0.408 -0.144 0.054 0.084 -0.147

M-GIM 0.629 0.309 0.551 0.171 0.388 -0.039 -0.132
GIM 0.638 0.382 0.553 -0.053 0.468 -0.026 -0.105

FT-GIM 0.736 0.585 0.569 0.082 0.592 -0.110 -0.171

Table 5.7: Correlation with standard success measures for players in the EFL Championship. We
bold the highest correlations and underline the lowest ones for penalties.

The league-specific study demonstrates the benefit of fine-tuning, for the machine learning mod-

els. Compared to the correlations for players in all 10 leagues, Championship League players’ cor-

relations generally decrease. Both traditional action-count metrics (PM, XG) and impact-based met-

rics (VAEP, SI, GIM, M-GIM) show the decrease, but it is more severe for our GIM metric whose

correlations nearly drop 20% when the players in the Championship League are evaluated by the

general model. Fine-tuning addresses this issue: the FT-GIM metric achieves a larger negative cor-

relation with both penalty counts (Yel and Red).

5.5.3 Round-by-Round Correlations: Predicting Future Performance From Past Per-
formance

This experiment assesses the player performance metrics through round-by-round correlations. A

sports season can be divided into rounds. In round n, a team or player has finished n games in a

season. For a given performance metric, we measure the correlation between (i) its value computed

over the first n rounds, and (ii) the value of the two main success measures, assists, and goals,

computed over the entire season. This allows us to assess how quickly different metrics acquire

predictive power for the final season total, so that future performance can be predicted from past

performance. A good performance metric should be consistent with a player’s overall performance

in the early season, which provides the player and his team with evidence for trading or training.

Figure 5.6 4 shows the round-by-round correlations for the players in all 10 leagues. The pre-

dictive power of GIM grows more quickly than with any other baseline: its correlation with both

assists (left) and goals (right) dominates others before the first half of the season. M-GIM achieves

the second highest correlations, for assists even higher than GIM in the first 5 rounds. However, its

predictive power substantially drops after the first 10 rounds. The remaining two metrics XG and SI

show only weak correlations with assists and goals.

The question for our next experiment is: does fine-tuning help predict a player’s final total

performance from the past performance? This experiment focuses on players in the EFL Champi-

onship. Figure 5.7 shows round-by-round correlations of the performance metrics with EFL Cham-

4In the Figure 5.6 and 5.7, we omit the players whose team play less than 40 game in the 2017-18 season.
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Figure 5.6: Correlations between round-by-round metrics and season totals for all players.

pionship players’ total assists and goals. We make the following observations. 1) Compared to the

all-player setting of Figure 5.6, the metrics’ correlations decline when restricted to EFL Champi-

onship players. This decline is more apparent for our GIM metric. The reason is that the neural

network trained on the general player population does not fit the behaviour of players in the EFL

Championship as well. 2) Fine-tuning significantly improves the correlations of GIM, especially for

its correlation with assists, where the correlation of FT-GIM exceeds that of other metrics after the

first 10 rounds.

Figure 5.7: Correlations between round-by-round metrics and season totals for the players in EFL
Champion.

5.6 Summary

This chapter introduced the approach of applying Deep Reinforcement Learning (DRL) to learn

complex spatio-temporal dynamics for professional soccer analytics. We designed a neural network

architecture that to our knowledge is the most complex deployed in sports analytics to date: A

stacked two-tower LSTM architecture, with one tower each for home and away teams. The network

was trained with on-ball action logs from several European leagues, comprising a total of over 4.5M
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action events. The trained neural network provides a rich source of knowledge about how a team’s

chance of scoring the next goal depends on the match context.

Based on the learned action values, we computed a new context-aware performance metric GIM

for soccer players, taking into account all of their actions. In our experiments, GIM computed over

the entire season showed the highest correlation with most standard success measures. Generalizing

from a sample of season matches, GIM was the best predictor of season total goals and assists. To

improve the evaluation results for players in a specific league, we applied a fine-tuning approach

to achieve an effective balance between generalizing across leagues and specializing to a specific

league.

Deep RL methods have enjoyed spectacular success in board games. Our results show that the

analysis of physical team sports is another highly promising application area.
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Chapter 6

Understanding the Action Values with
Interpretable Mimic Learning

6.1 Introduction: Mimic a Deep Reinforcement Learner

Deep Reinforcement Learning has mastered human-level control policies in a wide variety of tasks [71].

Despite excellent performance, the learned knowledge remains implicit in neural networks and hard

to explain: there is a trade-off between model performance and interpretability [60]. One of the

frameworks for addressing this trade-off is mimic learning [9], which seeks a sweet spot between

accuracy and efficiency, by training an interpretable mimic model to match the predictions of a

highly accurate model. Many works [24, 14, 27] have developed types of mimic learning to distill

knowledge from deep models to a mimic model with tree representation.

Mimic Learning for Sports Q-functions Following the mimic learning framework, We build a

traditional regression tree as a mimic model to interpret the action-value function. We first learn

general regression trees for all players, for both Q and impact functions. To understand the Q func-

tions, we compute the feature importance and use partial dependence plots to analyze the influence

of different features with the mimic trees. To highlight the strengths and weaknesses of an individ-

ual player compared to a general player, we construct player-specific mimic trees for Q values and

impact. Based on a player-specific tree, we define an interpretable measure for which players are

most exceptional overall.

To strengthen the generalization ability of the mimic model, we add a linear model to each

leaf node, which defines a novel Linear Model U-Tree (LMUT). U-tree [69, 99] is a classic online

reinforcement learning method which represents a Q function using a tree structure. We examine

the performance of LMUT under professional sports environments. This experiment evaluates four

node-splitting methods for LMUT and interprets the learned tree model by computing the feature

importance as well as rule extractions. Our empirical results show that the time remaining and
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the action blocked are the two most important features for Ice Hockey and Soccer. The extracted

rules also highlight relevant interactions among different features, which significantly facilitates

understanding of the strategy for different sports.

Mimic Learning for General DRL This chapter introduces a novel mimic learning framework

for Reinforcement Learning in a control setting, where the mimic learning can execute actions.

We examine two different approaches to generating data for RL mimic learning. Within the first

Experience Training setting, which allows applying traditional batch learning methods to train a

mimic model, we record all state-action pairs during the training process of DRL and complement

them with Q values as soft supervision labels. Storing and reading the training experience of a DRL

model consumes much time and space, and the training experience may not even be available to a

mimic learner. Therefore our second Active Play setting generates streaming data through interact-

ing with the environment using the mature DRL model. The active play setting requires an on-line

algorithm to dynamically update the model as more learning data is generated. We introduce a novel

online learning algorithm for LMUT, which applies Stochastic Gradient Descent to update the linear

models, given some memory of recent input data stored on each leaf node.

We conducted an empirical evaluation in three virtual (game) environments with five baseline

methods. Two natural evaluation metrics for an RL mimic learner are: 1) fidelity [27]: how well the

mimic model matches the predictions of the neural net, as in supervised learning, and 2) play perfor-

mance: how well the average return achieved by a controller based on the mimic model matches the

return achieved by the neural net. Play performance is the most relevant metric for reinforcement

learning. Perfect fidelity implies a perfect match in play performance. However, our experiments

show that approximate fidelity does not imply a good match in play performance. This is because

RL mimic learning must strike a balance between coverage: matching the neural net across a large

section of the state space, and optimality: matching the neural net on the states that are most impor-

tant for performance. In our experiments, LMUT learning achieves a good balance: the best match

to play performance among the mimic methods, and competitive fidelity to the neural net predic-

tions. The transparent tree structure of LMUT makes the DRL neural net interpretable. To analyze

the mimicked knowledge, we calculate the importance of input features and extract rules for typical

examples of agent behavior. For image inputs, the super-pixels in input images are highlighted to

illustrate the key regions.

6.2 Background and Related Work

We introduce the previous works that are most related to our work.

6.2.1 Mimic Learning

Recent works on mimic learning [9, 24, 27] have demonstrated that models like shallow feed-

forward neural networks or decision trees can mimic the function of a deep neural net. In the oracle
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framework, soft output labels are collected by passing inputs to a large, complex and accurate deep

neural network [49] Then we train a mimic model with the soft output as supervisor. The results

indicate that training a mimic model with soft output achieves substantial improvement in accuracy

and efficiency, over training the same model type directly with hard targets from the dataset.

6.2.2 U-Tree Learning

A tree structure is transparent and interpretable, allowing rule extraction and measuring feature

influence [24]. U-tree [69] learning was developed as an online reinforcement learning algorithm

for a tree structure representation. A U-tree takes a set of observed feature/action values as input and

maps it to a state value (or Q-value). [99] introduces the continuous U-tree (CUT) for continuous

state features. CUT learning generates a tree-based discretization of the input signal and estimates

state transition probabilities in every leaf node [99]. Dynamic programming is applied to solve the

resulting Markov Decision Process (MDP). Although CUTs have been successfully applied in test

environments like Corridor and Hexagonal Soccer, constructing a CUT from raw data is rather slow

and consumes significant computing time and space.

6.3 Mimic Learning for Sports Environment

In this section, we introduce the method of learning a Classification And Regression Tree (CART)

to mimic the action-value Q function learned by the DRL model (discussed in Chapter 4 and Chap-

ter 5). To expand the generalization ability, we propose a Linear Model U-Tree (LMUT) which adds

a linear model at each leaf node of a regression tree. Empirical evaluations are conducted to evaluate

the fidelity and the interpretability of both mimic models.

6.3.1 Mimic Learning with a Regression Tree

We apply Mimic Learning [9] and train a transparent regression tree to mimic the black-box neural

network. As it is shown in Figure 6.1, our framework aims at mimicking Q functions (Equation 4.1)

and impact (Equation 4.4). We first train the general tree model with the deep model’s input/output

for all players and then use it to initialize the player-specific model for an individual player. The

transparent tree structure provides much information for understanding the Q functions and impact.

We focus on two mimicking targets: Q functions and Impact. For Q functions, we fit the mimic

tree with the NHL play data and their associated soft outputs (Q values) from our DRL model (neural

network). The last 10 observations (determined experimentally) from the sequence are extracted,

and CART learning is applied to fit the soft outputs. This is a multi-output regression task, as our

DRL model outputs a Q vector containing three Q values (Q̂t = 〈Q̂homet , Q̂awayt , Q̂endt 〉) for an

observation features vectors (st) and an action (at). A straightforward approach for the multi-target

regression problem is training a separate regression model for each Q value. But separate trees

for each Q function are somewhat difficult to interpret. An alternative approach to reduce the total
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Figure 6.1: Interpretable Mimic Learning Framework

tree size is training a Multi-variate Regression Tree (MRTs) [28], which fits all three Q values

simultaneously in a regression tree. An MRT can also model the dependencies between the different

Q variables [91]. For Impacts, we have only one output (impactt) for each sequence (st) and current

action (at) at time step t.

Fidelity: Evaluating Regression Performance

We examine the mimic performance of regression tree for the Q functions and impact. A common

problem of regression trees is over-fitting. We use the Mean Sample Leaf (MSL) to control the

minimum number of samples at each leaf node. We apply ten-fold cross validation to measure the

performance of our mimic regression tree by Mean Square Error (MSE) and variance. As is shown

in Table 6.1, the tree achieves satisfactory performance when MSL equals 20 (the minimum MSE

for Q functions, small MSE and variance for impact).

model Q_home Q_away Q_end Impact
RT-MSL1 3.35E-04 (1.43E-09) 3.21E-04(1.26E-09) 1.74E-04(2.18E-09) 1.33E-03(5.43E-09)
RT-MSL5 2.59E-04(1.07E-09) 2.51E-04(0.89E-09) 1.35E-04(1.87E-10) 9.84E-04(2.72E-09)
RT-MSL10 2.38E-04(1.02E-09) 2.30E-04(0.89E-09) 1.25E-04(2.30E-10) 8.66E-04(2.17E-09)
RT-MSL20 2.31E-04(0.92E-09) 2.22E-04(0.82E-09) 1.23E-04(2.05E-10) 7.92E-04(1.45E-09)
RT-MSL30 2.35E-04(0.98E-09) 2.27E-04(0.85E-09) 1.27E-04(2.32E-10) 7.67E-04(1.16E-09)
RT-MSL40 2.39E-04(0.96E-09) 2.30E-04(0.85E-09) 1.29E-04(2.19E-10) 7.58E-04(1.10E-09)

Table 6.1: Performance of General Mimic Regression Tree (RT) with different Minimum Samples
in each Leaf node (MSL). We apply ten-fold cross validation and report the regression result with

format: Mean Square Error (Variance)

Interpreting Q functions and Impact with Mimic Regression Tree

We now show how to interpret Q functions and Impact using the general Mimic tree, by deriving

feature importance and a partial dependence plot.
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Feature Importance for Q functions. In CART regression tree learning, variance reduction is

the criterion for evaluating the quality of a split. Therefore we compute the importance of a target

feature by summing the variance reductions at each split using the target feature [24]. We list the

top 10 important features in the mimic tree for Q values in Table 6.2. The frequency of a feature

is the number of times the tree splits on the feature. The notation f(t − n) indicates that a feature

f occurs n time steps before the current time. For Q values, remaining game time is the most

influential feature with significantly larger importance value than others. This is because less time

means fewer chances of any goals. Manpower is the second important feature because a team will

have a less scoring chance if it is short-handed, which well matched the domain knowledge of sports

games.

