230 research outputs found

    Multi-harmonic Modeling of Low-power PWM DC-DC Converter

    Get PDF
    Modeling and simulation of switched-mode Pulse Width Modulated (PWM) DC-DC converters form an essential ingredient in the analysis and design process of integrated circuits. In this research work, we present a novel large-signal modeling technique for low-power PWM DC-DC converters. The proposed model captures not only the time-averaged response within each moving switching cycle but also high-order harmonics of an arbitrary degree, hence modeling both the average component and ripple very accurately. The proposed model retains the inductor current as a state variable and accurately captures the circuit dynamics even in the transient state. By continuously monitoring state variables, our model seamlessly transitions between the continuous conduction mode (CCM) and discontinuous conduction mode (DCM), which often occurs in low-power applications. The nonlinearities of devices are also considered and efficiently evaluated resulting in a significant improvement in model accuracy. With a system decoupling technique, the DC response of the model is decoupled from higher-order harmonics, providing additional simulation speedups. For a number of converter designs, the proposed model obtains up to 10x runtime speedups over transistor-level transient simulation with a maximum output voltage error less than 4%

    Dynamic modeling of pwm and single-switch single-stage power factor correction converters

    Get PDF
    The concept of averaging has been used extensively in the modeling of power electronic circuits to overcome their inherent time-variant nature. Among various methods, the PWM switch modeling approach is most widely accepted in the study of closed-loop stability and transient response because of its accuracy and simplicity. However, a non-ideal PWM switch model considering conduction losses is not available except for converters operating in continuous conduction mode (CCM) and under small ripple conditions. Modeling of conductor losses under large ripple conditions has not been reported in the open literature, especially when the converter operates in discontinuous conduction mode (DCM). In this dissertation, new models are developed to include conduction losses in the non-ideal PWM switch model under CCM and DCM conditions. The developed model is verified through two converter examples and the effect of conduction losses on the steady state and dynamic responses of the converter is also studied. Another major constraint of the PWM switch modeling approach is that it heavily relies on finding the three-terminal PWM switch. This requirement severely limits its application in modeling single-switch single-stage power factor correction (PFC) converters, where more complex topological structures and switching actions are often encountered. In this work, we developed a new modeling approach which extends the PWM switch concept by identifying the charging and discharging voltages applied to the inductors. The new method can be easily applied to derive large-signal models for a large group of PFC converters and the procedure is elaborated through a specific example. Finally, analytical results regarding harmonic contents and power factors of various PWM converters in PFC applications are also presented here

    Efficient and Robust Simulation, Modeling and Characterization of IC Power Delivery Circuits

    Get PDF
    As the Moore’s Law continues to drive IC technology, power delivery has become one of the most difficult design challenges. Two of the major components in power delivery are DC-DC converters and power distribution networks, both of which are time-consuming to simulate and characterize using traditional approaches. In this dissertation, we propose a complete set of solutions to efficiently analyze DC-DC converters and power distribution networks by finding a perfect balance between efficiency and accuracy. To tackle the problem, we first present a novel envelope following method based on a numerically robust time-delayed phase condition to track the envelopes of circuit states under a varying switching frequency. By adopting three fast simulation techniques, our proposed method achieves higher speedup without comprising the accuracy of the results. The robustness and efficiency of the proposed method are demonstrated using several DCDC converter and oscillator circuits modeled using the industrial standard BSIM4 transistor models. A significant runtime speedup of up to 30X with respect to the conventional transient analysis is achieved for several DC-DC converters with strong nonlinear switching characteristics. We then take another approach, average modeling, to enhance the efficiency of analyzing DC-DC converters. We proposed a multi-harmonic model that not only predicts the DC response but also captures the harmonics of arbitrary degrees. The proposed full-order model retains the inductor current as a state variable and accurately captures the circuit dynamics even in the transient state. Furthermore, by continuously monitoring state variables, our model seamlessly transitions between continuous conduction mode and discontinuous conduction mode. The proposed model, when tested with a system decoupling technique, obtains up to 10X runtime speedups over transistor-level simulations with a maximum output voltage error that never exceeds 4%. Based on the multi-harmonic averaged model, we further developed the small-signal model that provides a complete characterization of both DC averages and higher-order harmonic responses. The proposed model captures important high-frequency overshoots and undershoots of the converter response, which are otherwise unaccounted for by the existing techniques. In two converter examples, the proposed model corrects the misleading results of the existing models by providing the truthful characterization of the overall converter AC response and offers important guidance for converter design and closed-loop control. To address the problem of time-consuming simulation of power distribution networks, we present a partition-based iterative method by integrating block-Jacobi method with support graph method. The former enjoys the ease of parallelization, however, lacks a direct control of the numerical properties of the produced partitions. In contrast, the latter operates on the maximum spanning tree of the circuit graph, which is optimized for fast numerical convergence, but is bottlenecked by its difficulty of parallelization. In our proposed method, the circuit partitioning is guided by the maximum spanning tree of the underlying circuit graph, offering essential guidance for achieving fast convergence. The resulting block-Jacobi-like preconditioner maximizes the numerical benefit inherited from support graph theory while lending itself to straightforward parallelization as a partitionbased method. The experimental results on IBM power grid suite and synthetic power grid benchmarks show that our proposed method speeds up the DC simulation by up to 11.5X over a state-of-the-art direct solver

