9,159 research outputs found

    Pervasive computing reference architecture from a software engineering perspective (PervCompRA-SE)

    Get PDF
    Pervasive computing (PervComp) is one of the most challenging research topics nowadays. Its complexity exceeds the outdated main frame and client-server computation models. Its systems are highly volatile, mobile, and resource-limited ones that stream a lot of data from different sensors. In spite of these challenges, it entails, by default, a lengthy list of desired quality features like context sensitivity, adaptable behavior, concurrency, service omnipresence, and invisibility. Fortunately, the device manufacturers improved the enabling technology, such as sensors, network bandwidth, and batteries to pave the road for pervasive systems with high capabilities. On the other hand, this domain area has gained an enormous amount of attention from researchers ever since it was first introduced in the early 90s of the last century. Yet, they are still classified as visionary systems that are expected to be woven into people’s daily lives. At present, PervComp systems still have no unified architecture, have limited scope of context-sensitivity and adaptability, and many essential quality features are insufficiently addressed in PervComp architectures. The reference architecture (RA) that we called (PervCompRA-SE) in this research, provides solutions for these problems by providing a comprehensive and innovative pair of business and technical architectural reference models. Both models were based on deep analytical activities and were evaluated using different qualitative and quantitative methods. In this thesis we surveyed a wide range of research projects in PervComp in various subdomain areas to specify our methodological approach and identify the quality features in the PervComp domain that are most commonly found in these areas. It presented a novice approach that utilizes theories from sociology, psychology, and process engineering. The thesis analyzed the business and architectural problems in two separate chapters covering the business reference architecture (BRA) and the technical reference architecture (TRA). The solutions for these problems were introduced also in the BRA and TRA chapters. We devised an associated comprehensive ontology with semantic meanings and measurement scales. Both the BRA and TRA were validated throughout the course of research work and evaluated as whole using traceability, benchmark, survey, and simulation methods. The thesis introduces a new reference architecture in the PervComp domain which was developed using a novel requirements engineering method. It also introduces a novel statistical method for tradeoff analysis and conflict resolution between the requirements. The adaptation of the activity theory, human perception theory and process re-engineering methods to develop the BRA and the TRA proved to be very successful. Our approach to reuse the ontological dictionary to monitor the system performance was also innovative. Finally, the thesis evaluation methods represent a role model for researchers on how to use both qualitative and quantitative methods to evaluate a reference architecture. Our results show that the requirements engineering process along with the trade-off analysis were very important to deliver the PervCompRA-SE. We discovered that the invisibility feature, which was one of the envisioned quality features for the PervComp, is demolished and that the qualitative evaluation methods were just as important as the quantitative evaluation methods in order to recognize the overall quality of the RA by machines as well as by human beings

    Leadership and the Theory of Metacommunication

    Get PDF
    Effective leadership communication goes beyond the study and process of organizational communication. The purpose of this research is to conceptualize effective leadership communication as a multifaceted concept that is best understood from its diverse perspectives concurrently. In order to illuminate this concept, the term metacommunication will be coined, borrowing from Freud\u27s metapsychology theory. The metacommunication theory informs the study of leadership emergence, development, and effectiveness by looking at the phenomenon in a holistic manner. The leader as CAS along with the environmental factors effecting leadership is better viewed and understood by acknowledging and respecting the complexity of the human condition. Through this analysis, the metacommunication network of inter and intra-actions is brought to the forefront of the leadership phenomenon by calling attention to the fact that effective leadership has non-linear motilities that cannot be understood via reductionism. The major implications of the theory are that effectiveness is gained through the integration of the CAS with his/her environment. The CAS must: strategically cultivate the environment to increase opportunities for goal attainment; understand social constructs based on irrational schema; increase his/her aptitude for critical thinking, and finally engage in CAS threatening self-examination to unlock the human potential in self and others

    Modeling Business Process Variability

    Get PDF
    This master thesis presents research findings on business process variability modeling. Its main goal is to analyze inherent problems of business process variability and solve them simply, innovatively and effectively. To achieve this goal, process variability is defined by analyzing scientific literature, its main problems identified and is illustrated using a healthcare running example: process variability is classified into process variability within the domain space and over time. These two forms of process variability respectively lead to process variability modeling and process model evolution problems. After defining the main problems inherent to process variability, the focus of this research project is defined: solving process variability modeling problems. First current business process modeling languages are evaluated to assess the effectiveness of their respective modeling concepts when modeling process variability, using a newly created set of evaluation criteria and the healthcare running example. The following business process modeling languages are evaluated: Event driven process chains (EPC), the Business Process Modeling Notation (BPMN) and Configurable EPC (C-EPC). Business process variability modeling and Software product line engineering have similar problems. Therefore the variability modeling concepts developed by software product line engineering are analyzed. Feature diagrams and software configuration management are the main variability management concepts provided by software product line engineering. To apply these variability management concepts to model process variability meant combining them with existing business modeling languages. Riebisch feature diagrams are combined with C-EPC to form Feature-EPC. Applying software configuration management, meant merging Change Oriented Versioning with basic EPC to create COV-EPC, and merging the Proteus Configuration Language with basic EPC to design PCL-EPC. Finally these newly created business process modeling languages are also evaluated using the newly designed evaluation criteria and the healthcare running example. EPC or BPMN are not suited to model business process variability within the domain space. C-EPC provide explicit means to model business process variability, however the process models tend to get big very fast. Furthermore the syntax, the contextual constraints and the semantics of the configuration requirements and guidelines used to configure the C-EPC process models are unclear. Feature-EPC improve C-EPC with domain modeling capability and clearly defined configuration rules: their syntax, contextual constraints and semantics have been clearly defined using a context free grammar in Backus-Naur form. Furthermore, consistent combinations of features and configuration rules are ensured using respectively constraints and a conflict resolution algorithm. However, Feature-EPC and C-EPC suffer from the same weakness: large configurable process models. In COV-EPC and PCL-EPC the problem of large configurable process models is solved. COV-EPC ensures consistent combinations of options and configuration rules using respectively validities and a conflict resolution algorithm. PCL-EPC guarantees consistent combinations of process fragments by means of a PCL specification