Feature Name Frequency Importance
Game Time Remain (t) 12,524 0.817431

Manpower (t-1) 93 0.070196
Team Identifier (t-1) 57 0.020504

Manpower (t) 346 0.017306
Shot (t) 31 0.011159

Score Differential (t) 3,229 0.009568
X Coordinate (t) 11,797 0.006968

X Coordinate (t-1) 3,406 0.006963
Manpower (t-2) 82 0.005045

Home/Away Team (t) 135 0.003755

Table 6.2: Top 10 features for Q values.

Feature Influence
X distance (t) 0.6632
Outcome (t) 0.2275

Y distance (t) 0.0469
Game Time Remain (t) 0.0242

Duration (t) 0.0062
X Coordinate (t-1) 0.0059

Game Time Remain (t-1) 0.0035
Interrupted (t) 0.0035
X velocity (t) 0.0030
Outcome (t-1) 0.0019

Table 6.3: Feature importance for the
impact of shot.

Feature Influence
X Velocity (t) 0.1355

Distance to Goal(t) 0.1264
Game Time Remain (t-1) 0.1082
Game Time Remain (t) 0.0816

Outcome (t) 0.0773
Outcome (t-1) 0.0760

Distance to Goal (t-1) 0.0411
Angle (t) 0.0373

Angle (t-1) 0.0298
X Velocity (t-1) 0.0174

Table 6.4: Feature importance for the
impact of pass.

Feature Importance for Impacts. The impact values are computed with the Q-function (Equa-

tion (4.4). We rank the state and action features by their importance values. Tables 6.3 and 6.4 show

the top 10 important features for shot and pass. Figure 6.2 and Figure 6.3 illustrate the structure of
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the CART trees by plotting its top three layers. The trees for both shot and pass impacts place at the

root action outcome (a binary feature marking success or failure of an action), which intuitively is

one of the most important action features. We also find that the shot impact significantly increases

as a player approaches the goal, which is consistent with our finding in the spatial projection for

Q values. For passing, its impact increases with game velocity. An explanation is that a quick pass

prevents potential interruptions from opponents. When the game is ending, we observe that while

the average passing impact decreases, the big difference is an increase in pass impact variance. We

illustrate this in the plot of figure 6.4. It shows that as the game comes to an end, the variance of pass

impact values is higher (marked by the solid rectangle and the dashed rectangle). Our decision tree

(Figure 6.3) accurately locates the time when this phenomenon starts to occur (39.45 marked by the

dashed line) and shows that the average passing impact will become smaller (around -0.02) after this

time. Our hypothesis for the increase in variance is that towards the end of the game, players tend to

take riskier passes, with potentially higher impact on the game, both good and bad. The reduction

in average impact is a smaller effect compared to the increase in variance. It is generally consistent

with the temporal projection of Q-values (Figure 5.2). A direct and probably sufficient explanation

is that the expected next-goal scoring probability (Q value) for home/away team becomes smaller

as the game ends and it flattens the corresponding impact values on average. Another important ob-

servation is that in addition to features from current time t, the historical features (e.g. X Coordinate

(t-1)) are also considered as important for predicting the impact of the current action.

Figure 6.2: Regression tree for the impact of shot.

Partial Dependence Plots. A partial dependence plot is a common visualization to determine

qualitatively what a model has learned and thus provides interpretability [60, 24]. The plot approxi-

mates the prediction function for a single target feature, by marginalizing over the values of all other

features. We select X Coordinate (of puck), Time Remaining and X Velocity (of puck), three con-

tinuous features with high importance for both the Q and the impact mimic tree. As it is shown in

Figure 6.5, Time Remaining has significant influence on Q values but very limited effect on impact.

This is consistent with our findings for feature importance. For X Coordinate, as a team is likely to
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Figure 6.3: Regression tree for the impact of pass.

Figure 6.4: The impact values for passes v.s. Game Time Remain. We randomly sample 10 games
and plot the impact values for all passes.
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score the next goal in the offensive zone, both Q values and impact increase significantly when the

puck is approaching its opponent’s goal (larger X Coordinate). And compared to the position of the

puck, velocity in X-axis has limited influence on Q values but it does affect the impact. This shows

that the impact function uses speed on the ice as an important criterion for valuing a player. We also

observe the phenomenon of home advantage [95] as the Q value (scoring probability) of the home

team is slightly higher than that of the away team.

Figure 6.5: Partial Dependence Plot for Time Remaining (left), X Coordinate (middle) and X
Velocity (right)

Highlighting Exceptional Players

Our approach to quantifying which players are exceptional is based on a partition the continuous

state space into a discrete set ofm disjoint regions. Given a Q or impact function, exceptional players

can be found by region-wise comparison of a player’s excepted impact to that of a random player’s.

For a specific player, this comparison highlights match settings in which the player is especially

strong or weak. The formal details are as follows.

Let nD be the number of actions by player P , of which n` fall into discrete state region ` =
1, . . . ,m. For a function ψ, let ψ̂` be the value of ψ estimated from all data points that fall into

region `, and let ψ̂P` be the value of ψ estimated from the n` data points for region ` and player P .

Then the weighted squared ψ-difference is given by:

∑
`

n`/nD(ψ̂` − ψ̂P` )2. (6.1)

Regression trees provide an effective way to discretize a Q-function for a continuous state

space [99]: Each leaf forms a partition cell in state space (constructed by the splits with various

features along the path from root to the leaf). The regression trees described in Section 6.3.1 could

be used, but they represent general discretizations learned for all the players over a game season,

which means that they may miss distinctions that are important for a specific player. For example, if

an individual player is especially effective in the neutral zone, but the average player’s performance

is not special in the neutral zone, the generic tree will not split on “neutral zone" and therefore will
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not be able to capture the individual’s special performance. Therefore we learn for each player, a

player-specific regression tree.

The General Tree is learned with all the inputs and their corresponding Q or Impact values (soft

labels). The Player Tree is initialized with the General Tree and then fitted with the nD datapoints

of a specific player P and their corresponding Q values (ψP
Q̂

(ψQ̂, s
P
t , a

P
t )→ range(Q̂P

t )) or Impact

values (ψPI (ψI , sPt , aPt ) → range(ImpactP
t )). It inherits the tree structure of the general model

RT-MSL20 in table 6.1, uses the target player data to prune the general tree, then expands the tree

with further splits. Initializing with the general tree assumes players share relevant features and

prevents over-fitting to a player’s specific data. A Player Tree defines a discrete set of state regions,

so we can apply Equation 6.1 with the Q or impact functions. Table 6.5 shows the weighted squared

differences for the top 5 players in the GIM metric.

Player Q_home Q_away Q_end Impact
Taylor Hall 1.80E-04 2.49E-04 2.28E-04 6.66E-05
Joe Pavelski 4.64E-04 2.90E-04 3.04E-04 1.09E-04

Johnny Gaudreau 2.12E-04 1.96E-04 1.43E-04 6.77E-05
Anze Kopitar 2.58E-04 2.00E-04 2.43E-04 8.28E-05
Erik Karlsson 2.97E-04 1.89E-04 1.86E-04 2.00E-04

Table 6.5: Exceptional Players Based on Tree Discretization

We find that 1) Joe Pavelski, who scored the most in the 2015-2016 game season, has the largest

Q values difference and 2) Erik Karlsson, who had the most points (goal+assists), has the largest

Impact difference. They are the two players who differ the most from the average players by Q-value

and Impact.

6.3.2 Mimic Learning with a Linear Model U-Tree

A neural network with continuous activation functions computes a continuous function. A regres-

sion tree can approximate a continuous function arbitrarily closely, given enough leaves. Contin-

uous U-Trees (CUTs) are essentially regression trees for value functions, and therefore a natural

choice for a tree structure representation of a DRL Q function. However, their ability to general-

ize is limited, and CUT learning converges slowly. We introduce a novel extension of CUT, Linear

Model U-Tree (LMUT), that allows CUT leaf nodes to contain a linear model, rather than simple

constants. Being strictly more expressive than a regression tree, a linear model tree can also approx-

imate a continuous function arbitrarily closely, with typically many fewer leaves [23]. Smaller trees

are more interpretable, and therefore more suitable for mimic learning.

As shown in Figure 6.6 and Table 6.6, each leaf node of a LMUT defines a partition cell of

the input space, which can be interpreted as a discrete state s for the decision process. Within each

partition cell, LMUT also records the reward r and the transition probabilities p of performing

action a on the current state s, as shown in the Leaf Node 5 of Figure 6.6. So LMUT learning

builds a Markov Decision Process (MDP) from the interaction data between environment and deep
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model. Compared to a linear Q-function approximator [94], a LMUT defines an ensemble of linear

Q-functions, one for each partition cell. Since each Q-value prediction QUTN comes from a single

linear model, the prediction can be explained by the feature weights of the model.

Figure 6.6: An example of Linear Model U-Tree (LMUT).

Node
Name

Partition
Cell

Leaf
Node 3

f1 < 0.2,
f2 < 1.3

Leaf
Node 4

f1 < 0.2,
f2 ≥ 1.3

Leaf
Node 5

f1 ≥ 0.2,
f2 < 0.07

Leaf
Node 6

f1 ≥ 0.2,
f2 ≥ 0.07

Table 6.6: Partition Cell

The Training Process of LMUT

We now discuss how to train an LMUT. Similar to [99], we separate the training into two phases: 1)

Data Gathering Phase and 2) Node Splitting Phase.

Data Gathering Phase. Data Gathering Phase assigns transitions to leaf nodes and prepares them

for fitting linear models and splitting nodes. Given an input transition T , we pass it through feature

splits down to a leaf node. As an option, an LMUT can dynamically build an MDP, in which case it

updates transition probabilities, rewards and average Q values on the leaf nodes. The complete Data

Gathering Phase process is detailed in part I (the first for loop) of Algorithm 1.

Node Splitting Phase. After node updating, LMUT scans the leaf nodes and updates their linear

model with Stochastic Gradient Descent (SGD). If SGD achieves insufficient improvement on node

N, LMUT determines a new split and adds the resulting leaves to the current partition cell. For

computational efficiency, our node splitting phase considers only a single split for each leaf given

a single minibatch of new transitions. Part II of Algorithm 1 shows the detail of the node splitting

phase. LMUT applies a minibatch stagewise fitting approach to learn linear models in the leaves of

the U-tree. Like other stagewise approaches [58], this approach provides smoothed weight estimates

where nearby leaves tend to have similar weights. We use Stochastic Gradient Descent to implement

the weight updates.

Stochastic Gradient Descent (SGD) Weight Updates. SGD is a straightforward well-established

online weight learning method for a single linear regression model. The weights and bias of linear
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Algorithm 1: Linear Model U-Tree Learning
Input: Transitions T1, . . . , TB; A LMUT with leaf nodes N1, . . . , NL, each with weight

vector w1, . . . ,wL

for t = 1 to B do
Find the partition cell on leaf node N by It, at in Tt
Add Tt = 〈It, at, rt, It+1, Q̂t(It, at)〉 to transition set on N
if FlagMDP /* Update the Markov Decision Process */
then

Map observation (It, It+1) to state (st, st+1) within partition cell of N
Update Transitions Probability P (st, at, st+1) = count(st,at,st+1)+1∑

i
count(st,at,si)+1

Update Reward R(st, at, st+1) = R(st,at,st+1)∗count(st,at,st+1)+rt

count(st,at,st+1)+1

Compute QUTavg(st, at) = Q̂t(st,at)∗count(st,at)+Q̂t(It,at)
count(st,at)+1

Increment count(st, at) and count(st, at, st+1) by 1
end

end

for i = 1 to L do
wi, erri := WeightUpdate(TNi ,wi) /* Update the weights by SGD */
if err ≤MinImprovement then

for distinction D in GetDistinction(Ni) do
Split Node Ni to FringeNodes by distinction D
Compute distribution of Q function σNi(Q) on Node Ni

for each node F in FringeNodes do
Compute distribution σF (Q)
p = SplittingCriterion(σNi(Q), σF (Q))
if p ≥ minSplit then

BestD = D
minSplit = p

end
Remove all the fringe nodes

end
end
if BestD then

Split Node Ni by BestD to define ChildNodes Ni,1, . . . , Ni,C

Assign Transitions set TNi to ChildNodes
for c = 1 to C do

wi,c := wi
wi,c, erri,c := WeightUpdate(TNi,c,wi,c)

end
end

end
end
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regression on leaf node N are updated by applying SGD over all Transitions assigned to N . For

a transition Tt = 〈It, at, rt, It+1, Q̂(It, at)〉, we take It as input and Q̂t ≡ Q̂(It, at) as label. We

build a separate LMUT for each action, so the linear model on N is function of the J state features:

QUT (It|wN , at) =
∑J
j=1 ItjwNj + wN0. We update the weights wN on leaf node N by applying

SGD with loss function L(wN ) =
∑
t 1/2(Q̂t−QUT (It|wN , at))2. The updates are computed with

a single pass over each minibatch.

