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ABSTRACT

IMPROVING COMPUTER NETWORK OPERATIONS THROUGH
AUTOMATED INTERPRETATION OF STATE

MAY 2020

ABHISHEK DWARAKI

B.E., VISVESWARAYA TECHNOLOGICAL UNIVERSITY, KARNATAKA, INDIA

M.S., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Tilman Wolf

Networked systems today are hyper-scaled entities that provide core functionality for

distributed services and applications spanning personal, business, and government use. It

is critical to maintain correct operation of these networks to avoid adverse business out-

comes. The advent of programmable networks has provided much needed fine-grained

network control, enabling providers and operators alike to build some innovative network-

ing architectures and solutions. At the same time, they have given rise to new challenges in

network management. These architectures, coupled with a multitude of devices, protocols,

virtual overlays on top of physical data-plane etc. make network management a highly chal-

lenging task. Existing network management methodologies have not evolved at the same

pace as the technologies and architectures. Current network management practices do not

provide adequate solutions for highly dynamic, programmable environments. We have a

viii



long way to go in developing management methodologies that can meaningfully contribute

to networks becoming self-healing entities. The goal of my research is to contribute to the

design and development of networks towards transforming them into self-healing entities.

Network management includes a multitude of tasks, not limited to diagnosis and trou-

bleshooting, but also performance engineering and tuning, security analysis etc. This re-

search explores novel methods of utilizing network state to enhance networking capabili-

ties. It is constructed around hypotheses based on careful analysis of practical deficiencies

in the field. I try to generate real-world impact with my research by tackling problems that

are prevalent in deployed networks, and that bear practical relevance to the current state of

networking. The overarching goal of this body of work is to examine various approaches

that could help enhance network management paradigms, providing administrators with a

better understanding of the underlying state of the network, thus leading to more informed

decision-making. The research looks into two distinct areas of network management, trou-

bleshooting and routing, presenting novel approaches to accomplishing certain goals in

each of these areas, demonstrating that they can indeed enhance the network management

experience.
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CHAPTER 1

MACHINE LEARNING MEETS PROGRAMMABLE
NETWORKING

The unprecedented pace of technological growth in recent times has resulted in strenu-

ous demands being placed on computer networks. Traditional network architectures have

evolved gradually over time to incorporate new technologies, but were never designed with

these advances in mind. Subsequently, they are unable to support this pace and gamut of

innovative ideas and methodologies. Enterprises and carriers are constantly on the look-

out for cutting-edge technologies that can help them further their efforts at delivering new,

innovative services to customers.

To this end, programmable networking is spearheading an architectural effort at mak-

ing networks more flexible and dynamically adaptable to current requirements. These ad-

vances result in high levels of flexibility and network control, thus enabling enterprises to

build highly scalable and dynamic networks that are extremely responsive and adaptive to

changing business needs [34].

Perhaps the most significant influence contemporary technology may have on us has

been its impact on the way we make decisions. Decision making, human, automated or

otherwise, is exceedingly dependent on the amount of information available to base deci-

sions on. In a realm where dynamism is the rule, rather than the norm, it is not just the

quantity, but the quality of information that could potentially make the difference between

a stable network and operational downtimes.

Human decision making works well with high-level activity and patterns. Manually

mining and understanding low-level data affects efficiency adversely. On the contrary,
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evaluating large amounts of data and breaking them down in recognizable patterns is some-

thing that computers excel at. Correlating this low-level information to high-level activity,

qualitatively enhancing the information available to a human operator could be very ben-

eficial. Machine-learning algorithms, especially the subset of them dedicated to activity

recognition form a significant core of this research effort. It is to this end of improving the

efficiency of decision making in highly dynamic, flexible networking environments, that

we attempt to meld the math behind machine-learning and the engineering innovation in

programmatic networking.

1.1 A Brief History of Programmable Networking

Programmable networking is responsible for a paradigm shift in the way we architect

and deploy networks. It continues to revolutionize network design and innovation. Before

we delve into the exciting realm of network programmability and the efficient management

of these dynamic entities, it would be really beneficial to understand how the technology

came to be what it is today. Much of this background is from an excellent historical review

of SDNs from [49].

Computer networks are complex entities that interconnect a diverse set of devices from

switches and routers, to middleboxes such as firewalls, load balancers etc. The control

software on these devices are vendor specific, that makes them proprietary and “closed”.

There do exist some network management tools that allow administrators to manage their

networks from a central point, but these are by far and large operationally vendor-protocol

and interface dependent. Programmable networking is essentially ushering in change at this

level, trying to establish a level-playing field, attempting to ease innovation and speed up

the pace of deployment. Software-defined networks or SDNs in short, are fundamentally

different in two ways: one, they separate the control plane (that handles routing) from the

data plane (which is responsible for forwarding packets according to routing decisions) and
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two, a single, centralized control plane is responsible for managing multiple data planes.

We use ’SDN’ and ’programmable/programmatic network’ interchangeably throughout.

This shift to programmable networks has been years in the making, with a lot of so

called technology pushes and applications pulls (terms borrowed from [49]). Software-

defined networking can trace its roots back to various projects. The Active Networks re-

search from the mid-1990s, such as Smart Packets [123] and ANTS [143] projects coin-

cided with the time when then Internet exploded from just email and file transfer to a whole

slew of new applications. Much of this research explored approaches such as carrying net-

work programming information in-band [143] and the possibility of having programmable

routers and switches [19]. The 2000s saw projects exploring data and control plane sep-

aration such as the ForCES RFC [38] and the Ethane [25] project. The seminal Open-

Flow [101] proposal that kickstarted much of the current SDN revolution and the Open

Network Operating System (ONOS) project [16] have all contributed significantly to what

software-defined networking is today.

There are also other network virtualization projects that support the concept of pro-

grammable networks. The GENI [17] initiative built a national experimental infrastructure

for researchers to experiment with virtualized networks. Mininet [77] goes the other way

by emulating a network, complete with switches, routers and hosts on a single machine.

The Open vSwitch [112] project built a complete multi-layered software switch for mul-

tiple hypervisor platforms. FlowVisor [128] explored the concept of slicing the network

elements to provide isolation. These are some of the notable ones. There are many other

projects that have contributed greatly to the current push for open-source, programmable

networks.

The main thrust of this body of research is to support computer networks in their evolu-

tionary endeavor of being autonomous entities. We do this by investigating how to enhance

the quality of decision making for network administrators by utilizing machine learning

algorithms to continually monitor and understand the network. This research is an attempt
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Figure 1.1: Example network architecture.

to integrate computer networks with machine learning and eventually contribute to this

exciting new area of research in its own small way.

1.2 A Motivating Example

To understand the requirement for a robust management framework, let us consider

Figure 1.1.

The figure depicts three sub-networks of a large enterprise network, analogous to two

site offices and one data-center. “BR” nodes indicate border routers. Without the nodes

marked “CF” and the dashed lines, this could very well represent a traditional enterprise

network. Nodes, connectivity etc. are relatively stable and this allows for efficient manage-

ment methodologies.
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But if we do consider the “CF” nodes and the lines, they represent any programmable

control framework on-site, such as Project Calico [24], Kubernetes [85] etc. that is respon-

sible for managing the network (we are assuming a containerization scenario here). The

same logic can be extended to include networks being managed by SDN controllers such

as ONOS, OpenDayLight [16, 105] etc. VMs and containers in the data-center are scaled

up or down based on demand. Enterprises now may not even require a dedicated network

and could be run entirely in the cloud [66], and stability is somewhat an alien concept.

With legacy architectures, the inherent stability of the network allows for efficient man-

agement methodologies. The use of a virtualized environment changes the playing field.

The environment in itself is indicative of an increase in dynamism (and a lack of stability

thereof), but the type of virtualization actually dictates the extent of increase. These vir-

tual networks play host to numerous services that are critical to an enterprise’s operation.

VM-based environments (such as Amazon AWS, Google Cloud and Microsoft Azure, not

to mention a plethora of other cloud environments) generate a lot of churn due to the move-

ment of entities around the network. In such environments, the timescales are at least in

the order of a few minutes (depending on the size of VMs). Containerization is the current

favorite of Dev-Ops teams, and for good reason. These environments allow development,

testing and deployment cycles at paces that were unheard of previously. Docker, LXCs etc

based containerized environments move the timescales from minutes to seconds.

An administrator working with a highly virtualized environment has different needs

and requirements. Even though the instability causes a lot of flux, what we can depend on

in any network is that every device stores some state information for directing packets to

the correct destination. It could come in various forms and formats, such as RiB and FiB

entries, connection table information, ARP entries, interface information, logs etc. Any

changes on the network will result in some change to this state information. Consider the

case of a link failure and a backup link taking over in a SDN-controlled environment. This

results in multiple changes of network state such as interface table, ARP table and RiBs
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changes. There could also be BGP updates triggered due to a new path becoming available.

The controller is notified of every single one of these changes. What if this information was

made available to an administrator in the event of a network fault? It could be potentially

invaluable in identifying and remediating the issue even before it registers any significant

user impact, not to mention the time it would save in root cause analysis.

1.3 Problem Statement and Approach

This dissertation focuses on exploring the possibilities of using network state to manage

networks more efficiently by making better decisions. It focuses on two major aspects:

troubleshooting, and routing network flows and as such comprises of two major parts.

We first investigate network routing algorithms for service-oriented networks, exploring

the possibility of dynamically switching paths based on current network conditions. We

then explore the potential for finding multiple paths through the network, based on multiple

criteria, as opposed to single-criterion path-finding as is performed today.

As part of the second part of the research, we investigate the troubleshooting aspect uti-

lizing network state intelligently. The research designs and develops a versioning system

for network state, aimed at enhancing the troubleshooting experience for network adminis-

trators. It then looks into designing and building a robust, extensible network management

framework for highly dynamic environments that interface with traditional architectures

that operate at micro timescales. The goals of this framework are as follows:

1. Design a robust, pluggable network management framework that focuses on enhanc-

ing decision making, and

2. Design and demonstrate that natural language concepts can be used to understand

and analyze network state, and

3. Design and implement models for the framework that are able to identify activi-

ties/events based on an event ontology. Relevant information is then extracted from
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the identified events, thus contributing to building a knowledge-base of information

that can then be exposed to tools built on top of it.

Activity recognition and topic modeling in particular has been explored extensively

as detailed in Section 6.1. We look into the possibility of utilizing these approaches Su-

pervised machine learning methods provide the benefit of identifying the most common

activities that will be of importance, but they will also require large amounts of manual

annotations to specify activities. Furthermore, the aforementioned activities of Section 1.2

are unique for each client and would be dismissed unless a sufficient number of examples

were recorded during training. On the other hand, unsupervised methods will be able to de-

velop their own clusters of network configurations for each presumed activity. The biggest

challenge with such clusters is explaining them to system administrators who will have to

interpret these activities perceived by the machine.

The approach we intend to take for the activity recognition algorithms is a balance be-

tween supervised and unsupervised machine-learning. We intend to facilitate this task by

identifying potential activities that may occur throughout the network over time and pre-

senting them to the system administrators. This should be able to assist them in making

decisions about the network as well as what to do in the eventuality of any impending

or predicted problems. We believe exploring various representations of the recorded in-

formation may identify regions of interest in the network that pertain to each recognized

activity. Trivial representations will display the entire network with all its information.

Flow-specific data and routing information can generate additional features that better de-

scribe network reachability and evolution for system administrators and typical users of

network management software.

It is critical to design a system that is in symbiosis with methodologies that are bound

to be used on the system [93]. As with any machine-learning related endeavor, data is of

critical importance, that indirectly makes our data repository also a crucial component. We
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propose to identify a technology that suits our needs from a a networking perspective to

serve as a data repository and adapt it to work for network state.

1.4 The Contributing Role of NSF Innovation-Corps

The pioneering entrepreneurship program from NSF, Innovation-Corps, has been in-

strumental in shaping much of the work being proposed here. This program was an in-

teresting journey of learning what problems the industry is facing in the domain, and the

impact research would have by addressing those issue. It began with the notion and as-

sumption that versioning information for SDNs was a strong idea and worthwhile pursuing.

The primary hypothesis fundamentally revolved around reducing the time required for root

cause analysis for network administrators.

The initial set of customer interviews gave a clear indication of the industry’s reception

to programmable networking and SDNs specifically. While SDN technology is definitely

on the upswing and, if solutions utilizing this are properly designed, it could save enter-

prises a lot of money. Unfortunately, a lack of mature solutions spanning a variety of issues

is hindering adoption. One of SDN’s greatest promises has been to provide network ad-

ministrators and engineers with flexibility through programmatic control of their networks.

To accomplish this, current solutions revolve around providing APIs and framework access

to network engineers. However, these approaches do not consider an overburdened net-

work engineer without the programming bandwidth to take advantage of flexibility through

programmatic interfaces. This reason, in part, is one of our motivating factors to create a

robust management framework that alleviates some of the burden being placed on network

administrators.

A common refrain (observed across most of the I-Corps interviews) had to do with

the tools available for network management. There are certain tools that perform some

network management tasks very efficiently. But what network administrators are missing

is the proverbial “The One Ring To Rule Them All.” The feedback from interviews with
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network administrators, engineers and analysts focused on the need for a product that is

able to collect, correlate and analyze information from these various monitoring tools, thus

leading to meaningful inferences being built out of network state information.

Some of the value propositions gleaned from interviews that top potential customer

wish-lists are:

• Network state and event information correlation is very important. It would be a def-

inite value-add if the information can be collated and correlated from various sources

over the network

• Providing insights as to ‘where’ and ‘what’ the problem is would be a big first step.

The ‘why’ can gradually be investigated in later phases. For enterprises, answering

the ‘where’ and ‘what’ immediately provides a toe-hold in the blame game, that

being the ability to point a finger when things go wrong.

• Automation is the way forward. As networks evolve and become more complex,

automating work-flows across the board takes center-stage.

The I-Corps interviews also helped identify a problem area. Pure SDN deployments

are likely going to be rare. Even though SDNs claim savings on both capital and opera-

tional expenditures, it is definitely both impractical and cost-prohibitive to replace an entire

enterprise network with new devices that support these architectures. A natural outcome

of this constraint is the co-existence of programmable and traditional networks as hybrids.

