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Abstract

Invertible neural networks (INNs), in the setting of normalizing flows,
are a type of unconditional generative likelihood model. Despite vari-
ous attractive properties compared to other common generative model
types, they are rarely useful for supervised tasks or real applications due
to their unguided outputs. In this work, we therefore present three new
methods that extend the standard INN setting, falling under a broader
category we term generative invertible models. These new methods al-
low leveraging the theoretical and practical benefits of INNs to solve su-
pervised problems in new ways, including real-world applications from
different branches of science. The key finding is that our approaches
enhance many aspects of trustworthiness in comparison to conventional
feed-forward networks, such as uncertainty estimation and quantifica-
tion, explainability, and proper handling of outlier data.

Zusammenfassung

Invertierbare neuronale Netze (INNs), in ihrer Anwendung als so-
genannte “Normalizing Flows", sind ein Typ unkonditionales genera-
tives Likelihood-Modell. Trotz einiger nützlicher Eigenschaften, die
INNs im Vergleich zu anderen generativen Modellen besitzen, können
sie selten für überwachtes Lernen und echte Anwendungen eingesetzt
werden, da ihre Outputs nicht gelenkt werden können. In dieser Arbeit
präsentieren wir deshalb drei neue Methoden, die das Standardsetting
von INNs erweitern. Wir bezeichnen diese breitere Kategorie als gener-
ative invertierbare Modelle. Diese neuen Modelle machen sich die the-
oretischen und praktischen Vorteile von INNs zunutze, um Aufgaben
des überwachten Lernens zu lösen, unter anderem auch mehrere erfol-
greiche Anwendungen in den Naturwissenschaften. Das Kernergebnis
besteht in der Beobachtung, dass unsere Methoden in vielen Aspekten
die Vertrauenswürdigkeit (“Trustworthiness”) der Vorhersagen steigern,
unter anderem die Schätzung und Quantifizierung von Unsicherheiten;
die Erklärbarkeit; sowie der korrekte Umgang mit “Outliern", also dem
Netzwerk komplett unbekannte Beispiele.
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Introduction 1
1.1. Problems with deep learning in real-world use

In terms of pure task performance, deep learning has made tremendous leaps in the past
decade. There are few fields where this is as clearly shown as in computer vision, where
the feats achieved with modern deep learning methods may have seemed more fitting for
science-fiction as recently as two decades ago. For simple image classification, deep neural
networks are arguably on par with human performance (Hu et al., 2020). Not only that, but
the pre-deep-learning state of the art in classification is now easily surpassed even by one-
shot deep learning models, that only receive a single example per class (Hu et al., 2020).
In image generation, completely synthetic faces have become almost indiscernible from
real ones (Karras et al., 2019). Deep learning models are even able to extract audio from
imperceptible fluctuations and vibrations in video footage (Davis et al., 2014) or accurately
reconstruct the surrounding environment using only the specular reflections of a bag of
snacks on video (Park et al., 2020).

Besides computer vision, the same development is found in other fields of applied com-
puter science as well: In natural language processing, recently introduced deep generative
models (so-called transformers) are able to solve various tasks at a previously state-of-the-
art level with a single general model by simply posing the task as a text prompt, and can
synthesize longer and longer texts with coherent content and meaning (Brown et al., 2020).
In the field of reinforcement learning, fully self-taught deep-learning based systems are now
able to beat the best humans at Go, thought to be one of the last classic games where hu-
mans can retain the upper hand, while discovering completely new but effective strategies
unthought of in the millennia-long history of the game (Silver et al., 2017). In machine
learning research in general, it has become quite rare to find publications that do not make
use of deep learning in some respect.

In light of these astounding capabilities, deep learning is being adopted more and more
into most areas of society (Zhang et al., 2021). In this thesis, we place special focus on use
in natural sciences and engineering research (Stevens et al., 2020), and to an extent also in
industry (Bughin et al., 2018), both areas where deep learning adoption is growing quickly
and promises to be especially fruitful. When we speak of ‘real-world use’ of deep learning
in the following, we refer primarily to these areas.

With methods and applications transitioning from academic deep learning research to
real-world uses, certain shortcoming are beginning to become more painfully apparent to
practitioners (Cheatham et al., 2019; Stevens et al., 2020). These shortcomings mostly do
not affect the pure task performance, but are orthogonal to it, rather impacting the reliability,
trustworthiness, and ultimately the usefulness of deep learning systems. Not only have
many of these aspects been slow to catch up to the year-over-year improvements in task
performance, but in fact, some areas have even regressed over the last decade.
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Li et al. (2021) compile an impressively exhaustive summary and analysis of these
problems, citing almost 500 sources detailing the requirements for safe, reliable, and trust-
worthy use of deep learning, and how current systems struggle. In the following, we de-
scribe four central points, all of which remain largely unsolved but are critical for the long-
term success of deep learning in real-word use cases, and which are especially relevant in
this thesis.

Uncertainty quantification Many types of deep learning models do not output a measure
of uncertainty by default. Especially for regression-based problems, the network requires
some modified output modality to accommodate for the uncertainty, as well as an adapted
training scheme. It is far from clear how to best implement this, and the most widely spread
choice lies in simple and limited scalar uncertainty measures (Kendall and Gal, 2017). For
classification, the mere output modality for uncertainty is less of a problem, as the com-
monly used softmax outputs naturally provide an uncertainty estimate, but even this breaks
down for more complex discrete problems such as semantic segmentation.

This is also not where the issue ends: simply because a model supports uncertainty
estimates in terms of its output modality, this does not mean that the produced estimates
faithfully reflect the actual uncertainty of the model. This is quantified and examined using
the concept of uncertainty calibration. Mis-calibration can mean that the model systemati-
cally makes under- or over-confident uncertainty estimates, the latter of course being much
more dangerous for practical applications. It is well documented, e. g. by Guo et al. (2017),
that the more complex a deep learning model gets, the worse the quality of the uncertainty
estimates, and the more often a model makes vastly overconfident predictions.

Lives will be in danger if a medical deep learning system predicts with 99.9% confi-
dence that a patient is healthy, even though the system is correct 80% of the time in the best
of cases. In fact, most would argue that correcting the faulty confidence estimate should
take priority over improving the average task performance from 80% up to e. g. 83%. Con-
cerningly, a large majority of practical deep learning research focuses almost solely on the
latter.

Handling out-of-distribution data An unavoidable fact of real-world use is the occur-
rence of anomalous situations and inputs that were never encountered during training. By
definition, it is not possible to directly prepare or test a model for such anomalous inputs
(also called out-of-distribution or OoD inputs).

Of course, the most desirable outcome is for the model to explicitly detect OoD inputs,
alerting the user, stopping the machine in question, etc. This is a much harder problem than
just performing binary classification between in-distribution and OoD data, as by definition
OoD data is never exhaustively covered by the training data.

Even if a model does not support the detection, the least that could be expected is for
it to make uncertain predictions on such inputs. Disappointingly, the opposite is the case,
standard deep learning models frequently make highly confident but nonsensical predictions
on OoD data (Ovadia et al., 2019).

An especially dangerous class of OoD inputs are so-called adversarial attacks. Hereby,
the image is altered in an imperceptible or insignificant way to the human eye. However, the
alteration is crafted in such a way that a targeted deep learning system fails dramatically,
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e. g. by predicting a completely wrong class with extremely high confidence. Neither is
it necessary to access the underlying model parameters for this to work (Bhambri et al.,
2019), nor does the whole image have to be altered, a well-placed ‘adversarial sticker’ on a
road-sign can be enough (Brown et al., 2017).

As with the uncertainty estimates, dealing with the different kinds of OoD inputs seems
much more important for real-world use than improving the task performance on a con-
trolled test set by some small percentage.

Diverse solutions We commonly require diversity in cases with very high-dimensional
outputs, such as depth estimation, segmentation, colorization, etc. In such cases, there
are often multiple competing but completely different plausible solutions, e. g. colorizing a
grayscale image of a car to have a blue roof and blue doors, or red roof and red doors, but
excluding e. g. a blue roof and red doors.

There is a fluent transition between uncertainty estimation and diverse solutions, but
each end of the spectrum often requires different treatment and methods in practice. In
cases requiring diverse solutions, a simple uncertainty output such as pixel-wise marginal
distributions is of no use. Instead, we would want a network to generate multiple different
competing hypotheses, each ideally with an assigned probability or weight. This setting
is where the use of already existing generative models such as conditional GANs would
seem the most obvious, but in practice hardly any works exist where GANs produce useful
diverse outputs on such supervised problems. VAEs at least provide some exceptions to
this, as shown e. g. by Kohl et al. (2018), but their use is far from widespread.

Explainability Deep neural networks are notorious for being ‘black boxes’, meaning that
their inner workings are hard to understand or visualize. Both the training dynamics and
the representations and decision processes occurring in deep learning models are poorly
understood. Gilpin et al. (2018) provide an organized and categorized list of existing ideas
and approaches for explainability.

Such techniques are absolutely necessary, because deep learning models often view
the inputs in counter-intuitive and unintended ways. For instance, Geirhos et al. (2018);
Brendel and Bethge (2018); Hermann and Lampinen (2020) demonstrate that counter to
common belief, standard classification networks on ImageNet decide almost completely
based on the texture of an object, not its actual shape or arrangement. Such artefacts and
unintended behaviours can be extremely hard to discover and identify if the model functions
as a black box. This is illustrated by the poignant fact that it took six years following the
original AlexNet publication (Krizhevsky et al., 2012) until the surprising observations by
Geirhos et al. (2018) mentioned above were brought to light, at which point the AlexNet
paper had already amassed a five-digit citation count.

As a real-world example, Zech et al. (2018) demonstrate how a model used to classify
diseases in X-ray images makes decisions by recognizing the model of X-ray machine used
to take a picture, inferring likely diseases from the department of the hospital that the ma-
chine is located in (e. g. predicting heart disease if the image is from a machine stationed
in the cardiology department). Such biases can be avoided to a degree through caution dur-
ing data acquisition, exhaustive and careful testing, and robust models, but explaining the
models decisions serves as a constant and final check.
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Even barring such mistakes, many would argue that it is a societal requirement for
deep learning systems to explain any decisions impacting human lives. This demand has
already prompted legislative action in the EU (Goodman and Flaxman, 2017), starting to
put a ‘right to explanation’ into law.

Lastly, explainability can help scientists who use deep learning in their research to
better understand their data, the relevant factors in physical processes, important regions in
an organism for some function, and so on. We provide several real examples of this later in
the thesis.

1.2. The niche of normalizing flows and INNs

Discussing these existing problems for real-world applications, we find that generative mod-
els hardly play a role, being seen as even more unpredictable and fickle as feed-forward
regression or classification models. Especially in computer vision, their real-world appli-
cations are mostly limited to entertainment, novelty apps, and gimmicks such as FaceApp,
Wombo.ai, Artbreeder, and so on, where catastrophic failure has no consequences or even
serves to heighten the amusement of the user.1 In this thesis however, we take an opposing
approach and embrace generative models for supervised tasks where feed-forward discrim-
inative (i. e. non-generative) models would otherwise be used.

To clear up the basic terminology beforehand, normalizing flows are a certain type of
generative model, and invertible neural networks (INNs) are simply the type of network
used in normalizing flows. INNs can also be trained in other ways that do not conform to
the normalizing flow setup as we demonstrate later in this thesis. For simplicity, we will
refer to the models used in this thesis as ‘invertible generative models’, as they use different
training methods and setups, but all have the use of INNs in common.

Compared to other types of generative models, specifically GANs and VAEs, normal-
izing flows have some unique advantages which are discussed in greater detail in the next
chapter. In the past, they have most commonly been used for unsupervised, unconditional
generative modeling. Both the construction of normalizing flows and the training process
are theoretically and conceptually simpler and more elegant, avoiding the common issues
faced by other model types due to the approximations or compromises in training procedure
(see section 2.3). The invertibility of the networks used in normalizing flows also allows
for interactive image manipulation and explainability in simple and intuitive ways (Kingma
and Dhariwal, 2018; Jacobsen et al., 2019). Their connections to information theory make
normalizing flows a prime choice for information-based out-of-distribution detection (Choi
et al., 2018), compression tasks (Hoogeboom et al., 2019), or information-theoretic training
objectives (Müller et al., 2021).

Arguably, normalizing flows are also hampered to some degree by the requirement for
invertibility that is responsible for their advantages in the first place: it tends to increase
the computational cost and complicates modifications of the setup (such as using condition-
ing information). INN architectures are less mature and readily available than much more
widely-used standard feed-forward networks. Certainly, the existing deficits of normalizing

1Note, since writing the thesis, diffusion-based image generation services such as Stability.ai, Midjourney,
etc. have become viable and popular. While these tools produce more impressive results than any preceding
methods, the point above still stands.
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Figure 1.1.: Publications per year mentioning different kinds of generative models, as indexed
by google scholar. Note the logarithmic scale. This should not be taken as a rigorous survey,
but a rough indication of research trends. The search strings were normalizing flow,
generative adversarial [WORD] (many different terms are used instead of ‘net-
work’), variational (autoencoder|auto-encoder), and autoregressive
(model|flow).

flows are in no small part due to the fact that they entered the research community later than
GANs or VAEs for instance, and have received less research attention in total. As a result,
other types of generative models are still more prevalent in most areas.

We aim to capture these broad research trends by counting the number of publications
discussing each type of generative model, shown in figure 1.1. The numbers should of
course be taken with a grain of salt due to the rudimentary evaluation methods. Among
other things, we expect all curves to be biased towards growth due to the field of deep
learning as a whole growing.

According to publication volume recorded in figure 1.1, GANs are currently the most
discussed models, but have seen little to no growth in recent years, perhaps indicating that
the method has matured, or research attention is beginning to shift to other methods. Vari-
ational autoencoders (VAEs) seem to be going through a similar process with some delay:
discussion volume is behind that of GANs, still growing, but no longer with the same ex-
ponential rate as pre-2018. The high prevalence of autoregressive models may surprise
deep learning researchers, but autoregressive models (learned or handcrafted) are popular
in many other branches of science, engineering and mathematics. Despite high absolute
publication volume, the topic of autoregressive models has seen little growth over the past
decade.

Most most important for this thesis, normalizing flows have been the least discussed
type of model in the literature, with one or two orders of magnitude less attention than e. g.
GANs at any point in time. At the same time however, they are experiencing the most
consistent growth, with the number of publications discussing normalizing flows almost
exactly doubling every year since 2014. Taking these number as reference, the current
position of normalizing flows in research could be compared to that of GANs roughly in the
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year 2017, a time where some of the most impressive and useful results from GANs had yet
to be presented. Considering this, normalizing flows could be regarded as a promising niche
in the field of generative modeling, with a large untapped potential for further development.

1.3. Goals and outline of the thesis

This thesis combines the two topics discussed so far: we claim that using invertible gen-
erative models for tasks usually reserved for supervised feed-forward networks is an over-
looked way of addressing many of the problems of reliability, trustworthiness, and useful-
ness found in real-world applications.

Certainly, a single approach or thesis can not completely solve the challenge of trust-
worthiness, encompassing problems which are some of the most well-known and exten-
sively researched issues in supervised deep learning. However, we do find that solutions to
the issues arise in a much more natural and intuitive way with invertible generative models
than is the case for existing feed-forward networks. This is supported by many successful
uses of the presented methods in actual scientific research by others.

In chapter 2, we first summarize the theoretical and practical background of normal-
izing flows and INNs and current research directions. After that, we present three different
methods, each used for different kinds of tasks and applications: chapter 3 presents a flex-
ible way to produce detailed uncertainty estimates or diverse solutions on a wide range of
problems. It is based on the following (largely overlapping) publications:

• Lynton Ardizzone, Carsten Lüth, Jakob Kruse, Carsten Rother, and Ullrich Köthe.
Guided image generation with conditional invertible neural networks. arXiv preprint
arXiv:1907.02392, 2019b

• Lynton Ardizzone, Jakob Kruse, Carsten Lüth, Niels Bracher, Carsten Rother, and
Ullrich Köthe. Conditional invertible neural networks for diverse image-to-image
translation. In DAGM German Conference on Pattern Recognition, pages 373–387.
Springer, 2020a

In chapter 4, we then present are more specialized method, solving inverse problems in a
interpretable and intuitive way, based on the following work:

• Lynton Ardizzone, Jakob Kruse, Carsten Rother, and Ullrich Köthe. Analyzing in-
verse problems with invertible neural networks. In Intl. Conf. on Learning Represen-
tations, 2019a

Chapter 5 shows how to use invertible generative models for classification problems, im-
proving uncertainty estimates and enabling explainability and out-of-distribution detection.
It is based on the following works:

• Lynton Ardizzone, Radek Mackowiak, Carsten Rother, and Ullrich Köthe. Training
normalizing flows with the information bottleneck for competitive generative classi-
fication. Advances in Neural Information Processing Systems, 33, 2020b

• Radek Mackowiak, Lynton Ardizzone, Ullrich Kothe, and Carsten Rother. Genera-
tive classifiers as a basis for trustworthy image classification. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2971–
2981, 2021



1.3. Goals and outline of the thesis 17

Finally, chapter 6 summarizes the contributions made in the course of the thesis, relates
them once again to the open issues discussed in the introduction, and gives an outlook on
the future of invertible generative models in real-world use cases.
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2.1. Normalizing flows

Normalizing flows are a type of generative model, meaning their task is approximating prob-
ability distributions. Historically, a setup similar to normalizing flows was first proposed
by Deco and Brauer (1995); Hyvärinen and Pajunen (1999). The term ‘normalizing flow’
specifically was only popularized later by Tabak et al. (2010); Tabak and Turner (2013), al-
though without using deep neural networks necessarily. Rippel and Adams (2013) were first
to apply deep neural networks to this setup, followed later by more effective methods such
as Dinh et al. (2014); Tomczak and Welling (2016); Dinh et al. (2016), etc., each discussed
later.

To simplify the discussion in the following, we assume all variables to be real-valued
vectors in euclidean space, RD. As is customary, we denote random variables as upper case
letters (X : Ω → RD, etc.). and concrete instantiations of the random variables as lower
case (real vectors x ∈ RD, etc.). The probability density function of a RV is written as
p(X), the evaluated density as p(x) or p(X=x) in ambiguous cases.

For some variable X of interest, the basic task of generative modelling is to produce
some approximate density q(X), with the goal of being as similar to p(X) as possible,
measured by some objective. In practice, p(X) is rarely known explicitly or even knowable
in principle, instead only a training set of M examples Xtrain = {x(i)}Mi=1 is provided. The
generative model can either be implemented such that q(X) can be evaluated directly at any
point of interest x (in which case we would speak of density estimation), or the model can
be accessible through some way of producing new samples from q(X). In principle, the
latter is possible given the former through Monte-Carlo methods, but in practice the two
are very different problems, especially in high-dimensional spaces. As we will see later,
normalizing flows can do both at the same time.

2.1.1. Core idea of normalizing flows

The basic method employed in a normalizing flow is the same as with most other types of
deep generative models, namely reparametrization: Instead of modeling a complex proba-
bility density q(X) directly, it is implicitly expressed through a transformation between a
so-called latent space Z, and data spaceX . Prescribing a distribution p(Z) in latent space at
the same time implies some q(X) through the transformation. Other widely used generative
models such as GANs have this basic structure in common, but differ in their theoretical and
practical properties as well as the way they are trained.

The main feature setting normalizing flows apart from other methods is that the trans-
formation between X and Z, which we will call f , is bijective. More accurately, both f



20 2. Background
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q(X)

Latent Z
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p(Z)

Z = f(X)

X = f−1(Z)

f

Figure 2.1.: Basic setup of normalizing flows: The complex distribution q(X) on the left hand
side is modeled by warping, stretching, and shaping the simple latent reference distribution
p(Z) on the right hand side. The transformation between the two is invertible, allowing for
exact computation.

and its inverse must differentiable almost everywhere. For simplicity, this assumption is
always included when speaking of ‘invertible transformations’ etc. below. Note that the
invertibility also implies that X and Z have the same dimensionality.

How to parametrize such an invertible transformation in a learnable way will be dis-
cussed in section 2.2. For now we simply assume that f is chosen from some suitably
large family of invertible mappings F . The use of an invertible transformation allows for
the expressed probability q(X) to be easily and exactly computed at any point x using the
change-of-variables formula. This is the central equation for normalizing flows, condensing
their core idea:

q(x) = p
(
Z=f(x)

) ∣∣∣∣det ∂f∂x
∣∣∣∣ . (2.1)

Hereby, ∂f/∂x is the Jacobian matrix. We will simply write this as J for short in the
following. Intuitively, the Jacobian term takes care of conservation of probability mass
when the transformation stretches or squeezes space, i. e. changes the volume. The equation
as a whole shows how choosing a different f ∈ F implies a different probability density
function q(X). When we write q(X) in the following, this dependence on f is always
implicitly given, as if imagining a subscript qf (X). Importantly, we can use this kind
of model in two different ways: Firstly, we can use it for density estimation, inputting
existing samples x at test time, and computing their probability under the model according
to equation (2.1), i. e. we can perform density estimation. Secondly, we can sample new
points from q(X) at test time (in practice a very different task for high dimensionalities),
by first sampling z∗ ∼ p(Z), and then mapping the latent-space-samples back to X-space
by inverting the transformation:

x∗ := f−1(z∗) ∼ q(X) (2.2)

The ‘flow’ in the term ‘normalizing flow’ refers to the transformation f . The chosen
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latent distribution p(Z) is usually a standard normal, so q(X) is ‘normalized’ by the flow,
hence ‘normalizing flow’.

Also note that normalizing flows can be formulated in a more general way using mea-
sures and transport theory (Bogachev et al., 2005). In that way, they can also be applied
to non-euclidean spaces (Gemici et al., 2016), among other things. However, we will not
expand on this in the context of this thesis.

2.1.2. Fundamental difference to other generative models

It is worth briefly discussing the main difference in model setup between normalizing flows,
GANs, VAEs, and autoregressive models to better understand each and put them in context.
We include a more in-depth discussion of the practical implications of these differences
later in section 2.3.

For a GAN, the latent dimensionality is usually much smaller than the data dimension-
ality, and the transformation from latent space to data space is not invertible. This means
that q(X) does not exist as a real-valued probability density, and the change-of-variables
formula cannot be applied. As a result, the model is usually only capable of sampling, not
of density estimation. This also means a second network (the so-called discriminator) is
necessary to estimate some measure of difference between p(X) and q(X), which is in
itself often mathematically ill-defined.

In the case of a VAE, the model is variational, meaning the mapping between X and
Z is probabilistic. To make the model tractable, a simple form is chosen:

p(Z|x) = N (µ(x), σ(x)) . (2.3)

The so-called encoder network (a standard feed-forward network) simply outputs the µ and
σ. The mapping from Z back to X requires a second network, called the decoder. The
variational setting does not allow for the exact model likelihood to be computed, only a
bound on the likelihood can be derived. During training, this results in the so-called ELBO
loss function, which can produce various artefacts (Bousquet et al., 2017).

Comparing these two most widely used types of generative models to normalizing
flows, we can see that they firstly each require two networks, while normalizing flows only
require one network with special restrictions for invertibility. Secondly, neither can compute
the model’s likelihood exactly, complicating both the model itself as well as the training
procedure.

Finally, we also mention autoregressive models, which in some aspects (especially
the exact likelihood) are most similar to normalizing flows. Autoregressive models take a
somewhat different approach to generative modelling than the previous methods: instead of
a single transformation f between data- and latent-space, they use the chain rule to decom-
pose the probability of the vector X into a chain of probabilities for each dimension Xj ,
conditioned on all previous dimensions:

q(X) = q(X1)

D∏
j=2

q
(
Xj

∣∣X1, . . . , Xj−1

)
(2.4)

Each term is essentially a small one-dimensional conditional generative model, which can
be simpler to implement than a single much larger transformation f . Each term is often



22 2. Background

modeled in a similar way to normalizing flows, see section 2.3. When given an input x, all
terms of the chain can be evaluated in parallel, making these models especially suitable for
density estimation. Sampling on the other hand is computationally very expensive, having
to iterate though each term in succession.

2.1.3. Training normalizing flows with maximum likelihood

A normalizing flow in the form described above does not imply or require a certain training
scheme. It can in fact be trained in various ways, e. g. with a GAN-loss (Grover et al., 2017)
or as an auto-encoder (Schirrmeister et al., 2018). We explore two further non-standard
training schemes in chapters 4 and 5. However, there is one training method that is by far
the most common and popular for normalizing flows, which is afforded by their unique
capability to compute the exact model likelihood: so-called maximum likelihood training.

Maximum likelihood training means the objective during training is to maximize the
probability assigned to the training samples by the model. For reasons both practical and
fundamental, log-probabilities are used. As the logarithm is strictly monotonic in (0,∞),
this does not change the optimum. The maximum likelihood loss LML is then defined as

LML = EX∼p(X)

[
− log q(X)

]
= −

∫
p(x) log q(x)dx (2.5)

and its empirical counterpart over the training set Xtrain as

L̂ML = − 1

M

∑
x(i)∈Xtrain

log q(x(i)) (2.6)

To compute the loss in practice, we can substitute the models density in equation (2.6) using
equation (2.1), and simplify further by assuming the standard choice for a Gaussian latent
space, p(Z) = N (0, 1):

L̂ML =
1

M

∑
x(i)∈Xtrain

−
(
log p

(
Z = f(x(i))

)
+ log det |J(x(i))|

)
(2.7)

=
1

M

∑ ∥f(x(i))∥22
2

− log det |J(x(i))|+ const. (2.8)

When minimizing the loss, there is one important fact to consider: in principle, the
true and the empirical objective have dramatically different minima. The empirical loss
is minimized if only the finite number of training samples are assigned mass in the form
of high peaks, and all other points receive likelihood as close to 0 as possible. If this is
the minimum that results from the training process, we speak of overfitting. The desired
behaviour is different: the model resulting from the training procedure should be at least
similar to the minimum of the exact (but unknowable) objective. We would commonly say
we want the model to generalize well.

Achieving good generalization is by no means automatic or natural: the construction of
the family of functions F being optimized over should exclude or attenuate unwanted solu-
tions, known as inductive bias. Various choices about the training procedure (initialization,
optimization algorithm, data augmentation, etc.), broadly falling under the term regulariza-
tion, further aid in finding a desired well-behaved local minimum over an unwanted one.



2.1. Normalizing flows 23

To formalize this more, the training process consists of finding the transformation f̂
that leads to the smallest loss:

f̂ = optimize
f∈F

(
L̂ML

)
∈
∼
argmin

f∈F
LML (2.9)

With the symbol ∈
∼

meaning we want f̂ to be approximately equal to a member of the

argmin-set (‘approximate’ in a vaguely defined way). Neither does nor should the opti-
mization procedure (optimize) find a true minimum of the empirical loss L̂ML, nor does
the minimum of L̂ML coincide with that of LML. While some theoretical results exist, satis-
fying the approximation to an adequate degree is largely a matter of engineering in practice.
The better the approximation holds, the better we expect the model to generalize.

2.1.4. Max likelihood training as minimizing Kullback-Leibler-divergence

The maximum likelihood objective has been used extensively for over a century in a wide
range of different fields, and has been exhaustively studied. There are several ways of
interpreting its use and effectiveness. For the first interpretation of maximum likelihood
training, we write the Kullback-Leibler (KL) divergence between the true distribution and
the one expressed by the model:

DKL

(
p(X)

∥∥q(X)
)
= EX∼p(X)

[
log

(
p(X)

q(X)

)]
(2.10)

= EX∼p(X) [log p(X)]− EX∼p(X) [log q(X)] (2.11)

The first term in this sum is completely independent of the model, and therefore needs
not be included in the training process. The second term we can identify as the maximum
likelihood loss function.

One important conclusion from this is that the distance metric that maximum likeli-
hood training is implicitly optimizing for is exactly the KL divergence. This informs the
characteristics, particularities, and failure modes of the resulting model, compared to gen-
erative models that use other distance metrics such as Jensen-Shannon-divergence, earth
mover’s distance, different Wasserstein metrics, maximum mean discrepancy, etc. (see for
instance Huang et al. (2017) for a more in-depth discussion). The practical effects of this
are discussed later in section 2.3.

The second conclusion to draw from this interpretation is that we can use the value of
the maximum likelihood loss to easily and objectively compare between different normal-
izing flow models, architectures, and training improvements. The only missing ingredient
to compute the KL divergence numerically is the unknown offset represented by the first
term in equation (2.11). Because it is identical for all models, it still allows for a direct
relative comparison between models without it being known. That is to say a model with a
smaller KL divergence will always have a smaller maximum likelihood loss than a model
with a larger KL divergence. This way to measure and compare the approximation qual-
ity is quantitative, reliable, and principled. Other generative deep-learning models have no
such quality measures, instead relying on heuristics such as the Frechet inception distance
(FID, Heusel et al., 2017). It should be noted however that comparisons using the maximum
likelihood loss in this way are not completely without caveats (Theis et al., 2015).



24 2. Background

2.1.5. Max likelihood in the Bayesian context

To not complicate the discussion unnecessarily when casting maximum likelihood training
in a Bayesian perspective, we will prematurely use a result from the next section, which is
that the functions f ∈ F are parametrized by real-valued parameter vectors θ (or Θ, seen
as a random variable) from a compact parameter-space PΘ ⊂ RK

We can then describe our knowledge about the likelihood of the model parameters that
we can glean from the training set using Bayesian statistics. Specifically, we express the
probability of model parameters using Bayes theorem:

p(θ | Xtrain) ∝ p(Xtrain | θ)p(θ) (2.12)

The evidence in the denominator, p(Xtrain), can be safely ignored since it stays constant
when varying θ. With i.i.d. data, the likelihood on the right hand side can be decomposed.
We make a slight adjustment to the notation, writing p(x|θ) as qθ(x) to conform with the
previous discussion (although the dependence on θ or f was always implicit above):

p(Xtrain | θ) =
∏

x(i)∈Xtrain

qθ(x
(i)) (2.13)

Taking the logarithm as usual results in

log p(θ | Xtrain) =
∑

x(i)∈Xtrain

log qθ(x
(i)) + log p(θ) + const. (2.14)

The first resulting term is again equal to the empirical maximum likelihood loss, albeit
negative missing the normalization constant 1/M . Assuming for a moment a uniform prior,
i. e. ignoring the second term as constant, we can see that the maximum a posteriori estimate
for the model parameters of the left hand side, i. e. θ̂ = argmaxθ p(θ|Xtrain), corresponds
exactly to the minimum of the maximum likelihood loss.

Furthermore, the Bayesian interpretation offers a more principled motivation for regu-
larization schemes: in the Bayesian picture, weight regularization corresponds to the prior
term log p(θ) in equation (2.14). For example, the most widely used L2 weight regular-
ization consists of adding Lreg. = τ∥θ∥22 to the overall objective during training, τ being
the strength of the regularization. It is simple to verify that this corresponds exactly to a
Gaussian prior over weights,

p(Θ) = N
(
0,
√

1/2τ
)
. (2.15)

Lastly, the Bayesian interpretation of maximum likelihood training allows connecting
normalizing flows with the existing results from Bayesian statistics, treating normalizing
flows as any other Bayesian model. For instance, it allows using tools such as Bayesian
information criterion (BIC) or the widely applicable information criterion (WAIC) to make
well-founded and justified statements about overfitting, generalization, and out-of-distribution
detection (Choi et al., 2018). The connection is also important in establishing normalizing
flows as a tool for Bayesian practitioners (Radev et al., 2020).
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2.2. Invertible network architectures

The previous section focused on the more theoretical principles of normalizing flows. At
the center of this was the function f , member of a learnable, invertible class of functions
F . However, we previously omitted any details how to implement this class of functions
in practice, which will be the focus of this section. From the construction and usage of
normalizing flows in the previous section, we can first derive the following properties that
the members of F must fulfill:

• The functions must be bijective and both the forward and inverse must be differen-
tiable almost everywhere (‘almost’ w. r. t. Lebesgue-measure in our case).

• From a practical computational standpoint, the inverse must be easy to compute.

• The log-Jacobian-determinant must also be readily computable. Note that the full
Jacobian matrix is not required. In fact, many of the methods discussed below can
only compute the determinant, not the full matrix.

• The parametrization must be such that F is a sufficiently general class of functions
able to represent complex and very high-dimensional invertible transformations.

• The parametrization must also be suitable for mini-batch gradient-descent in the
same way that standard feed-forward neural networks are, to make the optimization
tractable.

A deep learning model constructed and parametrized in a way that it fulfills these properties
is typically labeled an invertible neural network, or INN. While normalizing flows are not
the only use for INNs (see e. g. Gomez et al., 2017), they are by far the most widespread.

2.2.1. Coupling-based INNs

So-called coupling blocks are currently the most popular way to construct INNs. An INN
typically consists of a number of such blocks chained together, in a similar way to layers in
a standard feed-forward network. The number of coupling blocks required for a sufficiently
expressive INN varies between 4 for simple and low-dimensional data to over 100 for very
large INNs (Kingma and Dhariwal, 2018).

For the sake of discussion, we call the input to a coupling block x and the output u.
These do not coincide with the in- and outputs to the INN for a network with more than
one block. The essential idea of the coupling block is that the input x and output u are
each split into two halves, x1, x2 and u1, u2. Each half is transformed through the coupling
operation, which we will call T1, T2, conditioned by the other half. This coupling operation
is a simple function (often element-wise) with a known inverse and Jacobian determinant,
but the conditioning can be arbitrarily complex and non-linear (this is where the INN gets its
expressive power). As a simple example for the time being, we can imagine element-wise
addition with learned, conditional coefficients t(u2) (more examples further below):

u1 = x1 + t(x2) =: T1(x1;x2) (2.16)

x1 = u1 − t(x2) =: T
−1
1 (u1;x2) (2.17)

Note that the second conditioning argument, x2, stays the same. For the complete coupling
block, this is performed on both halves. The entire ‘trick’ to make the block invertible is
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Figure 2.2.: Illustration of a general coupling block, using a coupling operation T . Top: block
run forward (left to right). Bottom: same block inverted (right to left).

that the output u1 of the first step is used as the condition for the second step in place of x1
(note the second line):

u1 = T1(x1;x2) (2.18)

u2 = T2(x2;u1) (2.19)

Such a coupling block and is illustrated in the top half of figure 2.2.

Inverting the block is just as simple and cheap as computing the forward pass: starting
from only the outputs of the forward pass, u1, u2, the second step in equation (2.19) can be
inverted first, providing x2. This in turn allows for the first step to be inverted as well:

x2 = T−1
2 (u2, u1) (2.20)

x1 = T−1
1 (u1, x2) (2.21)

The inversion is shown in the bottom half of figure 2.2. As we can see, the coupling block
as a whole makes a complex transformation tractably invertible, as the T functions never
have to be inverted w. r. t. the second conditioning argument.