Algorithm 2: SGD Weight Update at a leaf node
Input: Transitions T1, . . . , Tm, node N = leaf node with weight vector w0

Output: updated weight vector w, training error err

Hyperparameters: number of iterations E; step size α

w := w0 ;

for e = 1 to E do
for t=1 to m do

w := w + α∇wL(w) ;

end
end
Compute training error err = 1/m

∑m
t=1(Q̂t −QUT (It|w, at))2

Splitting Criterion. We investigate several fast heuristic methods for selecting promising splits

fi (feature value) for a given input feature Ii (i denotes the index of feature, or the ith dimension

of inputs I ). These heuristics are crucial for both computational feasibility and fidelity. The key

idea behind our methods is to sort all the data points by their Ii-value, then choose a split (or

breakpoint) fi that maximizes the difference in the Q-distributions of the split groups created by fi
(We refer to the group of data points with Ii ≤ fi and Ii > fi as the split groups). Our proposed

heuristics combine sorting with variance reduction and t-test, or use segmented regression with

efficient iterative estimation as a subroutine to achieve fast performance on large datasets. We apply

heuristic with Gaussian Mixture as our baseline.

• Sorting with Variance Reduction: Maximizing the difference in the Q-distributions of the

datapoint groups after a split can be estimated by variance reduction onQ. Simply sorting first

on Ii allows us to incrementally estimate the variance reduction for every xi-value quickly

with a single pass through the dataset, as shown by the following equations:

σ2 = 1
N1
·
N1∑
n=1

(Qn − µ)2

= (
N1∑
n=1

Qn
2

N1
)− (

N1∑
n=1

Qn
N1

)2 (6.2)
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where N1 represents the data points in one split group after splitting on an Ii-value, µ is the

Qmean of the split group. Both terms in Equation 6.2 are calculated incrementally in a single

pass for all Ii-values.

• Sorting with T-test: This method also sorts all the data points by their Ii-value. Then, it uses

the test-statistic of two-sample Welch’s t-test [59] to evaluate breakpoints.

t-score = µ1 − µ2√
σ12

N1
+ σ22

N2

The t-test measures the y-difference between the two split groups sperated by an xi-value.

We select the xi-value that produces the largest t-score as breakpoint ci. As with variance

reduction, the t-score can also be computed incrementally in linear time.

• Iterative Segmented Regression: Segmented regression performs a piecewise linear regression

of y on Ii with a breakpoint fi between two line segments [101].

ŷ =

α · xi for Ii ≤ fi
(α+ β) · xi − β · fi for Ii > fi

We first use segmented regression as a subroutine with an efficient iterative approach [72]

to find a breakpoint candidate on each feature Ii. The following algorithm elaborates on the

iterative approach for a feature Ii at iterative step s:

–

U s =

Ii − f
s
i for Ii > fsi

0 otherwise

V s =

−1 for Ii > fsi

0 otherwise

– fit the model

ŷ = α · Ii + β · U s + γ · V s

– update the breakpoint fi
fs+1
i = γ

β
+ fsi

– repeat the process until the breakpoint fi is converged or the maximum iterative step is

reached.

Then, for each breakpoint candidate, we calculate the y-variances of two groups separated by

the breakpoint candidate. We select the breakpoint candidate that maximizes the difference in

the y-variances of the two split groups as the breakpoint fi.
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• Gaussian Mixture: This method uses the expectation maximization algorithm to calculate a

two-component bivariate Gaussian mixture model [31] for (Ii, Q) data pairs.

p(Ii, Q) =
2∑

k=1
πk · N (Ii, Q|µk,Σk)

Then, the breakpoint ci that best separates the two Gaussian clusters on each predictor variable

xi can be computed in closed form by quadratic discriminant analysis.

Fidelity: Evaluating Regression Performance

A mimic model with strong fidelity [27] should achieve a small prediction error, that is, the root

mean squared difference (RMSE) between the prediction of the tree and the prediction of the DRL

model must be small.

As Table 6.7 shows, Iterative Segmented Regression and Sorting with Variance Reduction

achieve greater fidelity on test set than other methods. We recommend Iterative Segmented Re-

gression as a good default method, and Sorting with Variance Reduction as a close second. The

null model calculates the mean value of the response variable and uses that as its prediction. The

extended version reports high correlations between the outputs of the neural and mimic models: for

iterative segmented regression, they are almost always above 0.9 and in many cases above 0.99.

Ice Hockey Soccer
Split methods Shots Passes Shots Passes

Gaussian Mixture 0.05483 0.04276 0.00698 0.01000
Iterative Segmented Regression 0.01441 0.00964 0.00508 0.00997
Sorting + Variance Reduction 0.01219 0.01012 0.00646 0.01092
Sorting + T-test 0.05709 0.06695 0.01223 0.01796
Null Model 0.13924 0.10808 0.13648 0.06151

Table 6.7: Fidelity to Deep Model: RMSE on Test Set

Feature Importance

A basic question for understanding a neural net is which input features most influence its predictions.

Given a model tree, we can compute the feature importance as the sum of variance reductions over

all splits that use the feature [63]. Table 6.8 and Table 6.9 show the feature importance of the

top 10 most relevant features for the action values of shots in ice hockey and soccer respectively,

with feature frequency defined as how many times the tree splits on the feature. Time remaining is

important for both ice hockey and soccer because the probability of either team scoring another goal

decreases quickly when not much time is left. Moreover, time remaining has a stronger influence

on ice hockey than soccer because there are generally more goals in ice hockey. At the beginning of

a game, the probability of a team scoring in ice hockey is higher than that in soccer. As time goes
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towards the end, the probability of scoring in ice hockey decreases more quickly than that in soccer.

Unsurprisingly, puck/ball to goal distance and action outcomes (i.e. shots being blocked or not) are

also among the most relevant features for shots in ice hockey and soccer.

Ice Hockey FeatureImportance FeatureFrequency

time remaining (t) 0.0594 248
y coordinate of puck (t) 0.03418 228
x coordinate of puck (t) 0.02646 153

action blocked (t) 0.02016 12
manpower situation (t) 0.01203 14

home (t) 0.00629 1
angle (t) 0.00164 32

time remaining (t− 1) 0.00072 9
action: reception (t− 1) 0.00061 5
score differential (t− 1) 0.00026 23

Table 6.8: Top 10 Features for the Shots for Ice Hockey Players.

Soccer FeatureImportance FeatureFrequency

action blocked (t) 0.01524 1
time remaining (t) 0.00711 36
distance to goal (t) 0.00144 31

action: through ball (t− 1) 0.00079 1
event duration (t) 0.00068 8

time remaining (t− 1) 0.00059 12
y velocity of ball (t) 0.00036 5

x coordinate of ball (t) 0.00015 28
manpower situation (t) 0.00011 1

action: cross (t− 1) 0.00011 2

Table 6.9: Top 10 Features for the Shots for Soccer Players.

Rule Extraction

We can extract rules that can be easily interpreted by humans from a model tree. The rules highlight

relevant interactions among input features. They also expand on the feature importance by showing

how the important features influence the predictions of the neural network.

For shots in ice hockey, Figure 6.8 is a part of a tree to demonstrate how rules can be extracted.

First, how good a shot is for the home team is related to which team is taking possession of the puck.

In other words, whether the shot is performed by the home team or the away team. By looking at

the average Q-values of the corresponding child nodes, we see that it is better for the home team if

they take a shot than if the away team takes a shot. If the shot is by the home team, its Q-values are

related to the time remaining in the game: with little time left (less than 335 seconds), there is less of
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Figure 6.7: Model Tree Example With 4 Layers for Action Values of Shots in Soccer

Figure 6.8: Rule Example 1 for Action Values of Shots in Ice Hockey. The model tree for ice hockey
produces a prediction for the Q-probability that the home team scores the next goal after a shot.

Figure 6.9: Rule Example 2 for Action Values of Shots in Ice Hockey
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Figure 6.10: Rule Example for Action Values of Shots in Soccer

a chance of any team scoring. However, given sufficient time, the next feature the tree considers is

whether the home team has a manpower advantage. Figure 6.9 shows another part of the same tree.

It supports the rule that the action values of shots in ice hockey are better when the puck is closer

to the net (recall the defensive zone has negative x coordinates and offensive zone has positive x

coordinates). If the puck is sufficiently close, then the tree next considers the y-coordinate of the

puck location.

For shots in soccer, Figure 6.10 is the top part of Figure 6.7. As in ice hockey, it shows that

action values of shots are better when shots are not blocked. Furthermore, it gives an insight that

through-ball passes are not the best thing to do to assist a goal. The tree suggests that if a shot is

taken right after a through-ball pass, the shot is usually less promising to a goal.

6.4 Mimic Learning for Active Deep Reinforcement Learning

This section introduces two active mimic learning frameworks for DRL models and evaluate the

LMUT under three virtual game environments.

6.4.1 Mimic Learning Framework for DRL

Unlike supervised learning, a DRL model is not trained with static input/output data pairs; instead it

interacts with the environment by selecting actions to perform and adjusting its policy to maximize

the expectation of cumulative reward. We now present two settings to mimic the Q functions in DRL

models.

Experience Training

Experience training generates data for batch training, following [9, 24]. To construct a mimic

dataset, we record all the observation signals I and actions a during the DRL process. A sig-

nal I is a vector of continuous features that represents a state (one-hot representation for dis-
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crete features). Then, by inputting them to a mature DRL model, we obtain their corresponding

soft output Q and use the entire input/output pairs {(〈I1, a1〉, Q̂1(I1, a1)), (〈I2, a2〉, Q̂2(I2, a2))
, ..., (〈IT , aT 〉, Q̂T (IT , aT ))} as the experience training dataset. .

Figure 6.11: Experience Training Setting

Active Play

Active play generates mimic data by applying a mature DRL model to interact with the environ-

ment. Similar to [97], our active learner ` has three components: (q, f, I). The first component q is

a querying function q(I) that gives the current observed signal I , selects an action a. The querying

function controls `’s interaction with the environment so it must consider the balance between ex-

ploration and exploitation. Our querying function is the ε-greedy scheme [71] (ε decaying from 1 to

0). The second component f is the deep model that produces Q values: f : (I, a)→ range(Q̂).

As shown in Figure 6.12, the mimic training data is generated in the following steps: Step

1: Given a starting observation signal It on time step t, we select an action at = q(It), and

obtain a soft output Q value Q̂t = f(It, at). Step 2: After performing at, the environment pro-

vides a reward rt and the next state observation It+1 . We record a labelled transition Tt =
{It, at, rt, It+1, Q̂t(It, at)} where the soft label Q̂t(It, at) comes from the well trained DRL model.

A transition is the basic observation unit for U-tree learning. Step 3: We set It+1 as the next starting

observation signal, repeat above steps until we have training data for the active learner ` to finish

sufficient updates over the mimic model m. This process produces an infinite data stream (transi-

tions T ) in sequential order. We use mini-batch online learning, where the learner returns a mimic

model after some fixed batch size B of queries.

Compared to Experience Training, Active Play does not require recording data during the train-

ing process of DRL models. This is important for the following reasons. (1) Many mimic learners

have access only to the trained deep models. (2) Training a DRL model often generates a large

amount of data, which requires much memory and is computationally challenging to process. (3)

The Experience Training data includes frequent visits to sub-optimal states, which makes it difficult

for the mimic learner to obtain an optimal return, as our evaluation illustrates.
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Figure 6.12: Active Play Setting.