Based on these insights, we propose to translate this idea of utilizing state history and the

power of machine learning to embed intelligence into the network itself. Consequently, the

network can enable more efficient management because of the wealth of information it is

providing the administrator to work with.

1.5 Dissertation Outline

The rest of this dissertation is organized as follows:
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Chapter 2 discusses the advantages and downsides of programmable approaches to net-

working. We talk about the research space in general, and also touch upon the different

facets of machine learning and how they apply to this problem.

Chapter 3 focuses on adaptively and dynamically finding routes through the network

based on network conditions.

Chapter chapter placeholder here takes a slightly different approach, looking for the

Pareto-optimal set of paths through the network based on multiple criteria, as opposed to

the tried and tested single criterion, shortest path approach. This chapter discusses how

this approach may be useful in the case of service-chain networks, as all the paths have to

satisfy the service-chain ordering provided.

Chapter 5 presents our previous work on state versioning for programmable networks

and how we envision it aiding management and troubleshooting. Most of this chapter deals

with goal3 of Section 1.3.

Chapter 6 delves a little deeper into activity recognition and topic modeling. We also

discuss how and how and why they may be applicable to our problem in general. Prelimi-

nary results of utilizing topic modeling on network state are presented here.

Chapter 8 is where all the pieces come together and form the final solution “An Intelli-

gent, Pluggable Network Alerter Framework” as the final product of this dissertation.
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CHAPTER 2

THE CHALLENGES IN MANAGING PROGRAMMABLE
NETWORKS

While networking technology and architectures are evolving at a tremendous pace, the

same cannot be said about network management. Although there have been significant

improvements in the way networks are managed today, we need to fundamentally rethink

management for environments that operate at micro timescales. It would be remiss to treat

programmable networks similar to traditional architectures; it would also be a fallacy to

conclude that legacy networks will be completely replaced by newer architectures. Since

we are a potentially a long way from making networks autonomous entities that are capable

of handling themselves, overcoming the challenge of successfully incorporating machine-

learning methodologies into the management plane of the network may be an important

step towards developing fully autonomous networks. But that may beg the question as to

why the management/control plane?

With the demand for bandwidth always on the rise, it is imperative that the data plane

deliver line rate speeds to whatever extent possible. In the case of programmable networks,

there is already some latency introduced by control being moved to a software abstraction

layer as opposed to custom designed ASICs. It would be in the best interests of network

performance not to exacerbate this latency. But if we consider this holistically, the data

plane does what the control plane instructs it to do, and the control plane itself is managed

through the management plane. If there is one layer of abstraction that understands the

network as a whole, it is the management plane. Especially in the case of programmable

networks, where the control and management plane exist as a single entity, it logically

follows that the best place to embed intelligence would be the management plane.
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2.1 Mandatory Requirements

Most enterprise networks today are large-scale entities that have unique properties that

distinguish them from other networks, which lead to many challenges are mandatory re-

quirements. We tackle the most important of those requirements in this section. They are:

• Scalability: One of the major advantages that programmable networks bring to the

table is their elasticity and ability to scale up or down on demand. An operational

network may have tens of thousands of network nodes connected together (we pos-

tulate that the number of physical devices is brought down by virtualization, and we

still will have millions of entities together in a connected network). Any manage-

ment solution that we design should have the capability to handle networks of this

magnitude.

• Efficiency: When we talk about this requirement, it is not only about performance

efficiency, but also cost-efficient. In most cases, we want to design a solution that

can be efficiently integrated into existing architectures without unduly affecting de-

ployment costs. We also need to pay careful attention to our design since we do not

want to introduce or exacerbate latency constraints.

• Accuracy: The level of accuracy and degree of confidence with which events are de-

tected and analyzed strongly dictates how good, or conversely how terrible a system

is performing. Since we are designing a system for networks that operate at very

small time scales, we need to fine tune the performance on two fronts. It is not just

enough to perform highly on the “true-positive or true-negative” front of the con-

fusion matrix. It is also important to balance the “true-positive/negative” with the

“false-positive” portion of the confusion matrix. A system is not going to prove very

useful if it keeps popping up false-positive alerts at a high rate. It will only serve to

detract the network administrator from focusing on actual true alerts.
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• Stability: A good solution is expected to run for long durations accurately. We nor-

mally would have added a low human interference measure, but in our case here,

we are designing the system to complement human actions, so human intervention

is inevitable. On the contrary, we focus on incorporating these human decisions into

the learning models so that they are eventually self-reliant.

• Versatility: The solution should be easily adaptable to different types of problems,

which emphasizes our eventual goal of building a pluggable, extensible framework.

Network administrators should easily be able to extend the system to recognize a

diverse set of events.

2.2 Flexibility in Networks: A Double Edged Sword?

Programmable architectures are dynamic, manageable, cost-effective, and adaptable,

making them ideal for the dynamic nature of today’s applications. They have the capability

to significantly lower capital and operational expenditure. For example, AT&T foresees

a 40-50% reduction in operational expenditure when 75% of its network has been virtual-

ized. A major portion of these cost savings will come from manual operations being moved

to automation (which means network management is more automated). While SDNs can

provide a such benefits to network providers and organizations, comfort with traditional

architectures, habitual entrenchment with working solutions, and the lack of visibility re-

sulting from the high network dynamics in programmable architectures impedes full-scale

adoption.

The flexibility that allows network operators to control their networks are finer gran-

ularity and in a dynamic fashion is also responsible for the lack of visibility into network

operations. This leads us to explore the next question about network visibility.
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2.3 Visibility: How Much More is More?

There is a general consensus among the network administrator community about net-

work visibility and it is about visibility always being inadequate. One of the most common

responses to “how much visibility do you need into your network?” is “I will take every-

thing you can give me and more”. Administrators are forever on the lookout to increase

visibility into network operations so that they can be operated at optimum efficiency. This

makes the case stronger for a robust management framework that can deliver information

in richer detail.

In contrast to fully automated solutions that are difficult to design for general case

assessment, machine learning can be used to support the network administrator. Admin-

istrators will be able to understand causes of failures quicker and also receive indications

of potential outages before they occur, in a manner similar to predictive analytics. When

dealing with hyper-scale networks, the management problem increases multi-fold because

the manual approach is very resource intensive. Thus, considering the complex nature of

these networks and the rate at which they generate flux and churn, efficient management

is heavily dependent on understanding what the network is doing. In order to develop a

comprehensive understanding of the network, its activities and potential pitfalls, the “I will

take everything you can give me and more” seems to hold good more than ever.

Thus, we qualify the requirement for a high-fidelity alerting and network management

framework with enhanced intelligence capable of analyzing and predicting network events.

The ability to correlate and interpret relevant information, in a near real-time fashion, will

provide critical insights to network administrators and enable fine-grained control of the

network. Our previous work [41] (dealt with in Chapter 5) describes a mechanism for

versioning information in a network, but does not provide any solutions on how to reason

about such information. We aim to address that gap, thus resulting in a more efficient and

streamlined management of complex, programmable networks.
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2.4 Statistical Machine Learning Methods

Statistical learning methods aim to extract useful information from data. These methods

are useful for garnering insights in areas where expert knowledge is scarce, subjective

or expensive to obtain. Statistical learning methods have already been used in various

scenarios for traditional architectures [81, 130]. Some of the work by [122] still provides

a strong basis for proactive network management techniques today. In this dissertation,

we attempt to demonstrate that we can use newer statistical learning methods, albeit by

rethinking and re-imagining solved network management problems as ones bounded by a

different set of constraints and parameters.

Statistical methods are designed to extract knowledge from large amounts of data. This

body of research proposes to version network state information (discussed in detail in Chap-

ter 5). Network state information collected over an extended period of time will amount to

large quantities of data. Also, this versioned information will prove useful in providing a

historical perspective to the network and its temporal evolution. The inferences and corre-

lations that statistical learning methods make on this entire dataset are bound to be more

accurate and unbiased in comparison to rules inferred based on smaller sample spaces.

These reasons make statistical methods coupled with network state versioning a suitable

fit for our management framework. It is also a secondary goal of this research to train

models such that they are stable over time and across locations. The real advantages of this

approach would come when models trained beforehand in testing and pre-production setups

can be deployed in live production environments and demonstrate similarly high levels of

recognition and predication accuracy with great degrees of confidence. This would result

in a subsequent reduction in the time taken to move a network change into production.

In this work, we start with unsupervised learning methods to cluster data and learn

what features and patterns that network is demonstrating. We then propose to gradually

incorporate a network administrator’s input to the model, thus transitioning to a middle

ground known as semi-supervised learning.
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CHAPTER 3

ADAPTIVE SERVICE-CHAIN ROUTING FOR VIRTUALIZED
NETWORK FUNCTIONS

3.1 Introduction

Software-Defined Networking (SDN) is an emerging technology for controlling net-

works at a finer granularity than is possible in current networks. An SDN controller can

set up the path of a flow through its network by configuring each switch along the way to

match packets of this flow and forward them to a specific next hop [26,95]. New flows can

be set up dynamically when the first packet of a connection arrives at the edge of the SDN

network (and the switch does not find a matching rule). The controller is then informed of

the new packet and computes a suitable path for the packet. This allows for great flexibility

in terms of network control and management.

An interesting aspect of SDN is the ability to not only consider forwarding of network

traffic, but also its processing. Such “network functions” or “network services” [144] can

implement header processing and payload processing functions, such as network address

translation (NAT), firewalling, or virtual private network (VPN) termination. These func-

tions, called virtual network functions (VNFs) can be implemented in software on conven-

tional processing systems that are co-located with networking equipment. The sequence of

functions that need to be set up for a specific flow is referred to as a “service chain.”

In traditional IP networks, nodes that implement such functions need to be located in

the path of traffic (e.g., a firewall at the ingress point to a network). However, in SDN,

where the path of each flow can be determined independently, it is possible to virtualize

the implementation of these network functions. Through network function virtualization
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(NFV), the location of the processing node that implements the function can be anywhere

within the SDN network or placed on a pre-computed path from source to destination.

This approach provides significant scalability benefits since multiple virtual nodes can

implement processing-intense functions, such as VPN termination, for different flows in-

dependently in a distributed manner. However, multiple potential processing nodes pose

interesting routing challenges. Specifically, these challenges are: (1) determining a flow

path that traverses suitable processing nodes in the correct order to meet the requirements

of a given service chain, and (2) considering network load and other dynamic characteris-

tics when routing through existing VNFs.

We present an algorithm that can be used to compute paths efficiently, meeting all

the requirements stated above. The primary idea is to transform the traditional routing

problem in networks by merely modifying the structure of the network graph. Using a

suitable metric that combines both link costs and processing costs, conventional shortest

path algorithms can be used to solve this problem. To reflect dynamics, we exploit the

ability of SDN controllers to collect run-time statistics from switches in the network to

assess dynamic loads. We use models from queuing theory to translate this information

into dynamic cost values for the placement problem.

Specifically, the contributions of this chapter are:

• Design of a Adaptive Service Routing (ASR) algorithm that uses a layered graph

construction. Dijkstra’s shortest path algorithm [37] is then used to determine the

best path for a VNF chain.

• Use of cost functions that consider the dynamics of networks, such as load on links

and processing nodes, to enable optimal dynamic path routing.

• Evaluation of the ASR algorithm to validate its correctness, both theoretically and on

an SDN framework with ONOS [16], Mininet [77] and sFlow [125].
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We believe that this work presents an important step toward realizing the full potential

of network function virtualization in SDNs, especially in the context of dynamic adaptation

under changing network loads.

3.2 Related Work

SDNs switch flows and flow aggregates rather than IP aggregates as in the current Inter-

net [26,95]. Control mechanisms in SDN are centrally located in the SDN controller, rather

than distributed across network nodes. The idea of service chains, as they are implemented

in NFV today, have been alluded to in our prior work [42, 144] and other approaches.

Path-finding in network graphs is an important problem and many efficient path-finding

algorithms have been proposed. Our ideas for using a layered graph in Adaptive Service

Routing are based on prior work in [33]. The work presented here expands on this by

considering the dynamics of SDNs and how to implement such an approach in practice.

Placement of virtual network functions has been explored in [55]. Their approach con-

siders more complex metrics, such as host resource consumption, but represent also a more

complex solution. Similarly, multi-criteria path finding techniques consider multiple met-

rics, e.g., [30]. We, however, focus on a single metric, since this approach leads to efficient

and effective solutions to VNF placement.

3.3 Order-Constrained Network Function Routing Problem

Network functions implement operations on network traffic, specifically on the packets

that are transmitted over the network. The operations are dependent on the type of traffic.

We assume that this distinction is made at the granularity of flows and flow aggregates, both

of which can be represented by match-fields defining the values (or wild-cards) of different

header fields. Within a network controlled by a single administrative entity, the problem is

to determine a path for a flow that connects its end-points (either end-systems or ingress or
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egress points to the network) and traverses a set of nodes where network functions exist or

can be instantiated.

3.3.1 Problem Statement

The network can be represented by a graph G = (V,E) with n vertices, V = {v1, v2, . . .

vn} and m directed edges E = {(ei, ej), . . .} connecting these vertices. Each edge (ei, ej)

has an associated cost c(ei, ej). We define the set of t network functions that are imple-

mented in this network as F = {f1, f2, . . . , ft}. Each vertex may implement some of these

network functions, which are specified by the subset of F provided by function f(v). A

connection, c = (vs, vt, (r1, r2, . . . , rk)), is specified by the starting vertex, vs, the terminat-

ing vertex, vt, and the sequence of k requested network functions, (r1, r2, . . . , rk).

The network function placement problem is to determine a mapping,M = (a(⋅), p(⋅, ⋅)),

that consists of an assignment function, a, and a path function, p. The assignment function,

a(ri), assigns each function, ri, of a connection to certain vertices in the graph. The path

function, p(a(ri), a(ri+1)), determines the sequence of vertices traversed between func-

tions (and between the starting vertex and the first function and the last function and the

terminating vertex). When we say assignment, this does not mean that we instantiate the

VNF on a particular node. It means that we have prior knowledge of where the VNFs are

located and we map them to their respective nodes.