To compute the whole block’s Jacobian determinant, it is simplest to write each step in
equation (2.19) as a block matrix, factoring the Jacobian into the two steps:

∂u

∂x
=
∂[u1, u2]

∂[x1, x2]
=

(∂T1
∂x1

∂T1
∂x2

0 1

)(
1 0
∂T2
∂u1

∂T2
∂x2

)
(2.22)

The zero- and unit-matrices in the bottom/top half come from the variable that is not affected
by each step. Marked in red are the derivatives w. r. t. the conditioning argument, which can
not be computed in a tractable way. However, as we only require the determinant of the
Jacobian, we can express the overall determinant as a product of block matrix determinants,
where each intractable term is canceled with each 0, leaving the following:

det

(
∂u

∂x

)
= det

(
∂T1
∂x1

)
det

(
∂T2
∂x2

)
(2.23)
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Recall that the coupling operations T1,2 were specifically chosen so that the Jacobian de-
terminant w. r. t. the main argument is known. In the literature, it is often stated that they
must be triangular, but this is not strictly the case as long as the determinant can be cheaply
computed. To summarize the result: while the full Jacobian of the coupling block can
not be readily computed, we can compute its determinant more easily by decomposing the
Jacobian, and computing the determinants of each component separately.

It bears mentioning at this point that some authors in the literature define a coupling
block as only one of the two steps of the coupling block described here, and viewing swap-
ping the two halves between steps as a separate network component.

There is a variety of operations that can be used for coupling mechanism in practice.
T1 and T2 are usually identically constructed, but each has separate learnable parameters
θ1,2. For simplicity, we omit the indices and write T and θ (meaning T1 and θ1). Most
commonly, some kind of coefficients are predicted from u2 by shallow feed-forward sub-
networks, and these coefficients then determine the actual transformation. The most simple
example already used above is additive coupling, introduced in the NICE architecture (Dinh
et al., 2014):

T (x1;x2) = x1 + tθ(x2). (2.24)

Here, tθ1 is the subnetwork with network weights θ1. This is the same mechanism as a stan-
dard ResNet (He et al., 2016), except that the variables are split into the two halves. Notably,
the Jacobian determinant of this is always exactly 1 (c. f. equation (2.23)), demonstrating a
restricted expressive power: additive coupling is by construction volume preserving, mean-
ing that it can only shear, shift, and rotate distributions, and not freely stretch or squeeze
them. For instance, this implies that the modeled distribution will have the same number
of modes as the latent distribution (one in the Gaussian case), and can not be freely multi-
modal.

As an improvement to the NICE architecture, Dinh et al. (2016) introduce the real-
NVP (i. e. real non-volume-preserving) INN. Here, the coupling blocks use affine coupling
instead of additive, with the subnetwork outputting both additive and multiplicative coeffi-
cients t and s:

T (x1;x2) = x1 ⊙ exp
(
sθ(x2)

)
+ tθ(x2), (2.25)

with ⊙ representing element-wise multiplication. In practice, a joint vector of s and t
coefficients is output by a single subnetwork, to save computation power and make use
of parameter sharing. The exponential in equation (2.25) ensures that input x1 is always
multiplied with a positive, non-zero value, otherwise invertibility would not be guaranteed.
The inversion is given just as simply as the forward computation through

T−1(u1;x2) =
(
u1 − tθ(x2)

)
⊙ exp

(
− sθ(x2)

)
(2.26)

The log-Jacobian-determinant is equally convenient to compute, consisting simply of the
sum of the sθ-coefficients. Using such affine coupling as opposed to purely additive greatly
increases the expressive power of the model and allows for a qualitatively larger family
of functions to be expressed. Nevertheless, attention must be paid concerning numerical
issues if the transformations become too extreme (Behrmann et al., 2020). Due to its special
importance to the field as a whole and this thesis in particular, the affine coupling block is
illustrated in figure 2.3.

Beyond this, there is also a number of other schemes for the coupling mechanism. To
briefly list the most notable:
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Figure 2.3.: Affine coupling block as introduced by Dinh et al. (2016). Top: block run forward
(left to right). Bottom: same block inverted (right to left). In practice, s1,2 and t1,2 would be
merged into a single subnetwork each predicting both the s and t coefficients at the same time.

• Non-linear squared flow (Ziegler and Rush, 2019): A more expressive mechanism
compared to affine coupling. Coefficients a, b, c, d, g are all predicted by a subnet-
work (omitting the full notation for clarity, aθ(x2) =: a etc., and taking all operations
element-wise):

T (x1;x2) = a+ bx1 +
c

1 + (dx1 + g)2
(2.27)

The coefficients have to be restricted in certain ways through regularization, as the
equation is not invertible for all combinations of values.

• Mixture-CDF (Ho et al., 2019): The subnetwork outputs the parameters of a mixture
of logistic distributions. The coupling function is then the cumulative density function
(CDF) of this mixture, exploiting the fact that CDFs are monotonic and analytically
known in the case of logistic distributions.

• SOS-flows (Jaini et al., 2019): Applies to both autoregressive models and coupling
blocks. The authors use some long-standing algebra theorems to parametrize poly-
nomials of arbitrary degree in a way that they are guaranteed to be monotonically
increasing. It is however computationally more expensive to invert.

• GIN (Sorrenson et al., 2020): A modification to standard affine coupling to make it
volume-preserving. It is significantly more expressive than NICE (additive coupling),
because only the overall determinant is constrained to 1, not every diagonal entry
of the Jacobian. It is used for applications where the theory or method requires a
volume-preserving transformation.

While each of these methods has specific advantages or special use cases, the past years
of research progress have shown that standard affine coupling as introduced by Dinh et al.
(2016) is still the most practically useful for a wide range of applications, especially in
high dimensionalities. It is more expressive than NICE to a meaningful degree, while the
more complex coupling schemes offer diminishing returns despite higher computational
cost. Further reaffirming this choice, Teshima et al. (2020) prove theoretically that a series
of affine coupling blocks is enough to be a universal approximator for diffeomorphisms.
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2.2.2. Non-coupling INN architectures

Besides coupling-based INNs, various other ideas exist how to parametrize a sufficiently
flexible, learnable invertible function (Teng et al., 2018; Hoogeboom et al., 2020; Song
et al., 2019b). In the following, we discuss two such methods in more detail that have seen
some adoption in the wider research community.

i-ResNet The concept of the i-ResNet stems from two observations: Firstly, mathemati-
cally speaking, standard ResNet blocks (He et al., 2016) will represent an invertible function
as long as the residual subnetworks rθ have a Lipschitz constant smaller than 1:

u = x+ rθ(x) (2.28)

Note that the input is not split into halves in contrast to a coupling block, making the func-
tion more expressive, but not in general invertible for Lipschitz constants > 1. Secondly,
during training of a normalizing flow, the INN does not have to be inverted. This suggests
that forward and inverse computation do not necessarily have to be symmetrical in terms of
computation cost, at least within reasonable limits. After all, the network will typically have
to generate much fewer samples during test time running inverted than processing samples
at training time running forward (often > 107).

Based on this, Behrmann et al. (2019) introduce the i-ResNet: An INN consisting of
completely standard ResNet block, but with a penalty on their Lipschitz constant. The Ja-
cobian determinant can not be readily computed in the same way as with standard coupling
blocks, so this is performed numerically using Hutchinson’s trace estimator, the details of
which are omitted here. Despite using this computationally more expensive and less ac-
curate method to determine the Jacobian determinant, the authors claim this is offset by
the more expressive architecture and show that the estimator’s precision does not meaning-
fully impact training. At test time, each block of the network is inverted with a numerical
fixed-point algorithm.

Neural ODEs and FFJORD It is possible to interpret the i-ResNet (or ResNets in gen-
eral) as a discrete step Euler integration, with each residual block representing one integra-
tion step. Numbering the features between layers with t makes this clearer: the output xt+1

of a residual block is then
xt+1 = xt + r(xt; θt), (2.29)

with θt referring to the parameters of the residual subnetwork r of that block.

Neural ODEs (Chen et al., 2018) present a natural extension of this interpretation,
looking at residual Network architectures through the lens of ODEs beyond fixed step Eu-
ler integration. For this, all residual subnetworks r(·, θt) are replaced by a single neural
network with parameters θ and an additional ‘time’ input t: r(x, t; θ). This is effectively a
Hypernetwork (Ha et al., 2016), combining all the separate residual subnetworks, and se-
lecting each using t. The main difference to before is that t can be made continuous instead
of discrete. Implied by the Euler scheme interpretation of the ResNet, performing a forward
pass of the model is equivalent to solving the following ODE:

∂x

∂t
= r(x, t; θ). (2.30)
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The main benefit of neural ODEs is in the fact that the forward pass can be computed us-
ing a variety of state-of-the art ODE solvers that dynamically adjust their step sizes to an
ideal interval, instead of the fixed-step Euler scheme. Importantly for the case of normal-
izing flows, firstly the process is guaranteed to be invertible under weak restrictions placed
by the Picard-Lindelöf-theorem, secondly the time-inverted intergration is just as cheap to
compute as the forward direction. Numerical inversion algorithms or Lipschitz-constraints
as with the i-ResNet are not necessary. In the ODE interpretation, the non-invertibility in
a standard ResNet is simply an artefact of the coarse and inaccurate fixed-step integration.
Grathwohl et al. (2018) further improve on the method introduced by Chen et al. (2018),
greatly simplifying and accelearting the computation of the Jacobian determinant by adapt-
ing Hutchinson’s trace estimator to the setting.

2.2.3. Spatial structure in INNs

In practice, especially in scientific applications and computer vision, we commonly want
to process grid-structured data, such as images, videos, volumes, etc. Just as with standard
feed-forward networks, we need to take this structure into account in the form of shift-
invariant or -equivariant building blocks for our INN. We also want to change the resolution
and number of features throughout the network to go from low-level to abstract information.

The standard for shift-equivariant operations used in feed-forward networks is the con-
volution, and elementary component in virtually all networks working on grid-structured
data such as images. Reproducing this behaviour in coupling-based INNs is easily possi-
ble by making the subnetworks, i. e. the primary learnable component, convolutional. To
make sure that dimensions are coupled with dimensions that are close in the image or grid,
it is not plausible to split the input in the center or randomly (although this can be experi-
mented with as a regularization technique, see Kirichenko et al. (2020)). Instead, the split
is performed along the channel-direction, for instance u1 would contain the red channel of
the whole image, and u2 the green and blue channel of the entire image. Taking proper
padding into account, the coupling coefficients produced by the subnetworks will match
the image height and width. Note that recently, Hoogeboom et al. (2020) as well as Song
et al. (2019b) also proposed other possibilities for equivariant learned operations, modeling
invertible convolution kernels directly. However, these methods have not seen widespread
practical use yet.

Shift-invariant operations in standard feed-forward networks are most kinds of pooling
operations. Local max- or mean-pooling is invariant to small shifts in the input, and global
mean-pooling, as used e. g. in a standard ResNet (He et al., 2016), is fully shift-invariant.
However, by definition, a shift-invariant operation can never be bijective (two shifted inputs
are not allowed to produce the same outputs). Instead, re-ordering or re-shaping of feature
space in a repeating pattern is used to reduce the resolution and increase the feature channels
(e. g. Dinh et al. (2014) or Jacobsen et al. (2018) for two possibilities), or the entire feature
space is flattened into a single vector. There have been some attempts to introduce at least
some aspect of shift-invariance to these operations. For instance, Jacobsen et al. (2019)
introduce a discrete cosine transform (DCT) as an alternative to global mean pooling, so
that the translation-dependence is limited to only some of the output dimensions, while
some are shift-invariant. A further example is found in section 3.5 of this thesis, presenting
an invertible alternative to local mean-pooling operations.

One more common practice introduced early in the development of normalizing flows
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by Dinh et al. (2016) aims to better deal with the large number of dimensions present in
image data by using skip connections: after a segment of the INN, commonly before the
resolution is reshaped, half of the variables are split off, and directly become part of the
latent space. The desired behaviour is that these feature dimensions will contain low-level
detail information, that does not have to be transformed any further, while only the remain-
ing dimensions are processed into more abstract information. This results in a segmented
latent space where half of the variables where processed by the first segment of the INN, a
quarter were processed by the first two segments, and so on. Overall, this measure can help
reduce the computational effort of the INN.

2.3. Normalizing flows in the context of generative modeling

With normalizing flows being one of the less popular types of generative models (c.f. fig-
ure 1.1), the aim of this section is to compare their properties and results from recent nor-
malizing flow research to the more common types of generative models to better understand
the advantages and possible use cases of normalizing flows.

Normalizing flows and GANs Under the assumption of a perfect discriminator (and other
strong assumptions), the standard GAN training procedure corresponds to the generator
minimizing the Jensen-Shannon-divergence to the true distribution (Nowozin et al., 2016).
In reality however, these assumptions are far from satisfied during training, and work is
ongoing to theoretically characterize which objective GANs are actually optimizing for
(Huang et al., 2017).

The empirical observations however are unambiguous: GANs suffer severely from a
phenomenon called mode-collapse (Thanh-Tung and Tran, 2020), and normalizing flows
do not. Mode collapse describes the situation where a generative model assigns close to
zero mass to parts of the distribution, either missing certain modes completely or collapsing
to a lower-dimensional manifold. This may not be apparent or even detectable for natural
image generation, but it certainly rules out the use of GANs for many tasks where covering
the full distribution is important, including uncertainty estimation, diverse solutions, out-
of-distribution detection, concept discovery, and more.

The KL divergence that normalizing flows implicitly optimize for carries a huge penalty
for not assigning mass where it should be (q → 0 =⇒ p log(p/q) → ∞), but has no direct
penalty for falsely assigning mass where there should be none (p → 0 =⇒ p log(p/q) →
0), only indirectly by the density being too low in other places. This makes normalizing
flows (as well as VAEs to a lesser extent) practically immune to mode collapse (Bousquet
et al., 2017), and modeling errors will lead the outputs to be safely under-confident rather
than over-confident and limited (see also section 3.8 and chapter 4). A real-world practical
example demonstrating this difference in behaviours of the two types of models is given
e. g. by Wang et al. (2017) in robotics.

While the ensured diversity and mode-coverage of normalizing flows is no doubt an
advantage for many applications, this is not the case for all: for realistic image generation,
having full mode-coverage seems less important than (or even detrimental to) generating
visually pleasing images. This includes tasks such as in-painting, object replacement, etc.
While GANs produce more impressive, realistic and complex images year over year (Karras
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et al., 2017, 2019; Brock et al., 2019), flow-based models have struggled to produce results
with comparable visual quality. As the most prominent example, Kingma and Dhariwal
(2018) invested a large amount of research and computation power into producing a nor-
malizing flow with the best possible image fidelity, with such a large model that it requires
training on 64 GPUs in parallel. However, the visual quality of the results is at best mid-
dling compared to competing GANs, which produced higher-resolution and more realistic
images using a fraction of the model parameters.

A systematic comparison of GANs and normalizing flows for image generation in par-
ticular was performed by Danihelka et al. (2017) as well as Grover et al. (2017). The authors
essentially confirm that the differences between the types of models are not due to the in-
vertibility restrictions, but rather the fundamental training setup. The GAN discriminator
effectively focuses on aspects of the distribution that humans also prioritize, while the KL
divergence implied by maximum likelihood training weights visually less important aspects
more highly. Kirichenko et al. (2020) further support these observations.

It is possible that these findings discouraged further research in the direction of realis-
tic image generation with normalizing flows, although some recently emerging publications
have begun to revisit the topic (Yu et al., 2020). Most recent research on normalizing flows
however seems to focus mostly on lower-dimensional problems and data, and more method-
ological contributions, using datasets such as MNIST and CIFAR-10 as well as scientific
data.

Normalizing flows and VAEs In terms of practical use, VAEs are perhaps best compa-
rable to normalizing flows. They too represent a bi-directional mapping between latent-
and data-space, except that they are variational, i. e. the two mappings are probabilistic. To
make VAEs tractable, certain simplifying assumptions are made in their construction, which
well-known and extensively examined problems (Alemi et al., 2018; Bousquet et al., 2017),
most notably the well-known blurry reconstructions and samples.

Due to the similar concept of VAEs and normalizing flows, various authors have com-
bined the methods in some way: Firstly, an some of the earliest applications of normalizing
and autoregressive flows were to improve the latent distributions of VAEs, attempting to
correct for their shortcomings. (Rezende and Mohamed, 2015; Kingma et al., 2016; Tom-
czak and Welling, 2016, 2017; Berg et al., 2018). Secondly, adversarial autoencoders (as
opposed to VAEs) are not variational, which allows using an INN as encoder and decoder
at the same time, demonstrated by Schirrmeister et al. (2018) (although the resulting model
could just as fittingly be described as an adversarial normalizing flow). Finally, Nielsen et al.
(2020) combine invertible and variational operations in a single methodological framework,
seamlessly bridging normalizing flows and VAEs.

Normalizing flows and autoregressive models Each conditional distribution in autore-
gressive models is often implemented using the same coupling mechanisms as normalizing
flows (see section 3.2), mapping between each variable and a 1D ‘latent space’ with the
coupling function. In this setting, we often speak of autoregressive flows. Important ad-
vancements were contributed by Germain et al. (2015); Kingma et al. (2016); Uria et al.
(2016); Papamakarios et al. (2017); Huang et al. (2018a).

Comparing them from this viewpoint, the fundamental difference between autoregres-
sive and normalizing flows is simply that the former have a triangular Jacobian for the entire
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transformation they represent, while normalizing flows have a more or less free-form Jaco-
bian matrix (when using coupling-based INNs, the transformation often consists of many
steps alternating upper- and lower-diagonal Jacobian matrices).

This indeed makes a fundamental theoretical difference: fully triangular transforma-
tions can approximate any distribution (Bogachev et al., 2005), but unlike coupling networks
clearly can not approximate any diffeomorphism (Teshima et al., 2020). This rules them out
for many uses beyond the standard setup, where special structure or properties of the latent
space or transformation have to be enforced, such as Sorrenson et al. (2020); Köhler et al.
(2020), etc. and chapters 4 and 5 of this thesis. A recent publication by Kruse et al. (2021)
introduces a coupling block with a sufficiently expressive fully triangular Jacobian, blurring
the lines between the two types of models. A second shortcoming of autoregressive flows
as opposed to normalizing flows is that they are very expensive to produce samples from,
and instead best used for density estimation. Inverse autoregressive flows use autoregressive
architectures with the opposite choice ‘forward’ direction, leading to very fast inverse, but
slow forward computation. This may be attractive if the target distribution can only be eval-
uated, but not sampled from, or combined with autoregressive flows as a forward-inverse
pair (most famously Oord et al., 2018).

In practice, deep autoregressive models have proven especially successful in domains
where a sequential structure of the data naturally fits the sequential decomposition by the
model, such as speech synthesis (Oord et al., 2016a). For images, more advanced schemes
are necessary: naively decomposing the 2D image into a 1D sequence of variables results
in an unnatural and inconvenient ordering of the pixels. Various schemes exist to correct
for this problem, but complicate the model setup (Papamakarios et al., 2017; Oord et al.,
2016c; Kolesnikov and Lampert, 2017).

In conclusion, comparing normalizing flows to the other types of generative models in
this way serves to explain their standing as a fast growing niche in the field of genera-
tive modelling. With the current state of development, they may not be the first choice
for general purpose data generation due to architectural restrictions, higher computational
cost, and deficits in realistic image generation. However, as the large number of successful
methods and applications shows, including those in this thesis, they have the potential to
be extremely powerful and flexible tools with capabilities that no other type of generative
model can supply. It also begun to become apparent though a number of recent high-profile
publications that normalizing flows can be of just as much use for large and competitive
computer vision applications when they are not used completely stand-alone, but combined
in some advantageous way with more standard feed-forward components (Rombach et al.,
2020; Pumarola et al., 2020; Chen et al., 2021).
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We consider a supervised problem with the goal to predict some variable X from an ob-
served input Y . Most standard deep-learning solutions (especially for regression) take the
approach of making some ‘best guess’ x̂ for the answer, using a feed-forward network g:
x̂ = g(y). During training, the output x̂ and the ground-truth solution x are compared using
some function D(x̂, x), for instance the L2-distance. The choice of D will determine the
behaviour and failure modes of the prediction model.

Works like those of Kendall and Gal (2017) show how this can be understood from
a Bayesian perspective: in this view, even a feed-forward model implicitly estimates a
Bayesian posterior for the problem, q(X|Y ). Hereby, the choice of D implicitly defines
some simple parametric posterior. For instance, the standard L2 loss

D(x̂;x) = ∥x̂− x∥22 = ∥g(y)− x∥22 (3.1)

implies a uniform-width Gaussian posterior centered around x̂, as D(x̂;x) is the logarithm
of this posterior evaluated at x:

log q(x|y) = logN
(
x; g(y), σ

)
∝ ∥g(y)− x∥22 (3.2)

This interpretation highlights a basic problem with such standard feed-forward su-
pervised approaches: Without knowledge of the shape of the posterior, we can not know
which supervised loss function to choose. If the loss function that does not agree with the
posterior, the resultung model will make inaccurate or misleading predictions, and possi-
ble uncertainty estimates may be nonsensical. It therefore seems obvious how and why
generative models should be used instead: a conditional generative model can generate a
posterior q(X|Y ) completely freely. It will not suffer from the unnecessarily restrictive
parametrization of the posterior implied by feed forward networks, and can addresses un-
certainty quantification and diverse solutions in a uniform way.

How much more powerful and useful a completely free multimodal and multidimen-
sional posterior really is, will become most clear through the examples in the course of the
thesis. But we already note at this stage for how multiple separate and distinct solutions,
linear or non-linear correlations and dependencies in solution space, quantile-based uncer-
tainty intervals, among many other things, can only be expressed using such a generative
posterior rather than a restrictive parametric one, especially if it is only implicit.

Our quantitative and qualitative comparisons to other methods later clearly demon-
strate that invertible generative models are best suited for this role, but we can also argue
for them beforehand: their unique capability for both density estimation and cheap sampling
open up different ways of accessing the uncertainty distributions in a single model, for in-
stance computing marginals and finding the maximum a posteriori estimate exactly using



36 3. Conditional Invertible Neural Networks

density estimation, and producing diverse solution hypotheses or computing a Monte-Carlo
expectation of some quantity of interest through sampling. Also, as discussed previously in
section 2.3, we don’t expect invertible generative models to miss modes or regions of the
uncertainty distribution like GANs do, and our experiments confirm the theoretical knowl-
edge that VAEs smear, blur, and distort detailed uncertainty distributions in both high- and
low-dimensional spaces.

We see the plain reason why previous works have not realized this method in the fact
that no flexible and expressive enough conditional invertible generative models exist to be
used in this way. It is not immediately obvious how best to introduce conditioning informa-
tion to otherwise unconditional standard normalizing flows. The remainder of this chapter
is therefore based on the overlapping publications Ardizzone et al. (2019b) and Ardizzone
et al. (2020a): we will first introduce the core ideas how to make normalizing flows and
INNs into conditional models, and demonstrate these ideas with toy experiments. We then
enhance the method to deal with more varied and complex types of conditions, demon-
strating its capabilities on two computer vision problems with diverse solutions. Finally,
we give an overview of several publications from different scientific fields making use of
the presented methods, showcasing key examples how scientist profit from using invertible
generative models in practice.

3.1. Core idea

For conditional GANs (cGANs) and conditional VAEs (cVAEs), introducing a condition is
simple: the condition is given as an input to generator and discriminator or encoder and de-
coder. These networks are then able to process the condition in a useful way, e. g. extracting
useful high-level information from complicated conditions such as images, time series, etc.
Simply using the condition as an input like this is not possible with normalizing flows and
INNs. To see this, we refer back to the change-of-variables formula for normalizing flows,
equation (2.1):

q(x) = p(Z=f(x))

∣∣∣∣det ∂f∂x
∣∣∣∣

We find that if we simply use the condition y along with x as an additional input to the
INN (as we do for cGANs, cVAEs), the normalizing flow will model the joint probability
q(x, y):

q(x, y) = p(Z=f(x, y))

∣∣∣∣det ∂f

∂[x, y]

∣∣∣∣ . (3.3)

This is of little use for conditional modeling, neither for conditional density estimation
(although it might be possible to divide by a known p(y) in certain cases), and especially not
for conditional sampling. This being said, we refer to Kruse et al. (2021), who developed the
HINT architecture, using some of the advancements made in this chapter. HINT receives the
joint input [x, y], and allows density estimation and sampling of p(x, y), p(x|y) and p(y),
all with a single model, by inducing a certain dependency pattern in the coupling blocks
allowing to decompose the models density.

Comparing equation (2.1) and equation (3.3), we can recognize the following possi-
bility for a conditional normalizing flow model: We provide y in the form of an auxiliary
input f(x; y), indicated by the semicolon, meaning that the invertibility is only w. r. t. x:

z = f(x; y) ⇐⇒ x = f−1(z; y) (3.4)
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Putting this into the change-of-variables formula gives us

q(x | y) = p(Z=f(x; y))

∣∣∣∣det ∂f∂x
∣∣∣∣ . (3.5)

In contrast to the joint input f(x, y), z has the same dimensionality as x, and likewise
we compute the determinant only of ∂f/∂x. This becomes more intuitive to grasp if we
temporarily write y as a subscript, as in fy(x) := f(x; y):

q(x | y) = p(Z=fy(x))

∣∣∣∣det ∂f∂x
∣∣∣∣ . (3.6)

Written like this, the equation looks like a completely standard normalizing flow, but with a
‘selection variable’ y, that selects a different invertible transformation based on the auxiliary
input. We call an INN that has such an auxiliary conditioning input a conditional invertible
neural network, or cINN for short.

To train such a conditional model, no further modifications are necessary: maximum
likelihood training works just as well for conditional distributions:

LcML = Ep(X,Y )

[
− log q(X | Y )

]
=

∫
−p(x, y) log q(x | y)dxdy (3.7)

and its empirical counterpart

L̂cML = − 1

M

∑
[x(i),y(i)]∈Xtrain

log q
(
x(i) | y(i)

)
. (3.8)

Correspondence with the conditional KL divergence and conditional Bayesian MLE holds
up in the same way as in section 2.1.5 and section 2.1.4.

Finally, we also want to note that there is a second, complementary way of making a
normalizing flow conditional, but using a standard unconditional INN. That is by making
the latent distribution conditional on y instead:

p(x | y) = p(Z = f(x) | y)|J | (3.9)

This is the construction that will be used in chapters 4 and 5. There are some trade-offs
and considerations between the two possibilities, which will be discussed in the later chap-
ters.

3.2. Conditional affine coupling blocks

To produce a cINN in practice, we modify the affine coupling block as introduced by Dinh
et al. (2016), as this is the most popular INN architecture. However, our method also carries
over directly to other types of coupling blocks (e. g. Dinh et al., 2014; Kingma and Dhari-
wal, 2018, etc.) or i-ResNet blocks (Behrmann et al., 2019). As a reminder of section 3.2,
each standard coupling block splits its input x into two parts [x1, x2] and applies affine
transformations between them that each have strictly upper or lower triangular Jacobian
matrices:

u1 = x1 ⊙ exp
(
s1(x2)

)
+ t1(x2)

u2 = x2 ⊙ exp
(
s2(u1)

)
+ t2(u1) .
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Figure 3.1.: Schematic illustration of one conditional affine coupling block (CCB), as described
in the text.

The outputs [u1, u2] are concatenated again and passed to the next coupling block. The
internal functions sj and tj are be represented by arbitrary neural networks, and are only
ever evaluated in the forward direction, even when the coupling block is inverted:

x2 =
(
u2 − t2(u1)

)
⊘ exp

(
s2(u1)

)
x1 =

(
u1 − t1(x2)

)
⊘ exp

(
s1(x2)

)
.

To make this coupling block conditional, we note that the subnetworks sj and tj are
never inverted. This means we can concatenate conditioning data y to their inputs without
losing the invertibility, replacing s1(x2) with s1(x2, y) etc. as follows:

u1 = x1 ⊙ exp
(
s1(x2, y)

)
+ t1(x2, y)

u2 = x2 ⊙ exp
(
s2(u1, y)

)
+ t2(u1, y) .

(3.10)

This conditional coupling block (CCB) design is illustrated in figure 3.1. Notably, the
inversion still functions the same way, when y is also known for the inverse. And just as
with standard coupling blocks, as derived in section 2.2 or in more detail by Dinh et al.
(2016), the log-determinant of the ∂u/∂x Jacobian matrix is still simply the sum over all
dimensions of s1(x2, y) and s2(u1, y).

In practice, there are some considerations for making a joint vector of x1,2 and y.
Unstructured vectors can be trivially concatenated, and images or arrays of matching sizes
can be concatenated along the channel-axis. In real applications however, y and x might
have very different sizes, structures, and data types which are not easily compatible – class
labels, images, vectors, time series, graphs, unordered sets, point clouds, to name just a few.
This problem will be solved in by the changes in section 3.4.

3.3. Experiment – conditional MNIST generation

As a first experiment for conditional coupling blocks, and conditional maximum-likelihood
training, we train a cINN on the MNIST dataset. MNIST is a collection of 28 × 28 pixel
greyscale images of handwritten digits (this will be x in our case), together with a discrete
label from 0-9 (this is the condition y in our case). For the sake of the experiment, we flatten
the images into unstructured vectors of length 282 = 784. We then construct a cINN of 24
coupling blocks using fully connected subnetworks s and t. We provide the labels y in form
of a one-hot vector, i. e. a binary {0, 1}K vector where only the entry corresponding to the
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Figure 3.2.: Schematic overview of the cINN used for conditional MNIST generation.

label is 1, the rest 0. This one-hot conditioning vector is simply concatenated onto the usual
input of the subnetworks, giving them an input size of dim(x)/2+dim(y) = 784

2 +10 = 402
(c. f. figures 3.1 and 3.2). For data augmentation we only add a small amount of Gaussian
noise to the images (σ = 0.02), as described later in section 3.5.

We then train the model with the conditional maximum-likelihood loss as explained
above. After training, we generate samples from the model by sampling a random latent
vector z∗ from a standard normal distribution N (0, 1), and mapping it back to image space
using the inverse network, along with different labels y∗ as conditions. Such samples are
shown in figure 3.3. Interestingly, the generated digits retain a characteristic style when
changing the condition but leaving the latent vector z∗ fixed. In other words, the style is
disentangled from the class. This is in no way guaranteed, theoretically it is just as possible
for the model to decompose into 10 essentially separate and different models, one for each
class. In that case, the latent space of each class would be structured differently, and inter-
class transfer of latent vectors would be meaningless. This property, in conjunction with our
network’s invertibility, can directly be used for style transfer, as demonstrated in figure 3.5:
an existing image from the test set, along with its corresponding label, is transformed into
a latent vector. This latent vector is then mapped back through the inverted network, but
using a different condition. This allows generating the other digits in the same unique style
as the existing input image. The methodology was later used by Rombach et al. (2020) for
style transfer on larger images.

In figure 3.4 we further illustrate the structure of latent space. Not only are style and
class disentangled from each other, but the style dimensions themselves are also disentan-
gled. We can identify some axes in latent space with interpretable meanings, that linearly
interpolate between aspects of the style, while most axes simply encode the image noise.
After all, the intrinsic dimension of MNIST is known to be much lower than 784. Note that
while the latent space is learned without supervision, we found the shown in the figure in a
semi-automatic fashion: We perform principle component analysis (PCA) on the latent vec-
tors of the test set, without the noise augmentation. This allows us to identify the subspace
of meaningful style dimensions. Some meaningful axes in this subspace are shown in the
figure. As with the class-style disentanglement, there is no theoretical reason to expect such
linear style-style disentanglement to occur; infinitely many solutions where the different
style elements are mixed non-linearly are just as valid for the cINN to learn.

It is currently not clear how these two disentanglement properties arise in the cINN,
whether they are due to inductive bias or some other property. Recent work of Sorrenson
et al. (2020) introduces a special type of conditional normalizing flow called GIN. Using this
special model, the authors are able go give theoretic guarantees under which disentangle-
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Figure 3.3.: MNIST samples from our cINN conditioned on digit labels. All ten digits within
one row (0, . . . , 9) were generated using the same latent code z, but changing condition y. We
see that each z encodes a single style consistently across digits, while varying z between rows
leads to strong differences in writing style.

Figure 3.4.: Axes in our MNIST model’s latent space, which linearly encode the style attributes
width, thickness and slant.

ment in latent space must occur. However, standard cINNs explicitly violate the conditions
required for the guaranteed disentanglement of GIN, and further research is needed in this
area.

3.4. Introducing a conditioning network

While the basic cINN from the previous sections works well if the condition is dense, infor-
mative, and simple to incorporate to the subnetworks (such as class labels), problems arise
for more general settings. As already mentioned, conditions such as graphs, time-series,
etc. can not be easily fed into the subnetworks. More generally, we also often expect that
some higher-level features need to be extracted from y for the conditioning to be effective,
e. g. global semantic information from an image, overarching behaviour in a time-series,
and so on. In such cases, feeding the condition y directly into the CCBs would not be
sufficient: even if all the dimensionalities or image sizes were by chance compatible and
aligned, it would place an unreasonable burden on the s and t networks, as they would need
to re-learn any higher-level features in each coupling block. After all, the conditioning in-
formation is not passed depth-wise through the cINN in the same way that x is. Note that
cGANs or cVAEs do not suffer from this issue, the condition can be processed freely by
their feed-forward networks.

Instead, we propose extracting useful high-level features from the condition through
some learned function φ(y), which maps from the domain of y to a real-valued feature
space. In practice, this can take different forms: in section 3.6, φ is a feed-forward ResNet
that extracts pyramid of both visual and semantic features at different resolutions; in sec-
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Figure 3.5.: To perform style transfer, we determine the latent code z = f(x; y, θ) of a test
image (left), then use the inverse network g = f−1 with different conditions ŷ to generate the
other digits in the same style, x̂ = g(z; ŷ, θ).

tion 3.7 it is a network producing a single feature map with semantic information in each
pixel; in section 3.8.6 it is a permutation-invariant network producing a vector of learned
summary statistics; it can also be a graph neural network, transformer network, neural pro-
cess, or any other kind of feature extractor.

While it is certainly possible to use a pre-trained feature extractor, or any self-supervised
or unsupervised representation learning approach to train φ, we are more interested in train-
ing φ and the conditional coupling blocks jointly from scratch. For this, we simply back-
propagate the conditional maximum-likelihood loss LcML through the feature extraction.
Intuitively speaking, the more useful the learned features are for the cINN’s task, the lower
the LcML loss will become. Therefore, the conditioning network is encouraged to extract
useful features.