6.4.2 Empirical Evaluation

In this section, we evaluate the previously introduced mimic learning model, including CART and

LMUT, under the classic reinforcement learning environment (virtual games). Our experiments

study the mimic performance of our mimic models by comparing them with other baseline methods.

Empirical evaluation measures the mimic match in regression and game playing, under experience

training and active play learning.

Evaluation Environment

The evaluation environments include Mountain Car, Cart Pole and Flappy Bird. Our environ-

ments are simulated by OpenAI Gym toolkit [16]. Mountain Car and Cart Pole are two benchmark

tasks for reinforcement learning [79]. Mountain Car is about accelerating a car to the top of the hill

and Cart Pole is about balancing a pole in the upright position. Mountain Car and Cart Pole have

a discrete action space and a continuous feature space. Flappy Bird is a mobile game that controls

a bird to fly between pipes. Flappy Bird has two discrete actions, and its observation consists of

four consecutive images [71]. We follow the Deep Q-Learning (DQN) method to play this game.

During the image preprocessing, the input images are first rescaled to 80*80, transferred to gray

image and then binary images. With 6,400 features, the state space of Flappy Bird is substantially

more complex than that for Cart Pole and Mountain Car.

Baseline Methods

Batch Methods. We fit the input/output training pairs (〈I, a〉, Q̂(I, a)) using batch tree learners. A

CART regression tree [64] (Section 6.3.1) predicts for each leaf node, the mean Q-value over the

samples assigned to the leaf. M5 [77] is a tree training algorithm with more generalization ability.

It first constructs a piecewise constant tree and then prunes to build a linear regression model for

the instances in each leaf node. The WEKA toolkit [40] provides an implementation of M5. We in-

clude M5 with Regression-Tree option (M5-RT) and M5 tree with Model-Tree option (M5-MT) in

our baselines. M5-MT builds a linear function on each leaf node, while M5-RT has only a constant
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value.

On-line Learning Methods. The recent Fast Incremental Model Tree (FIMT) [48] method is ap-

plied. Similar to M5-MT, it builds a linear model tree, but can perform explicit change detection

and informed adaption for evolving data stream. We experiment with a basic version of FIMT and

an advanced version with Adaptive Filters on leaf nodes (named FIMT-AF).

Fidelity: Regression Performance

We evaluate how well our LMUT approximates the soft output (Q̂ values) from Q function in a Deep

Q-Network (DQN). We report the standard regression metrics Mean Absolute Error (MAE), and

Root Mean Square Error (RMSE).
Under the Experience Training setting, we compare the performance of CART, M5-RT, M5-MT,

FIMT and FIMT-AF with our LMUT. The dataset sizes are 150K transitions for Mountain Car, 70K

transitions for Car Pole, and 20K transitions for Flappy Bird. Because of the high dimensionality

of the Flappy Bird state space, storing 20K transitions requires 32GB main memory. Given an

experience training dataset, we apply 10 fold cross evaluation to train and test our model.

For the Active Play setting, batch training algorithms like CART and M5 are not applicable,

so we experiment only with online methods, including FIMT, FIMT-AF and LMUT. We first train

the mimic models with 30k consecutive transitions from evaluation environments, and evaluate

them with another 10k transitions. The result for the three evaluation environments are shown in

Table 6.10, Table 6.11 and Table 6.12.

Compared to the other two online learning methods (FIMT and FIMT-AF), LMUT achieves

a better fit to the neural net predictions with a much smaller model tree, especially in the active

play online setting. This is because both FIMT and FIMT-AF update their model tree continuously

after each datum, whereas LMUT fits minibatches of data at each leaf. Neither FIMT nor FIMT-

AF terminate on high-dimensional data.1 So we omit the result of applying FIMT and FIMT-AF in

the Flappy Bird environment. Comparing to batch methods, the CART tree model has significantly

more leaves than our LMUT, but not better fit to the DQN than M5-RT, M5-MT and LMUT, which

suggests overfitting. In the Mountain Car and Flappy Bird environments, model tree batch learning

(M5-RT and M5-MT) performs better than LMUT, while LMUT achieves comparable fidelity, and

leads in the Cart Pole environment. In conclusion, (1) our LMUT learning algorithm outperforms the

state-of-the-art online model tree learner FIMT. (2) Although LMUT is an online learning method,

it showed competitive performance to batch methods even in the batch setting.

Learning Curves. We apply consecutive testing [48] to analyze the performance of LMUT learn-

ing in more detail. We compute the correlation and testing error of LMUT as more transitions for

learning are provided (From 0 to 30k) under the active play setting. To adjust the error scale across

different game environments, we use Relative Absolute Error (RAE) and Relative Square Er-

1For example, in the Flappy Bird environment, FIMT takes 29 minutes and 10.8GB main memory to process 10
transitions on a machine using i7-6700HQ CPU.
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Method
Evaluation Metrics

MAE RMSE Leaves

Expe-
rience
Train-

ing

CART 0.284 0.548 1772.4
M5-RT 0.265 0.366 779.5
M5-MT 0.183 0.236 240.3
FIMT 3.766 5.182 4012.2

FIMT-AF 2.760 3.978 3916.9
LMUT 0.467 0.944 620.7

Active
Play

FIMT 3.735 5.002 1020.8
FIMT-AF 2.312 3.704 712.4

LMUT 0.475 1.015 453.0

Table 6.10: Result of Mountain Car

Method
Evaluation Metrics

MAE RMSE Leaves

Expe-
rience
Train-

ing

CART 15.973 34.441 55531.4
M5-RT 25.744 48.763 614.9
M5-MT 19.062 37.231 155.1
FIMT 43.454 65.990 6626.1

FIMT-AF 31.777 50.645 4537.6
LMUT 13.825 27.404 658.2

Active
Play

FIMT 32.744 62.862 2195.0
FIMT-AF 28.981 51.592 1488.9

LMUT 14.230 43.841 416.2

Table 6.11: Result of Cart Pole

Method
Evaluation Metrics

MAE RMSE Leaves
Expe-
rience
Train-

ing

CART 0.018 0.036 700.3
M5-RT 0.027 0.041 226.1
M5-MT 0.016 0.030 412.6
LMUT 0.019 0.043 578.5

Active
Play

LMUT 0.024 0.050 229.0

Table 6.12: Result of Flappy Bird Figure 6.13: Coverage v.s. Optimality

ror (RSE). We repeat the experiment 10 times and plot the shallow graph in Figure 6.14. In the

Mountain Car environment, LMUT converges quickly with its performance increasing smoothly in

5k transitions. But for complex environments like Cart Pole and Flappy Bird, the evaluation metrics

fluctuate during the learning process but approach the optimum within 30k transitions.

Matching Game Playing Performance

We now evaluate how well a model mimics Q functions in DQN by directly playing the games

with them and computing the average reward per episode. (The games in OpenAI Gym toolkit are

divided into episodes that start when a game begins and terminate when: (1) the player reaches

the goal, (2) fails for a fixed number of times or (3) the game time passes a preset threshold).

Specifically, given an input signal It, we obtainQ values from the mimic model and select an action

at = maxaQ(It, a). By executing at in the current game environment, we receive a reward rt
and next observation signal It+1. This process is repeated until a game episode terminates. This

experiment uses Average Reward Per Episodes (ARPE), a common evaluation metric that has

been applied by both DRL models [71] and OpenAI Gym tookit [16], to evaluate mimic models. In

the Experience Training setting, the play performance of CART, M5-RT, M5-MT, FIMT, FIMT-AF

and our LMUT are evaluated and compared by partial 10-fold cross evaluation, where we select 9

sections of data to train the mimic models and test them by directly playing another 100 games.

For the Active play, only the online methods FIMT and FIMT-AF are compared, without the Flappy
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Bird environment. Here we train the mimic models with 30k transitions, and test them in another

100 games.

Figure 6.14: Consecutive Testing of LMUT

Table 6.13 shows the results for game playing performance. We first experiment with learning

a Continuous U-Tree (CUT) directly using reinforcement learning [99] instead of mimic learning.

CUT converges slowly with limited performance, especially in the high-dimensional Flappy Bird

environment. This shows the difficulty of directly constructing a tree model from the environment.

We find that among all mimic methods, LMUT achieves the Game Play Performance APER

closest to the DQN. Although the batch learning models have strong fidelity in regression, they do

not perform as well in game playing as the DQN. Game playing observation shows that the batch

learning models (CART, M5-RT, M5-MT) are likely to choose sub-optimal actions in some key sce-

narios (e.g., when a pole tilts to one side with high velocity in Cart Pole.). This is because the neural

net controller selects many sub-optimal actions at the beginning of training, so the early training

experience contains many sub-optimal state-action pairs. The batch models fit the entire training

experience equally, while our LMUT fits more closely the most recently generated transitions from

a mature controller. More recent transitions tend to correspond to optimal actions. The FIMT al-

gorithms keep adapting to the most recent input only, and fail to build adequate linear models on

their leaf nodes. Compared to them, LMUT achieves a sweet spot between optimality and coverage

(Figure 6.13).

Interpretability

We discuss how to interpret a DRL model through analyzing the knowledge stored in the transparent

tree structure of LMUT: computing feature influence, analyzing the extracted rules and highlighting

the super-pixels.

Feature Importance. For Mountain Car and Cart Pole, we report the feature influences in ta-

ble 6.14. The most important feature for Mountain Car and Cart Pole are Velocity and Pole Angle

respectively, which matches the common understanding of the domains. For Flappy Bird the obser-

vations are 80*80 pixel images, so LMUT uses pixels as splitting features. Figure 6.15 illustrates the

pixels with feature influences Inf f > 0 .008 (the mean of all feature influences). Because locating
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Model
Game Environment

Mountain Car Cart Pole Flappy Bird
Deep Model DQN -126.43 175.52 123.42
Basic Model CUT -200.00 20.93 78.51

Experience
Training

CART -157.19 100.52 79.13
M5-RT -200.00 65.59 42.14
M5-MT -178.72 49.99 78.26
FIMT -190.41 42.88 N/A

FIMT-AF -197.22 37.25 N/A
LMUT -154.57 145.80 97.62

Active
Play

FIMT -189.29 40.54 N/A
FIMT-AF -196.86 29.05 N/A
LMUT -149.91 147.91 103.32

Table 6.13: Game Playing Performance

the bird is very important. the most influential pixels are located on the top left where the bird is

likely to be.

Feature Influence
Mountain

Car
Velocity 376.86
Position 171.28

Cart
Pole

Pole Angle 30541.54
Cart Velocity 8087.68
Cart Position 7171.71

Pole Velocity At Tip 2953.73

Table 6.14: Feature Influence Figure 6.15: Super pixels in Flappy Bird

Rule Extraction. Rule extraction is a common method to distill knowledge from tree models [27,

14]. We extract and analyze rules for the Mountain Car and Cart Pole environment. Figure 6.16

(top) shows three typical examples of extracted rules in Mountain Car environment. The rules are

presented in the form of partition cells (splitting intervals in LMUT). Each cell contains the range

of velocity, position and a Q vector (Q = 〈Qmove_left, Qno_push, Qmove_right〉) representing the

average Q-value in the cell. The top left example is a state where the cart is moving toward the

left hill with very small velocity. The extracted rule suggests pushing right (Qmove_right has the

largest value -29.4): the cart is almost stopped on the left, and by pushing right, it can increase

its momentum. The top middle example illustrates a state where the car is approaching the top of

the left hill with larger left side velocity (compared to the first example). In this case, however, the

cart should be pushed left (Qmove_left = −25.2 is the largest), in order to store more Gravitational

Potential Energy and prepare for the final rush to the target. The rush will lead to the state shown in

the top right image, where the cart should be pushed right to reach the target. Notice that the fewer

steps are required to reach the target in a given state, the larger its Q-value.
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Figure 6.16: Examples of Rule Extraction for Mountain Car and Cart Pole.

Figure 6.16 (bottom) shows three examples of extracted rules in the Cart Pole environment.

Each cell contains the scope of cart position, cart velocity, pole angle, pole velocity and a Q vector

(Q = 〈Qpush_left, Qpush_right〉). The key for Cart Pole is using inertia and acceleration to balance

the pole. The bottom left example illustrates the tree rule that the cart should be pushed right (i.e.,

(Qpush_right > Qpush_left), if the pole tilts to the right with a velocity less than 0.5. A similar

scenario is the second example, where the pole is also tilting to the right but has velocity towards

the left. The Q-values correctly indicate that we should push right to maintain this trend; even if

the cart is close to the right-side border, which makes its Q values smaller than in the first example.

The third example describes a case where a pole tilts to the left with velocity towards the right. The

model correctly selects a left push to achieve a left acceleration.