A path P = p1 . . . pl computed by the path function is considered to be a valid, admissi-

ble path that services the virtualized function chain if there exist integers i1 . . . il such that

1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ il ≤ n and the function provided at pij , f(pij) ∈ f(v) for i ≤ j ≤ l.

Transforming the graph by layering is to reduce the complexity of a problem that is

combinatorial, thus allowing shortest path algorithms such as Dijkstra’s algorithm to be run

on the modified graph. Then, running a shortest path algorithm from the source vertex in the

topmost layer to the destination vertex in the bottom layer reduces a possible exponential

growth pattern down to one that is sub-quadratic in nature. The graph transformation does
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not aim to do anything more than achieve this complexity reduction. The other alternative

would be to engineer a complex solution that solves the combinatorial problem as-is.

3.3.2 Constraints and Optimization Metrics

We restrict ourselves to a path-finding algorithm that uses a single criterion (multi-

criteria path finding approaches are briefly discussed in Section 3.2). The constraints pre-

sented by the VNF routing problem are twofold: (1) find a path from source to destination

with least cost, and (2) maintain the order of services requested for provisioning.

A critical aspect of the Adaptive Service Routing algorithm is that the metric captures

cost for both communication and processing. There are many potential choices for such a

cost (e.g., actual financial cost of use, delay, probability of meeting QoS requirements, etc.)

and more complex multi-criteria cost functions could be used. For our work, we use delay

as the single cost metric for both communication and processing. The use of delay yields

practical solutions since it is an important consideration in many networks. Also, delay

lends itself well to representing dynamic loads on network links and on VNF processing

nodes.

3.4 Adaptive Service Routing

This section describes how the network graph can be transformed to help solve the

complex service-chain routing problem using conventional methods.

3.4.1 Network Graph Transformation

We assume that FC = f1, f2 . . . fk denotes the network function chain that needs to be

realized on the network topology, where FC ⊂ F . We transform the network graph into

a “layered graph” by adding k layers to the graph (counting the existing graph as the base

layer), where k = count(FC) and each layer is an exact copy of the original graph. For

every vertex v in the original graph, let vi denote the corresponding node in the ith layer

(i = 0 . . . k). Every (i− 1, i) layer pair is connected vertically only by edges between nodes
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vi−1 and vi if that node provides the particular network function required by fi. These

vertical, directed edges are weighted by a cost c(f, v) that is defined by the processing cost

for utilizing network function f on node v.

Figure 3.1 illustrates this transformation. In this example, we consider a service chain

with two functions, i.e., F = f1, f2. Function f1 is available at node B,H, I and f2 is

available only at node F . Consequently, we construct three layers of the original graph.

The first layer is the base layer of the network topology. The second layer is connected to

the first layer only through nodes that provide processing for f1, in this case, nodesB,H, I .

Finally, the last layer is connected to the second layer through node node F that provides

processing for f2. These edges are weighted by their respective function processing costs.

3.4.2 Adaptive Service Routing Algorithm

It is always beneficial to reduce a problem to a certain state that can then be solved

by an existing, optimized algorithm than formulating a completely new algorithm. In our

approach described above, a conventional shortest path algorithm requires a slight mod-

ification to perform path-finding. The source node src is placed in the first layer of the

layered graph and the destination node dst is placed in the k + 1th layer. Shortest-path

routing is then conducted across all layers from src to dst.

In the example in Figure 3.1, the goal is to find the shortest path from node A to node

J . After constructing the layered graph, we find a path from node A0
src in the first layer to

node J2
dst in the last layer. The structure of the layered graph forces traversal of vertical

edges in order to reach the destination in the last layer. (Since edges are directed, no

loops across layers can occur.) Here, nodes B,H, I provide processing for f1 and hence

(B0,B1), (H0,H1), (I0, I1) are the only edges that connected the first and second layers.

The same argument applies to the second and third layers that are connected by (F 1, F 2).

The cross-layer path that Dijkstra’s returns can be mapped to a path in the original graph

by folding nodes with layer qualifiers (the superscripts) back into their base nodes. Here,
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Figure 3.1: VNF processing represented on different layers.

Dijkstra’s algorithm returns A → B → B1 → E1 → F 1 → F 2 → J2, indicating that node

B was picked for processing f1 ∈ FC and node F was used for processing f2 ∈ FC. This

22



path, nodes in lower layers overlaid on their originals, A → B → E → F → J , with the

added processing costs at nodes B,F for f1, f2 respectively.

The proof of correctness is inherent in the methodology itself. The minimum cost path

from the src node in the base layer to the dst node in the k + 1th is an overlay of an

actual path in the original, untransformed network graph. The costs of both these paths

are the same, since corresponding edges in all the layers have the same edge weights,

which implies that there cannot be another least cost path. Furthermore, if there were some

other least cost path, then it would have to translate into the same path over all the layers

as discussed previously, which is in clear contradiction of the least cost path obtained by

Dijkstra’s.

3.4.2.1 Communication Delay

The communication delay for traversing a single link consists of the following three

components: (1) queuing delay dqueue, (2) transmission delay dtx, and (3) propagation

delay dprop. The transmission delay is

dtx = pktsize/bw,

where pktsize is the size of the transmitted packet and bw is the link bandwidth. The

propagation delay is

dprop = l/cmedium,

where l is the physical length of a link and cmedium is the propagation speed of signals in

that medium.

The queuing delay at a node is dependent on the egress interface load, denoted by

loadlink. The load is the ratio of allocated bandwidth (from previous connections) to the

23



total link bandwidth. Using a simple M/M/1 queuing model with an expected service time

of dtx, we get a queuing delay of

dqueue = loadlink/(1 − loadlink) ∗ dtx.

We use a superscript to denote the delay values for a specific node and edge. The total

cost associated with an edge is thus c(ei, ej) = deiqueue + dei,ejtx + dei,ejtx .

3.4.2.2 Processing Delay

The nodal processing delay is time taken to process a packet on the network node.

The advent of powerful network processors with their multi-processing capabilities etc. has

managed to keep the processing delay under a manageable threshold on traditional network

nodes, despite the increased time it takes for complex packet processing functions.

We can model processing delay based on Generalized Processor Sharing (GPS):

dproc = (loadprocessor/loadflow) ∗ tproc,

where loadprocessor is the current load on the processor expressed in percent, loadflow is an

approximate fraction of the load the flow will contribute to the processor, and tproc is the

per-packet processing time (e.g., from experimentation or equations in [116]).

In practice, balancing load and avoiding allocations that utilize systems at their maxi-

mum capacity may be desirable.

dproc = loadproc/(1 − loadproc) ∗ tproc.

An M/M/1 queuing model captures the nearly linear growth in delay for low loads and

associated high costs near system capacity. We use this for our hypothesis. Other queuing

models may be used as necessary.
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Figure 3.2: Network topology for example scenario.

3.5 Evaluation

In our evaluation, we first present a simple scenario to show the validity of our approach.

We then discuss our implementation on an emulated framework.

3.5.1 Theoretical Model

To demonstrate the effectiveness of our proposed approach, we show its operation on

a small network topology. In this example, the various effects of resource load, delay

modeling, and node and path choices are illustrated.

The network topology in Figure 3.2 shows the performance characteristics of the links

and processing nodes. We assume that connections need to be routed from A to E and a

VNF needs to be used (available on nodes B, C, and D).

Figure 3.3 shows results of repeatedly mapping a 30 Mbps service request between

nodesA andE onto the topology. The first 23 connection requests are assigned to the upper

path (A−B −C −E) due to the lower latency on that path. Note that processing allocation

is split between nodes B and C proportional to their capacity. As the load increases on

the upper path, the lower path (A − C − E) is preferred and requests 24 through 56 are
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Figure 3.3: Performance characteristics of repeated service routing on example topology.

allocated to both paths (with the majority going to the lower path). As the network reaches

its capacity, the final requests are allocated to the top path.

Figure 3.4 compares our algorithm with a number of other routing techniques. All

approaches accommodate fewer connections (random: 43, round robin: 48, static B: 13,

static C: 19, static D: 26) than our Adaptive Service Routing algorithm with 58. Also, our

algorithm consistently achieves lower delays across all mappings (random and round robin

achieve some lower delays in later mappings because earlier ones use resources on clearly

suboptimal paths.)

The graph shows what the overall end-to-end delay is for the most recently allocated

flow. Since the random allocation scheme chooses arbitrary paths, the delay may be short

for one and long for another. With our adaptive approach, there is a small bump, because
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Figure 3.4: Comparison of VNF routing algorithms.

the algorithm looks at the least delay before allocating the flow. Once allocated, there may

be some additional delay (due to capacity limits), which makes the curve fluctuate slightly.

If we were to consider optimal allocation of flows, on approach would be to distribute

the load across the paths as evenly as permissible. This would mean splitting the flow up

such that the utilization on each path is equal. We could consider this as a theoretical bound

on how well flows can be allocated. This is illustrated by the “Optimal-Distribution” curve

in 3.4. As we can see from the plots, our algorithm follows this bound consistently, thus

demonstrating that we are allocating flows in a practically dictated optimal manner.

We also measure the processing time required by the algorithm to make path-finding

decisions. The topologies chosen here are Waxman, Barabasi-Albert and GLP models of

different sizes, generated using the BRITE topology generator [97]. Processing has been

simulated for 3, 5 and 7 services in the VNF chain. Table 3.1 summarizes the results. We

observe computational times in the order of half a minute for graph sizes of 10K nodes
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Table 3.1: Adaptive Routing Path-Finding Times.

Processing Time (s)
Topologies 3 VNFs 5 VNFs 7 VNFs
Waxman-100 0.02 0.05 0.09
Waxman-1K 0.23 0.59 1.09
Waxman-10K 3.24 8.25 15.30
BA2-100 0.04 0.09 0.17
BA2-1K 0.46 1.16 2.12
BA2-10K 6.69 16.97 30.97
GLP-100 0.03 0.08 0.14
GLP-1K 0.41 1.02 1.85
GLP-10K 5.42 13.99 25.82
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Figure 3.5: Delay model validation against sFlow data.

and 7 VNFs chained together. It would be beneficial to note that these are large sized

graphs with multiple VNF site deployments. Most of the computational time is taken up

by layering (which is currently non-parallelized). We believe they can be lowered further

using graph optimization and parallelization techniques.
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3.5.2 Prototype Implementation

We have implemented this service routing technique on a practical, emulated software-

defined network running in Mininet [77] and controlled by ONOS [16]. Linux’s TCLink

library was used to define and constrain bandwidth and delay on the links. Due to Open

vSwitch and Mininet limits on our hardware, emulated testing could be performed only for

topologies with 60-70 switches and 20 hosts. Processing times for large topologies have

been evaluated only for the algorithmic section as described in Section 3.5.1. We contend

that the crux of the decision making is the graph transformation and the emulated testbed

is just a method of instrumentation. We did observe that the practical scenarios do indeed

follow our theoretical results for smaller topologies.

We use sFlow-RT and host-sFlow, instrumented flow sampling mechanisms of the

sFlow standard [125], to obtain utilization of links and nodes. Figure 3.5 shows that dy-

namic network data matches our theoretical assumptions and the results from the small

topology in Figure 3.3.

3.6 Summary and Conclusion

In this body of work, we presented an Adaptive Service Routing algorithm that routes

traffic adaptively through various VNF nodes in an SDN based on instantaneous network

latency. We use an example to show how this adaptive routing can help balance loads on

VNF processing throughout the network. Due to the use of a single metric and translating

the routing problem into a simple shortest path problem on a larger graph, our algorithm

can prove to be useful in large-scale networks with multi-site VNF deployments.
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CHAPTER 4

MULTI-CRITERIA ROUTING IN NETWORKS WITH PATH
CHOICES

4.1 Introduction

When the concept of computer networking emerged, the basic intention was to enable

resource sharing. Computer networks have evolved both in scale and complexity to the

diverse, interconnected web of devices they are today. With data transmission costs being

high previously, minimizing the path length was one of the main motivations behind path

finding. There have been several seminal algorithms in the this area, with Djikstra and

Bellman-Ford laying much of the foundation for the shortest path algorithms that are in use

today.

Networks have grown significantly since then and the number of devices, protocols,

constraints and guarantees handled by them have also increased proportionally. Single-

objective shortest paths no longer fit the whole spectrum of services that exist in today’s net-

works. Many applications require QoS delivery guarantees and have rigorous constraints

on delay, cost, and many other parameters [28]. Application-centric networking, enabled

by Software Defined Networks (SDNs), is an emerging force in current day networks. De-

coupling the control plane from the data plane using SDN gives networks the required flex-

ibility to gradually move from Infrastructure-As-A-Service (IaaS) models to applications

as services. This gives applications the power to define their QoS requirements, security

and access policies, deployment scenarios, etc. In such a scenario where each applica-

tion’s requirements and constraints are different, modeling these networks and applications

on a single objective or constraining routing to a single, shortest path between source and

destination would be a practical approach.
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Routing a path for traffic to flow between communicating end-systems, is a core func-

tionality of any computer network. Typically, routing is single criterion based, utilizing

metrics such as path length, delay, or an artificially defined “weight.” Popular routing

protocols, such as OSPF [98], RIP [60] etc, use individual metrics and corresponding path-

finding algorithms, such as Dijkstra’s algorithm [37] and the Bellman-Ford algorithm [15],

efficiently connect two networked nodes..

In networks where the user has the ability to choose paths [27, 145], the cost of a path

and quality of a path need to be represented by independent metrics. Additionally, load-

balancing and the use of backup paths for redundancy guarantees provided by protocols

require multiple paths to be determined [73]. In these cases, criteria beyond the shortest

path metric may be useful in determining which paths are functionally viable (e.g., available

bandwidth, path reliability, etc.).

With a single metric, an optimal solution can be determined efficiently, meaning that

single criteria shortest path algorithms have low complexity, such as Dijkstra’s, which is

linear in nature. In comparison, their multi-objective counterparts have been shown to NP-

hard [59, 67] and tend to exponential in terms of complexity [136]. Subsequently, due to

the complex nature of the problem, prior research in this area by Papadimitriou et al has

shown that a (1 − ε) Pareto curve can be constructed that is an approximation of the super-

set of Pareto optimal solutions [137], in lieu of determining an optimal solution that may

well be intractable. This means a set of paths can be found that represent the trade-offs

among criteria. A key challenge here is the need to develop an efficient algorithm for de-

termining suitable paths in a potentially large problem space (exponential to the number of

nodes). Although multi-criteria path finding is NP-hard, it is possible to develop solutions

for typical-sized networks that work well in practice.