    Efficient and Robust Simulation, Modeling and Characterization of IC Power Delivery Circuits

    Get PDF
    As the Moore’s Law continues to drive IC technology, power delivery has become one of the most difficult design challenges. Two of the major components in power delivery are DC-DC converters and power distribution networks, both of which are time-consuming to simulate and characterize using traditional approaches. In this dissertation, we propose a complete set of solutions to efficiently analyze DC-DC converters and power distribution networks by finding a perfect balance between efficiency and accuracy. To tackle the problem, we first present a novel envelope following method based on a numerically robust time-delayed phase condition to track the envelopes of circuit states under a varying switching frequency. By adopting three fast simulation techniques, our proposed method achieves higher speedup without comprising the accuracy of the results. The robustness and efficiency of the proposed method are demonstrated using several DCDC converter and oscillator circuits modeled using the industrial standard BSIM4 transistor models. A significant runtime speedup of up to 30X with respect to the conventional transient analysis is achieved for several DC-DC converters with strong nonlinear switching characteristics. We then take another approach, average modeling, to enhance the efficiency of analyzing DC-DC converters. We proposed a multi-harmonic model that not only predicts the DC response but also captures the harmonics of arbitrary degrees. The proposed full-order model retains the inductor current as a state variable and accurately captures the circuit dynamics even in the transient state. Furthermore, by continuously monitoring state variables, our model seamlessly transitions between continuous conduction mode and discontinuous conduction mode. The proposed model, when tested with a system decoupling technique, obtains up to 10X runtime speedups over transistor-level simulations with a maximum output voltage error that never exceeds 4%. Based on the multi-harmonic averaged model, we further developed the small-signal model that provides a complete characterization of both DC averages and higher-order harmonic responses. The proposed model captures important high-frequency overshoots and undershoots of the converter response, which are otherwise unaccounted for by the existing techniques. In two converter examples, the proposed model corrects the misleading results of the existing models by providing the truthful characterization of the overall converter AC response and offers important guidance for converter design and closed-loop control. To address the problem of time-consuming simulation of power distribution networks, we present a partition-based iterative method by integrating block-Jacobi method with support graph method. The former enjoys the ease of parallelization, however, lacks a direct control of the numerical properties of the produced partitions. In contrast, the latter operates on the maximum spanning tree of the circuit graph, which is optimized for fast numerical convergence, but is bottlenecked by its difficulty of parallelization. In our proposed method, the circuit partitioning is guided by the maximum spanning tree of the underlying circuit graph, offering essential guidance for achieving fast convergence. The resulting block-Jacobi-like preconditioner maximizes the numerical benefit inherited from support graph theory while lending itself to straightforward parallelization as a partitionbased method. The experimental results on IBM power grid suite and synthetic power grid benchmarks show that our proposed method speeds up the DC simulation by up to 11.5X over a state-of-the-art direct solver

    Emerging Power Electronics Technologies for Sustainable Energy Conversion

    Get PDF
    This Special Issue summarizes, in a single reference, timely emerging topics related to power electronics for sustainable energy conversion. Furthermore, at the same time, it provides the reader with valuable information related to open research opportunity niches

    Emerging Power Electronics Technologies for Sustainable Energy Conversion

    Get PDF
    This Special Issue summarizes, in a single reference, timely emerging topics related to power electronics for sustainable energy conversion. Furthermore, at the same time, it provides the reader with valuable information related to open research opportunity niches

    Single-Stage Power Electronic Converters with Combined Voltage Step-Up/Step-Down Capability

    Get PDF
    Power electronic converters are typically either step-down converters that take an input voltage and produce an output voltage of low amplitude or step-up converters that take an input voltage and produce an output voltage of higher amplitude. There are, however, applications where a converter that can step-up voltage or step-down voltage can be very useful, such as in applications where a converter needs to operate under a wide range of input and output voltage conditions such as a grid-connected solar inverter. Such converters, however, are not as common as converters that can only step down or step up voltage because most applications require converters that need to only step down voltage or only step up voltage and such converters have better performance within a limited voltage range than do converters that are designed for very wide voltage ranges. Nonetheless, there are applications where converters with step-down and step-up capability can be used advantageously. The main objectives of this thesis are to propose new power electronic converters that can step up voltage and step down voltage and to investigate their characteristics. This will be done for two specific converter types: AC/DC single-stage converters and DC-AC inverters. In this thesis, two new AC/DC single-stage converters and a new three-phase converter are proposed and their operation and steady-state characteristics are examined in detail. The feasibility of each new converter is confirmed with results obtained from an experimental prototype and the feasibility of a control method for the inverter is confirmed with simulation work using commercially available software such as MATLAB and PSIM
    • …
    corecore