Super-pixel Explanation. In video games, DRL models take the raw pixels from four consecutive

images as input. To mimic the deep models, our LMUT also learns on four continuous images and

performs splits directly on raw pixels. Deep models for image input can be explained by super-

pixels [78]. We highlight the pixels that have feature influence Inf f > 0 .008 (the mean of all

feature influences) along the splitting path from root to the target partition cell. Figure 6.17 provides

two examples of input images with their highlighted pixels at the beginning of game (top) and in

the middle of game (bottom). Most splits are made on the first image which reflects the importance

of the most recent input. The first image is often used to locate the pipes (obstacles) and the bird,

while the remaining three images provide further information about the bird’s location and velocity.

6.5 Summary

In this chapter, we introduced the approach of interpreting action-value function with mimic learn-

ing. We first examined the performance of learning a traditional regression tree as a mimic model

for the action values. The evaluation included computing the feature importance and the partial de-

pendency plots which illustrated the influence of game features on action values. We then proposed
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Figure 6.17: Flappy Bird input images with Super-pixels (marked with red stars). The input order
of four consecutive images is left to right.

a novel Linear Model U-tree that represented an interpretable model with the expressive power

to approximate a Q-value function learned by a deep neural net. A novel on-line LMUT mimic

learning algorithm based on stochastic gradient descent is introduced to update the model tree. We

examined different splitting methods, and validated the performance of LMUT on the sports data.

This chapter also introduced the mimic learning framework for general Reinforcement Learning

Environments. The empirical evaluation compared LMUT with five baseline methods on three vir-

tual Reinforcement Learning environments. The LMUT model achieved the clearly best match to

the neural network in terms of its performance on the RL task. We illustrated the ability of LMUT

to extract the knowledge implicit in the neural network model, by (1) computing the influence of

features, (2) analyzing the extracted rules, and (3) highlighting the super-pixels.
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Chapter 7

Embedding Player Information with
Representation Learning

7.1 Introduction

Team sports define a complex interaction structure with a rich action space and a heterogeneous

state space [38]. As more and larger event stream datasets for professional sports matches become

available, advanced machine learning algorithms have been applied to model the complex dynam-

ics of sports games. These models facilitate many applications with high real-world impact, such

as predicting match outcomes [18], assessing the performance of players or teams [63, 29, 84],

and recommending tactics to coaches [2]. However, previous models often pool observations of

different players without capturing the specific roles and behaviors of each athlete. Neglecting the

special characteristics of individual players significantly compromises the model performance for

the application tasks [33].

A promising approach to incorporating player information into sports statistics is deep agent

representation. However, learning agent representation in a sports game is challenging and existing

agent embedding methods are inadequate to model professional players for several reasons: 1) Pre-

vious methods commonly learn a representation of agents’ policy [36, 22, 4, 56, 8, 25]. The policy

embedding methods model only how a player acts in a given match context, and thus fail to capture

the statistical information about which match contexts players are likely to act in, as well as the

immediate outcomes (or rewards). 2) Although these policy embeddings can facilitate the construc-

tion of an artificial agent in control problems, the goal of agent representation in sports analytics

is predicting game-relevant events using player identity information [33, 2, 87]. 3) Previous agent

representation models are often validated in virtual games instead of physical sports. They assume

a limited number of agents (usually less than 10) and sufficient observations for each of them. In

contrast, professional sports leagues often have upwards of one-thousand players, and many bench

(backup) players play only a few (less than 20) games in a season. The large number of agents
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and unbalanced observations make the embedding models unstable and overfit to players with high

participation during training, which undermines both the convergence and the performance of un-

derlying policy representations [4].

In this chapter, we propose a novel player representation framework that learns player repre-

sentations via player generation. Conditioning on the current game context, the generation model

predicts the distribution of the currently acting player. During this process, we learn a distribution

of latent variables as the context-specific prior, allowing a neural encoder to derive an approximate

posterior as a contextualized representation for the observed player. We train the encoder by maxi-

mizing an Evidence Lower Bound (ELBo, Equation (7.9)) that moves the posterior for each player

toward the prior mode. This shrinkage effect [57] is ideal for player representations, because: 1) It

allows information to be transferred between the observations of different players and draws closer

the representations of players who share many statistical similarities under a game context. 2) A

shrinkage estimator prevents the encoder from overfitting to players with high participation, allow-

ing our representation to generalize to the diversity and the sparsity of player distributions based on

the context information.

Following our representation framework, we design a Variational Recurrent Ladder Agent En-

coder (VaRLAE) to learn player representations. VaRLAE utilizes a ladder structure [89] where, in

each layer, latent variables condition on a context variable and the representations from upper layers,

maintaining a causal dependency of latent variables that follows a Markov Game Model [61]. To

incorporate play history into player representations, VaRLAE applies a recurrent network to sequen-

tial sports data. The ladder hierarchy of latent variables embeds both context and player information,

which effectively improves the generative performance and prevents posterior-collapse [89, 43].

We demonstrate the generative performance of our VaRLAE on a massive National Hockey

League (NHL) dataset containing over 4.5M events. VaRLAE achieves a leading identification ac-

curacy (>12% for the players with sparse participation) over other deterministic encoders and policy

representation models. To study how much the learned player representations improve downstream

applications, we assess two major tasks in sports analytics: Predicting expected goals and final

match score differences. Empirical results show the improvement in predictive accuracy after incor-

porating the embeddings generated by VaRLAE as input.

7.2 Related Work

We describe the previous works that are most related to our approach.

Agent Representation. Previous works [39, 55, 56] represented an agent by imitating its policy

in the learning-from-demonstration [7] setting. Some recent works [4, 36, 81, 11] extended the be-

havior modelling to a multi-agent system. Multi-agent representations include modeling interactions

between agents and their opponents’ behavior for reasoning about a specific goal, such as winning

a poker or video game. These interactive policy representations scale poorly to a large number of

agents [4, 3]. To identify the agent representations, [36] introduced a triple loss that encourages
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an exponential distance between deterministic embeddings for different agents. Policy representa-

tions have been successful for the design of artificial agents in control problems, such as games or

robot control. However, real human players in professional sports cannot be controlled as artificial

agents can. For the general sports analytic tasks, the goal of representing players is predicting game-

relevant events using player identity information [33, 2, 87]. This goal often requires modeling as

many aspects of a players’ behavior as possible, so we also represent the distribution of states and

rewards. A recent work [33] proposed the method of learning a deterministic embedding for the

current line-up and showed their embedding can improve the predictive performance in a score-line

prediction task. However, their encoder focused only on the current game context without modeling

the game history, which limited their embedding performance. To our knowledge, this is the only

published work about player embedding in professional sports.

Variational Encoders. Variational encoders apply a set of latent variables z to embed the ob-

servations o. The latent variables form a disentangled representation where a change in one di-

mension corresponds to a change in one factor of variation [12]. Such representations are often

interpretable [53, 44] and have been applied to embed information in multiple domains ( e.g. robot

skills [42] and task environment [106]). The learned representations can significantly facilitate gen-

erating many kinds of complicated data, such as images [54, 102] and action trajectories [104, 92].

To learn these representations, the Variational Auto-Encoder (VAE) maximizes an Evidence Lower

Bound (ELBo): log p(o) ≥ −DKL(q(z|o)‖p(z)) + Eq(z|o)
[

log p(o|z)
]
. The traditional VAE de-

sign uses a Gaussian encoder and a neural decoder to model the approximate posterior q(z|o) and

the likelihood function p(o|z) respectively. The Conditional VAE (CVAE) [102] is an extension

that conditions the generation process on some external environment variables. To model sequential

data, the Variational Recurrent Neural Network (VRNN) [26] combines VAE with LSTM recur-

rence. To model dependencies among latent variables, [89] introduces a Ladder VAE (LVAE) that

maintains a top-down latent dependency and effectively prevents posterior collapse.

7.3 Player Representation Framework

We introduce the contextual variables for ice hockey and the player representation framework.

7.3.1 Contextual Variables for Ice Hockey Players

We model the ice-hockey games with a Markov Game Model ( a more detailed definition is pre-

sented in Section 3.1): G = (S,A,P,R,Ω, γ). At each time step t, an agent performs an action

at ∈ A at a game state st ∈ S after receiving an observation ot ∈ Ω. This process generates

the reward rt ∼ R(st, at) and the next state st+1 ∼ Pat(st, st+1). For each game, we consider

event data of the form [(o0, pl0 , a0 , r0 ), (o1 , pl1 , a1 , r1 ), . . . , (ot, pl t , at , rt), . . .]: at time t, after

observing environment ot , player pl t takes a turn (possesses the puck) and chooses an action at,

which produces a reward rt denoting whether a goal is scored. The discounting factor γ is set to 1.
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The play dynamics for the acting player pl t can be captured by the following contextual vari-

ables: 1) The game state st describes the game environment where the action is performed. To

alleviate the partial observability of observations, a game state includes the game history: st ≡
(ot, rt−1, at−1, pl t−1 , ot−1 , . . . , o0 ). We utilize the RNN hidden states ht−1 to capture the game

history [41], so st ≡ (ot,ht−1). 2) The action at records the action of the on-puck player. 3) The

reward rt denotes whether a goal is scored after performing at. As in general RL, the sequence state-

action-reward can be interpreted causally in sports: the player makes observations summarized in a

state signal st, which influences his action at; together with the environment, the state and action

influence whether the player scores a goal. The corresponding causal graph is st → at → rt.

7.3.2 Player Representation via Player Generation

We introduce our framework of learning player representations through modeling a player gener-

ation distribution: p(pl t |st , at , rt). This distribution describes where and what of a player’s charac-

teristics: what game states they tend to act in, what their actions are, and what immediate outcomes

they achieve. Inspired by previous work [42, 106, 103], we utilize latent variables zt as a represen-

tation of game context, which can be decoded to the distribution of current acting players:

p(pl t |st , at , rt) =
∫

dztp(pl t |zt)p(zt |st , at , rt) (7.1)

where, before observing the acting player pl t , p(zt|st, at, rt) models a context-aware prior cap-

turing which players are likely to perform at under st and receive rt. The motivation for a contex-

tualized representation is the behavior of sophisticated agents, like professional players, is highly

sensitive to context and it is difficult to learn a fixed representation that can adequately describe a

player’s tendencies under every game context. After observing the target player pl t , we learn an ap-

proximate posterior q(zt|st, at, rt, pl t) as a contextualized player representation, so the complete

generative process becomes:

p(pl t |st , at , rt) ≈
∫

dztp(pl t |zt)q(zt |st , at , rt , pl t) (7.2)

During training, our ELBo object (Equation 7.9) induces a shrinkage effect through minimizing the

Kullback–Leibler (KL) Divergence between the posterior representation for each individual player

q(zt|st, at, rt, pl t) and a context-specific prior p(zt|st, at, rt). A shrinkage estimator is ideal for

learning player representation for team sports because 1) it has strong statistical properties that

allow information to be transferred between the observations of different players, or of the same

player in different game contexts. The shrinkage effect becomes stronger for players who share

many statistical similarities under a game context, which draws their representations closer. This

naturally formalizes our intuition that statistically similar players are assigned similar representa-

tions under similar game contexts. 2) The Shrinkage term also works as a regularizer that prevents

the player representations from overfitting to some frequently-present players. Compare to a deter-
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ministic auto-encoder, the stochastic shrinkage estimator can generalize to more agents with sparse

observations.

In contrast to a policy representation [36, 103, 22] that captures how a player acts in a given

state, our player representation also models when and where they act, and how successful their

actions tend to be. Since our context includes actions, states, and rewards, our learned embeddings

reflect how players differ in all three of these dimensions. We refer to this property as the context-
completeness.
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Figure 7.1: Our VaRLAE model includes a conditional Ladder-VAE at every RNN cell. VaR-
LAE applies a top-down dependency structure ordered as the sports causal relationship (Sec-
tion 7.3.1). The thick/dash lines denote logical-functions /stochastic-dependence. The shaded nodes
are given.

7.4 A Variational Agent Encoder for Learning Agent Representations

This section introduces a VaRLAE (Figure 7.1) model for learning player representations. We de-

scribe the generation and inference computations following our representation framework (Sec-

tion 7.3.2).

Generation. To incorporate match history into the game state st, the generation model com-

bines CVAE with a recurrent model following [26]. Previous works [43, 105], however, showed

that a high-capacity decoder often causes the problem of posterior collapse: the generator com-

putes the distribution of the currently acting player from context variables without relying on latent

variables. To make latent variables embed meaningful player information, we introduce a separate

latent variable zc,t for each component of our context, organized in a ladder VAE [89] (Figure 7.1).