Using a single, combined metric simplifies the path finding problem, simultaneously

placing a fundamental limit on the ability to find solutions: a single optimization metric

requires a-priori weighing of each metric [43]. Elaborating further, before the path find-
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ing algorithm is run, the relative “value” between different metrics needs to be set. The

result of the search is then optimal (only) for this fixed weighing of metrics. In practice,

however, there are situations where this weighing cannot be done a-priori. For example, a

network may allow users to choose a specific path based on price and quality characteris-

tics [27, 145]. In the marketplace of such a network, different paths need to be offered be-

fore knowing the users’ sensitivity to price and quality (without any knowledge of weight-

ing criteria). Similarly, in a Software-Defined Network (SDN) [106], an SDN controller

may pre-compute paths requested by an SDN application without knowing the weights of

metrics on the data plane. In such cases, the weighting can only be done a-posteriori and

the multi-criteria optimal path problem needs to find the set of all Pareto-optimal paths. A

path is Pareto-optimal if there is no other path that is better across all metrics. Since mul-

tiple metrics permit the existence of paths that are better than other paths in one or more

metrics, but not all, there can be a large number of mutually Pareto-optimal paths. Based

on the set of Pareto-optimal paths, one path can be chosen by an SDN application or by

a network customer. In our work, we address this multi-criteria routing problem, which

is important in practice, especially in environments where different metric weights are not

known beforehand.

We present ParetoBFS, based on the well-known breadth-first search (BFS) algorithm.

This algorithm uses Pareto constraints to prune the tree during traversal. Experiments show

that ParetoBFS can find all Pareto-optimal paths in a network in a reasonable time since

typical-sized networks do not exhibit the characteristics that cause the problem space to

become intractable. The specific contributions of our work are:

• Design and develop the ParetoBFS algorithm that can find the entire set of Pareto-

optimal paths in a network where the edges have arbitrary number of metrics, both

sum, and bottleneck-type. Comparisons with two existing algorithms shows Pareto-

BFS is 10-100X faster and finds more paths.
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• Demonstrate that the path stretch, defined as the ratio of a path in the Pareto-optimal

set to the shortest path, is not extremely high, but in fact is only greater than the

shortest path by a hop or two, at the most.

• Develop a sampling heuristic for ParetoBFS that reduces the number of elements

in the set of Pareto-optimal solutions and thus decreases the complexity of the path

finding process. We show that despite not yielding all optimal solutions, this heuristic

still obtains solutions that are useful in practice.

• Illustrate the feasibility of this approach with results from simulation and implemen-

tation of ParetoBFS in an SDN-based prototype.

We believe that this work provides a practical foundation for systematically using multi-

criteria routing in software-define networks to develop more effective network control ap-

plications in the future.

The remainder of the chapter is structured as follows. Section 4.2 describes background

in the area. Section 4.3 formalizes the description of the multi-criteria path finding prob-

lem. Section 4.4 describes the ParetoBFS algorithm. Section 4.5 presents the complexity

analysis and experimental results. Section 4.6 introduces several sampling heuristics for

ParetoBFS. Section 4.8 compares ParetoBFS with related work. Finally, Section 4.9 de-

scribes an SDN-based prototype that uses of this algorithm. We summarize and conclude

this body of work in Section 4.10.

4.2 Background

Multi-criteria path finding has been studied extensively in the operations research com-

munity. This problem arises in many practical applications, including route planning in

traffic networks [14] and QoS routing and traffic engineering in communication networks

[139]. Multi-constrained path optimization (MCPO) aims to find the optimal path with
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some constraints on one or more metrics given a directed graph with edges that have a set

of metrics [29, 44, 76, 82, 137, 140, 147].

Previous work has addressed the multi-criteria optimal path problem in various con-

texts. for example, QoS routing. A central problem in QoS routing is to find feasible paths

between a source and a destination that satisfy multiple constraints (e.g., bandwidth, de-

lay). Then, the best path among the feasible paths is selected based on a given optimization

metric (e.g., delay-constrained least-cost path routing). When there are multiple optimiza-

tion metrics, most approaches rely on an combinatorial optimization function [82], which

combines all metrics into a single metric (e.g., weighted sum). Without the constraints

on the metrics, this problem then becomes the multi-criteria optimization (MCO) prob-

lem [43, 59, 82, 110]. Solutions to MCPO and MCO are usually similar in that they use a

combinatorial function on the multiple metrics (a-priori) to find the optimal path.

Since the goal of ParetoBFS is to find all the Pareto-optimal paths, it is therefore a

broader solution to address both MCPO and MCO problems since the resulting paths from

previous approaches are usually a subset of the Pareto-optimal path set. These Pareto-

optimal paths are important in many scenarios. For example, references [73] and [47] each

describe a standalone routing service module that provides paths for other modules. Thus,

the routing service module itself cannot make any choices for metric preferences. Also,

in networks where paths are charged by their qualities, such as ChoiceNet [145], the cost

and the quality of a path need to be represented by independent metrics. In these problems,

there is no single objective function to select the best path, and it is impossible to give the

paths an a priori ranking. Instead, the decision maker needs to see all the Pareto-optimal

paths. Each Pareto-optimal path represents a trade-off between criteria, and may be equally

important for the decision entity.

Section 4.8 compares the performance of ParetoBFS with some prior work in detail.
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4.3 Problem Statement

Before describing the ParetoBFS algorithm in Section 4.4, we briefly introduce the

network modelz and describe the formal definition of our path finding problem.

4.3.1 System Model

Suppose we define a graph as G = (V,E), where V = (V1, V2, ..., Vm) is a set of all

nodes or vertices of the graph and E = (E1,E2, ...,Ep) is a set of all edges of the graph.

We model the network as a directed graph and n and m are the cardinalities of V and E,

i.e., n = ∣V ∣, m = ∣E∣, respectively. To make the problem general enough, we consider that

G is a directed multi-graph (in practice, these multiple edges can correspond to different

services that are offered on the same physical link, such as different QoS configurations).

The following points are then true for the graph G:

1. {eu,v ∣u, v ∈ V } ∈ E is associated with an edge criteria vector w(u, v) = (w1,w2, . . . ,

wk), where k is the number of criteria. This is edge characterization. Each wi corre-

sponds to one of the independent criteria used in routing, such as bandwidth, latency,

packet pass rate, cost etc. The constraints could be any property that needs maxi-

mization or minimization.

2. A path P from a source vp1 to a destination vpr is defined as a finite sequence of edges

that connects a sequence of vertices (vp1, v
p
2, ..., v

p
r), vp

i(i≤r)
∈ V .

3. A path P can be assigned a path criteria vector wp = {wp1,w
p
2, ...,w

p
k}, where each wpi

is a criterion for the network routing problem.

4. A path Pi is said to dominate a path Pj if and only if (Pi(wPi
1 ) > Pj(wPj

1 )) ∧

(Pi(wPi
2 ) > Pj(wPj

2 )) ∧ ⋅ ⋅ ⋅ ∧ (Pi(wPi

k ) > Pj(wPj

k )),∀i, j ∈ ℘(P ),∀k ∈ wp. This

means when calculating the path criteria vector, if a hop is added to the path, the

optimality of the new path does not increase on any single criterion. This is the

optimality condition.
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A

B

C

D

E

F

1024, 5, 2

2048, 4, 2

2048, 3, 3

512, 2, 4

2048, 2, 5

1024, 5, 2

2048, 5, 5

2048, 5, 2

1024, 4, 2

p1 =(A,B,D,F):   512, 12,   8  
p2 =(A,C,E,F): 1024, 10,   9
p3 =(A,B,E,F): 1024, 14,   6

p4 =(A,C,E,D,F): 2048, 16, 14
p5 =(A,B,E,D,F):   1024, 20, 11
p6 =(A,B,C,E,F): 1024, 14, 12

p7 =(A,B,C,E,D,F):1024, 20, 17

 Path list at node F:

 Pareto- 
optimal path.

 Not Pareto- 
optimal and 
discarded.

Criteria:

bandwidth, delay, cost

Figure 4.1: Example of Pareto-optimal path computation from node A to F.

5. Criteria satisfying this property can usually be classified into two types: sum-type

criteria (e.g., delay) where wpi = ∑eu,v∈pwi(u, v); and bottleneck-type criteria (e.g.,

bandwidth) where wpi =min(wi(u, v)). 1

6. Each Pi = (Vi1 , Vi2 , .., Vir) ∈ P , Vij≤r ∈ V and no path Pi dominates any other path in

P as per the optimality condition. This ensures that P is a set of only the candidate

paths that are optimal in nature.

4.3.2 Pareto-Optimal Paths

Here, we further refine and formalize what Pareto-optimality means. For this, we first

define a dominant path as follows. We use the notation ⪰ to denote the left operand is more

optimal than or equals to the right operand.

Definition 1. (Dominant path): A path p dominates path q ⇐⇒

wpi ⪰ w
q
i ,∀i ∈ {1,2, ..., k}.

1There also exist multiplicative criteria (e.g. link reliability, packet loss rate), but they can be transformed
into additive criteria using a logarithmic function.
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and the strict inequality holds at least once.

Then we can define a Pareto-optimal path-set as:

Definition 2. (Pareto-optimal path-set) A path set P is called a Pareto-optimal set ⇐⇒

p does not dominate q,∀p, q ∈ P.

A path in a Pareto-optimal set is called a Pareto-optimal path.

Our goal is to find all the Pareto-optimal paths from a source node to a target node in a

given graph G. For instance, if each edge e ∈ E has three metrics: bandwidth (w1), delay

(w2) and cost (w3), then, in the set of the Pareto-optimal paths P , for ∀pi, pj ∈ P,wpi1 >

w
pj
1 ∨ wpi2 < wpi2 ∨ wpi3 < w

pj
3 . This is different from the conventional multi-constrained

optimal path problem [82], where a path optimization function fp is used to combine all

the metrics together and the optimal path is found by calculating the value of fp on each

path. As discussed above, the optimal path computed based on a single aggregated metric

may not conform to the multiple constraints being considered.

Use-cases that impose a strict ordering on the service plan specifically require optimal

paths to satisfy a certain set of services in a particular order. We further define a service

plan as set of services S = (S1, S2, .., Sk), where each Si ∈ ℘(S) is a service that may

transform data or pass it through untransformed. All Si ∈ S are strictly ordered.We define

a function of services, fS ∶ V ↦ ℘(S) which is to be used as described:

1. ∀(a < b ≤ k), Sa ∈ fS(Vic) and Sb ∈ fS(Vid)⇒ ic ≤ id. This represents the property of

service ordering, that dictates that a service has to be performed before its successor

can operate on data.

2. ∀(0 < a ≤ k),∃ b such that Sa ∈ fS(Vib). This represents the condition of all services

being satisfied.
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Fig. 4.1 illustrates the approach that we will be taking here. The edges of the graph

are labeled with their respective metrics comprising of bandwidth (w1), delay (w2) and cost

(w3).2.

There are seven paths (p1, p2..., p7) from source node A to destination node F . In that

path-set, path p2 = (A,C,E,F ) is strictly more optimal than path p5 = (A,B,E,D,F ),

since wp22 < wp52 and wp23 < wp53 while wp
2

1 = wp51 . As a result, path p5 is not a Pareto-optimal

path and would be subsequently discarded during path pruning. Similarly, neither p6, nor

p7 are Pareto-optimal paths because p2 and p3 are strictly more optimal than them. Finally,

we obtain the Pareto-optimal path-set p1∼4. (In the ParetoBFS algorithm, we maintain a list

on each node to record all the Pareto-optimal paths to this node and their corresponding

parameters. Such a list is shown in black on node F in Fig. 4.1.)

4.4 ParetoBFS: Path-finding in a Multi-Criteria Environment

In this section, we first discuss a basic breadth-first search (BFS) based solution to the

multi-criteria path-finding problem. Successive sections describe how we utilize pruning

(enabled by branch and bound) to reduce the running time of the algorithm to a more

practical, acceptable outcome.

4.4.1 A BFS-Based Brute Force Solution

One possible solution to the multi-criteria path finding problem is to enumerate all the

possible paths, then extract the Pareto-optimal set from them. The potential problems as-

sociated with this approach are long runtimes for large graphs and post-processing that

contributes to the complexity. Nevertheless, we explore that solution because the subse-

quent ParetoBFS algorithm is based off this approach, with some extended logic to support

branch-and-bound.

2These are just the parameters in our discussion, but the constraints could be any quantifiable parameters.
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Algorithm 1 Brute-force-based solution enumerating all simple paths, post-process to
eliminate non-Pareto-optimal paths.

1: procedure BFS(G,source, target)
2: for all v ∈ G(v) do
3: path set[v]← ∅
4: end for
5: path queue.push([source])
6: while path queue.length > 0 do
7: path← path queue.pop()
8: s1← path.end()
9: for all edge ∈ s1.out edges() do

10: s2← edge.dest node()
11: if s2 /∈ path then
12: new path← path.append(edge)
13: path set[s2]← path set[s2] ∪ {new path}
14: if s2 ≠ target then
15: path queue.push(new path)
16: end if
17: end if
18: end for
19: end while
20: pareto set← ∅
21: for all path ∈ path set[target] do
22: pareto set← pareto add(pareto set, path)
23: end for
24: return pareto set
25: end procedure

Algorithm 1 illustrates our variant of the popular breadth-first search technique that

finds all the simple paths from the source node to a target node. Unlike the normal al-

gorithm, it does not maintain “visited” tags on the nodes, because a node may be visited

multiple times when the algorithm examines different paths. The algorithm starts with a

source node and enqueues it into a path queue, i.e., path queue. The source node is then

dequeued with all nodes reachable from the source’s outgoing directed edges being added

to the path queue as new paths from the source node to some other node in the graph.