We can formalize this using the information-theoretical concept of mutual informa-
tion (MI). MI quantifies the amount of information that two variables share, in other words,
how informative one variable is about the other. For any two random variables a and b,
It can be written as the KL-divergence between joint and factored distributions: I(a, b) =
DKL(p(a, b)∥p(a)p(b)). With this, we can derive the following proposition, details and
proof are found in the appendix:
Proposition 1. Let θ̂ be the INN parameters and φ̂ the conditioning network that jointly
minimize LcML. Assume that the INN f(·; ·, θ) is from a family of universal density approx-
imators F , defined in Assumption 1 (appendix), and φ is optimized over a family G0 defined
in Assumption 2 (appendix). Then it holds that

I
(
x, φ̂(y)

)
= max

φ∈G0

I
(
x, φ(y)

)
(3.11)

In other words, the learned features will be the ones that are maximally informative about
the generated variable x. Importantly, the assumptions about the conditioning networks
family G0 are quite weak and do not say anything about its representational power: the fea-
tures will be as informative as possible within the limitations of the conditioning network’s
architecture and number of extracted features.

We can go a step further under the assumption that the power of the conditioning
network and number of extracted features are large enough to reach the global minimum of
the loss (sufficient condition given by Assumption 3, appendix). In this case, we can also
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show that the cINN as a whole will learn the true conditional distribution by minimizing the
loss (proof in appendix):
Proposition 2. Assume φ has been optimized over a family G1 of universal approximators
and dim(c) ≥ dim(y) (Assumption 3, appendix), and the INN is optimized over a family of
universal density approximators F (Assumption 1, appendix). Then the following holds for
(x, y) ∈ X , where X is the joint domain of the true training distribution p(x, y):

q(x|φ̂(y), θ̂) = p(x|y) (3.12)

In our experiments and the work of other authors building on ours, we find that the
conditioning network is a critical part for using cINNs in practice. Even in cases where the
data-types and -structures between x and y are directly compatible, using a conditioning
network improves the performance. Our theoretical results confirm that the conditioning
network will learn something useful in all situations. We therefore include the conditioning
network in the definition of a cINN from here on, i. e. a cINN means the series of conditional
coupling blocks combined with a conditioning network.

3.5. Improvements to convolutional cINNs

In this section, we highlight some of the changes and engineering techniques needed to
achieve meaningful results on computer vision problems using cINN, or INNs in general.
Due to INNs being much less prevalent than feed-forward architectures, and normalizing
flows being used less than other types of generative models, there is not yet a set of es-
tablished techniques, tweaks, and standard architectures to ensure good performance on
computer vision tasks. Instead, many publications on normalizing flows use toy data such
as 2D probability densities or MNIST.

Image dequantization. All digital data must necessarily be quantized, and for most dig-
ital image formats, this quantization is especially drastic: each color channel is encoded
by an 8-bit unsigned integer, assigning one of 255 brightness levels. This quantization is
known to cause problems in training normalizing flow-based models, due to the mismatch
of observably discrete input data but continuous latent space (Theis et al., 2015). To avoid
this, it is common to add a small amount of noise to the input images, most often uniform
noise with an amplitude corresponding to the quantization level. While this procedure is
not new to this thesis, we perform ablation studies below in section 3.7 and further ex-
periments with noise types and scales along with a more detailed theoretical examination
in section 5.3. Overall, we find that it depends on the image size, complexity, and image
statistics whether the de-quantization is necessary for stable training and good results.

Channel mixing. Dinh et al. (2016) who first introduced deep affine coupling-based INNs
performed the same split in each coupling block. In the years since, various ideas have been
presented about how to mix the variables in a learnable way between each coupling block.
For instance, Tomczak and Welling (2016) suggest using so-called householder reflections
to parametrize orthogonal rotation matrices, however with unreliable benefits for many ap-
plications. Kingma and Dhariwal (2018) instead manage to parametrize arbitrary invertible
matrices, however leading to instabilities and singularities in practice, requiring training
restarts and careful tuning.
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Performing several direct comparison experiments, we find that for our applications,
the best performance and stability can be reached by simply using random fixed orthogonal
matrices to rotate the variables. For images, only the feature channels are rotated with the
same matrix for each pixel. While it might seem preferable to learn the mixing of variables
as with previous works, we find little to no quantitative improvement and a detrimental
effect on the training stability. More research is needed to fully understand these effects, and
whether learnable rotations lead to more powerful flows or if random fixed ones are equally
useful. At least for the case of ‘iterative Gaussianization’ (a precursor to normalizing flows),
work by Laparra et al. (2011) confirms that the use of random rotations does not make
a qualitative difference in the expressiveness of the flow. Similarly, Draxler et al. (2020)
find no difference between random and specially chosen rotation matrices with end-to-end
training, and also reveals that a standard coupling block can already express a rotation up to
π/2 on its own.

s-coefficients final activation. One problem with the affine coupling architecture is the
exponential slope of the coupling block output w. r. t. the multiplicative shubnetwork s. This
can very easily lead to training instability, even if great care is taken with the intialization
and other hyperparameters.

The technique we use to prevent this is an extension to the one used in RealNVP (Dinh
et al., 2016): Instead of directly using s as the multiplicative affine coefficient, we instead
use

s̃ = αtanh

(
s(u)

α

)
. (3.13)

The hyper-parameter α is introduced by us and not present in previous works by Dinh
et al. (2016) and others. It can be used to adjust the degree of regularization, interpolating
between stability (small α) and expressivity (large α). For α → 0, the coupling block
reverts to a NICE additive block, and for α → ∞ it is equal to having no regularization
on the s-coefficients at all. Dividing by α in the argument of the tanh-function ensures the
gradient of s̃ w. r. t. s is always 1 at the zero crossing on initialization. The regularization
only becomes active for large outputs of s, while for s̃≪ α, we have s̃ ≈ s.

Gradient clipping First used extensively for recurrent neural networks, gradient clipping
describes the practice of limiting the gradients of networks parameters, or the norm thereof,
to a certain value, truncating the gradients if they surpass this value (Pascanu et al., 2013).
We find that gradient clipping is vital for the stability of training large cINNs at effective
learning rates, as the model either quickly diverges without, or the learning rate has to be
set prohibitively low.

Alexanderson and Henter (2020) further examine why this practice is necessary. They
find that rare long-tail inputs lying far outside the Gaussian in latent space produce sporadic
spikes in the gradients’ magnitude. The authors also suggest replacing the latent distribution
with a Student t-distribution, making gradient clipping unnecessary, and slightly speeding
up convergence as a result. For GANs, gradient clipping does not seem to have the same
stabilizing effect as for normalizing flows, as documented by Brock et al. (2019, p. 34)

Haar wavelet invertible downsampling The checkerboard-reordering of dimensions is
intended to have the same use as pooling layers in feed-forward networks: reducing the
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Figure 3.6.: Haar wavelet downsampling reduces spatial dimensions & separates lower fre-
quencies (a) from high (h,v,d).

spatial resolution and instead adding additional feature channels. In the case of INNs, the
increase in channels is directly connected to the decrease in resolution, as the total number
of dimensions has to stay fixed.

However, while the invertible reordering of dimensions may satisfy these nominal re-
quirements, it does not satisfy the actual purpose of pooling layers in feed-forward net-
works, that is to summarize or agglomerate features in a locally shift-invariant way: If a
2×2 patch of pixels with C channels is simply stacked into a single pixel with 4C channels
as is typical, these additional feature channels will each have very similar contents, and all
be affected by aliasing artifacts. Specifically, if the input is shifted by a single pixel, the
contents of each feature channel are completely swapped around.

Instead, we therefore propose to process features using Haar-wavelets instead. Haar
wavelets are a discrete wavelet transformation, decomposing each 2 × 2 pixel patch into
four filtered channels. The use of Haar wavelets specifically is motivated by the fact that the
first resulting output of the wavelet transform is equivalent to mean-pooling, and therefore
has the same behaviour as pooling operations in feed forward networks. The other three
channels contain spatial gradient information of the patch, horizontal, vertical and diagonal.
As such, we expect these to contain lower-level detail information, with the commonalities
by the first channel subtracted out. The Haar wavelet transform is illustrated in figure 3.6

The Haar-wavelet decomposition into mean and spatial gradients also works in har-
mony with the skips connection sometimes used to save memory and parameters in INNs,
splitting off a portion of the features to directly become part of the latent code. In this case,
it the resulting detail-channels can be split off, only further processing the mean-pooled
portion of channels.

3.6. Experiment – Day to night

In the following section, we demonstrate cINNs on an image-to-image problem with diverse
solutions. Image-to-image translation for natural images was first demonstrated with GAN-
based models Isola et al. (2017), later refined by works such as Wang et al. (2018). It was
also extended to the unpaired setting by Zhu et al. (2017a). However, these models are
generally not able to produce diverse outputs. Several works attempt to prevent this mode
collapse in image-to-image GANs through specialized architectures and regularization Zhu
et al. (2017b); Park et al. (2019); Lee et al. (2018) with varying success. A hybrid approach
between GAN and autoencoder is used in Ulyanov et al. (2018) for diversity. While these
approaches do lead to visual diversity, there is currently no way to verify if they cover
the entire distribution, compare models quantitatively, and the other issues discussed in
section 2.3.
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We apply a cINN with a conditioning network to this task of image-to-image transla-
tion to address these shortcomings of GAN-based approaches. The target image domain is
the input/generated output x of the invertible part of the cINN, and the source image y is
input into the conditioning network. The conditioning network transforms the original con-
dition y into a pyramid of feature tensors c(k) that the INN uses at the different resolution
levels k. For this, we simply use a standard ResNet-18 feed-forward network (He et al.,
2016), denoted as φ. The activations of the ResNet just before each pooling layer consti-
tute the levers of the feature pyramid. The invertible part consists of 8 coupling blocks in
total, and five Haar-wavelet downsampling operations spaced in between. The subnetworks
consist of three convolutions, with ReLU activations and batch normalization after the first
two convolutions. We refer to 3.7 for a more detailed illustration of how the conditioning
network and invertible part of the cINN are combined.

To demonstrate the models capabilities, we train on the popular day-to-night dataset
(Laffont et al., 2014). It contains webcam images from approximately 100 different lo-
cations, taken at 10-20 times during the day and night each. This results in about 200
combinations of day-night pairs per location. The test set consists of 5 new locations un-
seen during training. As data augmentation, we randomly resize and crop the images to
128 × 128 pixels, in addition to the de-quantization noise. In our setting, we use the day-
images as the condition y, and the night-images as the generated x. We train for 175 000
iterations using the Adam optimizer with a batch-size of 48, and leave the learning rate
fixed at 0.001 throughout. These training parameters are comparable to those of standard
feed-forward models.

Despite the relatively small training set, we see little signs of overfitting, and the model
generalizes well to the test set of new locations. Previously, Sun et al. (2019) also found
low overfitting and good generalization on small training sets using INNs. Several samples
by the model are shown in Fig. 3.8. The cINN correctly recognizes populated regions and
generates lights there, as well as freely synthesizing diverse cloud patterns and weather
conditions. At the same time, the edges and structures (e.g. mountains) are consistently and
precisely aligned with the conditioning image. The features learned by the conditioning
network are visualized in Fig. 3.9. Hereby, linearly independent features were extracted
via PCA. The figure shows one example of a feature from each of the first three levels
of the pyramid, clearly demonstrating how each level contains features relevant for the
corresponding scale of generation, e. g. edges and texture at the high-resolution stages, and
semantic information at the low resolution stages.
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Figure 3.7.: Illustration of the cINN. It consists of a feed-forward conditioning network (left
half ), and an invertible part (right half ).
Black arrows: connections always in the same direction.
Green boxes: extracted feature maps c(k).
Purple arrows: invertible connections, depending on training/testing.
Orange arrows: invertible wavelet downsampling.
Pink blocks: conditional coupling blocks (CCBs).

Figure 3.8.: Examples of conditions y (left), three generated samples (middle), and the orig-
inal image x (right).
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Figure 3.9.: Conditioning image (top left), and extracted features from different levels of the
pyramid. From left to right, top to bottom: 1st level, precise edges and texture; 2nd level,
foreground/background; 3rd level, populated area.

3.7. Experiment – Diverse image colorization

For a more challenging task, we turn to colorization of natural images. State-of-the-art re-
gression models for colorization produce visually near-perfect images (Iizuka et al., 2016),
but do not account for the ambiguity inherent in this inverse problem. To address this,
models would ideally define a conditional distribution of plausible color images for a given
grayscale input, instead of just returning a single “best” solution. Popular existing ap-
proaches for diverse colorization predict per-pixel color histograms from a U-Net (Zhang
et al., 2016) or from hypercolumns of an adapted VGG network (Larsson et al., 2016).
However, sampling from these local histograms independently can not lead to a spatially
consistent colorization, requiring additional heuristic post-processing steps to avoid arte-
facts.

In terms of generative models, both VAEs (Deshpande et al., 2017) and cGANs (Isola
et al., 2017; Cao et al., 2017) have been proposed for the task. However, their solutions
in no way reach the quality of the regression-based models, and cGANs in particular of-
ten lack diversity. Approaches using auto-regressive models (Guadarrama et al., 2017) or
CRFs (Royer et al., 2017) also exist, but these methods are computationally very expen-
sive and often unable to scale to realistic image sizes. Ulyanov et al. (2018) use a custom
autoencoder-like adversarial architecture to ensure diversity, producing the some of the best
diverse colorization results so far to our knowledge. However, their experiments are limited
to a data set with only cars, and just three latent dimensions, leading to global, but no lo-
cal diversity. For images with multiple or more complex objects, three dimensions are not
expected to suffice in covering the solution space.
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We therefore argue for the use of cINNs for this task: the conditioning network can
perform the task of recognizing the semantic content, and can be based on existing col-
orization solutions, while the invertible part of the cINN uses this information to produce
images with covering the full range of locally and globally diverse solutions. The invert-
ibility also allows for intuitive and interactive editing and manipulation, as we demonstrate
in the following.

Fro the problem setup, we represent the images in Lab color space. The commonly
used RGB color space has been found to be unsuitable for the task by previous works: not
only are distances in RGB-space very inconsistent with perceived color difference, but the
RGB representation is also over-complete for the task (the grayscale image is contained
in RGB), introducing an unnecessary additional difficulty. Instead, the Lab color space
represents images through a grayscale (‘luminance’) channel L, the condition, and two
channels a and b containing the color information, the generated output. We train on the
ImageNet dataset (Russakovsky et al., 2015) for the greatest possible variance in objects
and image types. As the color channels do not require as much resolution as the luminance
channel, we condition on 256×256 pixel grayscale images, but generate 64×64 pixel color
information. This is in accordance with the majority of existing colorization methods.

For the conditioning networkφ, we start with the same VGG-like architecture as Zhang
et al. (2016), and pre-train it as a feed-forward colorization model using their code. We then
cut off the network before the second-to-last convolution, resulting in 256 feature maps of
size 64 × 64 from the grayscale image L. To form the feature pyramid, we then extend
this by a series of strided convolutions, ReLU activations, and batch normalization layers
specific to each resolution level, along with a final convolution specific to each coupling
block, i. e. each coupling block k receives its own specialized conditioning (small hexagons
in figure 3.11). The ablation study in figure 3.17 confirms that the conditioning network
is absolutely necessary to capture semantic information: directly conditioning the invert-
ible part on the grayscale image, the cINN simply produces random colors ignoring image
content.

The invertible part of the model consists of 22 convolutional CCBs, with three down-
sampling steps in between. After that, the features are flattened, followed by 8 fully con-
nected CCBs. To conserve memory and computation, we adopt the latent skip connections
first presented by Dinh et al. (2014): after each wavelet downsampling step, we split off
some of the detail-channels. These are not processed any further, but fed into a skip con-
nection and concatenated directly onto the latent output vector. The reasoning behind this
is the following: The high resolution stages have a smaller receptive field and less expres-
sive power, so the channels split off early correspond to local structures and noise. More
global information is passed on to the lower resolution sections of the INN and processed
further. Overall, the generative performance of the network is not meaningfully impacted,
while reducing the computational cost and memory requirements. The effect of sampling
the different parts of z individually while keeping the others fixed is shown in figure 3.18.
As we can see, the local partitions of latent space encode image noise or the color of de-
tails, the intermediate partition contains the color of the objects themselves, and the most
global and abstract partition encodes global attributes such as overall saturation or tints. The
architecture is illustrated in figure 3.11.

For training, we again use the Adam optimizer and a batch-size of 48. We train for
roughly 250 000 iterations, stopping when the validation loss increases, indicating overfit-
ting. The initial learning rate is 10−3, decreasing by a factor of 10 at 100 000 and 200 000
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Figure 3.10.: Diverse colorized images which our network generated for the same grayscale
image. One of them contains the original ground truth colors, but which? Solution at the
bottom of next page.
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Figure 3.11.: cINN model for diverse colorization. The conditioning network h consists of a
truncated VGG Simonyan and Zisserman (2014) pretrained to colorize ImageNet, with sepa-
rate convolutional heads h1, h2, h3, . . . tailoring the extracted features to each individual con-
ditional coupling block (CC). After each group of coupling blocks, we apply Haar wavelet
downsampling (figure 3.6) to reduce the spatial dimensions and, where indicated by arrows,
split off parts of the latent code z early.
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Grayscale y z = 0.0 · z∗ z = 0.7 · z∗ z = 0.9 · z∗ z = 1.0 · z∗ z = 1.25 · z∗

Figure 3.12.: Effects of linearly scaling the latent code z while keeping the condition fixed.
Vector z∗ is “typical” in the sense that ∥z∗∥2 = E

[
∥z∥2

]
, and results in natural colors. As

we move closer to the center of the latent space (∥z∥ < ∥z∗∥), regions with ambiguous colors
become desaturated, while less ambiguous regions (e.g. sky, vegetation) revert to their proto-
typical colors. In the opposite direction (∥z∥ > ∥z∗∥), colors are enhanced to the point of
oversaturation.

iterations. At inference time, we use joint bilateral upsampling Kopf et al. (2007) to match
the resolution of the generated color channels a, b to that of the luminance channel L. This
produces visually slightly more pleasing edges than bicubic upsampling, but has little to no
impact on the results. It was not used in the quantitative results table, to ensure an unbiased
comparison.

Latent space interpolations and color transfer are shown in figures 3.12 and 3.13, with
more experiments in the appendix. Various diverse samples and failure cases along with a
qualitative comparison to other generative models are shown in figures 3.14 to 3.16.

The work Ardizzone et al. (2020a) contains a detailed quantitative comparison along
with these qualitative experiments. These confirm the observations from the figures. In
summary, we find that the cINN produces the best sample diversity by a large margin while
also improving over the other generative methods in terms of image quality. The only
superior method in terms of quality is the feed-forward regression model, which has no
diversity by construction and only produces muted colors that are ‘safe’ in terms of L2-
loss.

The middle image in the bottom row of figure 3.10 shows the original color image.
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Figure 3.13.: For color transfer, we first compute the latent vectors z for different color images
(L, a, b) (top row). We then send the same z vectors through the inverse network with a new
grayscale condition L∗ (far left) to produce a transfer of colorization a∗, b∗ (bottom row). Dif-
ferences between reference and output color (e.g. bright pink rose) can arise from mismatches
between the reference colors a, b and the intensity prescribed by the new condition L∗.

Figure 3.14.: Diverse colorizations pro-
duced by our cINN.

Figure 3.15.: Failure cases of our method.
Top: Sampling outliers. Bottom: cINN did
not recognize an object’s semantic class or
connectivity.
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Figure 3.16.: Other methods have lower
diversity or quality, and suffer from in-
consistencies in objects, or color blurriness
and bleeding (cf. figure 3.14, bottom).
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Figure 3.17.: In an ablation study, we train a cINN using the grayscale image directly as con-
ditional input, without a conditioning network φ. The resulting colorized images largely ignore
semantic content which leads to exaggerated diversity. More ablations are found in the ap-
pendix.

Figure 3.18.: Sampling the resolutions levels. First row: z(0), introduces global hue and sat-
uration shifts. Second row: z(1), determines the colors of the object. Third, fourth row: z(2),
z(3), imperceptible changes on pixel-level.
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3.8. cINNs Applied in Science

Beyond the computer-vision focused tasks from the previous sections, cINNs have success-
fully been used in a number of scientific and engineering applications in the time since their
publication (Ardizzone et al., 2019b). Their properties make them uniquely suited for scien-
tific tasks, including the flexibility in input modality afforded by the conditioning network,
the stable, repeatable, and principled training procedure, and the convenience of accessing
the full posterior through both sampling and density estimation.

The following section therefore briefly summarizes a number of works from different
scientific fields. Note that the contributions to these works in the context of the thesis were
minor, consisting of e. g. data pre-processing routines, assistance or advice in model setup,
hyper-parameter tuning and visualization. They are showcased here mainly to demonstrate
the effectiveness and advantages of using cINNs in the context of scientific research, each
subsection highlighting a different strength or advantage of the cINN in practice.

3.8.1. Astrophysics

Astrophysics is a field for which cINNs can be especially useful. Electromagnetic waves
(light, radio waves, etc.) are the only signal that can be observed for most objects outside
the solar system. All other properties and structure of objects have to be reconstructed from
these signals alone, leading to many ambiguities and sources of uncertainty, and a large de-
mand for advanced data analysis methods. As a result, several publications in astrophysics
have already made successful use of cINNs.

Kang et al. (2022) use cINNs and a synthetic dataset to predict the properties of star-
forming gas clouds (such as age, mass, etc.) from the intensity of observable spectral lines.
Notably, some of the parameters predicted by the cINN are discrete ordinal quantities (such
as the number of star clusters that form within a cloud). This is achieved by de-quantizing
the discrete values with Gaussian noise, and re-quantizing the samples at test time. Gar-
cia Satorras et al. (2021), among others, provide some additional methodological insight
and justification for this technique. Figure 3.19 shows some examples of highly ambiguous
cases exhibiting two distinct solutions. Being able to access the full posterior allows for
pinpointing the source of the degeneracy to a single uncertain parameter, informing which
types of measurements would be able to resolve the ambiguity.

Ksoll et al. (2020) address a similar problem, but predicting the properties of indi-
vidual stars. The authors again find certain types of stars with ambiguous multi-modal
posteriors. They demonstrate how existing knowledge from other sources allows ruling out
certain peaks in the posterior, thus collapsing the degeneracy down to one well-defined so-
lution. This is only afforded by the full flexible posterior provided by the cINN, not e. g. by
parameter-wise scalar uncertainty estimates.

Haldemann et al. (2022) predict the internal structure and composition of exoplanets
from external measurements, a highly ambiguous inverse problem. As existing Markov
Chain Monte-Carlo (MCMC) methods are already able to solve the problem, the focus is
placed on the computational speed-up possible through cINNs. The authors verify that
the cINN results are almost equally accurate as the MCMC posteriors, while being multiple
orders of magnitude faster. This computational efficiency is especially helpful in astronomy,
as huge catalogues of objects has to be examined, and high computational costs can tangibly
hinder research progress.
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Figure 3.19.: Figure adapted from Kang et al. (2022), characterizing star-forming gas clouds.
Showing the posterior marginalized over a selection of four parameters of interest (rows) for
three different sets of observations (columns). Mcl: mass of cloud, SFE: star formation effi-
ciency, t: age, Ncluster: number of formed star clusters (discrete). The produced posteriors ex-
hibit varied multimodal shapes, including configurations where one peak is extremely sharp and
the other spread out wide (center column, third row). For the second and third columns, the pos-
terior is further conditioned by only selecting samples with Ncluster = 1 (blue) or Ncluster = 2
(red), revealing that the multi-modal degeneracy in the other parameters is caused by the uncer-
tainty in Ncluster.
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3.8.2. Ambiguous computed tomography registration

Another field requiring reliable and accurate uncertainty predictions is medical imaging, or
medicine in general. The following work by Trofimova et al. (2020) addresses a common
task related to image registration in surgery: before a surgery, a detailed 3D computed
tomography (CT) scan of a patient is performed. During the surgery itself, instruments,
implants, etc. can be guided by taking 2D X-ray images on the fly. The task of registration
is to find the precise location and orientation of the 2D X-ray image relative to the complete
3D scan made beforehand, allowing the surgeons to better judge the location of instruments
in the body.

As Trofimova et al. (2020) note, existing solutions attempt to find some single best fit,
not taking into account the ambiguities caused by symmetries of the human body. The au-
thors therefore propose using a cINN to perform the task in an uncertainty- and ambiguity-
aware way. In this case, the conditioning network performs the most complex parts of the
task, extracting joint features from the 3D and 2D scans using a refined and purpose-made
feed-forward network architecture. The invertible part of the cINN only needs to generate
simple pose vectors with five degrees of freedom conditioned on these features. Figure 3.20
shows some examples of the results, showcasing how the cINN is able to differentiate be-
tween ambiguous and unambiguous cases. This example demonstrates the flexibility and
ease-of-use of the cINN setup, able to quickly adapt existing task-specific feed-forward
architectures in the form of the conditioning network.

3.8.3. Photo-acoustic imaging

Nölke et al. (2021) apply cINNs to multispectral photo-acoustic imaging (PAI), a new
emerging technique in medical imaging. PAI in general uses a setup similar to ultrasound
imaging. However, instead of sending out ultrasound waves, the recording head sends out
laser pulses. These pulses slightly heat the tissue in the body according to its absorption
and scattering properties, producing minute shock waves inside the body, known as the
photoacoustic effect. These shock waves are then recorded as sound by the recording head.
Complex numerical algorithms are used to reconstruct a 3D image of the absorbance inside
the body, revealing structures invisible to all other imaging techniques. Zackrisson et al.
(2014) fittingly describe the method as ‘light in and sound out’ in their seminal work on the
method (as opposed to ‘sound in and sound out’ for classical ultrasound imaging).

Multispectral PAI specifically uses laser pulses with different wavelengths, allowing
for reconstruction of tissue parameters inside the body from the spectral response of the
observed tissue, in this case specifically blood oxygenation.

Nölke et al. (2021) apply a cINN to simulated multispectral PAI measurements, with
the task of recovering the blood oxygenation of a blood vessel surrounded by tissue. The
method is applied to different simulated scenarios, illustrated in figure 3.21: With multiple
blood vessels in the same volume and only a single detector, the problem is highly am-
biguous, and the cINN is unable to recover the properties of the target blood vessel. The
authors then show how using three detectors instead of one (or moving one detector to three
different positions and combining the measurements) can resolve this ambiguity once again.

This case serves to demonstrate how the cINN can serve as a method for experimental
design, allowing researchers to examine which experimental setups will produce degener-



56 3. Conditional Invertible Neural Networks

Figure 3.20.: Figure adapted from Trofimova et al. (2020) concerning 3D registration of 2D X-
ray images. The rows show examples with varying degrees of ambiguity. The left most image
is the input. The second column shows the posterior over one of the pose angles. Indicated
in red is the ground truth, in yellow the mean of the posterior (the solution that would result
from a model trained with L2-regression), in green and blue the two solutions indicated by the
two peaks of the posterior (fitted Gaussian mixture model). The remaining three columns show
the simulated X-ray image resulting from each of the predicted solutions. Indicated by the
first column of re-projected images, the higher posterior peak always represents a plausible and
sensible solution. The second column uses the lower posterior peak, only producing a plausible
solution for the first symmetric example (the peak is correspondingly less pronounced in the
posterior for the lower two examples). The third column shows that the unimodal L2-solution
is only valid for the last asymmetrical case.
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Figure 3.21.: Figure adapted from Nölke et al. (2021). For three different experimental photo-
acoustics setups (illustration first column), three representative posteriors over the blood oxy-
genation are shown. Introducing additional detectors (bottom row) allows resolving the inherent
ambiguity in the problem.

ate results in silico, informing decisions on how to implement the real measurement setup
beforehand.

3.8.4. Characterization of wind turbine blades

The recent publication by Noever-Castelos et al. (2021) concerns the characterization of
wind turbine blades. The manufacturing process of such blades introduces various impre-
cisions and variations, making each produced blade unique, so that the safety and stability
must be assured for each blade individually. Naturally, testing it under extreme load in-
cluding material failure can only be performed in silico (the blade can not be deployed if it
is destroyed in the testing procedure). While simulation methods are sufficiently advanced
and accurate to perform these tests, they require a detailed virtual model of each individual
blade, including the material properties and physical parameters of each component, called
a ‘digital twin’ (see figure 3.22 for a cross-section example). This includes many quantities
that can not be measured directly, such as the dimensions of internal components, material
densities and elasticity.

To produce the digital twin, an advanced pipeline is used in practice, consisting of
non-destructive physical measurements followed by two processing steps: the three dimen-
sional shape and profile of the turbine blade are first measured by a laser scanner. The blade
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Figure 3.22.: Figure from Noever-
Castelos et al. (2021): Profile of
a wind turbine blade, sowing dif-
ferent components consisting of
different materials (colors). The
construction and material choice
changes across the length of the
blade.

is then attached to an apparatus that induces oscillations with various frequencies and in
various directions and orientations. The amplitude and phase of the induced oscillations at
each position along the blade is then recorded across a large range of frequencies. The first
processing step consists of a sophisticated algorithm incorporating known physics princi-
ples, used to compute several properties at each point along the blade from the vibration
behaviour, including shear- and elasticity-modulus, moments of inertia, mass distribution
over the length, etc. The second processing step, and the one addressed with a cINN by
Noever-Castelos et al. (2021), has the goal of reconstructing the ‘digital twin’ of the blade
from this intermediate representation. As opposed to the first step, this second step can be
more ambiguous and ill-posed: the properties and shapes of the various internal and exter-
nal building materials must be resolved even though the intermediate representation only
describes the blade as a whole.

The application of a cINN to this problem is shown to come with several advantages in
practice: a large dataset can be easily produced by simulating the physical measurements for
randomly generated turbine blades in order to train the cINN. Reliable uncertainty estimates
and confidence intervals, as those produced by the cINN, are of course especially important
for applications such as these, where the worst-case scenario must be considered, and not
just the most likely ‘best-guess’ solution.

An especially salient example of the cINN’s capabilities is shown in figure 3.23: while
most of the parameters can be recovered quite accurately, indicated by the matching small
uncertainty estimates and tight spread around the true value, two parameters in particular,
concerning the densities of two different building materials, are highly degenerate, with the
uncertainty interval almost matching the prior distribution. Figure 3.24, shows the generated
posterior over these two material densities in 2D, which reveals that a tight linear correlation
exists between the two. What appeared like two degenerate parameters is in fact only one
dimension of degeneracy along an off-axis direction, while the orthogonal direction can be
predicted very precisely.

Comparing to the construction schematic reveals that the parameters in question are the
densities of two thin sheets of material laminated directly together. Because they overlap
almost completely, only their overall mass can be determined (orthogonal to the spread
in figure 3.24), but not how the mass is divided up between them, causing the observed
degeneracy. While it seems evident in retrospect, neither the existence nor the reason for
this 1-dimensional degeneracy affecting two parameters was known beforehand.

The work thereby demonstrates not only the importance of cINNs for determining
reliable uncertainties for safety-relevant applications, but also how it can identify and help
explain hidden degeneracies in the application.
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Figure 3.23.: Figure from Noever-Castelos et al. (2021). Each section on the X-axis indicates
a different estimated parameter. The points and error bars correspond to posteriors of 20 test-
set examples, indicating mean and variance. Each posterior is shifted so that the ground-truth
value is at 0, and the vertical axis units are scaled to the width of the prior (a posterior width
of 2 indicates that the parameter is unrecoverable). The spread around the ground-truth value
corresponds correctly to the estimated uncertainties.

Figure 3.24.: Figure from Noever-Castelos
et al. (2021). Posterior in 2D over two of
the most uncertain parameters in figure 3.23.
The tightly correlated posterior indicates that
the two unrecoverable parameters are caused
by a single 1D degeneracy (along the spread),
while a certain linear combination of the pa-
rameters can be precisely predicted (orthog-
onal to the spread).
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3.8.5. High-energy particle physics

To discover new and previously unknown effects and mechanisms, particle physics experi-
mentalists are interested in collision events with increasingly high energies, usually termed
‘hard scattering’ events in context. However, the particles resulting from such events almost
instantly decay into many lower-energy ‘soft’ particles which are observed by highly com-
plex detectors. The detector itself introduces further measurement noise and uncertainty.
The common approach for examining new hypotheses or models of unknown hard scatter-
ing events is to perform Monte-Carlo simulations of the measurements that would result
from the hypothesis, and statistically comparing the simulation outcomes to the actually
observed measurements.

As Bellagente et al. (2020) argue, in many cases it may be preferable to be able to
compare directly in the space of ‘hard scattering’ where the events of interest occur, not in
the space of resulting measurements, leading to simpler, computationally cheaper, and more
direct and intuitive evaluation of new physics models. Instead of comparing simulated mea-
surements to real ones, the goal is to invert the measurement process (so-called unfolding)
and then comparing directly to the hypothesis in question. In machine learning terms, a
domain transfer occurs in both directions, where only the former can be explicitly modeled
(hard scattering to measurement), while the ‘unfolding’ (measurement to hard scattering)
has remained challenging.

The highly probabilistic nature of the observation and measurement process naturally
requires a probabilistic way of expressing the inverse, hence Bellagente et al. (2020) choose
cINNs for the task. They demonstrate promising results in a number of different settings:
the cINN produces highly accurate and computationally cheap unfolding results and com-
pares favourably to existing GAN-based approaches for the task.

The application demonstrates the use of cINNs as a tool for probabilistic domain trans-
fer, in a similar way to transforming between the day and night domains in section 3.6.
Reliable and accurate distributions are arguably even more critical here than for computer
vision problems, seeing how extensively statistical methods and hypothesis tests are used in
particle physics.

3.8.6. Bayes-Flow

In a number of settings, using psychology as one of the main examples, the observed condi-
tioning input is an unordered set with varying size containing multiple observations of the
same system. For instance, we could imagine survey results from different groups of peo-
ple, from which the parameters of an underlying psychological model should be determined
for each group. Writing the result from each participant k as y(k), we want to condition the
generated distributions on the set of all observations, {y(k)}Kk=1. The standard cINN re-
stricts the conditioning input to a fixed size, i. e. a fixed number of observations K, which
is simply not realistic when surveying different groups etc.

The goal of the work by Radev et al. (2020) is therefore to model a conditional density
q(x | {y(k)}Kk=1) where K can change during training and test-time. The model is termed
‘Bayes-Flow’ as it is targeted to Bayesian practitioners in psychology and related fields.