To utilize the context information (e.g. game state st at the top layer), the generator is forced to

apply the hierarchical latent variables. This ladder structure models the dependency of these con-

textualized latent variables (zs,t → za,t → zr,t) following the causal relationship defined in sports

game (Section 7.3.1), which improves its generative performance [89].
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Latent Priors. The priors are computed as a function of the game context, rather than a context-

independent Gaussian distribution. At each time step, we compute the conditional priors (of player

representations) following a Gaussian distribution at each layer:

p(zc,t|ct, z(+),t) = N (µpc,t,σ
p
c,t) where [µpc,t,σ

p
c,t] = ψprior,c[ψc(ct, ψz(z(+),t))] (7.3)

The context variable ct ∈ {st, at, rt} and z(+),t denotes latent variables from the upper layer. We

omit z(+),t at the top layer. The neural functions ψ(·) are implemented by a Multi-Layer Perceptron

(MLP) with batch normalization at each layer. We use linear and soft-plus activation function to

compute the Gaussian parameters µ and σ respectively.

Given the latent variables zr,t sampled from the context-specific Gaussian prior, our model

generates the label of the acting (or on-puck) player as follows:

p(pl t |zr ,t) = Categorical(θ1 ,t , . . . , θN ,t), where θi,t := φ{ψdec[ψz(zr ,t)]} (7.4)

The neural function ψz extracts features from latent variable zt. These features are then sent to an-

other decoder function ψdec. Given the decoder outputs, we apply a softmax function φ to generate

categorical parameters θt. θi,t represents the probability of player i acting at time t.

Inference. We apply variational inference to derive an objective function for estimating the

parameters of our hierarchical model. Our VaRLAE defines a top-down dependency structure and

utilizes the hierarchical priors and approximate posteriors on latent variables to derive an approxi-

mate log-likelihood function for the observed data [89, 54].

After observing player pl t , we first implement a deterministic upward pass to compute the ap-

proximate likelihood contributions. Conditioning on reward variable rt, the bottom layer computes:

[µ̂qr,t, σ̂
q
r,t] = ψq,r(dr,t) where dr,t = [pl t , ψ

r ,t(rt)] (7.5)

The higher layers take information from lower layers and compute:

[µ̂qc,t, σ̂
q
c,t] = ψq,c(dc,t) where dc,t = [d(−),t, ψ

c,t(ct)] (7.6)

Here we have ct ∈ {at, st} and d(−),t denotes deterministic outputs from a lower layer. Similar to

the generator, neural functions ψ(·) are implemented by MLP with batch normalization.

We then implement a stochastic downward pass to recursively compute the approximate poste-

rior. At the top layers, the Gaussian posterior applies the estimated parameters from a deterministic

function:

q(zs,t|st, pl t) = N (µq
s,t ,σ

q
s,t) where [µq

s,t ,σ
q
s,t ] = [µ̂q

s,t , σ̂
q
s,t ] (7.7)

At the lower layers, the inference model applies a precision-weighted combination of (µ̂qc,t, σ̂
q
c,t)

carrying bottom-up information and (µpc,t,σ
p
c,t) from the generative distribution carrying top-down
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prior information. The approximate posteriors are computed by:

q(zc,t|ct, z(+),t, pl t) = N (µq
c,t ,σ

q
c,t) where (7.8)

µqc,t =
µ̂qc,t(σ̂

q
c,t)−2 + µpc,t(σ

p
c,t)−2

(σ̂qc,t)−2 + (σpc,t)−2 and σqc,t = 1
(σ̂qc,t)−2 + (σpc,t)−2

Here we have ct ∈ {at, rt} and z(+),t denotes latent variables from the upper layer. This param-

eterization has a probabilistic motivation by viewing µ̂qc,t and σ̂qc,t as the approximate Gaussian

likelihood that is combined with a Gaussian prior µpc,t and σpc,t from the generative distribution.

Together these form the approximate posterior distribution q(z|z, c) using the same top-down de-

pendency structure for both inference and generation.

Based on [26], the timestep-wise variational lower bound for our model is :
T∑
t=1

{ ∑
ct∈{st,
at,rt}

[
− βDKL[q(zc,t|ct, z(+),t, pl t)‖p(zc,t |ct , z(+),t)]

]
+ Ezr,t∼q(zr,t |·)

[
log p(pl t |zr ,t)−

(7.9)
λζLζ(zr,t, st, at, rt)

]}
where β controls the scale of KL regularization. To mitigate local optima caused by posterior

collapse (DKL(·) drops to 0) at the initial stage of training [43], we apply a warm-up from de-

terministic to variational encoder by scaling β from 0 to 1 [89]. The bottom layer latent vari-

ables zr,t absorb context and player information from upper layer and forms a representation:

q(zt|st, at, rt, pl t) = q(zr ,t |·). This real-valued vector can replace the one-hot player representa-

tion and facilitates downstream applications such as predicting expected goals or score differences

(see Section 7.5.3). We also add an application loss Lζ with a parameter λζ to control its scale.

This loss combines the gradient of the application models with the embedding inference. It allows

co-training the embedding model and the application model which significantly accelerates training

and dynamically incorporates player information into different downstream applications.

7.5 Empirical Evaluation
We evaluate the generative performance of the embedding models for player identification and study

the usefulness of embeddings for application tasks by incorporating them into task models [74,

1]. Our application tasks include 1) estimating expected goals and 2) predicting the final score

differences, which are among the most challenging tasks in sports analytics [68, 33].

7.5.1 Experiment Settings

We introduce our ice-hockey dataset and comparison methods following an ablation design.

Dataset: We utilize an ice hockey dataset constructed by Sportlogiq (see section 3.3.1). The

data provides information about game events and player actions for the entire 2018-2019 National

Hockey League (NHL) season, which contains 4,534,017 events, covering 31 teams, 1,196 games

and 1,003 players. The dataset consists of events around the puck. Each event includes the identity
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and action of the player possessing the puck, with time stamps and features of the game context.

The dataset records which unique player possesses the puck. We refer to the acting player as the

on-puck player. We randomly divide the dataset containing 1,196 games into a training set (80%),

a validation set (10%), and a testing set (10%) and implement 5 independent runs. The resulting

means and variances are reported.

Comparison models: We employ an ablation design that removes different components from

our full VaRLAE system. We first remove the hierarchical dependency of latent variables and train a

Conditional Variational Recurrent Neural Network (CVRNN) [26]. CVRNN concatenates the con-

text variables (st, at and rt) and applies a single layer of latent variables to embed players with

variational inference. We then replace the variational encoder with a Conditional Auto-Encoder at

each RNN cell (CAERNN) that learns a deterministic player representation. The third model is a

Conditional Variational Auto-Encoder (CVAE) [102] that discards the play history and conditions

only on the current observations. Replacing the variational model in CVAE with a Deterministic

Encoder yields (DE) player embedding [33]. DE is a regressor that directly maps the current ob-

servations to the acting player. We also compare our player representation framework to traditional

policy embedding. The implementation follows a state-of-the-art Multi-Agent Behavior Encoder

(MA-BE) [36]. In application tasks (Section 7.5.3), we also compare the options of 1) applying

one-hot player identities (Pids) directly 2) adding no player information (N/A) to application mod-

els.

7.5.2 Generative Performance of Embedding Models: On-Puck Player Identification

This experiment studies the generative performance of embedding models: predict which player is

acting given the current match context. We compare our VaRLAE model to 6 baselines: 1) identi-

fying player with embedding models: DE, CVAE, MA-BE, CAERNN and CVRNN 2) applying a

RNN to model the game history and predict the acting player without a player embedding. The large

player space (over 1k players) undermines the performance of encoders that do not utilize the recent

play history. To make a fair comparison, we also examine the option of constraining the predictions

to a group of recently acting players: the current on-puck player (the correct answer) and the players

that have possessed the puck in the previous 10 (the trace length of RNNs) steps during testing. To

study the identification performance for the players with sparse participation, we select the players

(a total of 51 players) with fewer than 100 observations (out of a total of 4M events) and report the

results.

Table 7.1 shows the results for acting player identification. VaRLAE achieves leading perfor-

mance on both the prediction accuracy and the log-likelihood. This lead is most apparent (> 10%)

for the players with sparse participation, which demonstrates VaRLAE is more robust to the un-

balanced player participation. For the variational encoders, they generally perform better than the

deterministic encoders. It is because the shrinkage regularizer prevents overfitting to the distribu-

tion of popular players in the training dataset. Game history is another crucial aspect for player

identification, allowing the RNN models outperform the models with only observation at the cur-
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Prediction
Method

Standard Constraining Sparse participation
Accuracy LL Accuracy LL Accuracy LL

DE 9.40% ± 3.06E-5 -17.42 ± 2.23E-1 26.14% ± 6.45E-5 -1.60 ± 1.10E-5 2.33% ± 6.95E-3 -22.90 ± 0.02
CVAE 11.94% ± 2.80E-5 -4.90 ± 2.84E-5 28.33% ± 2.96E-4 -1.63 ± 7.77E-7 4.87% ± 8.93E-3 -5.02 ± 0.01

MA-BE 19.74% ± 2.47E-4 -3.08 ± 1.75E-3 51.75% ± 7.58E-5 -1.59 ± 7.92E-6 5.11% ± 2.92E-4 -7.61 ± 1.33
RNN 36.49% ± 2.21E-6 -3.10 ± 2.80E-4 54.21% ± 2.80E-6 -1.55 ± 2.43E-4 6.67% ± 5.03E-4 -6.85 ± 2.15

CAERNN 43.64% ± 1.27E-5 -2.11 ± 1.55E-3 67.43% ± 5.21E-6 -1.38 ± 7.64E-4 11.65% ± 3.06E-3 -3.96 ± 1.20
CVRNN 46.61% ± 9.08E-5 -2.12 ± 2.27E-3 71.76% ± 4.02E-6 -1.33 ± 2.35E-6 24.30% ± 1.92E-3 -9.67 ± 2.36
VaRLAE 50.01% ± 2.56E-6 -1.76 ± 1.29E-3 78.54% ± 3.62E-6 -1.33 ± 5.16E-4 36.65% ± 2.13E-4 -2.99 ± 0.63

Table 7.1: Results for acting players identification. We report both Accuracy and Log-Likelihood (LL).

rent time step. We also find constraining the candidate players to the group of recent on-puck players

significantly improves the identification performance. This phenomenon is most apparent for MA-

BE (improves > 30%), which shows that policy embeddings do not distinguish individual players

sufficiently.

Embedding Visualization and Case Study: We visualize the generated player embeddings as

follows. 1) Randomly select 5 games from the testing set. 2) Compute the contextualized embed-

dings for the acting player at each event. 3) Visualize the high-dimensional embedding with the

unsupervised T-distributed Stochastic Neighbor Embedding (T-SNE) [66]. Figure 7.2 illustrates the

scatter plots. The embeddings computed by our VaRLAE (top plots) show a shrinkage effect.

Player Positions. VaRLAE embeddings are similar for players in the same position (left col-

umn), as they are more likely to perform similarly. Although the position information is hidden

during training, our model manages to infer the position information from players’ behaviors and

assigns them closer embeddings. For a case study on defense men (middle column), we select 5

players because 1) they are well-known players, and 2) in our 5 selected games, they perform a

similar number of actions. The plot shows that while defensive players tend to be mapped to similar

embeddings, our encoder also learns which contexts distinguish the players from each other.

Action Locations. Action locations are part of the state variable st conditioning player em-

beddings (right column). VaRLAE embeddings are similar for players when they act in the same

zone. The similarity is weaker for the CAERNN embeddings (bottom plots). Without shrinkage,

CAERNN overfits; it over-emphasizes outliers in the training data, which prevents generalizing to

player behavior in the testing data. Figure 7.3 illustrates the influence of action types on embeddings.

7.5.3 Predictive Performance On Application Tasks

We validate our VaRLAE model by feeding the generated embeddings to other application models

and studying their influence on the model performance in practical application tasks.

Expected Goals Estimation: We validate the player embeddings for the practical task of esti-

mating the Expected Goal (XG). An XG metric is a shot quality model that weights each shot by

its chance of leading to a goal [68]. We incorporate zt from the learned player representations into

XG prediction. At time t, we input st, shott, zt to the application model ζ (implemented as a RNN),

which is trained to output p(goal t+1 |shott , st , shott , zt): the probability that a goal is scored after
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Figure 7.2: Embedding visualization. Each data point corresponds to a player embedding condition-
ing on the game context at the current time step t. The player embeddings are labelled 1) player
positions (on the left column, including Center (C), Defense (D), Left-Wing (LW) and Right-Wing
(RW) and Goalie (G)) 2) 5 selected defence men (on the middle column) and 3) player locations (on
the right column, including Defence Zone (DZ), Neutral Zone (NZ) and Offensive Zone (OZ)). The
embeddings are computed by VaRLAE (top plots) and CAERNN (bottom plots) respectively.