Each time a node is dequeued from the path queue, it is stored in the path set correspond-

ing to its last node. Meanwhile, the outgoing neighbors of the dequeued path’s last node

are added to its end to form new paths. These new paths are the added to the path queue.
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Algorithm 2 Algorithm to validate a path’s Pareto-optimal-ity for a Pareto-optimal set,
including possible eviction of existing paths from the set.

1: procedure PARETO ADD(pareto set, new path)
2: result set← ∅
3: for all path ∈ pareto set do
4: if path is strictly more optimal than new path then
5: return pareto set
6: else if new path is not strictly more optimal than path then
7: result set.append(path)
8: end if
9: end for

10: result set.append(new path)
11: return result set
12: end procedure

To prevent loops, Line 11 checks whether the neighbor is already in the active path before

appending it. This enqueueing and dequeueing is repeated until path queue is empty, and

the path set contains all the simple paths 3 from source node to all other nodes. Selecting

a Pareto-optimal set from it is straightforward, as depicted by the pareto add function in

Algorithm 2.

Algorithm 1 can then be easily extended to find the Pareto-optimal paths from one

source node to all the other nodes, by replacing Line 13 with a pareto add function, and

removing Line 14 and Lines 20 - 23.

This algorithm clearly suffers from scalability issues. In a directed graph, the number

of possible paths is usually exponential to the number of nodes. Moreover, for a multi-

graph with p potential parallel edges between each pair of nodes, the total number of paths

increases with a factor of ph, where h is the number of hops in a path. Fig. 4.2(a) shows

the number of paths traversed by Algorithm 1. It is clear that the growth is exponential in

nature; thus, enumerating all the possible paths is typically infeasible, in both a temporal

and spatial sense.

3A simple path is a path without any cycles or loops.
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Figure 4.2: BFS Vs ParetoBFS on a BRITE generated topology: metrics-per-edge=2,
parallel-edges=1 (averaged over 60 runs with different graphs and source-target pairs)

To make Algorithm 1’s runtime practically acceptable, we need to constrain that prob-

lem space being explored by the algorithm as it progresses through the graph. We ac-

complish this by pruning paths (at the node currently under consideration) that are not

Pareto-optimal, thus effectively constraining the impact those partial paths will have on the

eventual solution space.

4.4.2 ParetoBFS– BFS with Pruning Support

As briefly discussed previously, we can constrain pathfinding by not considering a par-

tial path any more if it is already strictly worse than other known paths up until that point.

We refer to this interchangeably as pruning or branch-and-bound. Formally, during the

search process, a path ending with node vi can be pruned if one of the following conditions

are satisfied:

1. The path is dominated by a path already in the Pareto-optimal path-set with destina-

tion node vi, or
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Algorithm 3 ParetoBFS
1: procedure PARETOBFS(G,source, target)
2: for all v ∈ G(v) do
3: pareto set[v]← ∅
4: end for
5: path queue.push([source])
6: while path queue.length > 0 do
7: p← path queue.pop()
8: s1← p.end()
9: if p is PO for pareto set[target] and p ∈ pareto set[s1] then

10: for all edge ∈ s1.out edges() do ▷ Check whether p satisfies PO
conditions

11: s2← edge.dest node()
12: if s2 /∈ p then
13: new p← p.append(edge)
14: if new p is PO to pareto set[target] and pareto set[s2] then
15: pareto add(pareto set[s2], new p) ▷ can new p be added to

the PO path set of s2?
16: if s2 ≠ target then
17: path queue.push(new p)
18: end if
19: end if
20: end if
21: end for
22: else
23: continue
24: end if
25: end while
26: return pareto set[target]
27: end procedure

2. The path is dominated by a path in the Pareto-optimal path set with destination node

target.

The modified algorithm with this branch-and-bound approach maintains the same the-

oretical worst-case time and space complexity. In practice, however, pruning dramatically

reduces the path search space. Pruning does not affect the correctness of the final solution,

since merely extending a path by adding hops cannot transform a sub-optimal path into an

optimal one.
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Modifying Algorithm 1 with the added logic for branch-and-bound, we arrive at the

ParetoBFS algorithm as shown in Algorithm 3. ‘PO’ in the algorithm means Pareto-

optimality. With this approach, instead of saving all the possible paths, a map, pareto set,

is used to save the Pareto-optimal paths from the source node to each node. The notable

differences from Algorithm 1 occur in Lines 9, 14 and 15. Lines 14 and 15 check the

Pareto-optimality of the partial path with the node at that point in the traversal, before

queueing the node, to eliminate any sub-optimal paths. There is another check incorpo-

rated after the dequeue step, in Line 9, since the Pareto-optimal sets may have changed

during the time the node under consideration was sitting in the BFS queue.

Fig. 4.2(a) demonstrates that this dynamic bounding method can effectively reduce the

number of traversed paths by several orders of magnitude. The detailed performance and

complexity analysis is discussed in Section 4.5. Algorithm 3 can be extended to find the

Pareto-optimal paths to all other nodes, by removing the condition checks involving the

target Pareto-optimal set in Lines 9, 14 and 16. It is only natural that the running time of

the algorithm increases due of the more relaxed nature of the bounding in this case.

4.5 Evaluation and Complexity Analysis

In this section, we discuss the effectiveness of our ParetoBFS algorithmic approach in

the context of network graphs to show that it can be practically applied to problems.

4.5.1 Methodology

To test the performance of ParetoBFS, we use both synthetic and real-world topolo-

gies. Although ParetoBFS can apply to both intra-AS and inter-AS topologies, much of

intelligent routing applications happens within private domains. Therefore, we focus our

evaluation efforts on the intra-AS topologies. We use the BRITE topology generator [97] to

generate router-level topologies. The sizes of these range from 100-10,000 nodes. BRITE

provides three metrics for paths: length, bandwidth and latency. For tests that consider
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Table 4.1: ParetoBFS runtime and average Pareto-optimal path-count
comparison.

Node
Placement

Bandwidth
Distribution

Model
Waxman BA BA-2 GLP

time paths time paths time paths time paths

Random

Constant 0.03 1.00 0.03 1.00 0.06 1.00 0.03 1.00
Uniform 0.36 7.46 0.26 5.22 0.64 7.42 0.12 2.24
Exponential 0.36 6.60 0.23 4.16 0.62 7.22 0.09 1.94
HeavyTailed 0.42 6.64 0.28 4.84 0.68 7.40 0.12 2.36

Heavy Tailed

Constant 0.04 1.00 0.05 1.00 0.08 1.00 0.03 1.00
Uniform 0.59 8.46 0.37 5.24 0.89 7.78 0.15 1.98
Exponential 0.52 7.22 0.30 5.78 0.81 7.96 0.15 2.46
HeavyTailed 0.48 7.62 0.25 4.68 0.84 7.76 0.13 2.70

more than three metrics, we choose random metrics as placeholders in addition to the ones

mentioned. Since the algorithmic approach’s complexity is determined by the number of

metrics used, and not necessarily by the ‘type’ of metric in use, the random choices do not

affect the outcome of the paths chosen in any way.

We focus our experiments on BRITE’s graph generation models, node placement and

bandwidth distribution parameters. BRITE provides four generation models: Waxman

[141], BA [12], BA-2 [7] and GLP [23] (the GLP model being mainly for AS-level topolo-

gies). The node placement can be done in one of two ways: random and heavy-tailed. The

bandwidth distribution has four options: constant, uniform, exponential and heavy-tailed.

We test all the combinations and compare the running time and the Pareto-optimal path-

count in Table 4.1. The experiments are averaged over 100 runs for 1,000 nodes, three

metrics per edge and one parallel edges between nodes. .From the table, it is evident that

many combinations of parameters do not influence the path-finding results in any signif-

icant way, except for the test with a constant bandwidth distribution. Therefore, we can

arbitrarily pick these parameters. In the following experiments, the generation model used

is the Waxman model, a commonly used intra-AS model. The node placement is random,

and we utilize a uniform bandwidth distribution.
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(a) 100-node synthetic topology.

(b) 100+ - node Rocketfuel topology, AS 4755 (121 nodes).

Figure 4.3: Example test topologies for ParetoBFS

To analyze the performance on real-world topologies, we use Rocketfuel [131], an ISP

topology dataset. Each Rocketfuel data file represents a single-AS topology, ranging from
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a 100 nodes to 10,000 nodes. The data does not include any metrics, subsequently we

randomly generate values for the metrics using a normal distribution.

Both the generated and the real-world topologies are unigraphs, i.e., topologies with

only one edge between the same pair of nodes. Sometimes, we need more than one edge

between two nodes. These parallel edges can be either physical links with a different set

of metrics, or service offerings on the same link with different QoS limits. To account for

this behavior, we can extend the unigraphs to multi-graphs, by duplicating each edge of the

unigraph and assigning with its set of metrics.

We use Python to implement our algorithms because of its convenient graph libraries,

and the ability to integrate it with the Pox SDN-controller 4. Additionally, we utilize the

Pypy 5 interpreter to run the experiments, to enable performance improvements, much

closer to native code as compared to running it with a general interpreter. One notable

exception is the convex sampling discussed in Section 4.6 for which we utilize CPython

since the convex hull calculation use the pyhull package, which is not Pypy compatible.

The processor in use is an Intel Core2 Quad CPU Q9400 clocked at 2.66 GHz, running

an Ubuntu 14.04 64-bit kernel (version 3.13.0-24) and pypy 2.6.0.

4.5.2 Complexity Analysis

In this section, we provide a theoretical analysis and comparison of BFS and the Pare-

toBFS algorithms (i.e., Algorithms 1 and 3).

Let G = (V,E) be the graph, where V = (v1, v2, ..., vn) is a set of all nodes, and

E = (e1, e2, ..., em) is a set of all edges in the graph. For the purposes of this analysis, we

assume the source node is v1 and the target node is vn.

Just reiterating the different approaches, Algorithm 1 first finds all possible paths and

then filters them to retain only the Pareto-optimal paths. On the other hand, Algorithm 3

4http://www.noxrepo.org/pox/about-pox/

5A Python interpreter with JIT compiler. http://pypy.org/
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Figure 4.4: ParetoBFS runtime comparison with different parameters, averaged over 30
runs per data point.

prunes the path-set to retain only Pareto-optimal paths as it traverses the graph. As dis-

cussed in Section 4.3, a sub-optimal path does not become optimal by just extending the

path length. Therefore, all Pareto-optimal paths considered here are simple paths, with-

out loops/cycles. In a directed graph, for a simple path, we can order the vertices such that

edges only point forward. E.g., if node u is a descendent of node v, then node u comes after

node v in the sorted list of nodes. In Algorithm 1, the times that each node vi (i = 1,2, ..., n)

is visited is equal to the number of the paths from source v1 to node vi. Let v2 be v1’s neigh-
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Figure 4.5: Pareto-optimal path-count comparison, averaged over 30 runs per data point.

bor. The number of paths from v1 to v2 is equal to the number of parallel edges between

them. Furthermore, let v3 be one of v2’s neighbours. The number of paths from v1 to v3

is the number of (direct) edges from v1 to v3, plus the paths that use v2 as an intermediate

vertex. Generalizing this pattern, if e(i, j) be the number of directed edges between node

vi and vj (e(i, j) = 0 if vi and node vj are not adjacent nodes), and d(j) be the number of

paths from v1 to vj , then we have:
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d(j) = e(1, j) +
j

∑
i=2

d(k)e(k, j)

For each node vj , computing d(j) takes time proportional to the in-degree of node vj ,

and overall it will take O(m) time. Therefore, Algorithm 1 visits each node O(m) times,

and thus, the total time to find all the possible paths in is also O(nm).

To analyze the complexity of the Pareto-optimal path selection post-processing, let p

be the path-count from source node v1 to target node vn. p could be 1 if there is only one

simple path from node v1 to node vn, or p could also be n! if the graph G is fully meshed.

Algorithm 2 takes O(1) computation times for each path in the input pareto set. The

process of screening out the Pareto-optimal paths adds one Pareto-optimal path each time

from the temporary pareto set, and the number of paths in pareto set goes from 0 to p−1.

The algorithm thus performs path computations or comparisons O(1 + 2 +⋯ + p) = O(p2)

times, which gives us a running time for Algorithm 1 of O(nm + p2).

In contrast to Algorithm 1, Algorithm 3 deletes the non-Pareto-optimal paths from

source node v1 to node vj each time when it visits node vj . Therefore, the number of

paths saved in the path queue will be less than what Algorithm 1 does. The number could

be the same if all the paths are Pareto-optimal. Thus, in the worst case, Algorithm 3 also

visits each nodeO(m) times. We denote p∗ as the Pareto-optimal paths between the source

node v1 and the target node vn. The total running time for Algorithm 3 is O(nmp∗).

The time complexity of Algorithm 1 is dominated by the number of paths p. In fact,

with a typical network topology, p usually grows exponentially with the number of nodes

n. Consider the graph in Fig. 4.1 as an example. If we have two parallel edges between

each pair of connected node, then the number of paths from node A to F becomes 3 ×

23 + 3 × 24 + 1 × 25 = 102, which is much larger than n (n = 6). Besides, the number of

possible paths double when a new node is added to the graph. On the contrary, the time

complexity of Algorithm 3 may not be dominated by the number of Pareto-optimal paths, if

p∗ << p. However, optimal path count p∗ would grow rapidly when the number of metrics

under consideration increases. In this case, the time complexity is dominated by p∗, and
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demonstrates an approximate exponential growth pattern with n. The experimental results

discussed in the next section validate our analysis.

4.5.3 Experimental Results

Let us analyze the experimental results of the ParetoBFS algorithm. Fig. 4.2(b) com-

pares the running time of the plain BFS and ParetoBFS approaches. It shows that the

running time of plain BFS increases exponentially as the number of nodes increase. The

complexity of ParetoBFS is sub-exponential, i.e., the runtime may grow faster than a poly-

nomial solution but is still significantly smaller than an exponential one. This is in line

with the worst-case exponential growth of ParetoBFS’s runtime with a node-count increase,

which happens when the number of Pareto-optimal paths makes up a majority of the paths

between source and target nodes. In a realistic network topology, the Pareto-optimal paths

are usually a small fraction of the total paths. Branching and bounding can keep the curve

from becoming too steep since it keeps eliminating non-Pareto-optimal paths at each node,

thus preventing sub-optimal partial paths from contributing to the runtime.