To enable this, Radev et al. (2020) replace the usual conditioning network with a
permutation invariant summary-network, i. e. a feed-forward network that extracts features
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from a variable-sized set of inputs in a permutation invariant way, φ({y(k)}). In practice,
this is implemented with a small feed-forward network ψ that is first applied to all members
of the set independently, the resulting feature vectors are then summed, and finally this sum
is further processed by a feed-forward network ρ:

φ({y(k)}) = ρ

(∑
k

ψ
(
y(k)

))
(3.14)

This technique was first introduced by Zaheer et al. (2017) as ‘deep sets’. Sannai et al.
(2019, Theorem 2.1) show that such a mechanism is a universal approximator for all permutation-
invariant functions, and it has previously most prominently been used in neural processes, a
variational generative model conditioned on sets (Garnelo et al., 2018b,a; Kim et al., 2018).

Radev et al. (2020) verify and demonstrate the capabilities of the Bayes-Flow on sev-
eral relevant models from psychology and statistics, such as the Ricker model and the
Lévy-Flight model (see publication). It was later also successfully applied to epidemiol-
ogy (Radev et al., 2021), determining the underlying epidemiological parameters of the
COVID-19 pandemic in Germany. Schmitt et al. (2021) further extend the method to be
able to detect model mis-specification, i. e. whether the observations at test time actually
stem from the same process that was used to produce the training data, by performing out-
of-distribution detection on the output of the summary network.

Bayes-Flow demonstrates how the cINN architectures can be adapted easily and ef-
fectively and extended to new types of conditional modelling by replacing the conditioning
network with new types of feature extractors.

3.9. Conclusion

This chapter demonstrated how modified INNs (cINNs) trained as normalizing flows, can
serve as a powerful and flexible tool for conditional generative modelling. Their use in a
series of successful academic publications in other fields shows that their advantages go
beyond academic interest in machine learning.

The main strength of cINNs is in uncertainty quantification and diverse solutions. Be-
yond this, the non-parametric, multi-dimensional posteriors provide some degree of ex-
plainability, as demonstrated by the example in section 3.8.4, although it is not possible to
directly visualize the hidden features and inner processes of the cINNs.

However, we highlight that the basic principle in using the cINNs to solve problems
is shared with all other conditional generative approaches. The ‘only’ contribution are the
improved capabilities of cINNs to model conditional distributions. In the following two
chapters, we will instead use invertible generative models to address problems in two fun-
damentally different ways to existing approaches, yielding further advantages.
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In the previous chapter, specifically section 3.8, we can recognize a trend: Many of the
applications are so-called inverse problems, that follow a similar scheme. There is some
underlying system whose parameters or state x we wish to recover, but which cannot be
measured directly. Instead, we only have access to some observations y arising from that
system. For many of these cases, including those from section 3.8, scientists have developed
sophisticated theories on how the measurable quantities y arise from the hidden system pa-
rameters x. We will call such mappings the forward process. For this forward process, nu-
meric simulations are often readily available, accurate, and computationally fast. However,
the inverse process is required to infer the hidden states of a system from measurements.
While the forward process is well-defined and can be modeled accurately, the inverse is
often both intractable and ill-posed, since crucial information is lost in the forward pro-
cess. We consider such problems specifically in the following section, loosely following the
publication Ardizzone et al. (2019a).

Modeling the posterior of an inverse process taking the ambiguities into account is a
classical statistical task that can in principle be solved by Bayesian methods. However, exact
Bayesian treatment of real-world problems is usually intractable. The most common (but
expensive) solution is to resort to sampling, typically by a variant of Markov Chain Monte
Carlo (Robert and Casella, 2004; Gamerman and Lopes, 2006). If a model y = s(x) for the
forward process is available, approximate Bayesian computation (ABC) is often preferred,
which embeds the forward model in a rejection sampling scheme for the posterior p(x|y)
(Sunnåker et al., 2013; Lintusaari et al., 2017; Wilkinson, 2013). In the previous chapter, we
demonstrated that generative models, especially invertible generative models, can address
the task in a much more efficient way. However, we note that they do not make use of the
special structure of inverse problems that exhibit a well-posed and simple forward process.

In the chapter, we consider whether the asymmetry in difficulty beween forward and
inverse process can be exploited in some way. If it is easier for scientists to model the
forward rather than the inverse problem, it stands to argue that the same is true vor deep
learning models. This is precisely the approach we will follow in this chapter: We can
train an invertible model on the well-understood forward process x → y and get the in-
verse y → x for free by running it backwards at test time. To counteract the inherent
information loss of the forward process, we use additional latent noise variables z, which
capture the information about x that is not contained in y. Thus, the INN learns to associate
hidden parameter values x with unique pairs [y, z] of measurements and latent variables.
Forward training optimizes the mapping [y, z] = f(x) and implicitly determines its inverse
x = f−1(y, z) = g(y, z). Additionally, we make sure that the density p(z) of the latent
variables is shaped as a Gaussian distribution, as with standard normalizing flow models.
Figure 4.1 shows a standard deep learning prediction model on the left (able to be replaced
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Figure 4.1.: Abstract comparison of standard approach (left) and ours (right). The standard
direct approach requires a discriminative, supervised loss (SL) term between predicted and true
x, causing problems when y → x is ambiguous. Our network uses a supervised loss only for
the well-defined forward process x → y. Generated x are required to follow the prior p(x)
by an unsupervised loss (USL), while the latent variables z are made to follow a Gaussian
distribution, also by an unsupervised loss. See details in Section 4.1.2.

by a Bayesian neural network to obtain uncertainty estimates), and the proposed INN-based
method on the right.

This modification of the normalizing flow model is specific to the types of inverse prob-
lems described above and makes unique use of the INN’s bidirectional nature. Despite their
automatic invertibility, INNs have rarely made good use of bidirectional training, which
has been shown to be very beneficial in generative adversarial nets and auto-encoders (Zhu
et al., 2017a; Dumoulin et al., 2016; Donahue et al., 2017; Teng et al., 2018). In fact, op-
timization for cycle consistency forces such models to converge to invertible architectures,
making fully invertible networks a natural choice.

4.1. Method

4.1.1. Problem specification

To re-state our problem setting in a complete way, we imagine researchers are interested in
a set of variables x ∈ RD describing some system of interest, but only variables y ∈ RM

can actually be observed, for which the theory of the respective research field provides a
model y = s(x) for the forward process, e. g. in form of a simulation program. As the
notation suggests, in this chapter, we exclusively examine deterministic forward models, or
at least deterministic for all practical purposes. In this case, since the transformation from x
to y incurs an information loss, the intrinsic dimensionm of y must be smaller thanD, even
if the nominal dimensions M satisfy M > D. As before, we want to express the inverse
model as a conditional probability p(x | y). The mathematical derivation of this probability
from the forward model is intractable in the applications we are going to address. Note
that for the case described, p(x | y) is a singular distribution without a Radon-Nikodym
probability density. In the same way as the δ-distribution, it will have some infinitely sharp
peaks. This is not a problem in itself, but it has some implications for the training procedure
below, e. g. precluding maximum likelihood training.

As usual, aim at approximating p(x | y) by a tractable model q(x | y), taking advan-
tage of the possibility to create an arbitrary amount of training data {(xi, yi)}Ni=1 from the
known forward model s(x) and a suitable prior p(x). While this would allow for training
of a standard regression model, we want to approximate the full posterior probability. To
this end, we introduce a latent random variable z ∈ RK drawn from a multivariate standard
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normal distribution and reparametrize q(x | y) in terms of a deterministic function g of y
and z, represented by a neural network with parameters θ:

x = g(y, z; θ) with z ∼ p(z) = N (z; 0, IK). (4.1)

Note that we distinguish between hidden parameters x representing unobservable real-
world properties and latent variables z carrying information intrinsic to our model. Choos-
ing a Gaussian prior for z poses no additional limitation, as proven by the theory of non-
linear independent component analysis (Hyvärinen and Pajunen, 1999).

In contrast to standard methodology, we propose to learn the model g(y, z; θ) of the
inverse process jointly with a model f(x; θ) approximating the known forward process s(x):

[y, z] = f(x; θ) = [fy(x; θ), fz(x; θ)] = g−1(x; θ) with fy(x; θ) ≈ s(x). (4.2)

Functions f and g share the same parameters θ and are implemented by an INN. Our exper-
iments show that joint bi-directional training of f and g avoids many complications arising
in e. g. cVAEs, Bayesian neural networks, and to some extent cINNs, which all have to
learn the forward process implicitly. Instead, using the bidirectional approach we can apply
a supervised loss directly on the forward process, ensuring its consistency.

The relation f = g−1 is naturally enforced by the invertible network architecture,
provided that the nominal and intrinsic dimensions of both sides match. Note that no mod-
ification to standard (unconditional) INN architectures is necessary, unlike with the cINN.
When m ≤M denotes the intrinsic dimension of y, the latent variable z must have dimen-
sion K = D −m, assuming that the intrinsic dimension of x equals its nominal dimension
D. If the resulting nominal output dimensionM+K exceedsD, we augment the input with
a vector x0 ∈ RM+K−D of zeros and replace x with the concatenation [x, x0] everywhere.

4.1.2. Bi-directional training

Invertible networks offer the opportunity to simultaneously optimize for losses on both the
in- and output domains (Grover et al., 2017), which allows for more effective training.
Hereby, we perform forward and backward iterations in an alternating fashion, accumulat-
ing gradients from both directions before performing a parameter update. For the forward
iteration, we penalize deviations between simulation outcomes yi = s(xi) and network
predictions fy(xi) with a loss Ly

(
yi, fy(xi)

)
. Depending on the problem, Ly can be any

supervised loss, e.g. squared loss for regression or cross-entropy for classification.

The loss for latent variables penalizes the mismatch between the joint distribution of
network outputs q

(
y = fy(x), z = fz(x)

)
and the product of marginal distributions of

simulation outcomes p
(
y = s(x)

)
and latents p(z) as Lz

(
q(y, z), p(y) p(z)

)
.

We block the gradients of Lz with respect to y to ensure the resulting updates only
affect the predictions of z and do not worsen the predictions of y. Thus, Lz enforces two
things: firstly, the generated z must follow the desired normal distribution p(z); secondly,
y and z must be independent upon convergence (i.e. p(z | y) = p(z)), and not encode the
same information twice. In appendix Sec. B.1, we prove the following proposition:

Proposition 1 If an INN f(x) = [y, z] is trained as described, and both the supervised
loss Ly=E[(y−fy(x))2] and the unsupervised loss Lz=D

(
q(y, z), p(y) p(z)

)
reach zero,

sampling according to equation (4.1) with g= f−1 returns the true posterior p(x | y∗) for
any measurement y∗.
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Although Ly and Lz are sufficient asymptotically, a small amount of residual depen-
dency between y and z remains after a finite amount of training. This causes q(x | y) to
deviate from the true posterior p(x | y). To speed up convergence, we also define a loss
Lx on the input side, implemented again by MMD. It matches the marginal distribution of
backward predictions q(x) against the prior data distribution p(x) through Lx

(
p(x), q(x)

)
.

In we find in the appendix, Sec. B.1, Lx will be zero when the forward losses Ly and Lz

have converged to zero. Thus, incorporating Lx does not alter the optimum, but improves
convergence in practice. It does not compare conditional distributions, so it does not train
the network directly for the problem. The Lx loss can be replaced with a loss comparing
conditional distributions to get a behaviour more similar to the cINN.

Finally, if we use padding on either network side, loss terms are needed to ensure no
information is encoded in the additional dimensions. We a) use a squared loss to keep those
values close to zero and b) in an additional inverse training pass, overwrite the padding
dimensions with noise of the same amplitude and minimize a reconstruction loss, which
forces these dimensions to be ignored.

4.1.3. Maximum mean discrepancy

Maximum Mean Discrepancy (MMD) is a kernel-based method for comparison of two
probability distributions that are only accessible through samples (Gretton et al., 2012).
While a trainable discriminator loss is often preferred for this task in high-dimensional prob-
lems, especially in GAN-based image generation, MMD also works well, is easier to use
and much cheaper, and leads to more stable training (Tolstikhin et al., 2017). The method
requires a kernel function as a design parameter, and we found that kernels with heavier
tails than Gaussian are needed to get meaningful gradients for outliers. We achieved best
results with the Inverse Multiquadratic k(x, x′) = 1/(1+ ∥(x−x′)/h∥22), reconfirming the
suggestion by Tolstikhin et al. (2017). Since the magnitude of the MMD depends on the
kernel choice, the relative weights of the losses Lx, Ly, Lz are adjusted as hyperparameters,
such that their effect is about equal.

4.2. Experiments

We first demonstrate the capabilities of the bidirectionally trained INNs on two well-behaved
synthetic problems and then show results for two real-world applications from the fields of
medicine and astrophysics. Additional details on the datasets and network architectures are
provided in the appendix. In the following, we compare the bidirectional INN approach
with the (non-learned) approach of approximate Bayesian computation (see below), as well
as common feed-forward alternatives. In principle, a cINN could also be used to adress the
tasks. A direct comparison between bidirectionally trained INNs and cINNs on the same
tasks along with a more detailed quantitative comparison with many additional feed-forward
methods are presented by Kruse et al. (2019), and not part of this thesis.

4.2.1. Artificial data – Gaussian mixture

To test basic viability of INNs for inverse problems, we train them on a standard 8-component
Gaussian mixture model p(x). The forward process is very simple: The first four mixture
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Ground truth INN, all losses INN, only Ly + Lz INN, only Lx

Figure 4.2.: Viability of INN for a basic inverse problem. The task is to produce the correct
(multi-modal) distribution of 2D points x, given only the color label y∗. When trained with all
loss terms from Sec. 4.1.2, the INN output matches ground truth almost exactly (2nd image).
The ablations (3rd and 4th image) show that we need Ly and Lz to learn the conditioning
correctly, whereas Lx helps us remain faithful to the prior, ignoring the condition.

components (clockwise) are assigned label y = red, the next two get label y = blue, and
the final two are labeled y = green and y = purple (Fig. 4.2). The true inverse posteriors
p(x | y∗) consist of the mixture components corresponding to the given one-hot-encoded
label y∗. We train the INN to directly regress one-hot vectors y using a squared loss Ly, so
that we can provide plain one-hot vectors y∗ to the inverse network when sampling p(x | y∗).
We observe the following: (i) The INN learns very accurate approximations of the poste-
riors and does not suffer from mode collapse. (ii) The coupling block architecture does
not reduce the network’s representational power – results are similar to standard networks
of comparable size as shown in figure 4.4. (iii) Bidirectional training works best, whereas
forward training alone (using only Ly and Lz) captures the conditional relationships prop-
erly, but places too much mass in unpopulated regions of x-space. Conversely, pure inverse
training (just Lx) learns the correct x-distribution, but loses all conditioning information.

Using feed-foward networks of comparable size to the INN (number of parameters),
we train a series of other conditional generative methods to qualitatively compare their
behaviour in figure 4.4.

cVAE There is some similarity between the training setup of our method (Fig. 4.3, right)
and that of cVAE (Fig. 4.3, left), as the forward and inverse pass of an INN can also be seen
as an encoder-decoder pair. The main differences are that the cVAE learns the relationship
x → y only indirectly, since there is no explicit loss for it, and that the INN requires no
reconstruction loss, since it is bijective by construction. The problems inherent to VAEs
discussed in section 2.3 leads to the generated distributions being too spread out.

cVAE-IAF We adapt the cVAE to use Inverse Autoregressive Flow (Kingma et al., 2016)
between the encoder and decoder, making it more similar to a normalizing flow model. On
the Gaussian mixture toy problem, the trained cVAE-IAF generates correct posteriors on
par with our INN, see Fig. 4.4, but the model is larger and more complex.

cGAN Training a conditional GAN of network size comparable to the INN (counting
only the generator) and only two noise dimensions turned out to be challenging. Even with
additional pre-training to avoid mode collapse, the individual modes belonging to one label
are reduced to nearly one-dimensional structures.
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Figure 4.3.: Abstraction of the cVAE-IAF training scheme compared to our INN from Fig. 4.1.
For the standard cVAE, the IAF component is omitted.

Ground truth INN, all losses cVAE cVAE-IAF

cGAN Larger cGAN Generator + MMD Dropout sampling

Figure 4.4.: Results of several existing methods for the Gaussian mixture toy example.

Larger cGAN In order to match the results of the INN, we trained a more complex cGAN
with 2M parameters instead of the previous 10K, and a latent dimension of 128, instead of
2. To prevent mode collapse, we introduced an additional regularization: an extra loss term
forces the variance of generator outputs to match the variance of the training data prior.
With these changes, the cGAN can be seen to recover the posteriors reasonably well.

Generator + MMD Another option is to keep the cGAN generator the same size as our
INN, but replace the discriminator with an MMD loss (cf. Sec. 4.1.3). This loss receives a
concatenation of the generator output x and the label y it was supplied with, and compares
these batch-wise with the concatenation of ground truth (x, y)-pairs. Note that in contrast to
this, the corresponding MMD loss of the INN only receives x, and no information about y.
For this small toy problem, we find that the hand-crafted MMD loss dramatically improves
results compared to the standard cGAN.
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Dropout sampling The method of dropout sampling with learned error terms (Kendall
and Gal, 2017) is by construction not able to produce multi-modal outputs, and therefore
fails on this task.

Latent space analysis

To analyze how the latent space of our INN is structured for this task, we choose a fixed
label y∗ and sample z from a dense grid. For each z, we compute x through our inverse
network and colorize this point in latent (z) space according to the distance from the closest
mode in x-space. We can see that our network learns to shape the latent space such that
each mode receives the expected fraction of samples, shown in figure 4.5.

Figure 4.5.: Layout of INN latent space for one fixed label y∗, colored by mode closest to
x = g(y∗, z). For each latent position z, the hue encodes which mode the corresponding x
belongs to and the luminosity encodes how close x is to this mode. Note that colors used here
do not relate to those in Fig. 4.2, and encode the position x instead of the label y. The three
columns correspond to labels green, blue and red Fig. 4.2. White circles mark areas that contain
50% and 90% of the probability mass of latent prior p(z).

4.2.2. Artificial data – inverse kinematics

For a task with a more complex and continuous forward process, we simulate a simple
inverse kinematics problem in 2D space: An articulated arm moves vertically along a rail
and rotates at three joints. These four degrees of freedom constitute the parameters x. Their
priors favor a pose with 180◦ angles and centered origin. The forward process is to calculate
the coordinates of the end point y, given a configuration x. The inverse problem asks for the
posterior distribution over all possible inputs x that place the arm’s end point at a given y
position. More specifically, the dataset is constructed using Gaussian priors xi ∼ N (0, σi),
with σ1 = 0.25 and σ2 = σ3 = σ4 = 0.5

∧
= 28.65◦. For the arm lengths, we choose

l1 = l2 = 0.5 and l3 = 1.0. The forward process can be analytically expressed as

y1 = x1 + l1 sin(x2) + l2 sin(x3 − x2) + l3 sin(x4 − x2 − x3) (4.3)

y2 = l1 cos(x2) + l2 cos(x3 − x2) + l3 cos(x4 − x2 − x3), (4.4)

and is illustrated in figure 4.6, right.

An example for a fixed y∗ is shown in Fig. 4.6, where we compare our INN to a cVAE
(see figure 4.3 for conceptual comparison of architectures). Adding Inverse Autoregressive
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Figure 4.6.: Distribution over articulated poses x, conditioned on the end point y∗. The
desired end point y∗ is marked by a gray cross. A dotted line on the left represents the rail
the arm is based on, and the faint colored lines indicate sampled arm configurations x taken
from the true (ABC) or learned (INN, cVAE) posterior p(x | y∗). The prior (right) is shown for
reference. The actual end point of each sample may deviate slightly from the target y∗; contour
lines enclose the regions containing 97% of these end points. We emphasize the articulated arm
with the highest estimated likelihood for illustrative purposes. This example is a particularly
difficult case where the differences between methods are most visible. More representative
examples and quantitative evaluation is given below in figure 4.7 and table 4.1.

Flow (IAF, Kingma et al., 2016) does not improve cVAE performance in this case (see
table 4.1). The chosen y∗ is a difficult example, because it is an unlikely end point position
according to the prior p(x); it is outside the prior’s 97% quantile area (Fig. 4.6, right), so that
p(x | y∗) considerably deviates from p(x) and has a strongly bi-modal posterior p(x | y∗).
Only few training samples have been observed in this region, requiring good generalization.
Easier, more representative examples are shown in figure 4.7, where the difference is not as
easily visible by eye, but clearly measurable quantitatively.

In the inverse kinematics case, due to the computationally cheap forward process,
we can use approximate Bayesian computation (ABC) to sample from the (approximate)
ground truth posterior. While there is a whole field of research concerned with ABC ap-
proaches and their efficiency-accuracy trade-offs, our use of the method here is limited to
the essential principle of rejection sampling. When we require N samples of x from the
posterior p(x | y∗) conditioned on some y∗, there are two basic ways to obtain them:

Threshold: We set an acceptance threshold ϵ, repeatedly draw x-samples from the prior,
compute the corresponding y-values (via simulation) and keep those where dist(y, y∗) < ϵ,
until we have accepted N samples. The smaller we want ϵ, the more simulations have to be
run, which is why we use this approach only for the experiment in Sec. 4.2.2, where we can
afford to run the forward process millions or even billions of times.

Quantile: Alternatively, we choose what quantile q of samples shall be accepted, and
then run exactly N/q simulations. All sampled pairs (x, y) are sorted by dist(y, y∗) and the
N closest to y∗ form the posterior. This allows for a more predictable runtime when the
simulations are costly, as in the medical application in Sec. 4.2.3 where q = 0.005.

Compared to ground truth, we find that both INN and cVAE recover the two symmetric
modes well. However, the true end points of x-samples produced by the cVAE tend to miss
the target y∗ by a wider margin. This is because the forward process x→ y is only learned
implicitly during cVAE training. A trained cGAN fails completely: it misses the bi-modal
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posterior entirely, sampling instead from a distribution much closer to the prior. It is not
included in the further experiments.

Table 4.1.: Quantitative evaluation of the inverse kinematics experiment. The performance
measurements are explained in the text below and in section 4.2.3.

Method Mean re-sim. err. Median re-sim. err. Calibration err.

cVAE 0.0368 0.0307 7.78%
cVAE-IAF 0.0368 0.0307 7.81%
INN 0.0139 0.0113 0.96%

We use two quantitative measurements to affirm the success of the method, the results
of which are given in table 4.1. Firstly, we compute the re-simulation error: We apply the
simulation s(x̂) to samples from the posterior, and compare the simulation outcome to the
conditioning y∗. If the posterior is faithful, each sample, when re-simulated, should map
exactly back to y∗, and we measure this in euclidian distance. Second, we compute the
calibration error. In short, the calibration error measures to what degree the confidence
intervals implied by the posterior agree with the actual performance (i. e. is the ground truth
value inside the 68%-interval in 68% of cases, etc.). In detail, we compute the fraction of
ground truth inliers αinl. for corresponding α-confidence-region (α ∈ [0, 1]) of the marginal
posteriors in each dimension of x. The reported error is then the median of |αinl. − α| over
all α. The calibration error and alternative measurements is discussed in greater detail in
chapter 5.

The resulting observation in table 4.1 is that the INN is a large improvement over
the cVAE-methods in both re-simulation error as well as calibration, due to the INN being
directly trained in a supervised way to guarantee consistency of the posterior.

4.2.3. Estimating parameters of biological tissue

After demonstrating the viability on synthetic data, we apply our method to two real world
problems from medicine and astronomy. In medical science, the functional state of biolog-
ical tissue is of interest for many applications. Tumors, for example, are expected to show
changes in oxygen saturation sO2 (Hanahan and Weinberg, 2011). Such changes cannot
be measured directly, but influence the reflectance of the tissue, which can be measured by
multispectral cameras (Lu and Fei, 2014). Since ground truth data can not be obtained from
living tissue, we create training data by simulating observed spectra y from a tissue model
x involving sO2 , blood volume fraction vhb, scattering magnitude amie, anisotropy g and
tissue layer thickness d (Wirkert et al., 2016). This model constitutes the forward process,
and traditional methods to learn point estimates of the inverse (Wirkert et al., 2016, 2017;
Claridge and Hidovic-Rowe, 2013) are already sufficiently reliable to be used in clinical tri-
als. However, these methods can not adequately express uncertainty and ambiguity, which
may be vital for an accurate diagnosis.

Competitors. We train an INN for this problem, along with two ablations (as in
Fig. 4.2), as well as a cVAE with and without IAF (Kingma et al., 2016) and a network
using the method of Kendall and Gal (2017), with dropout sampling and additional aleatoric
error terms for each parameter. The latter also provides a point-estimate baseline (classical
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Figure 4.7.: Posteriors generated for typical, less challenging observations y∗ than in Fig. 4.6.

NN) when used without dropout and error terms, which matches the current state-of-the-art
results by Wirkert et al. (2017). Finally, we compare to ABC, approximating p(x | y∗) with
the 256 samples closest to y∗. Note that with enough samples, ABC would produce the
true posterior. We performed 50 000 simulations to generate samples for ABC at test time,
taking one week on a GPU, but still observe strong statistical noise and inconsistencies in the
posteriors. This is because ecause ABC has no learned component and can not generalize
from a smaller number of seen examples. The learning-based methods are trained within
minutes, on a training set of 15 000 samples generated offline.

Error measures. We are interested in both the accuracy (point estimates), and the
shape of the posterior distributions. For point estimates x̂, i.e. MAP estimates, we compute
the deviation from ground-truth values x∗ in terms of the RMSE over test set observations
y∗, RMSE =

√
Ey∗[∥x̂− x∗∥2]. The scores are reported both for the main parameter of

interest sO2 , and the parameter subspace of sO2 , vhb, amie, which we found to be the only
recoverable parameters. Again, we compute the re-simulation error as well as the calibration
error. All values are computed over 5000 test-set observations y∗, or 1000 observations in
the case of re-simulation error. Each posterior uses 4096 samples, or 256 for ABC; all MAP
estimates are found using the mean-shift algorithm.

Quantitative results. Evaluation results for all methods are presented in Table 4.2.
The INN matches or outperforms other methods in terms of point estimate error. Its accu-
racy deteriorates slightly when trained without Lx, and entirely when trained without the
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Table 4.2.: Quantitative results in medical application. We measure the accuracy of
point/MAP estimates as detailed in Sec. 4.2.3. Best results within measurement error are bold,
and we determine uncertainties (±) by statistical bootstrapping. The parameter sO2

is the most
relevant in this application, whereas error all means all recoverable parameters (sO2

, vhb and
amie). Re-simulation error measures how well the MAP estimate x̂ is conditioned on the obser-
vation y∗. Calibration error is the most important, as it summarizes correctness of the posterior
shape in one number; see figure 4.10 for more calibration results.

Method MAP error sO2 MAP error all MAP re-simulation error Calibration error
NN (+ Dropout) 0.057 ± 0.003 0.56 ± 0.01 0.397 ± 0.008 1.91%
INN 0.041 ± 0.002 0.57 ± 0.02 0.327 ± 0.007 0.34%
INN, only Ly,Lz 0.066 ± 0.003 0.71 ± 0.02 0.506 ± 0.010 1.62%
INN, only Lx 0.861 ± 0.033 1.70 ± 0.02 2.281 ± 0.045 3.20%
cVAE 0.050 ± 0.002 0.74 ± 0.02 0.314 ± 0.007 2.19%
cVAE-IAF 0.050 ± 0.002 0.74 ± 0.03 0.313 ± 0.008 1.40%
ABC 0.036 ± 0.001 0.54 ± 0.02 0.284 ± 0.005 0.90%

Simulation noise 0.129 ± 0.001
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Figure 4.8.: Sampled posterior of 5 parameters for fixed y∗ in medical application.
For a fixed observation y∗, we compare the estimated posteriors p(x | y∗) of different methods.
The bottom row also includes the point estimate (dashed green line). Ground truth values x∗

(dashed black line) and prior p(x) over all data (gray area) are provided for reference.

conditioning losses Ly and Lz , just as in Fig. 4.2. For our purpose, the calibration error is
the most important metric, as it summarizes the correctness of the whole posterior distribu-
tion in one number (also see figure 4.10). Here, the INN has a big lead over cVAE(-IAF)
and Dropout, and even over ABC due to the low ABC sample count. Figure 4.10 plots the
calibration error, αinliers − α, against the level of confidence α in more detail. Negative
values mean that a model is overconfident, while positive values say the opposite.

Qualitative results. Fig. 4.8 shows generated parameter distributions for one fixed
measurement y∗, comparing the INN to cVAE-IAF, Dropout sampling and ABC. The three
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former methods use a sample count of 160 000 to produce smooth curves. Due to the sparse
posteriors of 256 samples in the case of ABC, kernel density estimation was applied to its
results, with a bandwidth of σ = 0.1. The results produced by the INN provide relevant
insights: First, we find that the posteriors for layer thickness d and anisotropy g match
the shape of their priors, i.e. y∗ holds no information about these parameters – they are
unrecoverable. This finding is supported by the ABC results, whereas the other two meth-
ods misleadingly suggest a roughly Gaussian posterior. Second, we find that the sampled
distributions for the blood volume fraction vhb and scattering amplitude amie are strongly
correlated (rightmost plot). This phenomenon is not an analysis artifact, but has a sound
physical explanation: As blood volume fraction increases, more light is absorbed inside the
tissue. For the sensor to record the same intensities y∗ as before, scattering must be in-
creased accordingly. Since the MC dropout network employs a mean-field model, it cannot
detect effects like this.

The last row shows good agreement between INNs and ABC, but also highlights the
main problem with the latter, namely its sampling efficiency. Although the same number
of samples has been used for all three methods, the ABC posteriors are much more noisy,
due to a low sample acceptance rate of 7.6 · 10−5, i.e. less than 20 samples survive. Better
results require a significantly larger training set, which is prohibitively expensive due to the
slow simulation. While speed-ups could be achieved, e.g. by replacing the simulation with
a fast (trained) forward model or by using a more efficient sampling technique, we did not
pursue this further.

Figure 4.9 shows the results when the INN trained in Sec. 4.2.3 is applied pixel-wise
to multispectral endoscopic footage. In addition to estimating the oxygenation sO2 , we
measure the uncertainty in the form of the 68% confidence interval.
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Figure 4.9.: INN applied to real footage to predict oxygenation sO2
and uncertainty. The

clips (arrows) on the connecting tissue cause lower oxygenation (blue) in the small intestine.
Uncertainty is low in crucial areas and high only at some edges and specularities.

4.2.4. Estimating parameters of star cluster formation

For a real-world astronomy application, we use a similar problem setting as already men-
tioned in section 3.8.1: Star clusters are born from a large reservoir of gas and dust that
permeates the Galaxy, the interstellar medium (ISM). The densest parts of the ISM are
called molecular clouds, and star formation occurs in regions that become unstable under
their own weight. The process is governed by the complex interplay of competing physi-
cal agents such as gravity, turbulence, magnetic fields, and radiation; with stellar feedback
playing a decisive regulatory role (S. Klessen and C. O. Glover, 2016). To characterize the
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Figure 4.10.: Calibration curves for all four methods compared in Sec. 4.2.3.

impact of the energy and momentum input from young star clusters on the dynamical evolu-
tion of the ISM, astronomers frequently study emission lines from chemical elements such
as hydrogen or oxygen. These lines are produced when gas is ionized by stellar radiation,
and their relative intensities depend on the ionization potential of the chemical species, the
spectrum of the ionizing radiation, the gas density as well as the 3D geometry of the cloud,
and the absolute intensity of the radiation (Pellegrini et al., 2011). Key diagnostic tools are
the so-called BPT diagrams (after Baldwin et al., 1981) emission of ionized hydrogen, H+
, to normalize the recombination lines of O++ , O+ and S+ (see also Kewley et al., 2013).
We investigate the dynamical feedback of young star clusters on their parental cloud using
the WARPFIELD 1D model developed by Rahner et al. (2017). It follows the entire tem-
poral evolution of the system until the cloud is destroyed, which could take several stellar
populations to happen. At each timestep we employ radiative transfer calculations (Reissl
et al., 2016) to generate synthetic emission line maps which we use to train the neural net-
work. Similar to the medical application from Section 4.2.3, the mapping from simulated
observations to underlying physical parameters (such as cloud and cluster mass, and total
age of the system) is highly degenerate and ill-posed. As an intermediary step, we therefore
train our forward model to predict the observable quantities y (emission line ratios) from
composite simulation outputs x (such as ionizing luminosity and emission rate, cloud den-
sity, expansion velocity, and age of the youngest cluster in the system, which in the case
of multiple stellar populations could be considerably smaller than the total age). Using the
inverse of our trained model for a given set of observations y∗, we can obtain a distribution
over the unobservable properties x of the system.

Results for one specific y∗ are shown in Fig. 4.11. Note that the INN recovers a de-
cidedly multimodal distribution of x that visibly deviates from the prior p(x), as well as
finding strong correlations in solution space. For example, the measurements y∗ inves-
tigated may correspond to a young cluster with large expansion velocity, or to an older
system that expands more slowly. Finding these ambiguities in p(x | y∗) and identifying
degeneracies in the underlying model are pivotal aspects of astrophysical research, and a
method to effectively approximate full posterior distributions has the potential to lead to a
major breakthrough in this field.
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Figure 4.11.: Astrophysics application. Properties x of star clusters in interstellar gas clouds
are inferred from multispectral measurements y. We train an INN on simulated data, and show
the sampled posterior of 5 parameters for one y∗ (colors as in Fig. 4.8, second row). The
peculiar shape of the prior is due to the dynamic nature of these simulations. We include this
application as a real-world example for the INN’s ability to recover multiple posterior modes,
and strong correlations in p(x | y∗).

4.3. Conclusion

In summary, we see the following fundamental advantages of the INN-based method com-
pared to alternative approaches: Firstly, one can learn the forward process and obtain the
more complicated inverse process ‘for free’, as opposed to other conditional generative
models (especially cGANs, cVAEs), which focus only on the inverse and learn the forward
process only implicitly. This improves the consistency of the posterior samples with the
observation in inverse problems. Secondly, similar to the cINN, the learned posteriors are
not restricted to a particular parametric form, in contrast to classical feed-foward variational
methods. Kruse et al. (2019) perform a more in-depth comparison of different methods for
inverse problems, confirming the results from this thesis.

One limitation of the presented bidirectional INN training is the use of the MMD loss,
the effectiveness of which breaks down in very high-dimensional spaces such as for images.
Without further improvements, the application of the bidirectional INNs is therefore con-
strained to lower-dimensional tasks, as the ones demonstrated above. Maximum-likelihood-
based training as that offered by the cINN is less sensitive in this respect.
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In this chapter, we once again deviate from standard maximum likelihood training, and in-
stead use the Information Bottleneck (IB) principle, a tool from information theory, to train
our normalizing flows. Due to training with IB, we will call these models IB-INNs. Specifi-
cally, our models will be class-conditional, i. e. the condition y will be a discrete class-label.
We find that the IB training technique has special implications using the model as a so-called
generative classifier, a certain way to use generative models for classification discussed in
more detail below. In the first section, we will discuss the background and existing work
surrounding both the information bottleneck as well as generative classifiers. After that, we
can restate in more detail the goal and significance of the work in this chapter, connect-
ing the two concepts. Then, we introduce our methodology and theoretical results, before
demonstrating the advantages and capabilities or the IB-INNs in various experiments.