Figure 7.3: Embedding visualization. Each data point corresponds to a player embedding condition-
ing on the game context at the current time step t. The player embeddings are labelled by the action
types. The embeddings are computed by VaRLAE (top plots) and CAERNN (bottom plots).
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the player pl t makes the shot. Our dataset provides ground-truth labels for whether a given shot

led to a goal. Since only a few shot attempts lead to a goal (<3.9%), the training data is highly

imbalanced. We, therefore, employ a resampling method [35], so successful and failed shots occur

equally often during training.

Player Embedding
Method

Performance
Precision Recall F1-score AUC

N/A 0.12 ± 1.75E-4 0.79 ± 9.46E-4 0.21 ± 4.26E-4 0.86 ± 3.56E-4
Pids 0.09 ± 1.62E-4 0.62 ± 2.52E-3 0.15 ± 4.20E-4 0.70 ± 1.25E-3
DE 0.30 ± 1.26E-4 0.92 ± 4.21E-4 0.45 ± 1.87E-4 0.96 ± 1.86E-5

CVAE 0.33 ± 5.33E-5 0.95 ± 8.72E-5 0.49 ± 8.29E-5 0.96 ± 1.13E-6
MA-BE 0.35 ± 1.44E-4 0.91 ± 2.30E-4 0.50 ± 1.56E-4 0.97 ± 1.46E-6

CAERNN 0.29 ± 1.05E-4 0.96 ± 1.56E-4 0.44 ± 1.65E-4 0.95 ± 1.27E-5
CVRNN 0.40 ± 4.75E-4 0.84 ± 1.81E-4 0.54 ± 2.97E-4 0.96 ± 4.07E-6
VaRLAE 0.37 ± 2.01E-4 0.98 ± 1.32E-4 0.54 ± 8.14E-5 0.96 ± 2.23E-6

Table 7.2: Expected goal results applying different player embeddings.

Using the most likely label as the predicted class, Table 7.2 shows the accuracy results on the

testing set. Without including any player information (N/A), predictions have large recall but very

limited precision, because the model prefers labeling many shots as goals. Adding the pids to the

input does not improve precision, which shows that player information is difficult to utilize from a

sparse one-hot representation. Applying the embeddings from a player encoder (e.g. DE and CVAE)

substantially improves both precision and recall. Among the recurrent models, VaRLAE achieves

the highest recall and f1-score with promising precision and AUC, demonstrating the effectiveness

of our contextualized representation framework and hierarchical model structure.

Score Difference Prediction: Dynamic Score Difference Prediction (DSDP) is a recently intro-

duced task [33]: predict the final score difference SD(T ) under a game context (st, at) where t runs

from 0 to T (game ends). In preliminary experiments, we observed that traditional supervised learn-

ing methods suffer a large training variance (especially early in the game when many outcomes are

equally likely). To exploit the temporal dependencies between score differences at successive times,

we apply reinforcement learning; specifically the temporal difference method Sarsa prediction [94].

Sarsa learns a Q-function for a generic home/away team to estimate the expected cumulative goal

scoring: Qteam(st, at) = E(
∑T
τ=t gteam,τ ) where team = Home/Away and gteam=1 if the team

scores at t and 0 otherwise. Given Q-functions, the Predicted Score Difference (PSD) at t is given

by PSD(t) = QHome(·)−QAway(·)+SD(t). Our application model ζ is a DRQNN [41] that com-

putes the Q-functions. The inputs are state st, action at and the embedding zt for the acting player

pl t . For each testing game m and time t, the absolute error is given by |PSD(tm)− SD(Tm)|. For

each game time t, Figure 7.4 plots the mean and the variance of the absolute error over all testing

games m = 1, . . . ,M . The plot shows a larger difference between real and predicted SDs at the

beginning of a game, but the mean and variance of the difference become smaller towards the game

end. Among the evaluated embedding methods, our VaRLAE (the black line) manages to generate

the player representations that lead to the most accurate predictions. We also find that the accuracy
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advantage is strongest towards the early game, especially compared to the N/A and pids. This in-

dicates that an informative player representation significantly alleviates the difficulty of predicting

multiple outcomes early in the game. Averaging over game times t defines the game prediction error

for each tested game m. Table 7.3 reports the mean and standard deviation for the game prediction

error. The VaRLAE embeddings yield the lowest Mean Absolute Error (MAE).

Figure 7.4: Temporal illustrations of the absolute error between
predicted score differences and final score differences. The plots
report mean (left) and mean±variance of the differences (right).
Figure 7.5 shows the separated plots for each method.

Method MAE
N/A 1.55 ± 0.35
Pid 1.56 ± 0.32
DE 1.48 ± 0.24

CVAE 1.49 ± 0.29
MA-BE 1.45 ± 0.25

CAERNN 1.31 ± 0.23
CVRNN 1.32 ± 0.27
VaRLAE 1.28 ± 0.29

Table 7.3: The test set game
prediction error between pre-
dicted and final score differ-
ences for the entire game.

(a) N/A (b) Pids (c) DE (d) CVAE

(e) MA-BE (f) CVRNN (g) CAERNN (h) VaRLAE

Figure 7.5: Temporal illustrations of the absolute error between predicted score differences and final
score differences. We report mean±variance of the error at each time step for all compared methods.
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7.5.4 Posterior Collapse

Figure 7.6 shows the Kullback–Leibler Divergence (KLD) between the posterior and the context-

specific prior (for the variational encoders) during training. Among the studied methods, CVAE

quickly reduces KLD to a small value (around 0.0005) after training on only a few games, but its

performance is less unstable without modeling the game history. CVRNN converges slower and

the KLD gradually drops to a very small number (around 3E-05) after training, which indicates the

prior can replace the posterior and the decoder can generate the distribution of acting player without

the player representation. It is consistent without intuition that a high capacity decoder like RNN

can lead to posterior collapse [105]. Our VaRLAE significantly alleviates this problem by applying

a hierarchy of latent variables and a deterministic warm-up during training (Section 7.4). The KLD

reduces smoothly until it converges a value around 0.03.

Figure 7.6: The KLD between the posteriors and the priors during training for VaRLAE , CVRNN
and CVAE (from left to right).

7.6 Summary

Capturing what team sports players have in common and how they differ is one of the main concerns

of sports analytics. In this chapter, we introduced a player representation via player generation

framework that learns deep contextualized representations for ice hockey players. We described a

VaRLAE model tailored towards sports data, based on a Markov Game model representation. The

ELBo loss (Equation (7.9)) includes a shrinkage effect such that similar players are mapped to

similar representations in similar match contexts. We validated the player representation on two

downstream applications that are important in sports analytics: predicting expected goals and final

match score differences. While our evaluation focuses on ice hockey, our approach is general and

can be applied to other team sports.
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Chapter 8

Conclusion, Discussion, and Future
Directions

8.1 Summary of the Dissertation

In this dissertation, we mainly focused on learning action values for evaluating players in profes-

sional sports data. We first provided an overview of the background about previous player evalua-

tion metrics and then introduced the available datasets for professional sports. Based on the Markov

Game model, the Q-function evaluated the player performance by assigning values to their actions.

We also introduce a mimic learning approach to interpreting the Q-function and explored the method

of modeling the player information through representation learning. The performance of the above

methods is validated in two sports environments: Ice-Hockey and Soccer. Experiment results show

that the Q-function can assign the values that accurately reflect a player’s contribution. Our empir-

ical evaluation also examines the interpretation performance of the mimic learning model as well

as the embedding performance of our player representation design. We provide a brief summary of

our dissertation in the following three aspects:

• This dissertation described a Markov Game Model to represent the professional sports envi-

ronment, based on which we defined an action-value Q function with Deep Reinforcement

Learning (DRL). The Q-function represented the probability to score the next goal. The spa-

tial and temporal illustration showed that our Q-function assigned accurate values to all the

player actions and effectively reflected the match context of evaluated action. We also defined

an action impact (the difference between two consecutive Q-values) and measured the player

performance by summing up his or her impact over a game season (named by Goal Impact

Metric (GIM)). Our experiment studied two popular team sports: Ice Hockey and soccer. The

empirical results demonstrated the strong correlation between GIM and other standard suc-

cess measures (e.g., goal, assist, and point) and the consistency of GIM across a game season.
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• We introduced a mimic learning framework for explaining the learned Q-function. This disser-

tation mainly experimented with two mimic models: a traditional Classification And Regres-

sion Tree (CART) and a novel Linear Model U-Tree (LMUT). Compared to CART, LMUT

was built for solving reinforcement learning problems and defined a linear model at each leaf

node, which significantly improved its generalization ability. Our experiment results showed

the leading fidelity of LMUT in both the virtual game environments and professional sports

environments. We also described our approach to extracting rules and computing the feature

importance from the transparent tree mimic model, which demonstrated the interpretability

achieved by our mimic learning framework.

• This dissertation also proposed a player representation framework for incorporating the player

information into the action values. To learn a representation that can capture the diversity and

sparsity of player distribution in a professional sports game, we referred to the deep repre-

sentation learning and the Variational Auto-Encoder design. We introduced our Variational

recurrent Ladder Agent Encoder (VaRLAE ). VaRLAE first learned a conditional prior de-

scribing the game context and then derived a contextualized player representation as a pos-

terior after observing the acting player. We studied the performance of VaRLAE under two

piratical tasks: estimating the expected goal and predicting the final score difference. Exper-

iment results showed incorporating the embeddings from VaRLAE into application models

can improve their performance.

8.2 Discussion

In this section, we discuss the sparsity of goals, model convergence, contextualized representation,

shrinkage effect, and limitations of our method.

8.2.1 The Sparsity of Goals

A common method to evaluate players’ contribution is computing their influence on goal scoring

(increase the scoring probability of their team and prevent their opponent scoring). The scoring

events, however, are usually rather sparse during many sports games, such as the Ice Hockey and

Soccer studied in this work. This issue is similar to the sparse reward problem in Reinforcement

Learning (RL). To resolve this issue, many previous works on sport analytic suggested including

other measures like assist, pass, and penalty into the evaluation. It is also similar to the reward

shaping technique in RL, which add some handcraft or indirect reward signal to accelerate the

model convergence, but this solution often suffers from the mismatch between optimization (include

all the shaped reward, e.g., assist and pass) and evaluation (consider only the real reward: scoring).

The duality between player evaluation and RL inspires us to investigate a more promising Temporal

Difference (TD) solution. TD learns a Q function to spread the reward (scoring) signals to previous

events and assigns expected rewards to all players’ actions, which significantly alleviate the problem

of sparse goal.
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8.2.2 Model Convergence

We discuss the convergence of our DRL models (e.g., DP-LSTM in Section 4.4, TTDP-LSTM

in Section 5.2). Our DRL models are trained by the on-policy Temporal Difference (TD) method

Sarsa. Previous work has proved the convergence of on-policy TD with linear function approxima-

tors [98]. However, we apply a non-linear neural network function approximator. It is well-known

that on-policy TD with a non-linear function approximator often exhibits unstable convergence in

the traditional RL setting, where the action-value Q function is defined as the expected cumulative

rewards with unlimited look ahead: Q(st, at) = E[
∑∞
γ=t α

γ−t · r(sγ , aγ)]. (Here α ∈ (0, 1) is the

discount factor and r is the reward function). To alleviate the instability of TD methods, in this dis-

sertation, we constrain the look-ahead to the next goal (rather than the end of game) and remove the

discount factor, so Q(st, at) = E[r(sT , tT )] which is the expected scoring probability of the next

goal. (This is valid because r(st, tt) = 0 except at goal occurrences T .)

8.2.3 Learning Contextualized Representations.

The behavior of sophisticated agents, like professional players, is highly sensitive to context. It is

difficult to learn a fixed representation that can adequately describe a player’s tendencies under ev-

ery game context. Therefore, our VaRLAE first learns a representation for game context (with the

context-specific prior) and then asymptotically adjusts the posterior representation for individual

players to each context during training. The dynamically contextualized player representation sig-

nificantly improves the robustness and comprehensiveness of embeddings, with which application

models achieve better performance in the downstream tasks.

8.2.4 Shrinkage Effect

In a hierarchical model, shrinkage moves the posterior distribution for each player toward the prior

mode. Shrinkage estimators have strong statistical properties because they allow information to be

transferred between the observations of different individuals. The shrinkage effect becomes stronger

for players who share many statistical similarities under a game context, which draws their represen-

tations closer. This naturally formalizes our intuition that statistically similar players are assigned

similar representations under similar game context. Our neural hierarchical model encourages such

a shrinkage effect by minimizing the Kullback–Leibler Divergence (KLD defined in our loss func-

tion Equation (7.9)) between posterior for each individual player and a context-specific prior.