We focus on the ParetoBFS’s running time. The memory consumption is proportional

to the runtime, because it depends on the length of the path queue. Fig. 4.4 illsutrates how

the average running time of ParetoBFS grows as the numbers of nodes, parallel edges and

criteria increase. Fig. 4.4a shows that ParetoBFS can find all the Pareto-optimal paths on

a 10,000-node topology in ≈ 30 seconds. The complexity with an increase in number of

parallel edges between nodes, shown by Fig. 4.4b is similar to that illustrated by Fig. 4.4a.

We believe this is reasonable because increasing either the number of parallel edges be-

tween nodes, or the number of nodes in the graph has similar effects on the graph traversal

queue length, and pruning the paths also has similar effect. Subsequently, the complexities

illustrated are similar in nature.

Fig. 4.4c, however, shows a steeper growth than the other results. For instance, if there

are k metrics w1,w2...,wk on each edge (the value of wk is generated randomly) for two
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neighboring nodes parallel edges connecting them, the probability that these two edges are

Pareto-optimal is 1 − 1
2k−1

. As the criteria increase, the number of Pareto-optimal paths

approaches the total path count between the edges. This is the worst case complexity for

ParetoBFS where the runtime demonstrates exponential growth. The signifitcantly large

number of metrics also lessens the effectiveness of path pruning, thus increasing the run-

time complexity. In order to reduce the running time when the number of metrics is high,

we propose several sampling methods in Section 4.6 to reduce the size of the Pareto-optimal

path-set.

Fig. 4.5 illustrates how the number of Pareto-optimal paths, p∗, grows with the number

of nodes, parallel edges and criteria, respectively. In Fig. 4.5a, the Rocketfuel-topology

curve fluctuates, because each real topology has a unique interior structure which is not

uniform like a synthetic topology. In Fig. 4.5b, it can be observed that the number of the

Pareto-optimal paths increases linearly with the number of parallel edges with two criteria

per edge. The curves validate the correctness of O(nmp∗) runtime analysis for ParetoBFS.

When the number of parallel edges double, p∗ and m also double. If the curves of p∗

in Fig. 4.5b can be considered linear, the curves in Fig. 4.4b are polynomial in nature.

Fig. 4.5c shows how p∗ varies with the number of criteria. It can be observed that p∗

demonstrates a greater increase in Fig. 4.5c, than in Fig. 4.5a and Fig. 4.5b. As discussed

in Section 4.5.2, a large number of criteria results in the number of Pareto-optimal paths

approaching the total path-count.

4.6 Algorithm for reducing the Pareto-optimal solution space using

sampling.

Since ParetoBFS finds all Pareto-optimal paths, the size of Pareto-optimal set may grow

exponentially with an increase in the number of criteria under consideration. Even for a

small 1,000-node network with just three criteria, there may be hundreds of Pareto-optimal

paths between two nodes. Depending on how many Pareto-optimal paths are required, or
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Algorithm 4 Sampling the Pareto-optimal set on path addition
1: procedure SAMPLING ADD(pareto set, new path)
2: result set = pareto add(pareto set, new path)
3: if result set.length > threshold then
4: sampled set = sampling(result set)
5: return sampled set
6: else
7: return result set
8: end if
9: end procedure

inordinately long run times, we introduce heuristic-based sampling of the Pareto-optimal

pathset. Sampling the Pareto-optimal set can be useful in two ways: (1) sampling reduces

path selection difficulty (by eliminating some Pareto-optimal paths), and (2) if sampling

happens during the search, the number of traversed paths can be further reduced, thus

allowing the algorithm to converge quicker towards a practically acceptable solution made

with tradeoffs.

Algorithm 4 describes how to sample paths. Every time after a path is added to the

Pareto-optimal set, the algorithm checks if the Pareto-optimal set is larger than a threshold

threshold. If it is, a sampling method is used to reduce the Pareto-optimal set to l paths. It

would be beneficial to note at this point that sampling can discard some useful paths too. It

is also possible that the final result is not a subset of the original ParetoBFS result.

If P = {p1, ..., pm} is the Pareto-optimal set found by ParetoBFS, and Q = {q1, ..., qn}

is the Pareto-optimal set found by ParetoBFS with sampling, we propose the following

metrics to compare the effectiveness of reducing the solution space with sampling:

• Runtime Ratio (RT) is defined as the ratio of the running time to find Q versus P .

This metric indicates how the sampling method affects the running time.

• Path Count Ratio (PC) is defined as the ratio of Q’s size to P ’s size, that is, PC =

n/m. This metric indicates how many Pareto-optimal paths can be found (or con-

versely lost) using sampling. It is in no way indicative of path optimality.
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• Path Quality (PQ) is defined as the average k-dimensional Euclidean distance be-

tween P ’s and Q’s criteria vector sets, wQ = {wq1 , ...,wqn} and wP = {wp1 , ...,wpm}.

Each wqi or wpi is a Pareto-optimal path’s criteria vector. To calculate PQ, first

normalize wP and wQ into wP ’s range:

wpi′j =
wpij −min(wp1j . . .wpmj )

max(wp1j . . .wpmj ) −min(wp1j . . .wpmj ) ,
i∈{1...m}

j∈{1...k}

wqi′j =
wqij −min(wp1j . . .wpmj )

max(wp1j . . .wpmj ) −min(wp1j . . .wpmj ) ,
i∈{1...n}
j∈{1...k}

Then, for each wqi′, calculate the distance from its closest wpt′:

dqi = min
t∈{1...m}

√
∑

j∈{1...k}

(wqi′j −wpt′j )2

Finally, PQ can be defined as: PQ = 1
n ∑

n
i=1(dqi). It can be viewed as the average

distance between wP and wQ, PQ = 0 means Q is a subset of P .

To achieve our goal of managing the runtime of ParetoBFS, the sampling method must

be fast and possess the capability to process an arbitrary number of criteria. Also, the sam-

pling methods should treat each criterion equally. In this section, we propose and investi-

gate three sampling techniques: random, clustering, and convex sampling. The sampling

methods are evaluated for two criteria, three parallel edges between nodes and a 10K node

graph.

4.6.1 Random Sampling

This method randomly samples l paths from the Pareto-optimal set. It is fast, but does

not make use of any information from the data points. The result of a 2-criteria example is

shown in Fig. 4.6a. Q mostly overlaps with P , which means that, after sampling, we can

still find an approximate subset of the Pareto-optimal paths.
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(a) Random sampling (threshold = 10,
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(b) Clustering-based sampling
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(c) Convex sampling (threshold = 10).

Figure 4.6: Comparison of different sampling methods.

4.6.2 Clustering-based Sampling

It is an intuitive idea to cluster Pareto-optimal points that are close to each other in a

k-dimensional space, especially when redundant paths are not particularly beneficial. Here,

we use Lloyd’s clustering algorithm [86] to divide the points into l groups, and select the

points closest to the center of each group. The time complexity of Lloyd’s algorithm’s is

O(nkli) (n being the number of points, k being the dimensions, l being the number of
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Figure 4.7: Convex sampling example.

groups, and i being the number of iterations). Fig. 4.6b illustrates one such result. The

points are more dispersed than Fig. 4.6a, thus they are more representative.

4.6.3 Convex Sampling

The fundamental assumption of convex sampling is that the points on the convex hull

are better than the ones inside. This can be illustrated by considering an example such as

the one in Fig. 4.7. Points 1-5 are all Pareto-optimal points. Points 1, 2, 4, 5 and the nadir

point (not a real data point) form the convex hull. Point-3 falls inside the hull. Compared

to Point-2, Point-3 shows only a slight improvement in bandwidth, but sacrifices a lot in

latency. A similar situation applies to Points 3 and 4. Therefore, Points 2 and 4 seems more

preferable than Point 3. This method works better if the criteria are sum-type, since points

on the convex hull are more likely to stay optimal when the path is extended.
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Table 4.2: Effectiveness of sampling methods.

k th l
random clustering convex

RT PC PQ RT PC PQ RT PC PQ
2 10 5 1.175 0.850 0.141 1.632 0.869 0.004 1.058 0.828 0.001
3 20 10 0.530 0.461 0.022 1.405 0.455 0.026 0.431 0.546 0.007
4 100 10 0.473 0.384 0.030 1.087 0.413 0.032 0.393 0.502 0.030

We use the qhull library, which implements the Quickhull algorithm [13]. Its time

complexity is O(nlogv) in two and three dimensions, and O(nv(⌊d/2⌋−1)
⌊d/2⌋ ) for higher di-

mensions (n being the number of points, and v being the number of points on the convex

hull). Fig. 4.6c demonstrates points inside the convex hull being ignored successfully. For

higher order dimensionality (n = 4), the performance of qhull degrades rapidly and it may

no longer help improve ParetoBFS’s performance.

Analyzing the advantages of convex sampling, we see that it always reserves the points

at the corners of the spectrum (e.g. Point 1 and 5 in Fig. 4.6c), that represent extreme values

in one dimension. These are more important for making decisions being made about the

highest value in a certain dimension. Also, calculating the convex hull does not require

normalizing each dimension, thus improving the speed.

The downside to convex sampling is that it cannot control how many points are sam-

pled. It is entirely possible that we are left with too few, or too many points. This again

reintroduces the question of sampling quality and runtime increases.

4.6.4 Comparison of Sampling Techniques

We test the three sampling techniques on nine Rocketfuel topologies, whose sizes range

from 121 nodes to 10,152 nodes, and average out the runtime RT , path count PC, and

path quality PQ. The tabulated results are available in Table 4.2. The sampling threshold

threshold and sample size l also affect RT , PC and PQ. These parameters are chosen

from trial runs, to obtain a good compromise between the runtime and result accuracy.
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Clustering-based sampling does not reduce the runtime RT for k = 2 (k being the di-

mensionality), but does reduce the running time at higher dimensionalities. Random and

convex sampling perform about the same in two dimensions. However, the computational

time consumed for clustering, including data normalization, is prohibitive in some ways.

Although the number of points and groups chosen are relatively small and fixed, the con-

stant coefficient appears to dominate the runtime. We find the clustering-based approach to

be slow enough to recommend it not be used.

Analyzing the path count PC, all the techniques find a similar amount of Pareto-optimal

paths. Even for four-criteria problems, they still manage to find 40-50% of the Pareto-

optimal paths. Convex sampling performs slightly better at higher dimensionalitites again.

Looking into the quality of the results, defined by path quality PQ, convex sampling ap-

pears to produce the best results. The PQ produced by convex samplinng increases a

greater rate than the other two, and this may be explained by the inability of convex sam-

pling to control the sample size. Consequently, the accuracy of the result is not as tunable.

Summarizing the analysis, convex sampling appears to work the best, at least up to four

dimensions. It is faster, finds more Pareto-optimal paths with higher path quality. It is

clear that convex sampling can be used to benefit runtime reduction up to four dimensions.

Higher order dimensionalities (which appear to be impractical, at least at this point, from

the perspective of the problem at hand) are beyond the scope of this dissertation.

4.7 Extended Results

In this section, we discuss some extended results of the multi-criteria pathfinding prob-

lem, with respect to different graph types, sizes etc. We look at a new comparison metric

called path-stretch, consider average path counts, average run-time comparisons for syn-

thetic graphs and practical ISP topologies etc.

We begin by defining path-stretch as:
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Figure 4.8: Average stretch for all graph models.

Stretch = Avg Optimal Path Hop Count
Avg SP Hop Count

where, SP Hop Count is the shortest path hop count.

Since the single criterion shortest path is the absolute optimal path from a source to a

target, we would like to see how the Pareto-optimal paths compare to the shortest path in

terms of path length. This metric is to obtain a sense how Pareto-optimality is affecting

the path/hop length of network paths. It would not be very beneficial to have paths that are

inordinately long.

Figure 4.8 plots the average stretch of resultant path-sets over various types of graph

models tested. The average stretch acsross models is consistent at about 1.5, indicating that
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it is mostly independent of the graph topology. The tests performed with RocketFuel also

resulted in an average stretch of 1.2. These results indicate a 50% and 20% increase in path

length in the former and latter cases, which by all means is not inordinate or unacceptable,

especially with the advantages multi-criteria routing brings to the table.

Next, we want to observe the path-count dependency on graph type and size. As earlier,

we use the same BRITE models, Waxman, BA, and GLP with a normal and heavytailed

node distribution policy. Table 4.3 tabulates the average paths found per graph model and

size. The ’HT’ indicates a heavy-tailed node distribution policy. The average number

of paths found ranges between 4.5 and 9 in most cases, except for the one case on the

Waxman-1K model. We attribute this anomaly to the random nature of the graph. These

averages were measured across 100 iterations of pathfinding for random source-destination

pairs in the graph.

Table 4.3: Average path count for all graph models and sizes.

Graph Size Waxman Waxman-HT BA BA-HT GLP GLP-HT
100 Nodes 5.68 5.53 5.27 5.37 5.71 5.75

1K Nodes 1.54 5.96 6.88 7.23 6.82 7.53

10K Nodes 9.1 4.5 6.8 8.6 7.0 9.0

To further investigate the runtime behavior of the algorithm (extending on the results

from Fig. 4.4b and Fig. 4.4a), and understand its dependency on node distribution and

edge connectivity, we looked at the runtime deviations for different graph models and gen-

eration strategies. We also used the Rocketfuel data to build a complete multigraph of

interconnected POPs of different ISPs. Doing so gives us the chance to model this as a

genuine multigraph based on real-world network topologies. Some POPs have up to 30 or

40 links between then, representing various ASes they are part of, or indicating the various

ISPs/ASes that has a POP in that location.
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To represent the edge constraint vectors, since Rocketfuel contains only latencies and

no bandwidth information, we build the multigraph based on those latencies and use a

uniform random distribution to assign bandwidths to the edges. For this experiment, we

use cost statistics from [39] on a per Mbps basis for assign the cost metric. This gives us

enough information to use on the edge constraint vectors.