The chapter is based in large part on the two publications Ardizzone et al. (2020b) and
Mackowiak et al. (2021).

5.1. Background and Introduction

5.1.1. The Information Bottleneck

With the Information Bottleneck being an information theoretic concept, we first briefly
summarize some basic ideas from information theory. We also recall the notation introduced
in section 2.1, writing random variables as upper case letters and simple vectors as lower
case, as this distinction plays a more important role in this chapter.

Imagining some random variable U , the Shannon information entropy is the first con-
cept discussed. Intuitively, is quantifies the amount of information that a random variable
carries. It can be computed as

h(U) = −
∫

log p(U)dp(U) (5.1)

Here, p. (U) means using the probability as an integration measure. In simple terms, to
p(U)dU if U is continuous, otherwise equal to a sum over the discrete values that U can
take. More details and explanation are provided in the common literature on information
theory, e. g. Cover and Thomas (2012). Cross-entropy uses a different probability density
q(U) in addition to p(U), computed as

hq(U) = −
∫

log q(U)dp(U) (5.2)
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The connections to normalizing flows is easily apparent, for instance the negative log-
likelihood loss is exactly the same as the cross-entropy between the model’s density and
the true one. For instance, as the cross-entropy is an upper bound on the entropy, we can
use minization of the cross-entropy (or negative log-likelihood) as a bounded minimization
of the information entropy of some variable.

The second concept introduced here is the Mutual Information (MI) between two dif-
ferent random variables U and V . Intuitively speaking, the MI quantifies the amount of in-
formation that two variables share. The intuitive understanding carries over to the definition,
the MI is computed by adding up the information entropy of each variable, h(U) + h(V ),
and subtracting the information of the joint distribution h(U, V ). Any duplicated or shared
information is added twice (in h(U) and h(V )), but only subtracted once. We therefore
write the MI as

I(U, V ) = h(U) + h(V )− h(U, V ). (5.3)

Inserting the definitions of the information entropy, we get the following explicit formula:

I(U, V ) =

∫
log

(
p(U, V )

p(U)p(V )

)
dp(U, V ) (5.4)

From this, we find that we can also formulate the definition using the KL-divergence, specif-
ically between the joint and factored distributions:

I(U, V ) = DKL

(
p(U, V )

∥∥∥p(U)p(V )
)

(5.5)

The Information Bottleneck (IB) objective is formulated using the mutual informa-
tion, and allows for an information-theoretic view of various signal-processing systems,
among them deep neural networks. We consider the setting where we have some observed
input variable X , and want to predict some output Y from it, the standard setup in super-
vised learning. For simplicity, we limit the discussion to the common case of discrete Y
(i.e. class labels), discussion possible extensions to continuous Y later. The IB then postu-
lates existence of a latent space Z, where all information flow between X and Y is chan-
neled through (hence the method’s name). In order to optimize predictive performance, IB
attempts to maximize the mutual information I(Y,Z) between Y and Z. Simultaneously,
it strives to minimize the mutual information I(X,Z) between X and Z, forcing the model
to ignore irrelevant aspects of X which do not contribute to classification performance and
only increase the potential for overfitting. The objective can thus be expressed as

LIB = I(X,Z)− β I(Y,Z) . (5.6)

The trade-off parameter β is crucial to balance the two aspects.

The IB in this formulation was originally introduced by Tishby et al. (2000) as a gen-
eral tool for information-theoretic optimization of compression methods. The idea was
expanded on by Chechik et al. (2005); Gilad-Bachrach et al. (2003); Shamir et al. (2010)
and Friedman et al. (2001). A relationship between IB and deep learning was first pro-
posed by Tishby and Zaslavsky (2015), and later experimentally examined by Shwartz-Ziv
and Tishby (2017), who use IB for the understanding of neural network behavior and train-
ing dynamics. Several works have since attempted to leverage the IB principle to train or
regularize feed-forward classification models p(Y |X). For instance, a close relation of IB
to dropout, disentanglement, and variational auto-encoding was discovered by Achille and
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Soatto (2018), which led them to introduce Information Dropout as a way to take advantage
of IB in discriminative models. Secondly, the Variational Information Bottleneck (VIB,
Alemi et al., 2017; Kolchinsky et al., 2017) provides a feasible approximation in form of
an upper bound for the IB. These models are shown to have improved robustness in various
aspects compared to standard-trained discriminative classifiers, such as less overfitting and
resilience to adversarial attacks.

In this chapter, we will consider the relationship between X and Y from the exact
opposite perspective as previous works – instead of using the IB for a standard prediction
model p(Y |X), we train an invertible neural network (INN) as a conditional generative
likelihood model p(X|Y ), i. e. as a conditional normalizing flow. In this case, X is the
variable of which the likelihood is predicted, and Y is the class condition. As with the
models presented in previous chapters, it is a generative model because one can sample from
the learned p(X|Y ) at test time to generate new examples from any class. However in this
chapter, we focus on optimal likelihood estimation for existing inputs, not the generating
aspect.

5.1.2. Generative classifiers

The idea of Generative Classifiers (GCs) is not usually associated with the information
bottleneck, only in the course of this chapter will it be revealed that the IB and GCs fit
together. GCs are in purely a way how to use conditional generative models for solving
classification tasks, regardless of model type or training procedure.

In the vast majority of cases in deep learning, classification is performed through so-
called discriminative classifiers (DCs), e. g. softmax classification. This means they directly
predict the class probabilities p(Y |X). In contrast, GCs use conditional generative models
p(X|Y ). The fundamental difference in output modality is illustrated in figure 5.1. The pos-
terior class probabilities are indirectly inferred at test time by Bayes’ rule in the following
way:

p(Y |X) =
p(X|Y )p(Y )

Ep(Y ) [p(X|Y )]
. (5.7)

Because DCs optimize prediction performance directly, they achieve better results in
terms of their predictive performance. In fact, because of the increased complexity of the
task, the application of GCs has so far been limited to very simple datasets such as MNIST
and SVHN. For any practical image classification tasks, DCs are used exclusively, due
to their superior discriminative performance. Despite this, GCs are said to have various
advantages over DCs in principle.

Despite hardly being used, GCs are considered to have various advantages over DCs,
which align with the term trustworthiness (Huang et al., 2018b). In the following, we pick
three principle aspects which where already briefly discussed in chapter 1, relating them to
the differences between DCs and GCs.

Uncertainty quantification: The issues in uncertainty calibration of DCs have been widely
documented (Guo et al., 2017): the DCs model for p(Y |X) tend to be most accurate near
decision boundaries where it matters, but deteriorates away from them, where deviations
incur no noticeable loss. Similarly, Out-of-distribution data is not handled properly at test
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(a) Normal input

(b) Unrelated input

Cat Dog

0.55 0.45

Cat Dog

0.42 0.58

Cat Dog

6.3 6.1

Cat Dog

0.014 0.017

Discriminative Classifier

q(class Y | image X)

sums to 1 over classes

Generative Classifier

q(image X |class Y )

integrates to 1 over images

Figure 5.1.: Example of one advantage of generative classifiers: The class posterior of a DC
always sums up to 1, while the likelihoods of the GC do not have this restriction, constituting
inherently more informative outputs. For instance, the GC can show if a prediction is uncertain
because the input agrees with both classes, or with neither. For the DC, there is no difference
between the two cases.

time, DCs often make highly confident predictions on OoD data (Ovadia et al., 2019). In
contrast, GCs model full likelihoods p(X|Y ) and thus implicitly full posteriors p(Y |X),
which should in principle lead to improvements in uncertainty estimates on both fronts.

Explainability: DCs based on deep neural networks are notorious for being ‘black boxes’,
prompting many developments in the field of explainable AI. In the taxonomy laid out in
Gilpin et al. (2018), most commonly used algorithms fall into categories I or II: post-hoc
methods that visualize how a network processes information (I), or that show its internal
representations (II). The explanations can vary depending on the chosen method, and there
is no guarantee that the results faithfully reflect what the DC is doing internally.

In contrast, GCs bring to mind Feynman’s mantra “What I cannot create, I do not
understand”. As GCs are able to model the input data itself, not just the class posteriors,
they have fundamentally more informative outputs. For instance, GCs allow us to tell if a
decision between two classes is uncertain because the input agrees well with both classes,
or with neither (see Fig. 5.1). In addition, most GCs have interpretable latent spaces with
meaningful features, allowing for the actual decision process to be directly visualized with-
out post-hoc techniques. Therefore, it could be argued that GCs belong to category III of
the explainability taxonomy Gilpin et al. (2018), i.e. methods that intrinsically work in an
explainable way, without relying on additional algorithms.

Robustness: A second large concern about the practical use of deep learning based clas-
sification systems is their robustness, which can have different meanings, depending on the
context and area of research. In particular, GCs have been assumed to be superior to DCs in
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terms of generalization under dataset shifts Ulusoy and Bishop (2006); Raymond and Ric-
cardi (2007). In contrast, DCs often make highly confident predictions, even when the input
is completely unrelated to the training data Hendrycks and Dietterich (2019); Szegedy et al.
(2014); DeVries and Taylor (2018). In addition, a big advantage of GCs is their capability
to explicitly identify out-of-distribution (OoD) inputs in a natural way, thus indicating when
a decision should not be trusted. Returning to the example from Fig. 5.1, we can imagine it
is easy to detect the OoD input by using a threshold on the predicted likelihood. GCs have
also been applied in the context of adversarial attacks, where robustness is often understood
as the difficulty of finding a successful attack. For a more ‘robust’ model in this sense,
the adversarial perturbations will be larger, and in the best case the attack will fail entirely.
Furthermore, GCs were found to be more robust towards adversarial attacks Li et al. (2019)
and allow for their explicit detection Ghosh et al. (2019).

The current state of research into GCs can best be understood by discussing the his-
torical development: Long before the advent of deep learning, an in-depth analysis of the
trade-offs between discriminative and generative models was first performed by Ng and
Jordan (2001) and was later extended by Ulusoy and Bishop (2006); Raymond and Ric-
cardi (2007). Including theoretical and experimental examinations, works are largely in
agreement that GCs are more robust and more explainable. Works by Bouchard and Triggs
(2004); Bishop and Lasserre (2007); Xue and Titterington (2010); Bishop (2007) investi-
gated the possibility of balancing the strengths of both methods via a hyper-parameter. The
existence of a trade-off is not self evident, as in principle, a more accurate generative model
should generally also lead to better classification. In this work, we find that the IB can rep-
resent this trade-off, when applied to generative likelihood models used as GCs. Overall,
we see from literature in the pre-deep learning era, that the performance gap and trade-offs
were balanced enough for there to be no clear winner between GCs and DCs, and usage
depended on the problem setting and solution requirements.

With the proliferation of deep learning, the task performance of DCs made huge leaps
forward, clearly outclassing GCs. As a result, GCs have been used very rarely in recent
years. Some of the few exceptions being application to natural language processing (Yo-
gatama et al., 2017), or for robustness against missing data (Hwang et al., 2019). In a recent
series of research, (Li et al., 2019; Schott et al., 2019a,b) all address adversarial robustness
using GCs. Their models are shown to be more robust against adversarial attacks and able to
detect them. However, they are limited to simple datasets such as MNIST and SVHN, and
do not scale to problems with more than approx. 10 classes, or to natural images, a problem
further examined by Fetaya et al. (2020). For the work of Schott et al. (2019b) specifically,
a completely separate model is trained for each class, which is not feasible for tasks with
more classes.

Trying to circumvent the issues with the predictive performance of GCs, Jacobsen et al.
(2019) introduce a modified architecture that allows for mixed generative/discriminative
training, by using some latent dimensions for discriminative classification and others for
generative modeling. However, the model’s likelihood is no longer tractable and the the-
oretical underpinning and implications are unclear. The same goes for Lee et al. (2019),
who modify the problem by training a GC on features previously extracted from a standard
feed-forward network.

GCs should furthermore be clearly distinguished from so-called hybrid models (Raina
et al., 2004): these commonly only model the marginal p(X) and jointly perform discrim-
inate classification using a shared feature-space. The actual task is still trained discrimi-
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µ1

µ2
×

uncertain class

×
confident class 1

×
confident class 2

but out-of-distribution

Figure 5.2.: Illustration of the latent output space of a generative
classifier. The two class likelihoods for Y = {1, 2} are param-
eterized by their means µ{1,2} in Z. The dotted line represents
the decision boundary. A confident, an uncertain, and an out-of-
distribution sample are illustrated.

natively, and their main application is semi-supervised learning. Important examples are
Kingma et al. (2014); Chongxuan et al. (2017); Nalisnick et al. (2019c); Grathwohl et al.
(2019). Hybrid models have some fundamental differences to GCs, e.g. that the conditional
likelihoods are not directly modeled and the latent space has no explicit class structure usu-
ally present in GCs.

Concerning OoD detection with generative models in general, the authors of Nalisnick
et al. (2019b) and later Kirichenko et al. (2020) observed that likelihood models trained
on natural images fail to detect certain OoD inputs, and may perform significantly worse
than random. This problem is addressed e.g. by Nalisnick et al. (2019a); Choi et al. (2018);
Serrà et al. (2019); Song et al. (2019a); Zhang et al. (2020), where different OoD scores are
introduced that correct for these shortcomings. These works only consider unconditional
likelihood models for OoD detection, while a separate classifier is still needed to perform
the actual task. GCs combine both these steps into a single model, simplifying the process
and potentially improving OoD detection at the same time. It also means it is harder for the
class content to factor in to both OoD detection and explainability techniques when using
unconditional models, as we demonstrate later in the chapter.

In summary, GCs showed some promising qualities in the past, that have not been able
to be leveraged since the widespread adoption of deep learning. To this day, it has remained
unclear if GCs even manifest their advantages in more complex tasks, and whether they can
become competitive to DCs in task performance. For example, Fetaya et al. (2020) find
while GCs can successfully detect adversarially attacked MNIST images, this already fails
for the CIFAR-10 dataset. Fetaya et al. (2019) explicitly cast doubt on whether GCs can
ever be used for high-dimensional input data at all.

5.1.3. The IB-INN

Applying the IB to generative invertible models is not completely straight forward. The
perfectly deterministic and invertible forward pass is at odds with the assumptions of lossy
and probabilistic processes of the IB, a problem that Amjad and Geiger (2019) expand
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Figure 5.3.: The Information Bottleneck Invertible Neural Net-
work (IB-INN) as a generative classifier.

on further. As is revealed in this chapter, the de-quantization noise augmentation used by
default for normalizing flows is the key to resolving this issue, effectively introducing a
small amount of controlled information loss.

For the conditional model itself, we use a latent conditional model as in the previous
chapter instead of a cINN, which we find is a technical requirement for the method. Specif-
ically, instead of the usual latent space p(Z), we prescribe a learnable conditional latent
space p(Z|Y ). A conditional latent distribution then implies the conditional output distri-
bution. Due to the discrete nature of Y , we simply choose a Gaussian mixture model as the
latent distribution, with one mixture component per class. figure 5.2 illustrates the decision
process in such a conditional latent space Z. The uncertain in-distribution and uncertain
out-of-distribution cases can each be identified with the top and bottom row in figure 5.1.

In figure 5.3, we show on a high level how the setup relates to the usual understanding
of the IB: The INN transforms the inputs to a latent spaceZ. Due to the conditional structure
of latent space, the class-posterior can be recovered using Bayes’ theorem. Again, the main
difference is that the IB-INN produces a class-conditional likelihood of the inputs, and not
the class-posterior directly.

The main finding of this chapter is that the IB training procedure pairs exception-
ally well with the concept of generative classifiers (GCs): the IB-INNs are uniquely suited
for the use as GCs. As we examine in more detail later on, this is due to the I(Z, Y )-
term, which explicitly encourages a recognizable class-structure in latent space, as opposed
to standard maximum likelihood training for conditional generative models. Thereby, the
trade-off parameter β in the IB-INN loss smoothly interpolates between the advantages of
GCs (accurate posterior calibration and outlier detection), and those of DCs (superior task
performance). Empirically, at the right setting for β, the model only suffers a minor degrada-
tion in classification accuracy compared to DCs while exhibiting more accurate uncertainty
quantification than pure DCs or GCs.

We will derive our IB-based loss function in detail in section 5.2, and discuss the
implications of using it to train normalizing flows. We then demonstrate the efficacy of the
IB-INN as a GC on the CIFAR10 and CIFAR100 datasets in section 5.3, leading to good
classification performance at the same time as the GC advantages. In section 5.4, we then
scale the method to the ImageNet dataset, a level of complexity where GCs have not been
applied until now. On both datasets, we examine which of the properties ascribed to GCs in
the past actually manifest when using them in realistic problem settings beyond e. g. MNIST
digits, with surprising results.
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5.2. Method

Assumption 1 in the appendix provides some weak assumptions about the domains of the
random variables and their distributions. Full proofs for all results are also provided in the
appendix.

Our models have two kinds of learnable parameters. Firstly, an invertible neural
network (INN) with parameters θ maps inputs X to latent variables Z bijectively: Z =
gθ(X) ⇔ X = g−1

θ (Z). Assumption 2 in the Appendix provides some explicit assump-
tions about the network, its gradients, and the parameter space, which are largely fulfilled by
standard invertible network architectures, including the affine coupling architecture we use
in the experiments. Secondly, a Gaussian mixture model with class-dependent means µy,
where y are the class labels, and unit covariance matrices is used as a reference distribution
for the latent variables Z:

q(Z |Y ) = N (µy, I) and q(Z) =
∑

y
p(y)N (µy, I). (5.8)

For simplicity, we assume that the label distribution is known, i.e. q(Y ) = p(Y ).

Our derivation rests on a quantity we call mutual cross-information CI (in analogy to
the cross-entropy):

CI(U, V ) = Eu,v∼p(U,V )

[
log

q(u, v)

q(u)q(v)

]
. (5.9)

Note that the expectation is taken over the true distribution p, whereas the logarithm involves
model distributions q. In contrast, plain mutual information uses the same distribution in
both places. Our definition is equivalent to the recently proposed predictive V-information
(Xu et al., 2020), whose authors provide additional intuition and guarantees. The following
proposition (proof in Appendix) clarifies the relationship between mutual information I and
CI:

Proposition 2 Assume that q(.) can be chosen from a sufficiently rich model family (e.g. a
universal density estimator, see Assumption 2). Then for every η > 0 there is a model such
that

∣∣I(U, V )− CI(U, V )
∣∣ < η and I(U, V ) = CI(U, V ) if p(U, V ) = q(U, V ).

As the true mutual information can only be estimated and not explicitly computed for empir-
ical data, we replace both mutual information terms I(X,Z) and I(Y,Z) in the IB objective
(equation (5.6)) with the mutual cross-information CI , and derive optimization procedures
for each term in the following subsections.

5.2.1. INN-Based Formulation of the I(X,Z)-Term in the IB Objective

Estimation of the mutual cross-information CI(X,Z) between inputs and latents is prob-
lematic for deterministic mappings fromX to Z (Amjad and Geiger, 2018), and specifically
for INNs, which are bijective by construction. In this case, the joint distributions q(X,Z)
and p(X,Z) are not valid Radon-Nikodym densities and both CI and I are undefined. In-
tuitively, I and CI become infinite, because p and q have an infinitely high delta-peak at
Z = gθ(X), and are otherwise 0. For the IB to be applicable, some information has to
be discarded in the mapping to Z, making p and q valid (Radon-Nikodym-)densities. In
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INN ZE = gθ(X + E)

X+E
σ

X

ZE

σ|J |

Z

Figure 5.4.: The more the noise is amplified in relation to the noise-free input, the lower the
mutual cross-information between noisy latent vector ZE and noise-free input X .

contrast, normalizing flows rely on all information to be retained for optimal generative
capabilities and density estimation.

Our solution to this seeming contradiction comes from the practical use of normalizing
flows. Here, a small amount of noise is commonly added to dequantize X (i.e. to turn dis-
crete pixel values into real numbers), to avoid numerical issues during training. If the noise
is smaller or equal to the quantization step size ∆X , the capability for density estimation is
not affected. We adopt this approach to artificially introduce a minimal amount of informa-
tion loss: Instead of feedingX to the network, we input a noisy versionX ′ = X+E, where
E ∼ N (0, σ2I) = p(E) is Gaussian with mean zero and covariance σ2I. For a quantization
step size ∆X , the additional error on the estimated densities caused by the augmentation has
a known bound decaying with exp(−∆X2/2σ2) (see Appendix). We are interested in the
limit σ → 0, so in practice, we choose a very small fixed σ, that is smaller than ∆X . This
makes the error practically indistinguishable from zero. The INN then learns the bijective
mapping ZE = gθ(X + E), which guarantees CI(X,ZE) to be well defined. Minimizing
this CI according to the IB principle means that gθ(X + E) is encouraged to amplify the
noise E, so that X can be recovered less accurately, see figure 5.4 for illustration. If the
global minimum of the loss is achieved w.r.t. θ, I and CI coincide, as CI(X,ZE) is an
upper bound (also cf. Prop. 2):

Proposition 3 For the specific case that ZE = gθ(X + E), it holds that I(X,ZE) ≤
CI(X,ZE).

Our approach should be clearly distinguished from applications of the IB to DCs, such as
Alemi et al. (2017), which pursue a different goal. There, the model learns to ignore the vast
majority of input information and keeps only enough to predict the class posterior p(Y |X).
In contrast, we induce only a small, explicitly adjustable loss of information to make the IB
well-defined. As a result, the amount of retained information in our generative IB-INNs is
orders of magnitude larger than in DC approaches, which is necessary to represent accurate
class-conditional likelihoods p(X |Y ).

We now derive the loss function that allows optimizing θ and µy to minimize the noise-
augmentedCI(X,ZE) in the limit of small noise σ → 0. Full details are found in appendix.
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We decompose the mutual cross-information into two terms

CI(X,ZE) = Ep(X),p(E)
[
−log q

(
ZE=gθ(x+ε)

) ]
+ Ep(X),p(E)

[
log q

(
ZE=gθ(x+ ε)

∣∣x) ]︸ ︷︷ ︸
:=A

.

The first expectation can be approximated by the empirical mean over a finite dataset, be-
cause the Gaussian mixture distribution q(ZE) is known analytically. To approximate the
second term, we first note that the condition X = x can be replaced with Z = gθ(x),
because gθ is bijective and both conditions convey the same information

A = Ep(X),p(E)
[
log q

(
ZE = gθ(x+ ε)

∣∣Z = gθ(x)
) ]
.

We now linearize gθ by its first order Taylor expansion,

gθ(x+ ε) = gθ(x) + Jxε+O(ε2),

where Jx=
∂gθ(X)
∂X

∣∣
x

denotes the Jacobian atX=x. Going forward, we writeO(σ2) instead
of O(ε2) for clarity, noting that both are equivalent because we can write ε = σn with
n ∼ N (0, I), and ∥ε∥ = σ∥n∥. Inserting the expansion into A, the O(σ2) can be moved
outside of the expression: It can be moved outside the log, because that has a Lipschitz
constant of 1/ inf q(gθ(X + E)), which we show is uniformly bounded in the full proof.
The O(σ2) can then be exchanged with the expectation because the expectation’s argument
is also uniformly bounded, finally leading to

A = Ep(X),p(E)
[
log q

(
gθ(x) + Jxε

∣∣ gθ(x)) ]+O(σ2).

Since ε is Gaussian with mean zero and covariance σ2I, the conditional distribution is Gaus-
sian with mean gθ(x) and covariance σ2JxJT

x . The expectation with respect to p(E) is thus
the negative entropy of a multivariate Gaussian and can be computed analytically as well

A = Ep(X)

[
−1

2
log
(
det(2πeσ2JxJ

T
x )
)]

+O(σ2)

= Ep(X)

[
− log | det(Jx)|

]
− d log(σ)− d

2
log(2πe) +O(σ2)

with d the dimension of X . To avoid running the model twice (for x and x + ε), we
approximate the expectation of the Jacobian determinant by 0th-order Taylor expansion as

Ep(X)

[
log |det(Jx)|

]
= Ep(X),p(E)

[
log |det(Jε)|

]
+O(σ),

where Jε is the Jacobian evaluated at x+ ε instead of x. The residual can be moved outside
of the log and the expectation because Jε is uniformly bounded in our networks.

Putting everything together, we drop terms from CI(X,ZE) that are independent of
the model or vanish with rate at least O(σ) as σ → 0. The resulting loss LX becomes

LX = Ep(X), p(E)
[
− log q

(
gθ(x+ε)

)
− log

∣∣ det(Jε)∣∣ ]. (5.10)

Since the change of variables formula defines the network’s generative distribution as

qX(x) = q
(
Z = gθ(x)

) ∣∣ det(Jx)∣∣, (5.11)
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LX is the negative log-likelihood of the perturbed data under qX ,

LX = Ep(X),p(E)
[
− log qX(x+ ε)

]
. (5.12)

The crucial difference betweenCI(X,ZE) and LX is the elimination of the term −d log(σ).
It is huge for small σ and would dominate the model-dependent terms, making minimization
of CI(X,ZE) very hard. Intuitively, the fact that CI(X,ZE) diverges for σ → 0 highlights
why CI(X,Z) is undefined for bijectively related X and Z. In practice, we estimate LX

by its empirical mean on a training set {xi, εi}Ni=1 of size N , denoted as L(N)
X .

L(N)
X =

1

N

N∑
i=1

[
− log q

(
gθ(xi + εi)

)
− log

∣∣ det(Ji)∣∣ ] (5.13)

where Ji is the Jacobian of gθ evaluated at xi + εi.

It remains to be shown that replacing I(X,ZE) with L(N)
X in the IB loss Eq. 5.6 does

not fundamentally change the solution of the learning problem in the limit of large N ,
small σ and sufficient model power. Sufficient model power here means that the family
of generative distributions realizable by gθ should be a universal density estimator (see
Appendix, Assumption 2). This is the case if gθ can represent increasing triangular maps
(Bogachev et al., 2005), which has been proven for certain network architectures explicitly
(e.g. Jaini et al., 2019; Huang et al., 2018a), including the affine coupling networks we use
for the experiments (Teshima et al., 2020). Propositions 2 & 3 then tell us that we may
optimize CI(X,ZE) as an estimator of I(X,ZE). The above derivation of the loss can be
strengthened into

Proposition 4 Under Assumptions 1 and 2, for any ϵ, η > 0 and 0 < δ < 1 there are
σ0 > 0 and N0 ∈ N, such that ∀N ≥ N0 and ∀0 < σ < σ0, the following holds uniformly
for all model parameters θ:

Pr
(∣∣∣CI(X,ZE) + d log

√
2πeσ2 − L(N)

X

∣∣∣ > ϵ
)
< δ

and Pr

(∥∥∥∥ ∂

∂θ
CI(X,ZE)−

∂

∂θ
L(N)
X

∥∥∥∥ > η

)
< δ

The first statement proves consistence of L(N)
X , and the second justifies gradient-descent

optimization on the basis of L(N)
X . Proofs can be found in the appendix.

5.2.2. GMM-Based Formulation of the I(Z,Y)-Term in the IB Objective

Similarly to the first term in the IB-loss in Eq. 5.6, we also replace the mutual informa-
tion I(Y, Z) with CI(Y,ZE). Inserting the likelihood q(z | y) = N (z;µy, I) of our latent
Gaussian mixture model into the definition and recalling that q(Y ) = p(Y ), this can be
decomposed into

CI(Y, ZE) = Ep(Y )

[
− log p(y)

]
+ Ep(X,Y ),p(E)

[
log

q
(
gθ(x+ε) | y

)
p(y)∑

y′ q
(
gθ(x+ε) | y′

)
p(y′)

]
.

(5.14)
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In this case, CI(Y, ZE) is a lower bound on the true mutual information I(Y, ZE), allowing
for its maximization in our objective. In fact, it corresponds to a bound originally proposed
by Barber and Agakov (2003) (see their Eq. 3): The first term is simply the entropy h(Y ),
because p(Y ) is known. The second term can be rewritten as the negative cross-entropy
−hq(Y | ZE). For I(Y,ZE), we would have the negative entropy −h(Y | ZE) in its place,
then Gibbs’ inequality leads directly to CI(Y, ZE) ≤ I(Y,ZE).

The first expectation can be dropped during training, as it is model-independent. Note
how the the second term can also be written as the expectation of the GMM’s log-posterior
log q(y | z). Since all mixture components have unit covariance, the elements of Z are
conditionally independent and the likelihood factorizes as q(z | y) =

∏
j q(zj | y). Thus,

q(y | z) can be interpreted as a naive Bayes classifier. In contrast to naive Bayes classifiers
in data space, which typically perform badly because raw features are not conditionally
independent, our training enforces this property in latent space and ensures accurate classi-
fication. Defining the loss L(N)

Y as the empirical mean of the log-posterior in a training set
{xi, yi, εi}Ni=1 of size N, we get

L(N)
Y =

1

N

N∑
i=1

log
N
(
gθ(xi + εi);µyi , I

)
p(yi)∑

y′ N
(
gθ(xi + εi);µy′ , I

)
p(y′)

. (5.15)

5.2.3. The IB-INN-Loss and its Advantages

Replacing the mutual information terms in Eq. 5.6 with their empirical estimates L(N)
X and

L(N)
Y , our model parameters θ and {µ1, ..., µK} are trained by gradient descent of the IB-

INN loss

L(N)
IB-INN = L(N)

X − β L(N)
Y (5.16)

In the following, we will interpret and discuss the nature of the loss function in Eq. 5.16
and form an intuitive understanding of why it is more suitable than the class-conditional
negative-log-likelihood (‘class-NLL’) traditionally used for normalizing-flow type genera-
tive classifiers: Lclass-NLL = −E log

(
qθ(x|y)

)
. The findings are represented graphically in

Fig. 5.5.

LX -term: As shown by Eq. 5.12, the term is the (unconditional) negative-log-likelihood
loss used for normalizing flows, with the difference that q(Z) is a GMM rather than a
unimodal Gaussian. We conclude that this loss term encourages the INN to become an
accurate likelihood model under the marginalized latent distribution and to ignore any class
information.

LY -term: Examining Eq. 5.15, we see that for any pair (g(x+ ε), y), the cluster centers
(µY ̸=y) of the other classes are repulsed (by minimizing the denominator), while gθ(x+ ε)
and the correct cluster center µy are drawn together. Note that the class-NLL loss only
captures the second aspect and lacks repulsion, resulting in a much weaker training signal.
We can also view this in a different way: by substituting q(x|y)

∣∣det(Jx)∣∣−1 for q(z|y), the
second summand of Eq. 5.14 simplifies to log q(y|x), since the Jacobian cancels out. This
means that our LY loss directly maximizes the correct class probability, while ignoring the
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Figure 5.5.: Illustration of the loss landscape for our IB formulation (left, middle) and standard
class-conditional negative-log-likelihood (right). The loss is shown for an input x belonging to
class Y =1, green areas correspond to low loss. The orange arrows and black inverted arrows
indicate repulsive and attractive interactions with the cluster centers. Crucially, standard NNL
exerts no repulsive force.

data likelihood. Again, this improves the training signal: as Fetaya et al. (2019) showed,
the data likelihood will otherwise dominate the class-NLL loss, so that lack of classification
accuracy is insufficiently penalized.

Classical class-NLL loss: The class-NLL loss or an approximation thereof is used to
train standard GCs. The IB-INN loss reduces to this case for β = 1, because the first
summand in LX (cf. Eq. 5.10) cancels with the denominator in Eq. 5.15. Then, the INN
no longer receives a penalty when latent mixture components overlap, and the GMM looses
its class discriminatory power, as Fig. 5.5 illustrates: Points are only drawn towards the
correct class, but there is no loss component repulsing them from the incorrect classes. As a
result, all cluster centers tend to collapse together, leading the INN to effectively just model
the marginal data likelihood. This confirmed and explained in more detail by Fetaya et al.
(2019), who show that indeed the class-NLL loss causes a vanishingly small training signal
for the class separation. Similarly, Wu et al. (2019) found that β = 1 is the minimum
possible value to perform classification with discriminative IB methods.

5.3. Experiments with CIFAR datasets

In the following, we examine the properties of the IB-INN used as a GC, especially the
quality of uncertainty estimates and OoD detection. We construct our IB-INN by combining
the design efforts of various works on INNs and normalizing flows. In brief, we use a
Real-NVP architecture consisting of affine coupling blocks (Dinh et al., 2016), with added
improvements from recent works (Kingma and Dhariwal, 2018; Jacobsen et al., 2019, 2018;
Ardizzone et al., 2019b). A detailed description of the architecture is given in the work of
Ardizzone et al. (2020b), and not included in this thesis. We learn the set of means µY as
free parameters jointly with the remaining model parameters in an end-to-end fashion using
the loss in Eq. 5.16. The practical and numerically stable implementation of the losses is
also discussed in Ardizzone et al. (2020b), and also not part of this thesis.

We apply two additional techniques while learning the model, label smoothing and
loss rebalancing:
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Label smoothing We observe that the individual class means µY drift apart during train-
ing, because training with hard labels enforces the Gaussian mixture components to become
perfectly separated. This can cause problems during training, as there is a high loss barrier
between the clusters due to LX , preventing points from moving smoothly from one class
to the other during training. To avoid this effect, we simply apply a small amount of la-
bel smoothing (Szegedy et al., 2016), where the one-hot training vectors are softened with
α = 0.05 in our case. We apply the same to all baseline comparison models.

Loss rebalancing To avoid the laborious process of adjusting hyperparameters for vastly
different loss magnitudes, we employ a loss rebalancing scheme. This allows us to use the
same hyperparameters when changing β between 5 orders of magnitude. Firstly, we divide
the loss LX by the number of dimensions ofX , which approximately matches its magnitude
to the LY loss. It also ensures that LX remains in a similar range when changing e.g. the
input image size, as it scales linearly with the number of input dimensions. We define a
corresponding γ := β/dim(X) to stay consistent with the IB definition. Secondly, we scale
the entire loss by a factor 2/(1 + γ). This ensures that it keeps the same magnitude when
changing γ.

L(N)
IB =

2

1 + γ

(
L(N)
X

dim(X)
− γ L(N)

Y

)
(5.17)

Finally, the noise amplitude σ should be chosen to satisfy two criteria: it should be small
enough so that the Taylor expansions in the loss for σ → 0 are sufficiently accurate, and
it should also not hinder the model’s performance. Our ablation given later in figure 5.11
indicates that both criteria are satisfied when σ ⪅ 0.25∆X , with the quantization step size
∆X , so we fix σ = 10−3 for the remaining experiments.