8.2.5 Limitations

We show some limitations of our approach and discuss some potential solutions.

Partial observability for the players on pitch. At each time step, the play-by-play dataset records

only positions and actions of the player controlling the ball. The information of other players (in-

cluding both his teammates and opponents), however, also has influence on scoring probabilities, es-
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pecially for the complex team sport like soccer. To alleviate this issue, our DRL models (DP-LSTM

and, TTDP-LSTM) applies a recurrent model to fit the play history and includes the information of

previous on-the-ball players, but the model performance still suffers from partial observability—the

locations of the off-ball players are not known. A direction for future work is to build a multi-agent

reinforcement learning framework for fully observable tracking data. Tracking data, however, are

typically proprietary and not easily available to researchers.

The problem of big input data. Our dataset has over 4M events including spatial and temporal

features of players. Fitting the entire data requires substantial computational resources. The scalabil-

ity challenges increase when we include the play history. Therefore is is difficult to utilize standard

machine learning packages (such as decision tree, random forest or gradient boosting) that typi-

cally assume the entire data can be fit into a single working memory batch. In this dissertation, our

DRL models are based on mini batches to address the working memory constraints. A principled

alternative is developing on-line learning methods for DRL. For mimic learning, my dissertation in-

cluded an on-line method for linear model trees (Chapter 6). In future work, we will explore on-line

learning methods for learning a Q-function, and evaluate their performance on big sports data.

8.3 Future Directions

In this section, we introduce some future directions that enable better modeling and understanding

of the action values function for professional sports games.

8.3.1 Model Game History with Attention Mechanism

In this dissertation, our Q-function modelled play history with LSTM. As a parametric machine

learning model, LSTM summarizes the entire history information with a single hidden state and it

is often hard to understand which event (in the game history) is the most influential for the cur-

rent prediction. A promising method to overcome this problem is the attention mechanism, which

dynamically learns the importance of previous events with an attention matrix [10]. Such attention

models have been commonly applied for the tasks related to Natural Language Processing (NLP)

(e.g. Neural machine translation [65] and Information extraction [62]). Although both the NLP and

the sports analytic tasks apply sequence data, a fundamental difference between them is sports events

always flow in physical time from start (time step t = 0) to end (time step t = T ) while human

language order words according tot the rules of a language, not physics. Indeed, some NLP models

applied bi-directional LSTMs to extract information from source sentences. As a consequence, an

attention matrix can relate future events to the past outcome. To solve the mismatch between NLP

and sports analytics, in future work, we will constrain the attention matrix and only allow it to assign

weights only to previous events in the game history.
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8.3.2 Information Bottleneck Method for Mimic Learning

Our mimic learning framework facilitated transferring the knowledge from a black-box neural

model to another transparent mimic model (e.g. a tree model). A successful mimic model should

achieve both the promising approximation performance (for fidelity) and the minimum model com-

plexity (for interpretability) (e.g. a decision tree with a limited depth). In other words, the mimic

model of mimic learning should act like an interpretable minimum sufficient statistic of the deep

model for generating the same predictions. This principle is naturally consistent with the object of

Information Bottleneck (IB) method [96] which is about encouraging the bottleneck representations

Φ to compress the input signal space X by preserving as much of the relevant information about

another variable Y as possible. The IB object is given by:

max
p(φ|x)

[
I(Φ;Y )− λI(Φ;X)

]
(8.1)

Where I denotes the mutual information and λ is a Lagrange multiplier. Under the mimic learning

framework, Φ, X , and Y denote the mimic models, the space of input data, and soft outputs from

deep models respectively. I(Φ;X) controls how much the mimic models compress the input data

and I(Φ;Y ) measure how well the mimic models preserve the knowledge from deep models. By

varying the parameter λ, one can explore the trade-off between the preserved meaningful informa-

tion and compression at various resolutions. The IB principle is appealing, since it defines what we

mean by a good representation, in terms of the fundamental trade-off between having a concise rep-

resentation and one with good predictive power [5]. Such an IB principle solves mimic learning as a

model compression problem that provides a theoretical foundation for our mimic learning target. In

future work, we will apply the IB method to develop an object function for the interpretable mimic

learning.

8.3.3 Multi-Agent Embedding for Player Representations

To incorporate the player information into sports statistics, our VaRLAE learned a representation for

the current acting player without model his or her interaction with other teammates or opponents.

A direction of future work is modeling interactions among players. Given an advanced dataset with

full observations of on-court players (the game tracking dataset), the model can learn representa-

tions for different lineups rather than individuals. A promising method for learning representations

for multiple players is multi-agent embedding. However, previous work commonly learned the em-

bedding for agents in the game environment [4, 36, 81, 11] (e.g., poker, go, and virtual games) rather

than the players in the real professional games. Compared to the game environment, a professional

league has more (usually over 1K) players and the players in different teams will compete in many

matches during a game season. For our future work, we will extend the multi-agent embedding

techniques to model the complex interactions among a large number of players in a sports league.
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Appendix A

Appendix

A.1 Proof of Proposition 1

The data record transitions from a state-action-player triple to another, possibly resulting in a non-
zero reward (score or point in the context of sports). We denote the number of times such a transition
occurs as

nD[s, a, pl, s′, a′, pl ′]

where the ′ indicates the successor triple. We freely use this notation for marginal counts as well,
for instance

nD[s′, a′, pl ′] =
∑

s,a,pl
nD[s, a, pl, s′, a′, pl ′]

From the section 4.5.2, we have the following equations for the Q-value-above-replacement and
the GIM metrics:

QARi(D) =
∑
s,a

nD[s, a, pl ′ = i]
(
Es′,a′ [Qteam(s′, a′|s, a, pl ′ = i)]− Es′,a′ [Qteam(s′, a′)|s, a]

)
(A.1)

GIM i(D) =
∑

s,a,s′,a′

n[s, a, s′, a′, pl ′ = i; D] ·
[
Qteam(s′, a′)− Es′E ,a

′
E

[Qteam(s′E , a′E)|s, a]
]
(A.2)

Now we have
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GIM i(D) Eq.2=
∑
s,a

∑
s′,a′

nD[s, a, s′, a′, pl ′ = i]
(
Qteam(s′, a′)− Es′E ,a

′
E

[Qteam(s′E , a′E)|s, a]
)

=
∑
s,a

nD[s, a, pl ′ = i]
∑
s′,a′

nD[s, a, s′, a′, pl ′ = i]
nD[s, a, pl ′ = i] Qteam(s′, a′)

−
∑
s,a

nD[s, a, pl ′ = i]Es′E ,a
′
E

[Qteam(s′E , a′E)|s, a] (A.3)

=
∑
s,a

nD[s, a, pl ′ = i]E [Qteam(s′, a′|s, a, pl ′ = i)] (A.4)

−
∑
s,a

nD[s, a, pl ′ = i]Es′E ,a
′
E

[Qteam(s′E , a′E)|s, a]

=
∑
s,a

nD[s, a, pl ′ = i]
(
Es′E ,a

′
E

[Qteam(s′E , a′E |s, a, pl ′ = i)]− Es′E ,a
′
E

[Qteam(s′E , a′E)|s, a]
)

Eq.1= QARi(D) (A.5)

Step (A.3) holds because the expectation E[Qteam(s′, a′|s, a)] depends only on s, a, not on
s′, a′. Line (A.4) uses the empirical estimate of the expected Q-valueQteam(s′, a′)] given that player
i acts next, computed from the maximum likelihood estimates of the transition probabilities:

σ̂(s′, a′|s, a, pl ′ = i) = nD[s, a, s′, a′, pl ′ = i]
nD[s, a, pl ′ = i]

The final conclusion (A.5) applies Equation (A.1).

A.2 VAEP Implementation

VAEP probabilities are estimated by building a probabilistic binary classifier for predicting whether
a given possession will end in a goal. The VAEP work [29] applied a gradient-boosted tree to fit a
dataset of over 11K games, but we were not able to scale the on-line code to our dataset1. Instead,
we reimplemented the VAEP method, utilizing a neural network with an LSTM layer followed by
two fully connected layers (100 and 50 ReLU nodes), and a sigmoid output layer. The trace length
of LSTM is 10, corresponding to the VAEP default look-ahead of k = 10. We trained for 10 epochs
on the whole dataset, using the same features for VAEP as for Sarsa.

A.3 Ranking for the Premier League

Applying the similar fine-tuning technique mentioned in our main paper, we compute GIMs for the
players in Premier League and report the ranking results in the following tables :

1https://github.com/ML-KULeuven/socceraction
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name team GIM Goal Assist
Riyad Mahrez Leicester 14.313 12 10
Kevin De Bruyne Manchester City 14.235 8 16
Christian Eriksen Tottenham 11.002 10 10
Abdoulaye Doucouré Watford 10.605 7 3
Joe Allen Stoke 9.895 2 6
Sadio Mané Liverpool 9.647 10 7
Jesse Lingard Manchester United 8.874 8 5
Alex Oxlade-Chamberlain Liverpool 8.73 3 7
Anthony Knockaert Brighton 8.524 3 1
Pascal Groß Brighton 8.089 7 8

Table A.1: 2017-2018 season top-10 Player Impact Scores for players in Premier League season.

name GIM Goal
Roberto Firmino 2.632 15
Christian Eriksen 1.94 10
Javier Hernández 1.806 8
Romelu Lukaku 1.759 16
Wilfried Zaha 1.533 9
Juan Mata 1.382 3
Kevin De Bruyne 1.373 8
Eden Hazard 1.333 12
Nacho Monreal 1.282 5
Bernardo Silva 1.255 6

Table A.2: Top-10 soccer players
with largest shot impact in 2017-
2018 Premier League season.

name GIM Assist
Riyad Mahrez 4.532 10
Joe Allen 4.159 6
Kevin De Bruyne 4.063 16
James McArthur 3.653 1
Christian Eriksen 3.639 10
Dwight Gayle 3.456 3
Jordan Ayew 3.387 2
Alex Oxlade-Chamberlain 3.305 7
Kyle Walker 3.206 6
Anthony Knockaert 3.181 1

Table A.3: Top-10 soccer players
with largest pass impact in 2017-
2018 Premier League season.
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A.4 Actions Details

Our soccer dataset records a total of 43 actions including caught-offside, pass_from_fk, cross_from_fk,
pass_from_corner, cross_from_corner, cross, throw-in, through-ball, switch-of-play, long-ball, simple-
pass, take-on_drible, skill, tackle, interception, aerial-challenge, clearance, ball-recovery, offside-
provoked, own-goal, penalty_shot, fk_shot, corner_shot, standard_shot, blocked_shot, save, claim,
punch, pick-up, smother, keeper-sweeper, penalty_save, penalising_foul, minor_foul, penalty_obtained,
dangerous_foul, dangerous_foul_obtained, run_with_ball, dispossessed, bad-touch, miss, error and
goal.

A.5 Generating the Spatial Projections

The spatial projections (Fig.5) are generated as follows. We plot the Q̂Home(s`, action) values for
an ` = (x, y) grid that runs in unit steps from x ∈ [−100, 100] and y ∈ [−100, 100]. Here s`
represents the state (contains current observation and play history) for a shot at location `, which
we compute as follows. 1) For a given location `, we can determine the values of some observed
features (e.g., angle between ball and goal). Other features are assigned as their mean value over the
entire dataset. This defines an observed feature vector x`. 2) Given a current action at, and previous
action at−1, we compute the average offset vector d`t,`t−1 between locations of the current and the
previous action. Then the previous location is set to . 3) Thus given a current location and an action
history, `t, at, at−1, at−2, . . ., we can compute a complete history of previous locations with average
offsets, and therefore a complete state s` = x`t , at, x`t−1 , at−1, x`t−2 , at−2, . . ..

A.6 A Spatial Illustration for the Shot Attempts

We randomly sample 20 games from the training data and show a spatial illustration of shots
that happened during these games in Figure A.1. This plot is consistent with our description (sec-
tion 7.5.3) that the training data is highly imbalanced and only a few shot attempts lead to a goal.
The plot also shows that the locations of the successful and the unsuccessful shots are highly over-
lapped. Without knowing the identity of the acting player, it is hard to determine whether the shot
can be made or not.
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Figure A.1: The spatial illustration of shot attempts on a hockey rink. We apply the adjusted coordi-
nate and the play always flows from left to right. Blue circles represent unsuccessful shots and red
stars indicate successful shot.
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