The multigraph that is built with this information has around 530 nodes and 4000 edges

connecting the nodes. We also generate two Barabasi-Albert (BA) graphs that are similar

in size and scale to this topology, albeit that the synthetic graphs are simple graphs, but

have a higher node connectivity than the other models we used. The generated graphs

have 500 and 1000 nodes, and each node has a connectivity factor of 8 and 4 respectively,

giving us 4000 edges (which is about the size of the Rocketfuel topology). Results from

this experiment will enable us to ratify the runtime’s dependence on either node count or

edge connectivity.

The run time analysis in Table 4.4 shows that the runtime is mostly independent of the

node distribution policy of the topology. It is clear from the table that deviations for both

the random and heavy-tailed placements are comparable. The last row in the table is the

deviation calculated from the data obtained for runtimes on the RocketFuel topology and

the two equivalent size synthetic BA topologies. These results extend our understanding

that the algorithm’s runtime performance is edge-connectivity dependent as compared to

node placement policies.

Table 4.5 is a comparison between the average run times and path counts for the Rock-

etFuel topology and the two generated BA graphs discussed above. Although this is not

an apples-to-apples comparison with respect to graph types (since RocketFuel is a multi-

graph), it again illustrates the fact that the algorithm is dependent on the edge connectivity

factor, and more so in the case of RocketFuel, which has multiple edges between the same

node pairs. This results in higher runtimes, but also finds more paths, since the edge density
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Table 4.4: Deviation in runtimes for various graph types and sizes.

Graph Type Deviation
100 Nodes 0.0135

100 Nodes HT 0.0081

1K Nodes 0.49

1K Nodes HT 0.307

10K Nodes 6.39

10K Nodes HT 6.41

500 Nodes HED 38.26

is much higher. These results also validate our previous findings discussed in Section 4.5,

and bolstering the case for using sampling to reduce runtimes.

We also measured the run time for two larger graphs, both BA models. The first one

was a 45K node graph that is roughly about the size of all the nodes and edges exhaustively

that RocketFuel project discovered over the course of its experiments. The second one

is just a regular graph with 100K nodes and 200K edges with a connectivity factor of 2.

This was done primarily for graph scaling purposes. Apart from the proportional increase

in run time for which optimization with sampling is always possible, the takeaway is that

the average stretches on both graphs are 1.59 and 1.55 respectively, which is consistent

with our earlier results for other graph models. This just exhibits a consistent performance

across graph types and models.

Table 4.5: Comparison between Rocketfuel and a generated BA graph.

Graph Type Avg. runtime (in secs) Avg. path count
RocketFuel 85.78 50

BA-500-8 36.58 31

BA-1K-4 10.41 19

BA-45K 93.35 9.2

BA-100K 241.71 9.8
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Finally, to demonstrate the applicability of this approach to other network graph mod-

els, we investigated the algorithm’s performance with datacenter network (DCN) topolo-

gies. To simulate the algorithm’s pathfinding in a DCN topology, we use Scafida [58],

a scale-free DCN topology generation algorithm that is also based on a variation of the

Barabasi-Albert model that we previously used for our non-random graph models. The

topology generation and subsequent pathfinding work on the assumption that both switches

and servers route packets, such as in the design of DCell [57] [58]. Since the ability to dis-

tinguish between switches and servers/leaves has to be built into the algorithm, this is some-

thing that is use case specific and can be easily addressed. Multiple topologies of different

sizes (different number of leaves and switches) are generated and we test the algorithm’s

running time and pathfinding capabilities on these topologies.

Datacenter network topologies are normally well-ordered designs with well mapped

end points. The topolgoies used are typically Fat-tree, Bcube or Dcell based. A simple

glance at these topologies intuitively tells us that most of them are symmterically ordered.

Many also follow a tree structure, which in our case, will still work, but the number of

choices of paths are going to much lesser since trees generally do not contain loops.

Experiments were conducted for topologies containing 10K and 50K servers, with ex-

tra nodes generated to account for the number of networking devices. In our case here,

for the 10K server network, we had 600 odd switches, subscription being at about 95%,

although the 50K server network was oversubscribed with around 5K switches. For the

current pathfinding implementation, we could not ignore the networking device count since

the pathfinder doesn’t have information built into it to differentiate between switches and

servers (we assumed a working nature analogous to DCell). Table 4.6 contains the results

of these experiments. They are definitely relatable to the BA-models that we used earlier,

which is in accordance with the fact that Scafida uses an extended BA model to generate

the DCN topology.
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We have a slightly higher stretch in this case, but we attribute that to the nature of

the topology and pathfinder’s inability to avoid routing through servers, although the same

reason contributes to higher average path counts too. This can be addressed in a version of

the pathfinder modified to suit DCN topolgies.

Table 4.6: Results for a Scafida DCN topology.

Graph Type Avg. runtime (in secs) Avg. path count Avg. stretch
Scafida-10K 9.8 19.7 1.68

Scafida-50K 15.7 121.51 1.91

With respect to SDN and datacenter networks, the algorithm has currently been tested

only on Scafida, that is a proposed architecture for DCNs. It does not make a very good

use case for DCNs built on tree topologies since the number of paths are bound by the

redundancy provided in the network spine. The algorithm will need to take into account

tree-like topologies to work for all DCN architecture. We believe that this algorithmic

approach, albeit modified can definitely be used for DCN pathfinding.

4.8 Comparison with Related Work

As discussed in Section 4.2, prior research has extensively addressed the multi-criteria

path finding problem. There are several survey papers and bibliographies [43, 54, 91, 138]

that summarize more than forty papers about the multi-criteria shortest path problem. Un-

fortunately, most of the papers only deal with sum-type metrics, as it is a mandatory

requirement for shortest path problems. Only two papers, Hansen [59] and Pelegrin et

al. [110] consider one sum-type and one bottleneck-type metric. We have implemented

Hansen’s algorithm, and compare it with ParetoBFS in Fig. 4.9. The comparison ex-

periements are performed on a Rocketfuel topology with one parallel edge between nodes

and two metrics per edge.
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Figure 4.9: Runtime comparison of Hansen’s algorithm and ParetoBFS.

In Hansen’s algorithm [59], ten bi-criteria path problems are considered. The complex-

ity of these problems is examined and a multi-label scheme is utilized. Since Hansen’s

algorithm finds the exact Pareto-optimal set, we only compare the runtimes here. Pareto-

BFS’s runtime growth is slower than HAnsen’s algorithm. Even for small topologies with a

few hundred nodes, ParetoBFS is as fast as Hansen’s approach. For large topologies, such

as the one with 10,000 nodes, ParetoBFS is almost 40 times faster than Hansen’s algorithm.

The biggest advantage ParetoBFS holds in this regard over Hansen’s algorithm is that the

latter was designed for bi-criteria problems, whereas ParetoBFS can handle many more

metrics per edge.

Other than the exact methods (i.e. to find all the Pareto-optimal paths) like ParetoBFS

and Hansen’s, many papers propose approximation methods to find a subset of Pareto-

optimal paths in an efficient manner. These are known as fully polynomial approximation
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Table 4.7: Comparison of Martins’ Algorithm with ParetoBFS.

# of
nodes

k=2 k=3 k=4
RT PC PQ RT PC PQ RT PC PQ

121 1.1 0.56 0.0000 1.3 0.41 0.0000 1.5 0.44 0.0000
609 23.7 0.42 0.0050 178.7 0.38 0.0018 121.2 0.38 0.0003
855 126.5 0.68 0.0000 233.4 0.61 0.0004 258.9 0.53 0.0007
917 34.4 0.41 0.0074 169.6 0.24 0.0008 279.1 0.37 0.0006

schemes (FPAS). All the FPAS’ we investigated are only for sum-type metrics6. Here, we

compare ParetoBFS with a popular FPAS, Martins’ algorithm [90].

Martins’ algorithm only approximates the Pareto-optimal set, which may differ from the

exact Pareto-optimal set. So we compare the quality of results as described in Section 4.6.

The result on 4 Rocketfuel topologies is shown in Table 4.7. Even for graphs with hundreds

of nodes, Martins’ is an order of magnitude (or more) slower than ParetoBFS. On larger

Rocketfuel topologies, Martins’ algorithm is not even feasible due to its inordinately high

runtimes. Although Martins’ algorithm finds a reasonable portion of the Pareto-optimal set

(about 40-60%) and the quality of paths is very close to the exact Pareto-optimal set, it is

prohibitively slow compared to ParetoBFS.

A full comparison of ParetoBFS with Hansen’s and Martin’s is shown in Table 4.8. p∗

and p are Pareto-optimal paths= count and total possible path count between two nodes,

respectively. From the comparison, we can see that ParetoBFS is superior than prior work

in various aspects: it supports arbitrary number of sum-type and bottleneck-type metrics,

and it finds the full Pareto-optimal set faster than other methods. Our experiments also

show that it is even faster than certain FPAS in practice.

6Some research (e.g., [82]) suggests that bottleneck metrics can be converted to sum types by using
reciprocals, i.e., define the optimal goal as: fp = ∑

e

1
bandwidth(e) , e ∈ p, where p is a path and e is an edge on

p.
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Table 4.8: Comparison of path-finding algorithms.

Type
number of number of Pareto-

Complexity
criteria Optimal paths

BFS variant k p∗ O(mn + p2) (p > p∗)
ParetoBFS k p∗ O(mnp∗)

Hansen’s [59] 2 p∗ O(m2n2

ε log n2

ε ) (0 < ε ⩽ 1)

Martins’ [90]
k (only sum-

ω (ω < p∗) O(k2mnω2 logω)
type metrics)

Figure 4.10: Test topology on GENI.

4.9 SDN-based Prototype

The emergence of SDN has provided an opportunity to implement multi-criteria path-

finding as a foundational algorithm for service-based network architectures. The logical

centralization of routing on the SDN controller and the ability to route each traffic flow in-

dependently makes the implementation and use of multi-criteria path-finding more practical

than would be possible in a fully distributed network implementation. To test ParetoBFS

and demonstrate its SDN use-case, we have built an SDN-prototye where the hosts can

choose which Pareto-optimal link they want to use when initiating a connection.

The architecture of the network is illustrated in Fig. 4.10. Both switches and hosts con-

nect to the controller, while the controller and switches use OpenFlow 1.0 to communicate

with each other. Since the controller has a global view of the system, it possesses a topol-
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ogy graph of the network. There are three paths available between the client and server,

two of them being Pareto-optimal. Any unspecified throughput is assumed to be 1 Gbps

and unspecified latency to be 0 ms.

The hosts (including the client and server) connect to the controller with control paths

to query available paths and submit their choices. We use Chen et al.’s protocol [31] on

these control paths. Every time a host wants to establish a connection with other hosts, it

sends a request for paths to the controller. The controller runs ParetoBFS on the topology

and returns a Pareto-optimal path set to the host. The host then chooses a path based on

its preference, and asks the controller to set up the path. The controller then installs the

respective flows on each switch to enable packet transmission. To automate the interaction

described above, an NFQueue7 application is deployed on the host machine for intercepting

the initial packet and communicating with the controller (until the path choice has been

made and the flows installed).

The prototype was deployed on GENI [18], a test bed for new network architectures.

All the nodes, including the hosts, switches and controllers are all GENI virtual machines

that run Ubuntu 14.04. The switches are virtual entities running OpenvSwitch8. The SDN

controller used is Pox9. The path metrics are hardcoded into the topology when it is built.

The controller is pre-configured to know these metrics. This prototype enables the end hosts

to choose their paths, but introduces additional overhead than standard SDN, due to the

increased interaction between the hosts and controller. To quantify the additional overhead,

we measure the average time it takes to perform each step of setting up a connection (see

Table 4.9).

The results here assume the choice is made instantly. The path query (which encapsu-

lates the ParetoBFS runtime) and provisioning time depend on the round-trip time between

7http://www.netfilter.org/projects/libnetfilter_queue/

8http://openvswitch.org/

9http://www.noxrepo.org/pox/about-pox/
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Table 4.9: Breakdown of connection setup times.

Task Time (ms)
path query 7.93
ParetoBFS running time (included above) 0.59
Provision the path 18.67
Total connection setup time 26.60

the controller, switches and hosts. Here, it is in the order of several milliseconds. Since the

topology is small, the ParetoBFS runtime is negligible compared to other overheads. For

larger topologies with several thousands of nodes, the ParetoBFS runtime may increase to

the order of seconds.

Once the flow is set up, packets flow through the data plane without any added over-

head. According to our measurement, the goodput of HTTP file downloads on 10-Mbps

and 1-Mbps path reaches 1.19 MByte/s and 116 KByte/s, respectively, approximating the

allocated capacities.

4.10 Summary

Our work addresses the problem of finding multiple Pareto-optimal paths in a network

where multiple criteria are used for routing. Such information is necessary in networks

where path choices need to be provided to consumers for a posteriori selection. We have

described ParetoBFS, an algorithm to find all the Pareto-optimal paths in a network. The

experiments show that the algorithm works well and can get a solution on a typical network

in reasonable time. We have also proposed several sampling techniques to further reduce

the running time when finding all the Pareto-optimal paths is not necessary or not feasible.

We have presented results from an SDN prototype to show that ParetoBFS is practically

useful. We believe that this work presents an important step toward enabling novel routing

techniques in modern networks.
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CHAPTER 5

THE CASE FOR VERSIONING NETWORK STATE

This chapter hypothesizes the need to version network state, not just as a temporally

chronicled input for our activity recognition algorithms, but also as an important trou-

bleshooting tool by itself.

5.1 Introduction

One of the most popular ways to implement programmable networking has been to

adopt devices that support a standardized application programming interface (API), for

example OpenFlow [96], for programming network behavior in the data plane through ex-

ternal software. This network programmability brings with it several challenges: migrating

to new architectures, interoperating with legacy networks, coordinating control plane state

in a centralized fashion, supporting different authors to the state, and restricting anomalous

or malicious behaviors etc.

While the aspect of multiple co-existing authors editing flow state of a shared resource

has been previously investigated [74, 99, 113, 128] from the perspective of conflict detec-

tion or resource isolation, the issue of tracking all changes to the flow state has not yet

been examined sufficiently. In software development, this process of managing changes to

shared data is referred to as revision control1. We see a need for similar revisioning and

state change management rapidly manifesting in software-defined networks.