5.3.1. Baseline comparison methods

In addition to the IB-INN, we train several alternative methods. For each, we use exactly the
same INN model, or an equivalent feed-forward ResNet model. Every method has the exact
same hyperparameters and training procedure, the only difference being the loss function
and invertibility.
Class-NLL: As a standard generative classifier, we train an INN with a GMM in latent space
naively as a conditional generative model, using the class-conditional maximum likelihood
loss:

Lclass-NLL = −E log
(
qθ(x|y)

)
. (5.18)

Secondly, we also train a regularized version to increase the classification accuracy. The
regularization consists of leaving the class centroids µY fixed on a hyper-sphere, forcing
some degree of class-separation. As the radius becomes comparable to the typical intra-
class distances, the training signal for the classification is amplified. We therefore choose√

dim(Z) as radius.
Feed-forward: As a DC baseline, we train a standard ResNet (He et al., 2016) with softmax
cross entropy loss. We replace each affine coupling block by a ResNet block, leaving all
other hyperparameters the same.
i-RevNet (Jacobsen et al., 2018): To rule out any differences stemming from the constraint
of invertibility, we additionally train the INN as a standard softmax classifier, by projecting
the outputs to class logits with an additional fully connected layer. While the architecture is
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RGB rotation (CIFAR10) Small noise (CIFAR10)

QuickDraw ImageNet

Figure 5.6.: Examples from each OoD dataset used in the evalu-
ation. The inlier data are original CIFAR10 images.

invertible, it is not a generative model and trained just like a standard feed-forward classifier.
Variational Information Bottleneck (VIB): To examine which observed behaviours are
due to the IB in general, and what is specific to GCs, we also train the VIB (Alemi et al.,
2017), a feed-forward DC, using a ResNet. We convert the authors definition of β to our γ
for consistency.

5.3.2. Experimental setup

In the following, we describe the scores used below in Table 5.1.
Bits/dim: The bits/dim metric is common for objectively comparing the performance of
density estimation models such as normalizing flows, and is closely related to the KL di-
vergence between real and estimated distributions. Details can be found e.g. in Theis et al.
(2015). It is esentially just a rescaled version of the negative log-likelihood motivated by
lossless compression quality.
Calibration error: The calibration curve measures whether the confidence of a model
agrees with its actual performance. While the previous chapters considered regression prob-
lems, the calibration error is computed differently for classification. To formalize it, we use
the Iverson bracket: [

C
]
:=

{
1 if C is true;
0 otherwise,

(5.19)

All prediction outputs are the binned according to their predicted probability P , the
confidence. All outputs are included, not just the class with the highest predicted probability.
For each bin, it is recorded for which fraction of these samples the prediction was actually
correct, Q.

For this, we define bin edges bi, with i ∈ {1, . . . ,K + 1}, so that b1 = 0, bK+1 = 1,
and bi+1 > bi. The bins themselves are then half-open intervals between the bin edges:
Bi = [bi, bi+1) with i ∈ {1, . . . ,K}. In practice, we choose the bi be spaced more tightly
near high and low confidences, as this is where the bulk of the predictions are made:

concatenate(range(0.00, 0.05, stepsize=0.01),
range(0.05, 0.95, stepsize=0.1),
range(0.95, 1.00, stepsize=0.01))

The results are largely stable when changing these values within reasonable limits. We can
now define n(i), the count of predictions within a confidence bin; as well as n(i)c , the count
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of correct predictions in that bin:

n(i) :=
∑
xj

∑
y′

[
p(y′|xj) ∈ Bi

]
(5.20)

n(i)c :=
∑

(xj ,yj)

∑
y′

[
p(y′|xj) ∈ Bi

]
·
[
argmax

y′
(p(y′|xj) = yj

]
(5.21)

where xj and the (xj , yj)-pairs are from the test set.

We define the confidence P as the center of each bin, and the achieved accuracy in this
bin as Q:

Pi =
bi + bi+1

2
(5.22)

Qi =
n
(i)
c

n(i)
(5.23)

For a perfectly calibrated model and negligible binning- and counting-noise, we ex-
pecet P = Q, e.g. predictions with 70% confidence are correct 70% of the time.

We use several metrics to measure deviations from this behaviour, largely in line with
Guo et al. (2017). Specifically, we consider the expected calibration error (ECE, error
weighted by bin count),

ECE =
∑
i

n(i)

ntot
|Pi −Qi| (5.24)

using the shorthand ntot :=
∑

i n
(i). Secondly, the maximum calibration error (MCE, max

error over all bins),

MCE = max
i

|Pi −Qi|. (5.25)

Lastly, we also compute the integrated calibration error (ICE, area between perfect and
actual behaviour),

ICE =
∑
i

(bi+1 − bi)|Pi −Qi| (5.26)

We also include the geometric mean of all three (GME) as a single quantitative value:

GME =
3
√
ECE ·MCE · ICE. (5.27)

The geometric mean is used because it best accounts for the different magnitudes of the
metrics.

Increased out-of-distribution (OoD) prediction entropy: For data that is OoD, we ex-
pect from a model that it returns uncertain class predictions, as it has not been trained on
such data. In the ideal case, each class is assigned the same probability of 1/(nr. classes).
Ovadia et al. (2019) quantify this through the discrete entropy of the class prediction out-
puts H(Y |XOod). To counteract the effect of less accurate models having higher prediction
entropy overall, we report the difference between OoD and in-distribution test set

H(Y |XOod)−H(Y |XIn distrib.) (5.28)
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OoD detection score: We use OoD detection capabilities intrinsically built in to GCs.
For this, we apply the recently proposed typicality test (Nalisnick et al., 2019a). This is a
hypothesis test that sets an upper and lower threshold on the estimated likelihood, beyond
which batches of inputs are classified as OoD. Although the test can be applied to batches
of images at once (either all OoD or all in-distribution), we apply the test to single input
images (i.e. batch size 1). For quantification, we vary the detection threshold to produce a
receiver operator characteristic (ROC), and compute the area under this curve (ROC-AUC)
in percent. For short, we call this the OoD detection score. It will be 100 for perfectly sep-
arated in- and outliers, and 50 if each point is assigned a random likelihood by the model.

OoD datasets: The inlier dataset consist of CIFAR10/100 images, i.e. 32×32 colour im-
ages showing 10/100 object classes. Additionally, we created four different OoD datasets,
that cover different aspects, see Fig. 5.6. Firstly, we create a random 3D rotation matrix
with a rotation angle of α = 0.3π, and apply it to the RGB color vectors of each pixel
of CIFAR10 images. Secondly, we add random uniform noise with a small amplitude to
CIFAR10 images, to see if minor alterations of the image statistics can also be detected as
OoD. Thirdly, we use the QuickDraw dataset of hand drawn objects (Ha and Eck, 2017),
and filter only the categories corresponding to CIFAR10 classes and color each grayscale
line drawing randomly. Therefore the semantic content is the same, but the image modal-
ity is different. Lastly, we downscale the ImageNet validation set to 32 × 32 pixels. This
constitutes a dataset of natural images with very similar image statistics to CIFAR10, but
this time with completely different semantic content. However, we find that none of the
models can reliably detect the ImageNet data as OoD, so we use this primarily to measure
the prediction entropy behaviour on OoD data.

5.3.3. Results

Quantitative comparison. A comparison of all models is performed in table 5.1 for CI-
FAR10, and in table 5.2 for CIFAR100. We find that at the extreme γ → ∞, the model
behaves almost identically to a standard feed forward classifier using the same architecture
(i-RevNet), and for γ = 0, it closely mirrors a conventionally trained GC, as the bits/dim are
the same. We find the most favourable setting to be at γ = 1: Here, the classification error
and the bits/dim each only suffer a 10% penalty compared to the extremes. The uncertainty
quantification for IB-INN at this setting (calibration and OoD prediction entropy) is far bet-
ter than for pure DCs. Against expectations, standard GCs also have worse calibration error.
Our hypothesis is that their predictions are too noisy and inaccurate for a positive effect to
be visible. For OoD detection, the IB-INN and standard GCs are all comparable, as we
would expect from the similar bits/dim. Figure 5.7, and figure 5.12 in more detail, show the
trade-off between the two extremes: at low γ, the OoD detection and uncertainty quantifi-
cation are improved, at the cost of classification accuracy. The VIB behaves in agreement
with the other DCs: it has consistently lower classification error but higher calibration error
than the IB-INN. This confirms that the IB-INN’s behaviour is due to the application of IB
to GCs exclusively, not the IB-principle alone. This does not mean that the IB-INN should
always be preferred over VIB, or vice versa. The main advantages of the VIB are the in-
creased robustness to overfitting and adversarial attacks, aspects that we do not examine in
this thesis.
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Table 5.1.: Results on the CIFAR10 dataset. All models have the same number of parameters
and were trained with the same hyperparameters. All values except entropy and overconfidence
are given in percent. The arrows indicate whether a higher or lower value is better.

Model Classif. Bits/dim Calibration error (↓) Incr. OoD prediction entropy (↑) OoD detection score (↑)
err. (↓) (↓) Geo. mean ECE MCE ICE Average RGB-rot Draw Noise ImgNet Average RGB-rot Draw Noise ImgNet

IB-INN
(ours)

γ = 1 10.27 5.25 1.26 0.54 3.25 1.13 0.38 0.43 0.40 0.10 0.61 68.76 78.80 67.30 77.19 54.59
only LX (γ = 0) – 4.80 – – – – – – – – – 74.51 70.68 85.74 91.14 55.82
only LY (γ → ∞) 8.72 17.27 3.98 0.81 13.94 5.57 0.28 0.23 0.40 0.00 0.49 61.25 57.04 90.29 50.24 54.40

Stand. GC
Class-NLL 61.75 4.81 12.61 4.17 30.58 15.70 0.03 0.02 -0.06 0.02 0.12 73.92 70.65 83.31 90.97 55.76
Class-NLL + regul. 40.04 4.83 24.75 7.13 70.63 30.11 0.01 0.00 -0.01 0.01 0.02 74.02 69.33 85.13 91.04 55.88

Pure DC
VIB (γ = 1) 6.83 – 6.66 0.81 26.56 13.75 0.17 0.14 0.23 0.00 0.32 – – – – –
ResNet 6.51 – 6.23 0.76 29.29 10.92 0.18 0.16 0.20 0.00 0.34 – – – – –
i-RevNet 9.22 – 4.19 0.79 16.68 5.54 0.24 0.09 0.38 0.00 0.51 – – – – –

Table 5.2.: Results on the CIFAR100 dataset. All models have the same number of parameters
and were trained with the same hyperparameters. All values except entropy and overconfidence
are given in percent. The arrows indicate whether a higher or lower value is better.

Model Classif. Bits/dim Calibration error (↓) Incr. OoD prediction entropy (↑) OoD detection score (↑)
err. (↓) (↓) Geo. mean ECE MCE ICE Average RGB-rot Draw Noise ImgNet Average RGB-rot Draw Noise ImgNet

IB-INN
(ours)

only LX (γ = 0) – 4.82 – – – – – – – – – 70.03 63.35 87.45 85.12 50.99
γ = 0.1 42.57 4.94 2.60 0.58 7.04 4.28 0.50 0.66 0.28 0.35 0.69 68.31 66.53 78.91 81.70 50.75
only LY (γ → ∞) 33.78 18.44 4.49 0.62 16.76 8.72 0.58 0.52 1.04 0.00 0.77 58.29 47.95 99.37 49.23 49.23

Stand. GC
Class-NLL 97.92 4.82 16.20 1.02 95.63 43.53 -0.04 -0.14 0.55 -0.53 -0.03 70.26 64.68 86.54 85.19 51.09
Class-NLL + regul. 69.28 5.07 13.94 0.75 89.74 40.15 0.00 -0.00 -0.01 0.01 0.01 68.83 64.96 82.19 83.32 50.44

Stand. DC
ResNet 29.27 – 5.13 0.65 20.57 10.16 0.60 0.68 0.97 -0.00 0.74 – – – – –
i-RevNet 37.54 – 5.18 0.63 19.85 11.09 0.51 0.32 1.00 -0.00 0.75 – – – – –

For CIFAR100 (table 5.2), the general behaviour is similar to that on CIFAR10: The
IB-INN model which balances both loss terms performs significantly better in terms of
uncertainty calibration than both standard GCs and DCs. It also performs OoD detection
almost as well as pure GCs, with a much better classification error. There are two differences
compared to the CIFAR10 case: Firstly, in terms of increase in predictive entropy on OoD
data, there are much smaller differences between models (excluding the standard GCs). The
standard ResNet has the best overall performance by a small margin. Note that the increase
in prediction entropy is also influenced by the calibration and overall classification error
of the model to some degree, so we are careful in drawing any conclusions from minor
differences. Secondly, we find that the most advantageous trade-off regime is now at a
lower value of γ. The only values trained for CIFAR100 were γ ∈ {0.1, 1, 10}, and we find
that the models with γ set to 1 and 10 behave almost the same as the limit case γ → ∞.
The explanation for this is simple: due to the increased difficulty of the task, the LY loss
is higher than for CIFAR10. Therefore, it has a larger influence at the same setting for γ
compared to the CIFAR10 models.

Latent Space Exploration To better understand what the IB-INN learns, we analyze
the latent space in different ways. Firstly, Fig. 5.8 shows the layout of the latent space GMM
through a linear projection, chosen so that the projected class centers have the largest possi-
ble spread. We find that the clusters of ambiguous classes, e.g. truck and car, are connected
in latent space to account for the inherent uncertainty of this decision. Secondly, Fig. 5.10
shows interpolations in latent space between two test set images, using models trained with
different values of γ. We observe that for low γ, the IB-INN has a well structured latent
space, leading to good generative capabilities and plausible interpolations. For larger γ,
class separation increases and interpolation quality continually degrades. Finally, generated
images can give insight into the classification process, visualizing how the model under-
stands each class. If a certain feature is not generated, this means it does not contribute
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Figure 5.7.: Effect of changing the parameter γ between 0.02 and 50 (logarithmic x-axis) on
the different performance measures (y-axis). The left two plots show the IB-INN and VIB, the
right two plots only show the IB-INN. The VIB does not converge for γ < 0.05. The arrows
indicate if a larger or smaller score is better. While classification accuracy improves with γ, the
uncertainty measures generally grow worse. The trend of OoD detection and OoD entropy is
less clear, and depends on the OoD dataset. The special case β = 1 (class-NLL) translates to
γ ≈ 3 · 10−4 (cf. table 5.1).

γ = 0.02 γ = 1.2 γ = 18.05 γ = 35.65

airplanes cars birds cats deer dogs frogs horses ships trucks
Figure 5.8.: GMM Latent space behaviour by increasing γ. The class separation increases with
larger γ. Note that ambiguous classes (e.g. truck and car) remain connected to account for
uncertainty.

positively to the likelihood, and in turn will be ignored for classification. Examples for this
are shown in Fig. 5.9.

In Figure 5.13, we show the trajectory of a sample in latent space, when gradually
increasing the angle α of the RGB-rotation augmentation used as an OoD dataset. It travels
from in-distribution to out-of-distribution. Such images were never seen during training.

Choice of σ: Fig. 5.11 shows the behaviour for 25 different models trained with σ be-
tween 10−4 and 100 (x-axis), and fixed γ = 0.2. We find that the loss values (left) and
performance characteristics (middle) do not depend on σ below a threshold of about 10−3,
a value 4 times smaller than the quantization step size ∆X = 1/256. Contrary to expecta-
tions from existing work on normalizing flows, the models performance does not decrease
even when σ is 50 times smaller than ∆X . Detrimental effects might occur more easily if
the quantization steps are larger, e.g. ∆X = 1/32 as used by Kingma and Dhariwal (2018),
or if the model were more powerful or less regularized (e.g. from the tanh-clamping we
employ). The rightmost plot compares our approximation of CI(X,Zε) with the asymp-
totic I(X,Zε) + const. for σ → 0, where the constant is unknown. The slope of the
approximation agrees well for small σ, but breaks down for larger values.
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Horses

Ships

Frogs

Figure 5.9.: Images are generated for three dif-
ferent classes, by sampling from the respective
mixture component in latent space, and invert-
ing the network (more examples in Appendix).
This gives insight what happens during classifi-
cation, see text: only textures are generated for
the frog class, indicating that this is the only as-
pect used for classification.
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Figure 5.10.: The columns show a la-
tent space interpolation between two
images (leftmost and rightmost). Each
row shows a model with a different γ.
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Figure 5.12.: Effect of changing the parameter β̃ (x-axis) on the different performance mea-
sures (y-axis). The arrows indicate if a larger or smaller score is better. The black horizontal
line in the last row indicates random performance. The VIB results are added as dotted lines.
The VIB does not converge reliably for values of γ < 0.2, producing some otiliers e.g. for
expected calibration error. This is not to claim that the IB-INN is better than the VIB or vice
versa. The comparison serves to show how the IB affects GCs and DCs differently.

Figure 5.13.: The scatter plot shows the location of test set data in latent space. A single sample
is augmented by rotating the RGB color vector as described in the text. The small images show
the successive steps of augmentation, while the black arrow shows the position of each of these
steps in latent space. We observe how the points in latent space travel further from the cluster
center with increasing augmentation, causing them to be detected as OoD.
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5.4. Experiments with ImageNet dataset

In the context of image classification or computer vision in general, the CIFAR images used
in the previous section are very low-resolution and and the appearance and content of each
class is comparitively uniform. In this way, the CIFAR data is not particulary representative
of realistic real-world applications. Instead, we use much larger and more varied images in
this section, namely from the ImageNet dataset (Russakovsky et al., 2015). Here, the input
images are 224×224 pixels large, a dimensionality increase by a factor of 50, depicting 1000
different classes. To add additional complexity, some classes are so sililar that only human
experts can distinguish them (such as three different breeds of Husky dogs), and others so
dissimilar that they have almost nothing in common and never occur in the same context
(such as cockroaches and oil tankers). As the data consist of natural images gathered semi-
automatically from the internet, the images also span a range of image quality, appearence
and image modality, as well as many images containing multiple objects despite having
only one ‘correct’ label assigned.

The ImageNet dataset therefore serves as a more meaningful test of the capabilities of
IB-INNs used as generative classifiers, representing a task complexity at which GCs have
previously never been used to our knowledge.

5.4.1. Network Architecture

A more detailed description of the network architecture, reasoning for each choice and de-
sign principles is found in Mackowiak et al. (2021), we summarize the main points in the
following. We construct the invertible network (INN) from affine coupling blocks as in
previous chapters (Dinh et al., 2016), with various modifications from other recent works
(Ardizzone et al., 2019a,b; Jacobsen et al., 2019; Kingma and Dhariwal, 2018). As invert-
ible alternatives to 2 × 2 max-pooling and global mean-pooling, we use a Haar wavelet
transform (section 3.5) and a DCT transform (Jacobsen et al., 2019) respectively.

Because of the similarities between affine coupling blocks and residual blocks as used
in a ResNet, we match the design of the INN to that of a standard ResNet-50 wherever
possible. The overall layout is summarized in table 5.3, c.f. (He et al., 2016, Table 1). Some
differences arise due to the constraint of invertibility: the number of feature channels and the
available receptive field vary between the two networks. The effective rather than maximum
receptive field varies surprisingly, and is discussed further below. The invertibility is also
associated with an extra cost of parameters and computation, summarized in table 5.4: Both
in terms of network parameters, as well as FLOPs for one forward pass, the cost of the INN
is about twice as high as a standard ResNet-50. We are optimistic that this overhead can be
reduced in the future with more efficient INN architectures.

5.4.2. General Performance

We train several generative classifiers, with the following values for the hyperparameter γ ∈
{1, 2, 4, 8, 16, 32,∞}. Again, γ controls how much the model focuses on the generative
likelihood estimation aspect (low γ), vs. prioritizing good classification performance (high
γ). In addition, we include a model trained with γ = 0, i.e. no classification at all, analogous
to a standard normalizing flow, as well as a standard feed-forward ResNet-50 He et al.
(2016), i.e. a pure DC.
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Layer Blocks Im. size Channels R.F.
INN ResNet INN ResNet

Input 224 3 3
Entry flow 1 112 12 64 8 6
Pool (Haar/max) 56 48 64 10 10
Conv_2_x 3 56 48 256 34 34
Conv_3_x 4 28 192 512 106 90
Conv_4_x 6 14 768 1024 314 266
Conv_5_x 3 7 3072 2048 538 426
Pool (DCT/avg.) 1 150 528 2048 ∞ ∞

Table 5.3.: For each of the resolution levels in the INN and ResNet-50, the number of cou-
pling/residual blocks and spatial size is given, along with the number of feature channels and
the maximum possible receptive field (R.F.).

ResNet INN
Network parameters (M) 23.5 55.4
All parameters (M) 25.6 77.5
FLOPs (G) 4.07 9.08

Table 5.4.: Number of parameters and computational cost for each model. ‘Network parame-
ters’ only counts the coupling/residual blocks. ‘All parameters’ additionally includes the fully
connected output layer of the ResNet, and the parametrization of µy for the INN. The (M)
and (G) indicates Mega and Giga respectively. For FLOPs, the fused multiply-add instruction
(FMA) is counted as a single FLOP, as it is commonly a single instruction in modern computing
architectures.
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Figure 5.14.: Trade-off between the two losses LX and LY (left), and between generative
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The model with γ = 0 (standard normalizing flow) is missing the LY loss and is shown as a
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The primary performance metrics used in Table 5.6 and Fig. 5.14 are firstly, the top-1
accuracy on the test set (in our case, the ILSVCR 2012 validation set (Russakovsky et al.,
2015)). To compare with other methods, we adopt the same procedure for testing the per-
formance, i. e. 10-crop testing. In detail, the image is resized so the shortest edge is 256
pixels, and then cropped to a square. Next, five 224×224-pixel patches are cropped from
the corners and center, as well as their horizontally flipped versions, giving 10 crops in total.
Typically, each of these 10 crops is passed through the network, and the logits are averaged
before the final softmax operation. For a generative classifier, as there are no logits per se,
the logit averaging is analogous to taking the geometric mean over the 10 input crops for
both the denominator and enumerator of Bayes rule.

Secondly, for the generative likelihood estimation performance, we use the bits per
dimension (‘bits/dim’) metric, as this is the prevalent evaluation metric for likelihood-based
generative models such as normalizing flows. It quantitatively measures the accuracy of the
density estimation (i.e. generative performance), explained e.g. in Theis et al. (2015), where
a lower bits/dim corresponds to a more accurate generative model. Originating in models
that estimate the density on discrete inputs (e.g. 255 brightness levels per RGB channel per
pixel Oord et al. (2016b)), bits/dim measures how many bits would be needed on average
to store the value of each input dimension, if an ideal encoding were formulated using the
models estimated likelihoods. If the quality of the likelihoods is worse, the encoding will be
less efficient w.r.t. to the real data, and more bits will be needed to store the inputs. This can
be generalized for continuous density models such as standard normalizing flows, explained
e.g. in Theis et al. (2015). Importantly, it can be shown that bits/dim is exactly proportional
to the KL-divergence between the true and estimated densities, albeit with a constant offset:

bits/dim ∝ DKL(p(X) ∥ qθ(X)) + const. (5.29)

However, the constant offset is fundamentally unknown and data dependent, so while bits/dim
is a strong quantitative metric to compare different models against each other, it cannot
quantify how good the model is on an absolute level.

In Table 5.6, we report the test losses and the two discussed performance metrics for the
different models. Further shown in Fig. 5.14, changing γ moves smoothly between the limit
cases of a feed-forward network, and a pure density estimation model along a pareto curve.
The classification accuracy increases continuously with γ, but a minor gap remains to the
feed-forward ResNet-50, in line with works such as Jacobsen et al. (2018). Simultaneously
and as expected, the bits/dim get worse as we move away from a purely generative model
(γ = 0).

Receptive field. While the maximum possible receptive field of the INN and a standard
trained ResNet are roughly comparable (see Mackowiak et al. (2021) for precise computa-
tion), we see large differences in the effective receptive field.

To measure an effective receptive field, we determine the sensitivity of latent dimen-
sions with respect to changes in each input pixel. Note that there is not universal definition
of the effective recepetive field, so the following procedure is just one of several possibil-
ities. We first pick a feature space column u, in the fatures before the DCT pooling layer.
With the feature space having H ×W × 3072 feature space, u is a 1 × 1 × 3072 column.
We choose a column from the center to avoid interactions with the edges. The individual
features in the column are denoted ul (l = 1 . . . 3072). We now measure the gradient w.r.t.
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Figure 5.15.: Effective receptive field for each value of γ, just before the final pooling opera-
tion. Note the logarithmic sensitivity axis.

IB-INN, β = RN
1.0 2.0 4.0 8.0 16.0 32.0 ∞

ECE (%) 0.16 0.16 0.16 0.17 0.16 0.17 0.17 0.17
MCE (%) 5.54 3.13 5.47 4.57 5.50 5.28 5.10 7.72
OCE 3.87 4.13 4.31 4.73 4.15 4.94 5.12 6.75

Table 5.5.: Calibration Errors for different values for γ and for the ResNet. Expected Calibra-
tion Error (ECE), Max Calibration Error (MCE), Overconfidence Calibration Error (OCE)

each channel k of each image pixel ij, xijk, for real input images x. We define the ‘latent
sensitivity’ of the model at each position as the L1 norm of the gradient of the features
w.r.t. that input position, averaged over images from the test set:

Sensitivity(i, j) = Ex∈test

[
3∑

k=1

3072∑
l=1

∣∣∣∣ ∂ulxijk

∣∣∣∣
]

(5.30)

Note that the choice of the L1 norm does not change the nature of the results, other choices
result in similar profiles. The cross-sectional shape of this latent sensitivity over image
coordinates represents the effective receptive field, and is shown in Fig. 5.15.

We observe that for low γ, the effective RF is very narrow. In fact it is almost as
narrow as it could possibly be: for γ ≤ 4, the FWHM of the sensitivity is only 64 pixels.
This is the same we would get from only the downsampling steps, without any spatial
convolutions (with 6 downsamplings, 26 = 64). This could indicate that for the likelihood
estimation, local details and structures are more important than any long-range features.
This has recently also been confirmed in Kirichenko et al. (2020). It also gives a possible
explanation for the trade-off in classification accuracy, as a higher receptive field would be
beneficial to understanding the semantic image content. For higher values of γ, the shape
of the effectiv receptive field more closely matches that of a standard trained ResNet (1.25
times wider, in line with the 1.25 times larger maximum possible RF).

Calibration Lastly, we examine the uncertainty calibration. We find that for such a large
number of classes as ImageNet, the usual error measures are of little use: Especially the
ECE is almost completely dominated by the many classes with predicted probabilities close
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β L(test)
X (↓) L(test)

Y (↓) Bits/dim (↓) Acc. (%) (↑) OCE (↓)
1 −1.90 8.52 4.34 67.30 3.87
2 −0.65 8.26 6.14 71.73 4.13
4 1.14 8.14 8.72 73.69 4.31
8 3.66 8.10 12.35 74.59 4.73

16 7.17 8.06 17.43 75.54 4.15
32 10.81 8.01 22.68 76.18 4.94
∞ 27.68 7.99 47.01 76.27 5.12

0 −3.11 – 2.59 – –
ResNet – 7.87 – 77.40 6.75

Table 5.6.: Test losses and metrics for models trained with different γ. Bits/dimension quanti-
fies the performance of density estimation models (see text, smaller is better, i.e. more accurate
generative model). As with the original ResNet, the classification accuracy uses 10-crop test-
ing. OCE is the overconfidence error, i.e. how often confident predictions are wrong (see text,
smaller is better).

to zero. Instead, we additionally introduce the overconfidence error ‘OCE’, wich only ex-
amines predictions with especially high confidence, which are of special importance for
real world saftey and reliability. The OCE measures the normalized classification error of
predictions with a high confidence over some threshhold C ≥ Ccrit = 99.7%. Then, if the
error rate in these cases is 1.2% for instance, although it should be at most 0.3% according
to the chosen threshhold, this gives an OCE of 1.2/0.3 ≈ 4. Our findings are in line with
previous works, in that the uncertainty calibration improves with lower γ and better gen-
erative capabilities Ardizzone et al. (2020b). A more detailed examination is found in the
publication (Mackowiak et al., 2021), and not included in the thesis.

5.4.3. ImageNet out-of-distribution detection

While OoD detection was already performed in the previous section for CIFAR data in
line with existing literature, we repeat the examination for ImageNet data in the following.
We find that some of the phenomena commonly observed and discussed on CIFAR images
(Nalisnick et al., 2019b; Kirichenko et al., 2020, etc.) are further amplified by the 50-fold
increase in data dimensionality provided by ImageNet, so that the work in this section can
help further understand and characterize these phenomena. We will first consider how to
describe most existing OoD detection methods in a common hypothesis-testing framework,
before applying this framework to detect different types of OoD data in ImageNet.

OoD detection as hypothesis test

For likelihood-based generative models, detecting OoD inputs is straight forward, by di-
rectly utilizing the estimated probability density qθ: in principle, if an input is outside the
support of the training data, and the model has learned the true distribution, the OoD sample
should be assigned log qθ(x) = −∞. In practice, it is only required that OoD samples have
lower likelihood scores than the training data. From here, any input with an inferred likeli-
hood below a threshold can be treated as OoD. However, Nalisnick et al. (2019b) identify
various special cases where OoD inputs have an unnaturally high log-likelihood score. This
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prompted the development of a typicality-test in Nalisnick et al. (2019a), that uses both an
upper and a lower threshold. Other works take similar approaches, modifying the score or
changing the way the detection threshold is applied, such as Choi et al. (2018); Serrà et al.
(2019); Song et al. (2019a); Zhang et al. (2020).

In the following, we note how any threshold-based OoD detection can be treated as
a hypothesis-test, unifying existing approaches: Mathematically, a binary, threshold-based
detection of any kind is equivalent to a hypothesis, with a p-value equal to the false-positive
rate. However, the hypothesis-testing interpretation corresponds especially tightly to the
OoD setting, as by nature of the problem only the scores of in-distribution data are explicitly
known beforehand, corresponding to only the null-hypothesis being explicitly modeled in
hypothesis testing.

In other words, the null-hypothesis is that an input is in-distribution, and if the score for
this input lies above or below the set threshold, this hypothesis is rejected, with a p-value
corresponding to the false-positive rate. The false-positive rate can be determined solely
from the in-distribution data regardless of the type of OoD data (just as the p-value is not
reliant on an explicit choice of alternative hypothesis).

Interpreting OoD detection in this context, including existing works, has some impor-
tant implications. The formulation allows for the use of any kind of scalar value extracted
from each input. Many existing works try to provide some theoretical underpinning of using
a given score (Choi et al., 2018; Nalisnick et al., 2019a), each demonstrating superior detec-
tion capabilities in one aspect or another, claiming this is what is ‘truly’ out-of-distribution.
However, in the hypothesis-testing framework, there is no fundamental difference between
these scores and any other heuristically picked score, such as Schirrmeister et al. (2020);
Serrà et al. (2019). As Kirichenko et al. (2020) point out, what is OoD should and does
depend on human interpretation and the requirements of each application.

With our newfound interpretation of OoD detection as a hypothesis test, we also
present a new detection method. In the same vein as the typicality test, we choose both
an upper and a lower threshold. In the case of the typicality test, the thresholds are centered
symmetrically around the mean log-likelihood of the training data (Fig. 5.16, middle). For
our ImageNet models, we observe that the distribution of log-likelihood values in the train-
ing set is highly asymmetrical. Therefore, we determine the upper and lower thresholds
according to equal quantiles on either side (Fig. 5.16, bottom).

To evaluate the OoD detection capabilities independent of the threshold, we vary the
p-value of the test and produce a receiver operating characteristic (ROC) curve. The area un-
der this curve (ROC-AUC), in percent, serves as a scalar measurement of the OoD detection
capabilities, with ROC-AUC of 100% meaning that the OoD samples and in-distribution
samples are perfectly separated, and a value at 50% or below indicates a random perfor-
mance or worse.

Semantic- and style-likelihood

As the number of classes is typically smaller than the number of total dimensions (in the
case of ImageNet, 1000 classes and ≈ 150 000 dimensions), the class centroids µy span a
lower dimensional subspace in latent space, which we will index with c for ‘class’. The
corresponding null-space, indexed by s for ‘style’, does not affect the classification, mathe-
matically speaking. In the following, we assume that all µy are linearly independent. This is
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Figure 5.16.: Illustration of three different OoD tests based on the estimated likelihood. The
curve shows the distribution of likelihood scores in the training set. The blue part counts as
in-distribution, and the red part as OoD. The threshold is chosen such that the red area (false
positive rate, p-value), is 0.1 in all three cases, for illustration. In practice, this would be chosen
much lower, e.g. 0.01. The small red numbers indicate the fraction of training samples above
and below each threshold. Top: simple single-tailed test, used e. g. by Nalisnick et al. (2019b).
Middle: typicality test (Nalisnick et al., 2019a), the dashed line indicates the ‘typical’ score.
Bottom: two-tailed quantile test, introduced and used in this chapter.
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almost certainly the case in practice, but we still check this explicitly for each model. With
the two linear subspaces, we can decompose z into two parts z = zc + zs, where zc and zs
each lie in their respective subspaces. Importantly, because the null-space is always orthog-
onal to the row-space, it holds that ∥z∥2 = ∥zc∥2 + ∥zs∥2. Using this, we can decompose
the conditional likelihood in latent space, p(z | y). We write the normalization constant as
A for convenience:

p(z | y) = A exp

(
−1

2
∥z − µy∥2

)
(5.31)

= A exp

(
−1

2

(
∥zc − (µy)c∥2 + ∥zs − (µy)s∥2

))
(5.32)

= A exp

(
−1

2
∥zc − µy∥2

)
exp

(
−1

2
∥zs − 0∥2

)
(5.33)

= p(zc | y)p(zs) (5.34)

Intuitively, we have factorized the likelihood in latent space into a class-term p(zc|y), and a
class-independent style-term p(zs). This factorization is not only significant for the task of
OoD detection, but also for many explainability techniques in the subsequent section.

Detecting ImageNet OoD

By definition, it is not possible to collect a representative and exhaustive set of possible
out-of-distribution images, making quantitative method comparisons difficult. We therefore
omit a quantitative evaluation in this section of the thesis, and instead refer to the work
of Mackowiak et al. (2021): there, a pragmatic approach is taken, comparing the OoD
detection quantitatively on some hand-selected, practically relevant and agreed-upon types
of outliers, namely different kinds of image corruptions. In this section, we instead aim to
show qualitatively which kinds of outliers are detected when using different scores.