    Model-based provisioning and management of adaptive distributed communication in mobile cooperative systems

    Get PDF
    Adaptation of communication is required to maintain the reliable connection and to ensure the minimum quality in collaborative activities. Within the framework of wireless environment, how can host entities be handled in the event of a sudden unexpected change in communication and reliable sources? This challenging issue is addressed in the context of Emergency rescue system carried out by mobile devices and robots during calamities or disaster. For this kind of scenario, this book proposes an adaptive middleware to support reconfigurable, reliable group communications. Here, the system structure has been viewed at two different states, a control center with high processing power and uninterrupted energy level is responsible for global task and entities like autonomous robots and firemen owning smart devices act locally in the mission. Adaptation at control center is handled by semantic modeling whereas at local entities, it is managed by a software module called communication agent (CA). Modeling follows the well-known SWRL instructions which establish the degree of importance of each communication link or component. Providing generic and scalable solutions for automated self-configuration is driven by rule-based reconfiguration policies. To perform dynamically in changing environment, a trigger mechanism should force this model to take an adaptive action in order to accomplish a certain task, for example, the group chosen in the beginning of a mission need not be the same one during the whole mission. Local entity adaptive mechanisms are handled by CA that manages internal service APIs to configure, set up, and monitors communication services and manages the internal resources to satisfy telecom service requirements

    Scale aware modeling and monitoring of the urban energy chain

    Get PDF
    With energy modeling at different complexity levels for smart cities and the concurrent data availability revolution from connected devices, a steady surge in demand for spatial knowledge has been observed in the energy sector. This transformation occurs in population centers focused on efficient energy use and quality of life. Energy-related services play an essential role in this mix, as they facilitate or interact with all other city services. This trend is primarily driven by the current age of the Ger.: Energiewende or energy transition, a worldwide push towards renewable energy sources, increased energy use efficiency, and local energy production that requires precise estimates of local energy demand and production. This shift in the energy market occurs as the world becomes aware of human-induced climate change, to which the building stock has a significant contribution (40% in the European Union). At the current rate of refurbishment and building replacement, of the buildings existing in 2050 in the European Union, 75% would not be classified as energy-efficient. That means that substantial structural change in the built environment and the energy chain is required to achieve EU-wide goals concerning environmental and energy policy. These objectives provide strong motivation for this thesis work and are generally made possible by energy monitoring and modeling activities that estimate the urban energy needs and quantify the impact of refurbishment measures. To this end, a modeling library called aEneAs was developed in the scope of this thesis that can perform city-wide building energy modeling. The library performs its tasks at the level of a single building and was a first in its field, using standardized spatial energy data structures that allow for portability from one city to another. For data input, extensive use was made of digital twins provided from CAD, BIM, GIS, architectural models, and a plethora of energy data sources. The library first quantifies primary thermal energy demand and then the impact of refurbishment measures. Lastly, it estimates the potential of renewable energy production from solar radiation. aEneAs also includes network modeling components that consider energy distribution in the given context, showing a path toward data modeling and simulation required for distributed energy production at the neighborhood and district level. In order to validate modeling activities in solar radiation and green façade and roof installations, six spatial models were coupled with sensor installations. These digital twins are included in three experiments that highlight this monitoring side of the energy chain and portray energy-related use cases that utilize the spatially enabled web services SOS-SES-WNS, SensorThingsAPI, and FIWARE. To this author\u27s knowledge, this is the first work that surveys the capabilities of these three solutions in a unifying context, each having its specific design mindset. The modeling and monitoring activity and their corresponding literature review indicated gaps in scientific knowledge concerning data science in urban energy modeling. First, a lack of standardization regarding the spatial scales at which data is stored and used in urban energy modeling was observed. In order to identify the appropriate spatial levels for modeling and data aggregation, scale is explored in-depth in the given context and defined as a byproduct of resolution and extent, with ranges provided for both parameters. To that end, a survey of the encountered spatial scales and actors in six different geographical and cultural settings was performed. The information from this survey was used to put forth a standardized spatial scales definition and create a scale-dependent ontology for use in urban energy modeling. The ontology also provides spatially enabled persistent identifiers that resolve issues encountered with object relationships in modeling for inheritance, dependency, and association. The same survey also reveals two significant issues with data in urban energy modeling. These are data consistency across spatial scales and urban fabric contiguity. The impact of these issues and different solutions such as data generalization are explored in the thesis. Further advancement of scientific knowledge is provided specifically with spatial standards and spatial data infrastructure in urban energy modeling. A review of use cases in the urban energy chain and a taxonomy of the standards were carried out. These provide fundamental input for another piece of this thesis: inclusive software architecture methods that promote data integration and allow for external connectivity to modern and legacy systems. In order to reduce time-costly extraction, transformation, and load processes, databases and web services to ferry data to and from separate data sources were used. As a result, the spatial models become central linking elements of the different types of energy-related data in a novel perspective that differs from the traditional one, where spatial data tends to be non-interoperable / not linked with other data types. These distinct data fusion approaches provide flexibility in an energy chain environment with inconsistent data structures and software. Furthermore, the knowledge gathered from the experiments presented in this thesis is provided as a synopsis of good practices
    corecore