To achieve this, we perform the following experiment: we simply perform OoD de-
tection on the ImageNet test set, even though it is by definition in-distribution. We then
visualize the false positives detected most clearly as out-of-distribution, i. e. the test images
on the outer edges of the score-distribution, cf. figure 5.16. The characteristics observed in
these false positives provide information about the type of outliers each score is sensitive
to.

Qualitative results of this experiment are given in figures 5.17 to 5.19, showing the 10
most outlying false positives among the 50 000 ImageNet test set images.

When using the estimated log-likelihood as a score in figure 5.17, we find that out-
of-distribution images are recognized almost entirely on the basis of texture, either highly
textured with an abnormally low likelihood, or very smooth and low-contrast resulting in
an abnormally high likelihood. Several other authors (Kirichenko et al., 2020; Serrà et al.,
2019) seem in agreement that this behaviour is not due to some shortcoming or artifacts of
the model, but simply a result of the structure and composition of the likelihood of such
high-dimensional spaces: pixel-level statistics largely determine the magnitude of the like-
lihood, while properties of interest such as the semantic content of an image, hardly con-
tribute. By decomposing the log-likelihood into its constituent terms (log p(z)+ log det J),
we find that the Jacobian causes the large difference between highly-textured and smooth
images. Confirmed by some of the methods in the next section, it seems that textures or



106 5. Information Bottleneck INN

Figure 5.17.: 10 most outlying images according to out-of-distribution detection with a two-
tailed quantile hypothesis test using the modeled log-likelihood of the image log q(x) as a score.
This score is generally accepted as a sensible baseline, but leads to unexpected results for high-
resolution images, only detecting examples with abnormally high- or low-detail textures. Note
how the images are all correctly classified and properly understood by the model.

structures in the image are ‘normalized’ to a similar amplitude in latent space, i.e. low-
contrast textures are amplified (large Jacobian), opposite for high-contrast textures.

By using only the latent log-likelihood log p(z) as a score, we can expect to avoid
this effect, as the Jacobian does not contribute. The detected false positives for this choice
are shown in figure 5.18: rather than detecting images with much or little information at
a pixel-level, we now recover images with especially high or low information in the latent
representation. This corresponds to images with very varied content and many objects in
the same image, or none at all, see top right.

Finally, we restrict the score to only use the likelihood in the class-subspace, log p(zc).
This results in the most surprising findings of all: the model very reliably and reproducibly
detects images that contain many instances of the same class. Also note that the predictions
are fairly confident and mostly correct, despite being extreme outliers according to this
score. It seems this effect occurs due to each object moving the latent code along a vector
pointing towards a class. For many of the same object, the latent code is moved far past the
class centroid to the outer regions of class-subspace, while still giving a confident prediction
(c.f. figure 5.2, pushing the point out of the bottom right corner of the figure).

5.4.4. Explainability

In the following, we demonstrate several examples on how GCs can be used for native
and intuitive explanations of the data and the prediction outputs. Certainly, algorithms
and approaches exist that can generate similar results for DCs. The point of the following
examples is to show that in GCs a range of explanations is available using only the structure
of latent space and the learned likelihoods, without requiring additional modifications or
algorithms applied in a post-hoc manner.
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Figure 5.18.: 10 most outlying images when detecting using a two-tailed hypothesis test with
either the latent log-likelihood p(z) or the log-likelihood in the style-subspace, log p(zs). The
results are the same for both, as log p(zc) does not make a significant numerical contribution.
The detected images are in all cases especially rich or poor in visual details.

Figure 5.19.: 10 most outlying images when only using the log-likelihood of the class-specific
latent subspace log p(zc). Perhaps most surprisingly of all, the images detected are one depict-
ing in-distribution objects repeated many times in the same image.
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Figure 5.20.: Latent space location of input images (black point) in the decision space spanned
by the µy of the top 5 predicted classes. The horizontal axis of the plot is the axis connecting
the top 2 predicted classes (red and blue points). The vertical axis of the plot shows the radial
distance from the horizontal axis in the 5D space. The illustrative circles are chosen such
that in both the vertical and horizontal directions, 90% of the mass of the Gaussian mixture
component lies inside. Note that the axes in the plot are scaled differently to make it appear as
a circle. Test examples from left to right: a confident in-distribution decision, an uncertain in-
distribution decision due to ambiguous classes, an uncertain decision due to multiple plausible
image interpretations, an uncertain out-of-distribution decision.
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Figure 5.21.: Latent space of a model with only ten classes, where the µy (black points) are
constrained to a plane. The black lines are the decision boundaries, e.g. all points inside the
‘moped’-polygon will be classified as a moped. The background is colored according to the
probability density of each mixture component.

Visualizing decision-space:

The properties of a classification decision are fully determined by the latent code of an
input image in relation to the surrounding classes. The only difficulty consists in reducing
the high-dimensional latent space to a 2D plot. Figure 5.20 shows one possibility: latent
codes are visualized in a plane through the centers of the two most probable classes, such
that relative distances to the centers and to their connecting axis are preserved. We find
that the GC latent space allows making meaningful distinctions between different kinds of
uncertainties, as illustrated by the examples.

A second approach is shown in figure 5.21, where the classification among a subset of
classes can be fully visualized: First, a subset of 10 ImageNet classes is selected at random
for the task. We leave the network as is, and only retrain the µy, under the constraint that
they lie on a plane. In practice, we achieve this by parametrizing µy as a rank-2 matrix.
This simplified model with a 2D decision space reaches 90% accuracy for the 10-class
classification, while allowing us to show the entire decision space in a single 2D plot. The
decision boundaries between all classes form a Voronoi tessellation of the decision space.
All latent vectors inside the Voronoi cell of a certain class will have the highest probability
under that class. In the full model, where the µy are not constrained to a plane and all 1000
classes are used, the behaviour is the same, with high-dimensional polygons for each class,
but this can not be readily visualized.

Class similarities:

Building on figure 5.20, we see that different classes have various amounts of overlap,
encoding the relationship between them. This is not possible for a feed-forward model, as
there is no latent space where the input data is embedded in such a way. We observe that
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Figure 5.22.: Similarity matrix between all 1000 classes. The two large clusters around class
index 250 and 750 are all dog breeds, which are notoriously overrepresented in the selection
of ImageNet classes. The color-map indicates the pairwise distance of the µy as well as the
expected pairwise posterior, meaning e.g. the binary decision between a tabby cat and a tiger
cat is associated with 20% expected uncertainty, by construction (see text).
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Figure 5.23.: Latent similarity between different classes. The colormap indicates the pairwise
distance of the µy as well as the expected pairwise posterior, meaning e.g. the binary decision
between “tabby cat" and “tiger cat" is associated with 20% expected uncertainty, by construc-
tion (see text). The distance on the diagonal is 0 (outside colormap range).
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True: bow tie

(93.8%)

Qclass(bow tie)

(4.1%)

Qclass(suit)
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Qclass(sunglass)

True: limpkin

(33.1%)
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Qclass(vulture)
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(0.9%)
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Figure 5.24.: Examples of the prediction heatmaps. Summing the bright areas directly gives
the final class prediction. Top: bowtie and sunglasses are located, suit is distributed over a
large area. Middle: The head of the bird causes it to be classified as a limpkin, whereas the
feathers are more indicative of an eagle or vulture. Bottom: The heatmaps of both Rottweiler
and Appenzeller classes are located in the same area (ambiguous classes), while the soccer ball
is separate.
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the locations µy of the Gaussian mixture components are close together for classes that are
semantically similar, and far apart for classes that are dissimilar.

Importantly, this also has implications for predictions the model makes. For instance,
in figure 5.20, top right, the classes overlap a lot. This means more points will lie in the
overlap zone, and consequently more of these decisions will be uncertain, compared to e.g.
bottom left, where most inputs will be in only one of two classes. Any inlier of one of the
two classes will automatically have a significant probability under the other class.

More precisely, the closer two class centers are, the larger is the overlap, and the larger
the proportion of decisions that are uncertain. In fact, if a class A is the top prediction, the
expected confidence for any other class B can be worked out explicitly from the distance
between µA and µB in latent space,

see Appendix C.5. We do this pairwise for all 1000 classes, with the results seen in
Fig. 5.22. Some more detailed examples are shown in figure 5.23.

These considerations highlight an important fact: the latent mixture model contains a
built-in uncertainty between classes. A decision between semantically related classes will
always be uncertain, by the structure of the latent space alone. This may be one of the
reasons explaining why the predictive uncertainties are better calibrated in such GCs.

Posterior Heatmaps:

To increase the trust in a decision, it is often helpful to show which regions of the im-
age were relevant. Examples are widespread where models base their decision e.g. on the
background of the image, not the object in question, or focus only on a spurious specific
detail that identifies an object. Approaches such as CAM or GradCAM Zhou et al. (2016);
Selvaraju et al. (2017) can be used to generate coarse heatmaps showing regions that are
influential for a particular decision. With the IB-INN, we can provide such heatmaps as a
direct decomposition of the prediction output, meaning they can be understood simply as
a different way of representing the model output, rather than a post-hoc explanation tech-
nique.

To produce a spatially structured output, we consider the following: Due to the in-
vertibility of every part of the model, we can start from the output z, and transform it back
through the DCT operation. Unlike standard mean-pooling, the DCT pooling does not lose
any information in either direction. We define the following for short:

w(y) = DCT−1(z)−DCT−1(µy)

= DCT−1
(
z − µy

)
. (5.35)

Importantly, w(y) has the spatial structure of the final convolutional outputs: It will have
three indices, k, l for the spatial position and m for the feature channels: w(y)

klm.

Because the DCT is linear and orthogonal, it conserves distances, i.e. ∥z − µy∥ =
∥w(y)∥, This allows us to factorize the latent log likelihood over the spatial indices.

p(z|y)∝exp

(
−∥w(y)∥2

2

)
=exp

(
−
∑
kl

(
w

(y)
kl

)2
2

)
, (5.36)
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leading to the factorization
p(z|y) =

∏
k,l

p(wkl|y) (5.37)

where
p(wkl|y) := N (w

(y)
kl ; 0, 1) (5.38)

In a similar way, we can also decompose the posterior rather than the latent likelihood using
a few extra steps, This leads to our heatmap QClass(k, l, y), that sums to the class posterior
over space in the same way as in equation (5.36):

qθ(y|x) =
∏
kl

exp (QClass(k, l, y)) (5.39)

= exp

(∑
kl

QClass(k, l, y)

)
. (5.40)

QClass has a single hyperparameter that adjusts the contrast of the heatmaps, but equation
above holds in any case. The derivation is given in Appendix C.6. Examples are shown in
figure 5.24.

5.5. Conclusions

To conclude, this chapter demonstrated the strength of invertible generative classifiers, that
is by enhancing uncertainty quantification, out-of-distribution detection, and explainability.

While the chapter only focussed on classification, we find that the method can be read-
ily extended to other settings. For instance, in their recent work, Liang et al. (2022) extend
the framework to the semantic segmentation setting, learning a latent mixture model for
each image patch. In theory, the IB-INN also carries over to regression tasks in a straight-
forward way, although a finding a tractable latent model for this case is still an open question
to our knowledge.

The main disadvantage compared to current discriminative classifiers is especially the
higher computational requirement, larger networks, and slower training. Further advances
in terms of INN architectures are necessary to make generative classifiers viable e. g. on
mobile devices.

Overall, we are optimistic that IB-INNs or similar generative classifiers can help make
deep learning models safer and more robust in real-world applications in the future, as
research and availability of computational resources progress further.





Summary & Conclusions 6
6.1. Contributions in wider context

To begin with, we will relate the contributions of this thesis back to the concepts discussed
in chapter 1, specifically how each chapter addresses the open problems outlined in the
introduction.

Uncertainty quantification & diverse solutions: In chapters 3 and 4, we demonstrated
how invertible generative models enable uncertainty estimates for regression problems, even
producing full posteriors beyond the typical mean field solution, i. e. not just a scalar un-
certainty value per output dimension. For high-dimensional data, the posteriors represent
a diverse solution space. Here, the cINN proved especially powerful on problems such as
image synthesis and colorization. In chapter 3, we used standard feed forward networks
as part of the generative model in the form of ‘conditioning networks’, allowing the use of
well-established domain-specific or pre-trained architectures. In chapter 4, we showed that
the invertibility can even help in the learning of ill-posed inverse problems, improving the
training over standard feed forward in addition to the uncertainty estimates.

In chapter 5, we used invertible generative models in the classification setting in a
complementary way, namely as generative classifiers (GCs). Here, we demonstrated that
the training procedure as well as the model architecture itself improve the uncertainty cali-
bration over standard softmax discriminative classifiers (DCs).

Out-of-distribution data: Chapter 5 was most closely focused on the topic of out-of-
distribution (OoD) data. Using invertible generative models as GCs, i. e. modeling the
whole data distribution, not only enables native OoD detection on par with existing meth-
ods, but also provides a better understanding and interpretation of what OoD means, how it
relates to in-distribution data, and how OoD inputs are treated in classification.

Since the first publication of the work discussed in chapter 3, Schmitt et al. (2021) have
also extended the cINN to be able to detect out-of-distribution data from the viewpoint of
model misspecification.

Explainability: In all chapters of this thesis, we observed that the latent space, which all
invertible generative models possess, seemed to be interpretable and disentangled, making
the model’s data representation inherently explainable. Promising first results by Sorrenson
et al. (2020) and others examine the property of disentanglement in INNs more closely and
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theoretically. Especially for the IB-INN in chapter 5, the interpretable latent space allowed
for new ways of visualizing and understanding decision processes.

Furthermore, the exact invertibility and tractable likelihood allow for manipulating
or decomposing the network inputs to visualize the structure of the data distribution, and
the models understanding of the data on the input side. This was used in chapter 3, e. g.
by transferring colors to new conditioning images or interpolating between images, and in
chapter 5, by generating representative images from each class as the network understands
them.

6.2. Open questions and challenges

In light of the successful applications in this thesis, it is easy to miss the fact that generative
invertible models still face a number of open issues limiting their adoption in some cases.

Firstly, from a purely practical standpoint, the design, training and use of INNs requires
more specialized knowledge than standard feed forward networks, and support for INN
components in mainstream deep learning frameworks is still somewhat lacking. The FrEIA
library (https://github.com/vislearn/FrEIA) developed in the course of this
thesis attempts to alleviate this to some degree.

Second, INNs are typically computationally more expensive than feed-forward net-
works, confirmed by our direct comparison in section 5.4 (see also Mackowiak et al., 2021).
The high computational cost may be a problem for scientists in other fields without suffi-
cient access to large GPU clusters, or for applications on end-user or mobile field devices.
Furthermore, especially for coupling block architectures, training instabilities due to nu-
merical errors are known to occur with the typical 32-bit floating point precision on GPUs
(Behrmann et al., 2020).

While the quality of modeled distributions is on par with any other method or even
superior for lower-dimensional problems (“lower-dimensional” in this case meaning ≲ 103

dimensions), the visual quality of generated results, specifically in image generation, de-
grades in comparison to competing methods for higher-dimensional data.

Besides these practical limitations, some theoretical questions also remain unanswered.
For instance, open question remain concerning the expressive power of coupling blocks, the
number of blocks needed for a universal diffeomorphism approximator, and the types of dis-
tributions that can be modeled (see e. g. Teshima et al., 2020; Draxler et al., 2020). Many
properties of the latent space are also unexplored, beyond the already mentioned work by
Sorrenson et al. (2020).

Furthermore, the nature of the probability distribution of high-dimensional real-world
data such as natural images is poorly understood in general, regardless of the type of gener-
ative model. This concerns questions about the intrinsic dimensionality (Pope et al., 2021),
topology (Carlsson et al., 2008), tail behaviour, and more. As a result, out-of-distribution
(OoD) detection is also very poorly understood from a theoretical standpoint. It is unclear if
it is even possible to clearly define OoD data independent of a specific task, or if it is always
dependent on the use case and human interpretation of the data (Kirichenko et al., 2020).

https://github.com/vislearn/FrEIA
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6.3. The future of invertible generative models

We close this chapter with a brief examination of the future potential of generative invertible
models and promising directions for improvement considering the points outlined above.

Continued use in lower-dimensional problems A look at recent literature confirms what
was suggested in section 3.8: in more and more cases, generative invertible models are
being used for lower dimensional problems in different fields of science. Even if generative
invertible models were to stay limited to such use cases for practical applications, it would
make them a useful and important tool to the wider scientific community.

To further this development, the priority should be to provide easy to use tools and to
improve the ease and reliability of training, as well as the computational requirements rela-
tive to available hardware. We can expect this to happen as the available software libraries
and methods mature, in the same way as has occurred with feed forward networks in the
past.

Improved architectures For “high-dimensional” data (≳ 103 dimensions)¸ most typi-
cally image generation, generative invertible models are currently the exception, as they
often do not hold up in terms of image quality or computation efficiency when compared
e. g. to GANs. One way how this may change in future is the discovery of improvements to
the architecture or training process of invertible models.

Some advances have already be made, e. g. by cleverly decomposing the input images
and modeling components separately (Yu et al., 2020), adapting the latent distribution for
greater stability (Alexanderson and Henter, 2020), or introducing new types of invertible
layers or blocks (e.g. Song et al., 2019b; Karami et al., 2019). While some of these ap-
proaches seem promising, they have not been able to close the performance gap so far.

Hybrid models Several publications have appeared in recent years that take a different
approach: Instead of improving the invertible architecture, they combine generative in-
vertible models with feed-forward architectures in advantageous ways. The cINN from
chapter 3 is one such example, where relevant information is extracted by a feed-forward
network, reducing the burden on the invertible part. As further examples, invertible gen-
erative models have been used to generate lower-resolution image representations that are
mapped non-invertibly to high-resolution images (Rombach et al., 2020), or have been used
to generate latent codes that are fed into a different (non-invertible) generative model to
guide its outputs (Dorkenwald et al., 2021).

Such approaches manage to leverage the advantages of generative invertible models,
i. e. full mode coverage, guarantees, latent manipulation, while at the same time working
with high resolution data and reasonable hardware requirements. If any further substan-
tial improvements to the invertible architectures themselves fail to materialize, such hybrid
approaches may prove to be the most promising in future.

Innovations in the field of diffusion models We also take note of diffusion models in this
context: Like INNs, diffusion models can be considered a type of likelihood model, and thus
share many of the same advantages, namely full mode coverage, theoretical guarantees, etc.
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But even more so than INNs, they are extremely expensive to train and evaluate in many
cases, remaining reserved for only the best funded corporate research institutions at Google,
OpenAI, etc., who have huge amounts of computational resources (Ramesh et al., 2022).

However, the critical breakthrough in terms of real-world applicability came more re-
cently: (Rombach et al., 2022) presented so-called latent diffusion models, that use a vector-
quantized auto-encoder to greatly reduce the dimensionality of the input images, and apply
diffusion models to the auto-encoder’s latent space. Through this simple modification, la-
tent diffusion models have arguably become the most popular method both in conditional
and unconditional image generation, considering inference can be run on consumer hard-
ware. Since then, latent diffusion models have have an impact not only in machine learning
research, but also in the general public. A slew of services and start-ups allow enthusiasts
and laypeople to generate custom images, artworks, and portraits.

We bring up diffusion models here because they attest to the following two points:

Firstly, for practical use, likelihood models seem to be preferable to e.g. GAN-based
models. While the image quality of diffusion models is not necessarily superior to that
of state-of-the-art GANs (both often border on indistinguishable from real images), diffu-
sion models have been catapulted to a degree of public popularity and use that GAN-based
models never achieved. This is precisely due to the properties afforded by their nature as
likelihood models: full mode coverage producing varied and interesting results, intuitive
bidirectional manipulation and selective editing of generated images, and seemingly over-
all better generalization and greater ease of conditioning the outputs. These properties are
shared with the generative invertible models discussed in this thesis.

Secondly, they serve as inspiration for a possible future of invertible models: Diffu-
sion models, once deemed prohibitively expensive and impractical for real-world use de-
spite their favourable theoretical properties, have suddenly become the primary choice for
practical applications of image generation almost over night, mainly due to a simple but
effective architectural modification. It seems plausible that a similarly explosive success
may be possible for generative invertible models after a similar breakthrough discovery.

The following years will tell how each of these options develops, whether generative
invertible models remain an important but niche tool in science and engineering, whether
steady improvements or new architecture combinations allow them to flourish in a special-
ized subset of high-dimensional tasks, or whether a breakthrough development will make
generative invertible models an established choice for any kind of generative modeling.
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Appendix:
Conditional Invertible Neural Networks A
A.1. Proofs and Assumptions

We further disambiguate the notation used in the main chapter: We include the INNs net-
work parameters θ implicitly in f , and write f(·; θ̂) =: f̂(·), as well as q(x | c, θ) =: q(x | c)
and q(x | c, θ̂) =: q̂(x | c), to simplify the equations. We also write the loss as a functional
depending on f and φ for clarity: LcML = LcML[f, φ]. We also understand the argmin and
argmax operations to return a set, because the extremum must not necessarily be unique.
So, we write â ∈ argminL(a) instead of ‘=’ as in the main chapter. We also restate the
propositions according to this notation.

We consider the RVs X,Y jointly: [X,Y ] : Ω → (X , µ) with the measurable space
(X , µ) , where X = XX × XY = RdX+dY is the domain of x, y, and µ is the Lebesgue
measure. We assume p(X,Y ) is absolutely continuous w.r.t. µ. We make use of the dif-
ferential entropy and differential conditional entropy H , see (Cover and Thomas, 2012, Ch.
8.1) for definitions.

For the loss, we do not take a finite number of training samples into account, and
instead assume that the loss LcML[f, φ] is the exact expecation over the training data distri-
bution p(X,Y ). Strong consistency of the loss for the empirical expectation can be shown
in the usual way, assuming a compact parameter space and bounded outputs of the INN,
and applying Chebyshev’s Inequality, but this is beyond the scope of this work, and greatly
complicates the form of the propositions.

To outline the proofs in the following section: We first state and discuss some assump-
tions about the INN f and the conditioning network φ, which are required in our proofs of
the propositions. Lemma 1 states two inequalities, which bound the loss from below. Under
Assumptions 1, 2 and 3, we show that choices of f and φ exist where each bound is met
exactly. Lastly, for each proposition, we show that when the respective bound from Lemma
1 is met exactly, the Proposition holds true.

Assumption 1. We assume that the INN is chosen from a family of distributional universal
approximators F , as defined in Teshima et al. (2020).

This simply means that the INN is in principle powerful enough to represent any distribu-
tion p(X | C). Affine coupling block INNs specifically were recently proven to satisfy this
in Teshima et al. (2020), under some requirements for the subnetworks. Their result readily
generalizes to CCBs, by changing the definition for H in Sec. D of Teshima et al. (2020).
Proving this rigorously is beyond the scope of this work, so we leave the universality of the
INN as an assumption.

Assumption 2.We assume that the conditioning network φ : RdY → RdC is chosen from
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the set G0, which is defined as the set of all functions, for which the pushforward measure
p(C) ≡ p(φ(Y )) := φ♯p(Y ) is absolutely continuous w.r.t. the Lebesgue measure.

What this means intuitively, is that no subset of features can be exactly the same, or other-
wise perfectly inter-dependent. This is mostly a formal requirement: if it is not fulfilled, it
does damage or alter the outcome of the training, it simply means the MI is ill-defined, and
Proposition 1 can not be formulated in the same way. Proposition 2 can still be shown, by
slightly altering Lemma 1 to avoid using the MI, see e.g. Beaudry and Renner (2011) for an
alternative formulation of the data processing inequality, that applies even if the assumption
does not hold.

Assumption 3. In addition to Assumption 2, we assume that φ is chosen from G1, where
G1 is a family of universal approximators as defined in Hornik et al. (1989). Secondly, we
assume the number of features extracted, dC := dim(C) is ≥ dY := dim(Y ).

This assumption is stronger than Assumption 2, and is a sufficient condition to show Propo-
sition 2. Intuitively, it says that φ must have sufficient expressive power so that the features
C can be informative enough for the INN to reproduce the true posterior. This includes the
number of features, and the network power. If the features are too few, or inaccurate and
uninformative, the INN will not be able to model the true posterior.

Lemma 1. Denoting the pushforward measure as p(C) ≡ p(φ(Y )) := φ♯p(Y ), the follow-
ing inequality holds for all choices of φ, f :

LcML[f, φ] ≥
(a)
H
(
X | φ(Y )

)
≥
(b)
H
(
X | Y

)
(A.1)

Under Assumption 1, a choice of f ∈ F exists where (a) is equal, and under Assumption 3
a choice of φ ∈ G1 exists where (b) becomes equal.

Proof. Because LcML is equivalent to the definition of the differential cross-entropy
Hp(q(X | φ(Y ))), (a) follows directly from the inequality that the cross entropy is ≥
the entropy with equality iff p = q (Cover and Thomas, 2012, p. 256). Assumption 1
guarantees that f can be chosen so that p(X | φ(Y )) = q(X | φ(Y )), and therefore (a)
becomes ‘=’.

(b) follows from the information processing inequality (Cover and Thomas, 2012, p.
34), whereby

I(X,Y ) ≥ I(X,φ(Y )). (A.2)

Writing out the terms, and subtracting the constant H(X) from both sides directly yields
(b). Therefore, (b) becomes ‘=’ iff Eq. A.2 is also ‘=’. We can construct a φ for which this
is the case using Assumption 3 as a sufficient condition: We split up C into C = [Cs, Cn],
where dim(Cs) = dim(Y ) and dim(Cn) = dim(C)− dim(Y ) ≥ 0. According to (Hornik
et al., 1989, Corollary 4.2), we can choose φ such that that the mapping φs : Y → Cs is
a homeomorphism, and Cn only contains constants (or noise), independent of Y . This part
can effectively be ignored. Using this construction, we get

I(X,φ(Y )) = I(X,φs(Y )) = I(X,Y ). (A.3)

We used the independence of Cn and Y in the first step, and the invariance of the MI under
homeomorphic transforms (Kraskov et al., 2004, Eq. A2) in the second step. □

Proposition 1. Let f̂ be the INN and φ̂ the conditioning network that jointly minimize LcML,
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where φ is optimized over G0 given in Assumption 2, and f over F given in Assumption 1.
Then it holds that

I
(
X, φ̂(Y )

)
= max

φ∈G0

I
(
X,φ(Y )

)
(A.4)

Proof. Recall the minimization process

f̂ , φ̂ ∈ argmin
f,φ∈F×G0

LcML[f, φ] (A.5)

By definition, we then have

LcML[f̂ , φ̂] = min
φ∈G0

LcML[f̂ , φ] (A.6)

Using Assumption 1, we have already shown that (a) in Lemma 1 will be ‘=’ for f̂ and
arbitrary φ, the loss has its minimum possible value w.r.t. f , and the bound can be reached
exactly. We use the equality to substitute LcML in Eq. A.6:

H(X|φ̂(Y )) = min
φ∈G0

H(X|φ(Y )) (A.7)

As a final step, we subtract the constant H(X) to both sides. It can be written inside the
min() operation, as it does not depend on φ. Writing out the entropies and rearranging the
terms directly gives

−I(X, φ̂(Y )) = min
φ∈G0

− I(X,φ(Y )) (A.8)

□

Proposition 2. Assume φ is optimized over G1 and dim(C) ≥ dim(Y ) (Assumption 3), and
f is optimized over F (Assumption 1). Then the following holds for f̂ , φ̂ ∈ argminLcML[f, φ]:

q̂(X|φ̂(Y )) = p(X|Y ) (A.9)

Proof. We consider the KL-divergence between the true and learned posterior, write it out,
and identify the loss and the conditional entropy:

DKL

(
p(X | Y )∥q̂(X | φ̂(Y ))

)
(A.10)

= LcML[f, φ]−H(X | Y ) (A.11)

In Lemma 1, we showed that H(X | Y ) is the global minimum of the loss, and will be
reached in training under Assumptions 1, 2, and 3 ((a) and (b) both ‘=’). Then we can
immediately see that the KL-divergence is zero, which is the case iff the two distributions
are identical. □

A.2. Additional Figures and Experiments

A.2.1. Colorization – Interpolations

In the following, we show 2-dimensional interpolations in latent space. Two random latent
vectors z(1), z(2) are linearly combined:

z∗ = a1z
(1) + a2z

(2)
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with varying a1, a2 ∈ [−0.9 . . . 0.9] across each axis of a grid. The center image has
z∗ = 0. Note that the images in the corners have a larger magnitude than trained for,
∥z∗∥2 ≈ 1.3E

[
∥z∥2

]
, leading to some oversaturation artifacts, as in Fig. 12 of the main

paper.
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A.2.2. Ablation of training improvements

To demonstrate the improved stability and training speed through the improvements from
section 3.7, we perform ablations, see Fig. A.1. The ablations for colorization were per-
formed for the LSUN bedrooms task, due to training speed.

We find that for stable training at Adam learning rates of 10−3, the tanh-clamping of
s and Haar wavelet downsampling are strictly necessary. Without these, the network has to
be trained with much lower learning rates and more careful and specialized initialization,
as used e.g. in Kingma and Dhariwal (2018). Beyond this, the noise augmentation and
permutations lead to the largest improvement in final result. The effect of the noise is
more pronounced for MNIST, possibly becuase large parts of the image are completely
black otherwise, additionally leading to a problem with sparse gradients. Note however,
that the training curves of the models with and without noise augmentation is not directly
comparable, as the loss differs an additional summand ≈ log(σaug.). The effect on the
training speed and stability is clearly visible regardless. The initialization only improves
the final result by a small margin, but also converges noticeably faster.

MNIST
Ablation Final loss

▬▬ Full model -3.364
▬▬ No noise aug. -2.244
▬▬ No Xavier init. -3.341
▬▬ No perm. -3.198
▬▬ No clamp -0.808 (div.)

Colorization
Ablation Final loss

▬▬ Full model -2.732
▬▬ No noise aug. -2.701
▬▬ No Xavier init. -2.730
▬▬ No perm. -2.720
▬▬ No clamp 0.107 (div.)
▬▬ No Haar -2.570 (div.)

Figure A.1.: Training curves for each task, ablating the different improvements. "div." denotes
that the training diverges, and the lowest loss so far is given.

A.2.3. LSUN Bedrooms

To provide a simpler model for more in-depth experiments and ablations, we additionally
train a cINN for colorization on the LSUN bedrooms dataset Yu et al. (2015). We use a
smaller model than for ImageNet, and train the conditioning network jointly from scratch,
without pretraining. Both the conditioning input, as well as the generated color channels
have a resolution of 64 × 64 pixels. The entire model trains in under 4 hours on a single
GTX 1080Ti GPU.

To our knowledge, the only diversity-enforcing cGAN architecture previously used for
colorization is the colorGAN Cao et al. (2017), which is also trained exclusively on the
bedrooms dataset. Training the colorGAN for comparison, we find it requires over 24 hours
to converge stably, after multiple restarts. The results are generally worse than those of the
cINN, as shown in Fig. A.2. While the resulting pixel-wise color variance is slightly higher
for the colorGAN, it is not clear whether this captures the true variance, or whether it is due
to unrealistically colorful outputs, such as in the second row in Fig. A.2.
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Metric cINN colorGAN
MSE best-of-8 6.14 6.43
Variance 33.69 39.46
FID 26.48 28.31

Table A.1.: Quantitative comparison between smaller cINN and colorGAN on LSUN bed-
rooms. The metrics used are explained in detail in the work of Ardizzone et al. (2020a)

cINN COLORGAN

Figure A.2.: Qualitative comparison between smaller cINN and colorGAN on LSUN bed-
rooms.
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B.1. Proof of correctness of generated posteriors

Lemma: If some bijective function f : x → z transforms a probability density pX(x) to
pZ(z), then the inverse function f−1 transforms pZ(z) back to pX(x).

Proof: We denote the probability density obtained through the reverse transformation as
p∗X(x). Therefore, we have to show that p∗X(x) = pX(x). For the forward direction, via the
change-of-variables formula, we have

pZ(z) = pX

(
x = f−1(z)

) ∣∣det[∂z(f−1)]
∣∣ (B.1)

with the Jacobian ∂zf−1 ≡ ∂f−1
i /∂zj . For the reverse transformation, we have

p∗X(x) = pZ

(
z = f(x)

)
|det[∂xf ]| . (B.2)

We can substitute pZ from Eq. B.1 and obtain

p∗X(x) = pX

(
x = f−1(f(x))

) ∣∣∣det [(∂z(f−1))(∂xf)
]∣∣∣ (B.3)

= pX(x)
∣∣∣det [(∂zf−1)(∂xf)

]∣∣∣ (B.4)

= pX(x) |det[I]| = pX(x). (B.5)

In Eq. B.4, the Jacobians cancel out due to the inverse function theorem, i.e. the Jacobian
∂z(f

−1) is the matrix inverse of ∂xf .

Theorem: If an INN f(x) = [y, z] is trained as proposed, and both the supervised loss
Ly = E[(y−fy(x))2] and the unsupervised loss Lz = D

(
q(y, z), p(y) p(z)

)
reach zero,

sampling according to Eq. 4.1 with g = f−1 returns the true posterior p(x | y∗) for any
measurement y∗.

Proof: We denote the chosen latent distribution as pZ(z), the distribution of observations
as pY (y), and the joint distribution of network outputs as q(y, z). As shown by Gretton
et al. (2012), if the MMD loss converges to 0, the network outputs follow the prescribed
distribution:

Lz = 0 ⇐⇒ q(y, z) = pY (y) pZ(z) (B.6)
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Suppose we take a posterior conditioned on a fixed y∗, i.e. p(x | y∗), and transform it using
the forward pass of our perfectly converged INN. From this we obtain an output distribution
q∗(y, z). Because Ly = 0, we know that the output distribution of y (marginalized over z)
must be q∗(y) = δ(y − y∗). Also, because of the independence between z and y in the
output, the distribution of z-outputs is still q∗(z) = pZ(z). So the joint distribution of
outputs is

q∗(y, z) = δ(y − y∗) pZ(z) (B.7)

When we invert the network, and repeatedly input y∗ while sampling z ∼ pZ(z), this is the
same as sampling [y, z] from the q∗(y, z) above. Using the Lemma from above, we know
that the inverted network will output samples from p(x | y∗).

Corollary: If the conditions of the theorem above are fulfilled, the unsupervised reverse
loss Lx = D

(
q(x), pX(x)

)
between the marginalized outputs of the inverted network, q(x),

and the prior data distribution, pX(x), will also be 0. This justifies using the loss on the
prior to speed up convergence, without altering the final results.

Proof: Due to the theorem, the estimated posteriors generated by the INN are correct,
i.e. q(x | y∗) = p(x | y∗). If they are marginalized over observations y∗ from the training
data, then q(x) will be equal to pX(x) by definition. As shown by Gretton et al. (2012), this
is equivalent to Lx = 0.

B.2. Artificial data – Gaussian mixture

In section 4.2.1, we demonstrate that the proposed INN can approximate the true posteriors
very well and is not hindered by the required coupling block architecture. Here we show
how some existing methods do on the same task, using neural networks of similar size as
the INN.

cGAN Training a conditional GAN of network size comparable to the INN (counting
only the generator) and only two noise dimensions turned out to be challenging. Even with
additional pre-training to avoid mode collapse, the individual modes belonging to one label
are reduced to nearly one-dimensional structures.

Larger cGAN In order to match the results of the INN, we trained a more complex cGAN
with 2M parameters instead of the previous 10K, and a latent dimension of 128, instead of
2. To prevent mode collapse, we introduced an additional regularization: an extra loss term
forces the variance of generator outputs to match the variance of the training data prior.
With these changes, the cGAN can be seen to recover the posteriors reasonably well.

Generator + MMD Another option is to keep the cGAN generator the same size as our
INN, but replace the discriminator with an MMD loss (cf. Sec. 4.1.3). This loss receives a
concatenation of the generator output x and the label y it was supplied with, and compares
these batch-wise with the concatenation of ground truth (x, y)-pairs. Note that in contrast to
this, the corresponding MMD loss of the INN only receives x, and no information about y.
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Ground truth INN, all losses cVAE cVAE-IAF

cGAN Larger cGAN Generator + MMD Dropout sampling

Figure B.1.: Results of several existing methods for the Gaussian mixture toy example.

For this small toy problem, we find that the hand-crafted MMD loss dramatically improves
results compared to the smaller learned discriminator.

cVAE We also compare to a conditional Variational Autoencoder of same total size as the
INN. There is some similarity between the training setup of our method (Fig. B.2, right)
and that of cVAE (Fig. B.2, left), as the forward and inverse pass of an INN can also be seen
as an encoder-decoder pair. The main differences are that the cVAE learns the relationship
x → y only indirectly, since there is no explicit loss for it, and that the INN requires no
reconstruction loss, since it is bijective by construction.

cVAE-IAF We adapt the cVAE to use Inverse Autoregressive Flow (Kingma et al., 2016)
between the encoder and decoder. On the Gaussian mixture toy problem, the trained cVAE-
IAF generates correct posteriors on par with our INN (see Fig. B.1).

Dropout sampling The method of dropout sampling with learned error terms is by con-
struction not able to produce multi-modal outputs, and therefore fails on this task.

B.2.1. Latent space analysis

To analyze how the latent space of our INN is structured for this task, we choose a fixed
label y∗ and sample z from a dense grid. For each z, we compute x through our inverse
network and colorize this point in latent (z) space according to the distance from the closest
mode in x-space. We can see that our network learns to shape the latent space such that
each mode receives the expected fraction of samples (Fig. B.3).
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x INN
y

z

forward (simulation): x → y

inverse (sampling): [y, z] → x
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Figure B.2.: Abstraction of the cVAE-IAF training scheme compared to our INN from Fig. 4.1.
For the standard cVAE, the IAF component is omitted.

Figure B.3.: Layout of INN latent space for one fixed label y∗, colored by mode closest to
x = g(y∗, z). For each latent position z, the hue encodes which mode the corresponding x
belongs to and the luminosity encodes how close x is to this mode. Note that colors used here
do not relate to those in Fig. 4.2, and encode the position x instead of the label y. The first
three columns correspond to labels green, blue and red Fig. 4.2. White circles mark areas that
contain 50% and 90% of the probability mass of latent prior p(z).

B.3. Artificial data – inverse kinematics

A short video demonstrating the structure of our INN’s latent space can be found under
https://gfycat.com/SoggyCleanHog, for a slightly different arm setup.

The dataset is constucted using gaussian priors xi ∼ N (0, σi), with σ1 = 0.25 and
σ2 = σ3 = σ4 = 0.5

∧
= 28.65◦. The forward process is given by

y1 = x1 + l1 sin(x2) + l2 sin(x3 − x2) + l3 sin(x4 − x2 − x3) (B.8)

y2 = l1 cos(x2) + l2 cos(x3 − x2) + l3 cos(x4 − x2 − x3) (B.9)

with the arm lenghts l1 = 0.5, l2 = 0.5, l3 = 1.0.

To judge the quality of posteriors, we quantify both the re-simulation error and the cali-
bration error over the test set, as in Sec. 4.2.3 of the paper. Because of the cheap simulation,
we average the re-simulation error over the whole posterior, and not only the MAP esti-
mate. In Table B.1, we find that the INN has a clear advantage in both metrics, confirming
the observations from Fig. 4.6.

https://gfycat.com/SoggyCleanHog
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Table B.1.: Quantitative evaluation of the inverse kinematics experiment

Method Mean re-sim. err. Median re-sim. err. Calibration err.

cVAE 0.0368 0.0307 7.78%
cVAE-IAF 0.0368 0.0307 7.81%
INN 0.0139 0.0113 0.96%

ABC INN cVAE

ABC INN cVAE

ABC INN cVAEABC INN cVAE

Figure B.4.: Posteriors generated for less challenging observations y∗ than in Fig. 4.6.

B.4. Approximate Bayesian computation (ABC)

While there is a whole field of research concerned with ABC approaches and their efficiency-
accuracy tradeoffs, our use of the method here is limited to the essential principle of rejec-
tion sampling. When we require N samples of x from the posterior p(x | y∗) conditioned
on some y∗, there are two basic ways to obtain them:

Threshold: We set an acceptance threshold ϵ, repeatedly draw x-samples from the prior,
compute the corresponding y-values (via simulation) and keep those where dist(y, y∗) < ϵ,
until we have accepted N samples. The smaller we want ϵ, the more simulations have to be
run, which is why we use this approach only for the experiment in Sec. 4.2.2, where we can
afford to run the forward process millions or even billions of times.
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Quantile: Alternatively, we choose what quantile q of samples shall be accepted, and
then run exactly N/q simulations. All sampled pairs (x, y) are sorted by dist(y, y∗) and the
N closest to y∗ form the posterior. This allows for a more predictable runtime when the
simulations are costly, as in the medical application in Sec. 4.2.3 where q = 0.005.

B.5. Details of datasets and network architectures

Table B.2 summarizes the datasets used throughout the chapter. The architecture details are
given in the following.

Table B.2.: Dimensionalities and training set sizes for each experiment.

Experiment training data dim(x) dim(y) dim(z) see also

Gaussian mixture 106 2 8 2
Inverse kinematics 106 4 2 2
Medical data 15 000 13 8 13 Wirkert et al. (2016)
Astronomy 8 772 19 69 17 Pellegrini et al. (2011)

B.5.1. Artificial data – Gaussian mixture

INN: 3 invertible blocks, 3 fully connected layers per affine coefficient function with
ReLU activation functions in the intermediate layers, zero padding to a nominal dimension
of 16, Adam optimizer, decaying learning rate from 10−3 to 10−5, batch size 200. The
inverse multiquadratic kernel was used for MMD, with h = 0.2 in both x- and z-space.

Dropout sampling: 6 fully connected layers with ReLU activations, Adam optimizer,
learning rate decay from 10−3 to 10−5, batch size 200, dropout probability p = 0.2.

cGAN: 6 fully connected layers for the generator and 8 for the discriminator, all with
leaky ReLU activations. Adam was used for the generator, SGD for the discriminator, learn-
ing rates decaying from 2 · 10−3 to 2 · 10−6, batch size 256. Initially 100 iterations training
with L = 1

N

∑
i ∥g(zi, yi) − xi∥22, to separate the differently labeled modes, followed by

pure GAN training.

Larger cGAN: 2 fully connected layers with 1024 neurons each for discriminator and
generator, batch size 512, Adam optimizer with learning rate 8 · 10−4 for the generator,
SGD with learning rate 1.2 · 10−3 and momentum 0.05 for the discriminator, 1.6 · 10−3

weight decay for both, 0.25 dropout probabiliy for the generator at training and test time.
Equal weighting of discriminator loss and penalty of output variance L = (Vari[g(zi, yi)]−
Vari[xi])2

Generator with MMD: 8 fully connected layers with leaky ReLU activations, Adam
optimizer, decaying learning rate from 10−3 to 10−6, batch size 256. Inverse multiquadratic
kernel, h = 0.5.
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cVAE: 3 fully connected layers each for encoder and decoder, ReLU activations, learning
rate 2·10−2, decay to 2.5·10−5, Adam optimizer, batch size 25, reconstruction loss weighted
50:1 versus KL divergence loss.

B.5.2. Artificial data – inverse kinematics

INN: 6 affine coupling blocks with 3 fully connected layers each and leaky ReLU acti-
vations. Adam optimizer, decaying learning rate from 10−2 to 10−4, multiquadratic kernel
with h = 1.2.

cVAE: 4 fully connected layers each for encoder and decoder, ReLU activations, learning
rate 5 · 10−3, decay to 1.6 · 10−5, Adam optimizer, batch size 250, reconstruction loss
weighted 15:1 versus KL divergence loss.

B.5.3. Functional parameter estimation from multispectral tissue images

INN: 3 invertible blocks, 4 fully connected layers per affine coefficient function with
leaky ReLUs in the intermediate layers, zero padding to double the original width. Adam
optimizer, learning rate decay from 2·10−3 to 2·10−5, batch size 200. Inverse multiquadratic
kernel with h = 1, weighted MMD terms by observation distance with decaying γ = 0.2 to
0.

Dropout sampling/point estimate: 8 fully connected layers, ReLU activations, Adam
with decaying learning rate from 10−2 to 10−5, batch size 100, dropout probability p = 0.2.

cVAE: 4 fully connected layers each for encoder and decoder, ReLU activations, learning
rate 10−3, decay to 3.2 · 10−6, Adam optimizer, batch size 25, reconstruction loss weighted
103:1 versus KL divergence loss.

B.5.4. Impact of star clusters on the dynamical evolution of the galactic gas

INN: 5 invertible blocks, 4 fully connected layers per affine coefficient function with
leaky ReLUs in the intermediate layers, no additional zero padding. Adam optimizer with
decaying learning rate from 2 · 10−3 to 1.5 · 10−6, batch size 500. Kernel for latent space:
k(z, z′) = exp(−∥(z − z′)/h∥2) with h = 7.1. Kernel for x-space: k(x, x′) = −∥x −
x′∥1/41/2. Due to the complex nature of the prior distributions, this was the kernel found to
capture the details correctly, whereas the peak of the inverse multiquadratic kernel was too
broad for this purpose.
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C.1. Proofs and Derivations

C.1.1. Assumptions

Assumption 1 We assume that the the sample space X belonging to the input RVX : X →
R is a compact domain in Rd, and that p(X | y) is absolutely continuous ∀y ∈ Y , where Y
is the set of available classes.

The compactness of X is the major aspect here. However, this is always fulfilled for image
data, as the pixels can only take certain range of values, and equally fulfilled for most other
real-world datasets, as data representations, measurement devices, etc. only have a finite
range.

Assumption 2 We assume gθ is from a family of universal density estimators, as defined by
Definition 3 in Teshima et al. (2020). Moreover, we assume the network parameter space Θ
is a compact subdomain of Rn, gθ and Jθ are uniformly bounded, and that the lower bound
of | det Jθ| is > 0. We also assume that gθ and Jθ are continuous and differentiable in both
X and θ.

This is a fairly mild set of assumptions, as it is fulfilled by construction with most existing
INN architectures using standard multi-layer subnetworks. See e.g. Behrmann et al. (2020);
Virmaux and Scaman (2018) for details. Specifically, it holds for our tanh-clamped coupling
block design (see section 3.5 and ?? for details). Note that some properties directly follow
from Assumption 2: Firstly, as Jθ is uniformly bounded, this implies that gθ is uniformly
Lipschitz-continuous. Second, using Assumption 1, the domain of Z = gθ(X) is compact,
and p(Z) is absolutely continuous.

C.1.2. Mutual Cross-Information as Estimator for MI

In our case, we only require CI(X,ZE) and CI(Y,ZE), but we show the correspondence
for two unspecified random variables U , V , as it may be of general interest. However, note
that our estimator will likely not be particularly useful outside of our specific use-case, and
other methods should be preferred (e.g. MINE, Belghazi et al., 2018). Our approach has
the specific advantage, that we estimate the MI of the model using the model itself. For e.g.
MINE, we would require three models, one generative model, and two models that only
serve to estimate the MI. Secondly, it is not clear how the large constant d log(σ) can be
cancelled out using other approaches.
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For the joint input space Ω = U × V , we assume that U is a compact domain in Rd,
and V is either also a compact domain in Rl (Case 1), or discrete, i.e. a finite subset of N
(Case 2). In Case 1, we assume that p(U, V ) is absolutely continuous with respect to the
Lebesgue measure, and in Case 2, p(U |v) is absolutely continuous for all values of v ∈ V .
This is in agreement with Assumption 1.

In Case 1, q(U), q(V ), q(U, V ), the densities can all be modeled separately, by three
flow networks g(U)

θ (u), g(V )
θ (v), g(UV )

θ (u, v). Although in our formulation, we are later able
to approximate the latter two through the first.

In Case 2, we only model q(U |V ), and assume that q(V ) is either known beforehand
and set to p(V ) (e.g. label distribution), or the probabilities are parametrized directly. Either
way, q(U, V ) = q(U |V )q(V ) and q(U) =

∑
v∈V q(U, v).

1 Assume that the q(.) densities can be chosen from a sufficiently rich model family
(e.g. a universal density estimator). Then for every η > 0 there is a model such that∣∣I(U, V )− CI(U, V )

∣∣ < η (C.1)

and I(U, V ) = CI(U, V ) if p(U, V ) = q(U, V ).

Writing out the definitions explicitly, and rearranging, we find

CI(U, V ) = I(U, V ) +DKL

(
p(U, V )

∥∥q(U, V )
)

−DKL

(
p(U)

∥∥q(U)
)
−DKL

(
p(V )

∥∥q(V )
)

(C.2)

Shortening the KL terms to D1, D2 and D3 for convenience:

|CI(U, V )− I(U, V )| = |D1 −D2 −D3| (C.3)

≤ D1 +D2 +D3 (C.4)

≤ 3max(D1, D2, D3) (C.5)

At this point, we can simply apply results from measure transport: if the gθ are from a family
of universal density estimators, we can choose θ∗ to make max(D1, D2, D3) arbitrarily
small by matching p and q. This was shown in general for increasing triangular maps,
e.g. in Hyvärinen and Pajunen (1999), Theorem 1 for an accessible proof, or Bogachev
et al. (2005) for a more in-depth approach (specifically Corollary 4.2). Generality was also
proven for several concrete architectures, e.g. Teshima et al. (2020); Jaini et al. (2019);
Huang et al. (2018a).

For the second part of the Proposition, we note the following: if p(U, V ) = q(U, V ),
we have D1 = D2 = D3 = 0, and therefore CI(U, V ) = I(U, V ).

C.1.3. Loss Function LX

In the following, we use the subscript-notation for the cross entropy:

hq(U) = Eu∼p(U) [− log q(u)] , (C.6)

to avoid confusion with the joint entropy that arises with the usual notation (h(p(U), q(U))).

2 For the case given in the paper, that ZE = gθ(X + E), it holds that I(X,ZE) ≤
CI(X,ZE).
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In the following, we first use the invariance of the (cross-)information to homeomor-
phic transforms (see e.g. Cover and Thomas (2012) Sec. 8.6). Then, we use p(X+E|X) =
q(X +E|X) = p(E) (known exactly) and write out all the terms, most of which cancel. Fi-
nally, we use the inequality that the cross entropy is larger than the entropy, hq(U) ≥ h(U)
regardless of q. The equality holds iff the two distributions are the same.

CI(X,ZE)− I(X,ZE) = CI(X,X+E)− I(X,X+E) (C.7)

= hq(X)− h(X) + 0 (C.8)

≥ 0 (C.9)

With equality iff p(X) = q(X).

We now want to show that the network optimization procedure that arises from the
empirical loss, in particular the gradients w.r.t. network parameters θ, are consistent with
those of CI(X,ZE):

3 The defined loss is a consistent estimator for CI(X,ZE) up to a known constant, and
a consistent estimator for the gradients. Specifically, for any ϵ1, ϵ2 > 0 and 0 < δ < 1 there
are σ0 > 0 and N0 ∈ N, such that ∀N ≥ N0 and ∀σ < σ0,

Pr
(∣∣∣CI(X,ZE) + d log

√
2πeσ2 − L(N)

X

∣∣∣ < ϵ1

)
> 1−δ

and

Pr

(∥∥∥∥ ∂

∂θ
CI(X,ZE)−

∂

∂θ
L(N)
X

∥∥∥∥ < ϵ2

)
> 1−δ

holds uniformly for all model parameters θ.

The loss function is as defined in the paper:

LX = hq(ZE)− Ex∼p(X+E)

[
log
∣∣ det Jθ(x)∣∣] (C.10)

as well as its empirical estimate using N samples, L(N)
X .

We split the proof into two Lemmas, which we will later combine.

Lemma 1 For any η1, η2 > 0 and δ > 0 there is an N0 ∈ N so that

Pr
(∣∣L(N)

X − LX

∣∣ < η1

)
> 1− δ (C.11)

Pr
(∣∣ ∂
∂θ

L(N)
X − ∂

∂θ
LX

∣∣ < η2

)
> 1− δ (C.12)

∀N ≥ N0

For the first part (Eq. C.11), we simply have to show that the uniform law of large num-
bers applies, specifically that all expressions in the expectations are bounded and change
continuously with θ. For the Jacobian term in the loss, this is the case by definition. For
the hq(ZE)-term, we can show the boundedness of log q occurring in the expectation by
inserting the GMM explicitly. We find

− log(q(z)) ≤ max
y

[(z − µy)
2/2] + const. (C.13)
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while we know that z = gθ(x) is bounded. Therefore, the uniform law of large numbers
(Newey and McFadden, 1994, Lemma 2.4) guarantees existence of an N1 to satisfy the
condition for all θ ∈ Θ.

For the second part (Eq. C.12), we will show that the gradient w.r.t. θ and the expec-
tation can be exchanged, as the gradient is also bounded by the same arguments as before.
We find that the conditions for exchanging expectation and gradient are trivially satisfied,
again due to the bounded gradients (see L’Ecuyer (1995), assumption A1, with Γ set to the
upper bound). This results in an N2 ∈ N for which Eq. C.12 is satisfied. As a last step, we
simply define N0 := max(N1, N2).

Lemma 2 For any η1, η2 > 0 there is an σ0 > 0, so that∥∥∥CIθ(X,ZE) + d log
√
2πeσ2 − LX

∥∥∥ < η2 (C.14)∥∥∥∥ ∂∂θ(CIθ(X,ZE)− LX

)∥∥∥∥ < η2 (C.15)

∀σ < σ0

In the following proof, we make use of the O(·) notation, see e.g. De Bruijn (1981):

We write f(σ) = O(g(σ)) (σ → 0) iff there exists a σ0 and an M ∈ R,
M > 0 so that

∥f(σ)∥ < M g(σ) ∀σ ≤ σ0. (C.16)

Furthermore, to discuss the limit case, it is necessary we reparametrize the noise vari-
able E in terms of noise S with a fixed standard normal distribution:

E = σS with p(S) = N (0, 1) (C.17)

To begin with, we use the invariance of CI under the homeomorphic transform gθ.
This can be easily verified by inserting the change-of-variables formula into the definition.
See e.g. Cover and Thomas (2012) Sec. 8.6. This results in

CI(X,ZE) = CI(Z,ZE) = hq(ZE)− hq(ZE|Z) (C.18)

Next, we series expand ZE around σ = 0. We can use Taylor’s theorem to write

ZE = Z + Jθ(Z)E+O(σ2) (C.19)

We have written the Jacobian dependent on Z, but note that it is still ∂gθ/∂X , and we
simply substituted the argument. We put this into the second entropy term hq(ZE|Z) in Eq.
C.18, and then perform a zero-order von Mises expansion of hq. In general, the identity is

hq(W + ξ) = hq(W ) +O(∥ξ∥) (∥ξ∥ → 0), (C.20)

and we simply put ξ = O(σ2) (the identity applies in the same way to the conditional
cross-entropy). Intuitively, this is what we would expect: the entropy of an RV with a small
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perturbation should be approximately the same without the perturbation. See e.g. Serfling
(2009), Sec. 6 for details. Effectively, this allows us to write the residual outside the entropy:

hq(ZE|Z) = hq
(
Z + Jθ(Z)E+O(σ2)

∣∣Z) (C.21)

= hq
(
Z + Jθ(Z)E

∣∣Z)+O(σ2) (C.22)

= hq
(
Jθ(Z)E

∣∣Z)+O(σ2) (C.23)

At this point, note that qθ(Jθ(Z)E|Z) is simply a multivariate normal distribution, due to the
conditioning on Z. In this case, we can use the entropy of a multivariate normal distribution,
and simplify to obtain the following:

−hq(JθE|Z) = E
[
1

2
log
(
det(2πσ2JθJ

T
θ )
)]

(C.24)

= E
[
1

2
log
(
(2πσ2)d det(Jθ)

2
)]

(C.25)

= d log
√
2πeσ2 + E [log |det Jθ|] . (C.26)

Here, we exploited the fact that Jθ(Z) is an invertible matrix, and used d = dim(Z).
Finally, as in practice we only want to evaluate the model once, we use the differentiability
of Jθ to replace

E [log |det Jθ(Z)|] = E [log |det Jθ(ZE)|] +O(σ). (C.27)

The residual can be written outside of the expectation as we know it is bounded from our
assumptions about gθ and Jθ (Dominated Convergence theorem).

Putting the terms together, we obtain

CI(X,ZE) = hq(ZE)− d log
√
2πeσ2

− E [log | det Jθ|] +O(σ) (C.28)

= LX − d log
√
2πeσ2 +O(σ) (C.29)

Through the definition of O(·), Eq. C.14 is satisfied. To show that the gradients also
agree (Eq. C.15), we must ensure that the O(σ) term is uniformly convergent to 0 over θ,
i.e. there is a single constant M in the definition of O(·) that applies for all θ ∈ Θ. This is
directly the case, as gθ is Lipschitz continuous and the outputs are bounded (Arzela - Ascoli
theorem).

We can now combine the two Lemmas 1 and 2, to show Proposition 3.

Proposition 3 - Proof. The Proposition follows directly from Lemmas 1 and 2: for
a given ϵ1, ϵ2 and δ, we choose each ηi = ϵi/2, and apply the triangle inequality, meaning
there exists an N0 and σ0 so that ∣∣∣CI(X,ZE) + d log

√
2πeσ2 − L(N)

X

∣∣∣
≤
∣∣∣CI(X,ZE) + d log

√
2πeσ2 − LX

∣∣∣+ ∣∣∣LX − L(N)
X

∣∣∣
<
ϵ1
2

+
ϵ1
2

And therefore Pr(. . . ) > 1− δ. Equivalently for the gradients.
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C.1.4. Density Error through Noise Augmentation

For the derivation of the losses, we only assumed that X and X + E =: XE are both
RVs on a domain X , and required no further assumptions about a possible quantization of
X . However, if X is quantized, which is mostly the case in practice, we can exploit this
fact to derive a bound on the additional modeling error caused by the augmentation. To
demonstrate this, we introduce the discrete, quantized data W . This is essentially the same
as X , but is only defined on a finite, discrete set W . With F regular quantization steps in
each of the d dimensions, spaced by the quanitzation step size ∆X , we write

W =
{
0, 1∆X, 2∆X . . . , (F − 1)∆X

}d ⊂ X , (C.30)

We denote probabilities of this discrete variable as upper case P and Q for true and mod-
eled probabilities, respectively. We index the finite number of elements in W as wi. For
convenience, we also introduce the following notation:

P (wi) =: Pi Q(wi) =: Qi. (C.31)

Furthermore, we denote the noise distribution used for augmentation as r(E) in the follow-
ing, as this simplifies the notation and avoids ambiguities (it was denoted p(E) instead for
the loss derivation). From this, we can see how the distribution p(XE), which is used to
train the network, can be expressed in terms of P (W ) and r(E):

p(XE) =
∑
i

Pi r(XE − wi) (C.32)

At test time, we want to recover an estimate Qi. For standard normalizing flows, this
is generally computed as

Q̃i :=
q(XE = wi)

r(0)
(C.33)

Among other things, this is used to measure the bits/dim. In the most general case, Q̃
will not sum to 1, so it is not guaranteed to be a valid probability, indicated by the tilde.
Nevertheless, we can see why this definition is sensible by considering the noise distribution
r used by most normalizing flows: hereby the support of r in each dimension is smaller or
equal to the quantization step size. Then, only one term in the sum in Eq. C.32 is ̸= 0 at any
point. As a result, we obtain

q(XE) = p(XE) =⇒ Q̃(W ) = P (W ). (C.34)

This means that in principle a standard normalizing flow can learn the true underlying dis-
crete distribution from the noisy augmented distribution. In other words, the augmentation
process does not introduce an additional error to the density estimation.

We now apply these definitions to our setting of a Gaussian noise distribution, r(E) =
N (0, σ2I). We consider the case where the model learns the training data distribution per-
fectly, i.e. q(XE) = p(XE). We find that Eq. C.34 no longer holds for the Gaussian case, but
that the error between Q̃(W ) and P (W ) has a known bound that decreases exponentially
for small σ. For convenience, we write A := N (0; 0, σ2I) = (2πσ2)−d/2. From this, we
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get

Q̃j =
q(XE = wj)

A
=
p(XE = wj)

A
(C.35)

=
1

A

∑
i

PiN (wj − wi; 0, σ
2I) (C.36)

=
PjN (0; 0, σ2I)

A
+

1

A

∑
i ̸=j

PiN (wj − wi; 0, σ
2I) (C.37)

= Pj +
1

A

∑
i ̸=j

PiN (wj − wi; 0, σ
2I)

︸ ︷︷ ︸
:=∆Pj

(C.38)

We are now interested in determining a bound for the error ∆Pj . Because ∥wi−wj∥ ≥ ∆X
for i ̸= j, we know

N (wi − wj ; 0, σ
2I) ≤ A exp

(
−∆X2

2σ2

)
. (C.39)

From that, we obtain the following bound:

∆Pj ≤

∑
i ̸=j

Pi

 1

A
A exp

(
−∆X2

2σ2

)
(C.40)

≤ exp

(
−∆X2

2σ2

)
(C.41)

C.2. Practical Loss Implementation

In the following, we provide the explicit loss implementations, as there are some consid-
erations to make with regards to numerical tractability. Specifically, we make use of the
operations softmax, log_softmax, logsumexp provided by major deep learning
frameworks, as they avoid the most common pitfalls.

The class probabilities q(Y ) can be characterized through a vector Φ, with

q(y) = softmaxy(Φ), (C.42)

where the subscript of the softmax operator denotes which index is selected for the enu-
merator. The use of the softmax ensures that wy stay positive and sum to one. For our
work, q(Y ) = p(Y ) is known beforehand, so we leave Φ fixed to 0 (equal probability for
each class). However, we also find it is possible to learn Φ as a free parameter during train-
ing. In this case, only the gradients of the LX loss w.r.t. Φ should be taken, as the LY

loss is no longer a lower bound, and can be exploited by sending Φy → ∞ for some fixed
y, and Φk → −∞ for all k ̸= y. If only LX is backpropagated w.r.t. Φ, this is avoided
and Φ converges to the correct class weights. We use the shorthand wy := log p(y) in the
following.
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With z := gθ(x+ ε), we also have

• log q(y) = wy = logsoftmaxy(Φ) (C.43)

• log q(z|y) = −1

2
∥z − µy∥2 + const. (C.44)

• log q(z) =y′

(
−∥z − µy′∥2

2
+ wy′

)
+ const. (C.45)

With this, the loss functions are evaluated as

LX(x) =y′

(
∥z − µ′y∥2

2
− wy′

)
− log J(x) (C.46)

LY (x, y) = logsoftmaxy

(
− ∥z − µy′∥2

2
+ wy′

)
− wy. (C.47)

The constants have been dropped for convenience. The use of the logsumexp and logsoftmax
operations above is especially important. Otherwise when explicitly performing the exp and
log operations with 32 bit floating point numbers, the values become too large, and the loss
numerically ill-defined (NaN).

C.3. Calibration Error Measures

In the following, we make use of the Iverson bracket:

[
C
]
:=

{
1 if C is true;
0 otherwise,

(C.48)

Firstly, we define the bin edges bi, with i ∈ {1, . . . ,K+1}, so that b1 = 0, bK+1 = 1,
and bi+1 > bi. In practice, we choose the bi be spaced more tightly near high and low
confidences, as this is where the bulk of the predictions are made:

concatenate(range(0.00, 0.05, stepsize=0.01),
range(0.05, 0.95, stepsize=0.1),
range(0.95, 1.00, stepsize=0.01))

The bins themselves are then half-open intervals between the bin edges: Bi = [bi, bi+1)
with i ∈ {1, . . . ,K}. We now define n(i), the count of predictions within a confidence bin;
as well as n(i)c , the count of correct predictions in that bin:

n(i) :=
∑
xj

∑
y′

[
p(y′|xj) ∈ Bi

]
(C.49)

n(i)c :=
∑

(xj ,yj)

∑
y′

[
p(y′|xj) ∈ Bi

]
·
[
argmax

y′
(p(y′|xj) = yj

]
(C.50)

where xj and the (xj , yj)-pairs are from the test set.
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Figure C.1.: From left to right: Changes in test-loss, performance metrics, and a comparison
between approximation and known slope of the true mutual information for varying values of
σ (x-axis)

We define the confidence P as the center of each bin, and the achieved accuracy in this
bin as Q:

Pi =
bi + bi+1

2
(C.51)

Qi =
n
(i)
c

n(i)
(C.52)

Finally, using Q and P , we define the calibration error measures, in agreement with
Guo et al. (2017):

ECE =
∑
i

n(i)

ntot
|Pi −Qi| (Expected calib. err.) (C.53)

MCE = max
i

|Pi −Qi| (Maximum calib. err.) (C.54)

ICE =
∑
i

(bi+1 − bi)|Pi −Qi| (Integrated calib. err.) (C.55)

using the shorthand ntot :=
∑

i n
(i).

C.4. Additional Experiments

C.4.1. Choice of σ

Fig. C.1 shows the behaviour for 25 different models trained with σ between 10−4 and 100

(x-axis), and fixed γ = 0.2. We find that the loss values (left) and performance character-
istics (middle) do not depend on σ below a threshold that is about a factor 4 smaller than
the qantization step size ∆X . Contrary to expectations from existing work on normalizing
flows, the models performance does not decrease even when σ is 50 times smaller than
∆X . Detrimental effects might occur more easily if the quantization steps are larger, e.g.
∆X = 1/32 as used by Kingma and Dhariwal (2018), or if the model were more powerful
or less regularized (e.g. from the tanh-clamping we employ). The rightmost plot compares
our approximation of CI(X,Zε) with the asymptotic I(X,Zε) + const. for σ → 0, where
the constant is unknown. The slope of the approximation agrees well for small σ, but breaks
down for larger values.
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Figure C.2.: Effect of changing the parameter β̃ (x-axis) on the different performance measures
(y-axis). The arrows indicate if a larger or smaller score is better. The black horizontal line in
the last row indicates random performance. Details are explained in the paper. The VIB results
are added as dotted lines. The VIB does not converge reliably for values of γ < 0.2, producing
some otiliers e.g. for expected calibration error. This is not to claim that the IB-INN is better
than the VIB or vice versa. The comparison serves to show how the IB affects GCs and DCs
differently.

C.4.2. Further experiments

Figure C.2 provides all the performance metrics discussed in the paper over the range of γ.

Figure C.3 shows samples generated by the model, using different values of γ. In gen-
eral, we find the quality of generated images degrades faster with γ than the interpolations
between existing images. We see indications that the mass of points in latent space is offset
from the learned µy, meaning the regions that are sampled from have not seen much train-
ing data. In contrast to the IB-INN, the standard class-NLL trained model generates fairly
generic looking images for all classes, due to the collapse of class-components in latent
space.

C.5. Class similarity

For the pairwise predictive uncertainty, we only consider two classes, y ∈ {1, 2}. We denote
the distance of the class centers as ∆µ = ∥µ1−µ2∥. We assume y = 1 is the top prediction.
This is just for simplification, as 1 and 2 can be swapped in the derivation if y = 2 is the
top prediction. The prediction confidence c for any latent vector z is then between 0.5 and
1.0, computed as

c(z) =
q(z | y=1)

q(z | y=1) + q(z | y=2)
(C.56)
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The model’s latent density is

q(Z) =
1

2
N (µ1; 1) +

1

2
N (µ2; 1) (C.57)

This allows us to explicitly work out how the confidences will be distributed through the
change-of-variables formula. Note that z can be expressed in cylindrical coordinates ori-
ented along the line connecting µ1 and µ2. All the radial parts integrate out, only the position
along this line is relevant. After some substitutions and simplifications, we obtain

p(c) =
1

A

(
c− c2

)−3/2
exp

(
− 1

2∆µ2
log2

(
1

c
− 1

))
︸ ︷︷ ︸

:=ρ(c)

(C.58)

A is the normalization constant and has no closed form:

A =

∫ 1

1/2
ρ(c)dc (C.59)

And we simply call the unnormalized density ρ(c). Finally, the expected confidence C can
be readily computed as

C =

∫
cρ(c)dc∫
ρ(c)dc

(C.60)

The expected uncertainty as opposed to the confidence is simply 1− C.

C.6. Posterior Heatmaps

We consider the class prediction:

q(y|x) = q(z|y)∑
y′ q(z|y′)

=:
q(z|z)
S(z)

, (C.61)

where p(y) = 1/M and the Jacobian | det J | both cancel out. We therefore plot for any
class the following ‘class posterior heatmap’:

QClass(k, l, y) = log p(wkl|y)− Skl s.t.
∑
kl

Skl = S (C.62)

The −Skl term means a fixed ‘image’ is subtracted from each heatmap, representing the
denominator, which is constant for all classes. There is some freedom to choose Skl, as
long as it sums to S. When distributing it evenly over space, the differences in the heatmaps
between classes are hard to see by eye, compared to the common differences within the
heatmaps shared across classes, which are larger by magnitude. Heuristically, we instead
find the best contrast when we choose the relative weight of each Skl in the following way:

Skl = S
rkl + 0.03∑
kl(rkl + 0.03)

(C.63)

where rkl is the same as log p(wkl) but normalized to the [0, 1]-range over each image.

Comparing to Eq. C.61, we see that summing QClass over feature-space pixels gives
exactly the log-prediction log qθ(y|x). So QClass represents a spatial decomposition of the
actual predictive output:

q(y|x) = exp

(∑
kl

QClass(k, l, y)

)
(C.64)
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