1The popular revision control software git provides author tracking, versioning and timestamping of
changes, immutability of past alterations, automated conflict resolution, and annotations.
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Traditionally, revision control in the networking world has been limited to managing

CLI configurations of data plane devices. The state of flows and the control plane, however,

is inaccessible. In the context of a programmable network, we have access to much more

state than was previously possible. Based on existing software versioning techniques, we

propose a system called State-Git that provides network state versioning in the SDN con-

text. State-Git underlies all network state management that a node undertakes, and provides

safety at the data plane and better programming discipline in the control plane.

Additionally, our framework can be easily extended for several other purposes: tracking

control plane evolution (similar to past works on AS path evolution [36]); providing net-

work level accountability (similar in motivation to past works on AIP [8] or packet prove-

nance [115]); preventing flow space conflicts across different authors (without being as re-

strictive as the isolation efforts of FlowVisor [127] or overlap prevention of Frenetic [99]);

and extracting network state in a form conducive for automated troubleshooting (beyond

methods made possible by header space analysis [72] and NDB [100]).

5.2 Background

Programmable networks allow external network applications to directly access the state

of the data plane through well-defined APIs. The data plane device type (virtual or phys-

ical), flow table types (e.g., VLAN table, MAC table) and size, and supported feature

set (match fields and supported actions) vary depending on the deployment scenario (e.g.,

edge-gateways [103], wide-area networks [119]). For example, an SDN-based gateway so-

lution is required to process multiple Ethertypes (MPLS, VLAN, IPv4), different network

protocol traffic (BGP, BFD, ARP, VRRP, etc.), and support tenant-specific requirements

(QoS, service-level agreements). Typically, the packet processing functionality is achieved

via a match-action pairs that span a multi-table pipeline. As the flow table evolves, through

route updates, gratuitous ARP replies or new tenants addition, multiple tables and their

related attributes (e.g., meters attached to each flows) may be updated or modified by dif-

70



Figure 5.1: Programmability model in SDNs.

ferent applications/authors. All these characteristics have implications on the network state

management.

A typical model of SDN solution is shown in Figure 5.1. One or more applications,

either directly through the API or through an abstracted intent layer, edit the configuration

state in the data plane, e.g., the flow table. Correspondingly, the data plane exports to the

external applications certain operational state, e.g., statistics, relevant for the programming

logic. We adopt this layered, decoupled model as our SDN programming model.

Such decoupling of the control and data planes in the context of SDN can be challenging

when it comes to managing network state. Consequently, we only focus on the flow rule

configuration state. Table 5.1 correlates each of SDN’s programmability characteristics to a

certain state management requirement. The safety and mutability requirements have been

least investigated in the past, and we adopt it as the main focus here. In the subsequent

sections, we describe our state management system and illustrate its use through examples.
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Table 5.1: State management requirements.

Characteristics State Requirements
Decoupled network control Consistency
Dynamism in applications Mutability
Co-existing applications/authors Safety
Network troubleshooting Provenance

5.3 STATE-GIT

In this section, we discuss our proposal for state management to improve network pro-

grammability.

5.3.1 State Management Abstraction

The existence of multiple authors attempting to operate on a shared resource(network

state) dictates the following requirements for concurrent access and accountability:

• Author or application tracking: The system should possess the ability to exactly

identify and report the author that was responsible for the change of network state.

• Versioning and change tracking: Transformation and evolution of network state can

be tracked, providing valuable information that can be used for planning and prove-

nance reasons.

• State safety: Preventing the alteration of network state that has been committed by

a different author brings in safety that ensures deterministic system behavior. It is,

however, important to allow the same author to alter actions for previously estab-

lished match rule.

• Conflict resolution and rebasing: The mutability requirement in statement manage-

ment brings with it a need to resolve conflicts or overlaps in flow space to a feasible

extent. Rebasing is the process of merging changes to an extent allowable by a pre-

specified policy, based on the level of conflict.
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• Annotations: The applications or authors can also include comments or other meta-

data to be associated with the change.

In the software development world, the above features are commonly available in a re-

vision control software, such as git [56]. By making an analogy between source code and

network state, we envision that adopting a layer of revision control for managing network

state becomes vital to the programmability of the network.

5.3.2 State-Git Architecture

We architect the abstraction described above in a manner similar to that used by git

by adopting an “authoritative” State-Git server that keeps up-to-date state that has been

committed and programmed onto the flow tables. In reality, this server and the authoritative

copy of the state it protects can be placed in two locations:

• Co-located on the data plane devices: each data plane device can host a separate

State-Git server and give it direct access to the flow table. With this approach, the

state and its management are distributed. Each controller and its applications will

act as State-Git clients that conduct transactions with each of these servers. If an

operator were to make flow state edits on the device, they will use a client to achieve

that.

• Located external to the device: the State-Git server is hosted external to the device,

in a centralized location. All readers and writers to the flow state will use a State-Git

client to access it. The flow state in the server is always kept in-sync with the flow

table in the data plane devices.

To avoid the overhead on switch CPU and to keep state management simpler to recon-

struct on a network-wide scale, we prefer the latter approach of the State-Git repository
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being external to the devices in a centralized server2. The implementation of this server be-

comes even simpler if one were to host it at a controller instance. For the remainder of our

work here , we assume State-Git server being co-located architecturally with a controller

instance.

In this approach, all readers (often switch) and writers (often controller), similar to

git’s distributed approach, have their own local object database and staging indexes. Our

architecture requires the writers to use a flowmod monitor module (running in the back-

ground) to monitor and analyze flow-modification messages received by the SDN/Open-

Flow agent, as well as to version network state information that passes through it. The

changes are then pushed to the State-Git server. The pushed changes are serialized to disk

regularly. Figure 5.2 provides an architectural overview of this process. When a change

is made and committed to the set of past changes, we create a new “snapshot”, which is a

copy of the flow state that is versioned and uniquely identified.

When the system initializes, the server sets up the revision control framework by cre-

ating an empty master branch as part of the State-Git server. Any data plane device that

connects to the controller triggers the fork of a branch from the master’s initial state. This

new branch is then tagged with the datapath-id associated with the corresponding device.

The branching behavior is illustrated in Figure 5.3. The device then clones this branch

locally. The staging index and repository local to the device are used to store flow mod-

ifications occuring as a result of programming changes effected directly on it. The local

changesets are, then, pushed to the State-Git server on the controller to keep the network

state in sync. It is foreseeable that there can be policies to regulate how frequently state

changes are pushed upstreeam. An instance of the flowmod monitor running on the switch

handles these operations.

2The centralized server can be sufficiently replicated and prevented from being a weak link in the SDN
programming.
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Figure 5.2: State-Git Architecture.

The flow information and metadata that is important to track changes across versions is

represented as a facile data table in Table 5.2.

Revision control can be performed at two levels of granularity: ‘per-flow’ and ‘flow-

table’. Based on the application and operational environment, it is understandable that an
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Table 5.2: Configuration state model.

Type Config data Example
Timestamp {time} 1425884076.342
Author {app uuid} ...1681e6b88ec1
Version {change uuid} ...a79d110c98fb
Table {table id} 5
Flow rule {priority, match, priority: 32768,

action} match: tp dst=22,
action: drop

Timeout {idle, hard} idle: 10
hard: 0

Metadata {OF config input} vxlan remote ip=
1.1.1.5

user might pick a different granularity to perform state management at. The controller can

choose to make available a snapshot at either granularity across its other instances, or the

other instances can choose to directly “pull” from the State-Git repository. This ensures

that all the instances are consistent with the underlying network state.

Although we (and the Table 5.2) primarily deal with managing flow state, there are other

network states worth preserving, especially the operational state pertaining to liveness of

switch resources. For instance, there are OpenFlow flow configurations, such as failover

group actions, that specify actions conditional on the liveness of ports (logical and phys-

ical). During troubleshooting or provenance inspection, such actions may be incorrectly

interpreted if the operational state of the ports is not correlated with the configuration state.

To address this need, we add an additional agent for tracking this operational state and

archiving it to a centralized store alongside the State-Git repository.

5.3.3 Conflict Resolution

During flow state programming, it is common to experience conflict with the flow space

of an existing rule. In the past, SDN implementations based on OpenFlow relied on exter-

nal mechanisms or implementations, such as FortNOX [113], FlowVisor [128] or that used

in [102], to perform conflict resolution or provide flow space isolation. Recently, the Open-
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Flow specification [107] included an option to mark a flag called OFPFF CHECK

OVERLAP on a FLOW MOD operation to force the data plane to verify if the current

FLOW MOD overlaps with an existing rule on the match set; in the event of an overlap, the

switch must refuse the addition and respond with an OpenFlow error message. This overlap

check, however, is too restrictive and insufficient when frequent flow state programming

from multiple authors (applications) becomes common.
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Revision control and rebasing (locally replaying and merging changes), as used by

git, can be an important tool for programmers. In the State-Git architecture, we include

the logic proposed in Algorithm 5 to attempt local conflict resolution to a feasible extent.

The algorithm takes as input some merging policies, to specify what the action should be

when State-Git detects a conflict and is unable to automatically resolve. Our approach

relies on building a set of flow-spaces, overlapping and non-overlapping, for the new flow

modification and the existing rule that it potentially overlaps with. Non-overlapping spaces

are accepted right away. The overlapping space is checked against the current rule a second

time to determine the set relation between the two and the requisite action to be performed.

The approach will need further extension to make the rebasing author-aware, i.e., only

allowing merges based on the author privileges or based on whether changes are overwrit-

ing the same author’s past commits. A git-like approach offers user authentication and

privilege tracking to specify what source code can be modified by which user. We reserve

all author-aware rebasing for future work.

5.4 State Versioning Use-Cases

To illustrate the value of State-Git, we discuss the following scenarios where versioning

the flow table can be useful for network operations and explain the practical value of our

abstraction:

• Understanding the evolution of network state maintained in the state table.

• Tracing and identifying security issues or misconfigurations in the network state.

• Adopting state extraction for network troubleshooting.

5.4.1 Tracking Flow Table Evolution

As discussed above, flow tables evolve over time through additions, deletions, and mod-

ifications. Current switch implementations and controller applications have limited capa-

bilities to track these changes. Applications are required to periodically query the network
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Algorithm 5 Conflict Resolution and Rebasing.
1: procedure resolve rebase(dpid, flow mods)
2: for all flow mod ∈ flow mods do
3: S ← current snapshot of flow space
4: compare flow mod to S
5: if disjoint(flow mod,S) then
6: accept flow mod
7: else
8: compute overlap(flow mod, S)
9: X ← non-overlapping space

10: Y ← overlapping space
11: Z ⊂ S,match(Z) =match(Y )
12: accept X
13: if (Y,Z) is exact overlap then
14: action(Y )← action(Z)
15: else if Y ⊃ Z then
16: apply superset merge policy
17: else
18: apply subset merge policy
19: end if
20: end if
21: commit flow mod
22: end for
23: end procedure

state maintained in the switch and parse that information to comprehend the updates made

to each flow. This approach is complex and might require state management in application

logic. State-Git can provide basic snapshotting and inspection features to efficiently track

the evolution of the flow table state. Here we discuss some simple versioning features to

highlights its value:

• gitflow commit: The commit feature takes a snapshot of the changes made to the

flow table from the previous committed state. When the controller programs flow

modification messages (e.g, either a single or bundle of flows), State-Git considers

this as a new commit. When flows are programmed in the flow table, the committed

changes are merged to the master copy and recorded as a version of the network
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state. A commit highlights valuable information on changes made to the flow table

and eases an application or administrator to track the evolution of the flow table.

• gitflow diff : With diff, GitFlow can compare and highlight the updates between com-

mits or between the current master state and any previously snapshotted version. This

helps in comprehending the modifications made to individual flows, specific tables

and the updated actions.

• gitflow tag: Tagging is a critical component in State-Git. Flow modifications (com-

mits) can be annotated with tags to carry metadata information about the updates. For

example, a security update from a firewall application can add annotations specific

to the application and provide descriptions about the updates.

• gitflow grep: grep searches for the specified input pattern (e.g., all entries matching

on port 80, or tagged commits) either within a single commit or across commits.

5.4.2 Investigating Security Issues

Multiple interfaces (sets of controllers, side-channel access via SSH logins, malicious

applications with flow-level access) with write access to the flow table can introduce se-

curity issues in the data plane. A security violation or malicious update of any manner

can impact the packet forwarding functionality, thereby bringing down the network. For

example, network operators can login to the switch and introduce simple flow updates that

can undermine the network policies maintained by the applications. Similarly, multiple

controllers in EQUAL roles can introduce conflicting flow behavior that can violate the se-

curity policies programmed in the switch. Existing security enforcement kernels are built

as an intermediate layer between the controller and the switches to detect such violations,

however, they lack the feature to track the local changes made in the data plane (e.g., via

SSH access). We exhibit some State-Git features that can complement such security offer-

ings:
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• gitflow blame: The blame feature provides information about the changes and the

entity/user that modified the interested flow entries. Additional annotations such as

timestamps, impacted tenant information, updates (revisions) to individual flows are

provided to detail the interested changes.

• gitflow bisect: bisect identifies the changes that introduced a bug or violation between

two versions of the flow table. In addition, the options provided with bisect can help

operators backtrack the life of a packet in the data path (e.g., set of tables which

processed the packet in the multi-table pipeline).

• gitflow reset: While debugging a flow related security issue, an application (or oper-

ator) can make use of reset feature to revert the current flow table to a specific secure

state. For example, a compromised controller entity can introduce a flow update to

re-direct data traffic to the master controller (via send to controller action); if the

operator identifies such a flow update as a security violation, the reset command can

help reset the flow table state to the last known working state and discard all changes

made to flow table since the previous committed version.

5.4.3 Revision Control in Troubleshooting

Past work on network troubleshooting [61, 72, 100, 146] highlight how flow space can

prove handy to identify issues. State-Git allows extracting different snapshots of the flow

space, thereby empowering troubleshooting. This section attempts to address some impor-

tant questions posed by Heller et al. [61] in their analysis for troubleshooting SDNs and

how State-Git can assist in these scenarios.

1. How can we integrate program semantics into network troubleshooting tools?

We discusses network equivalents to gdb, valgrind, gprof, but interestingly, does

not talk about revision management. Network specific versions of these tools help

identify errant network states, but revision control can ensure that these situations do
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not occur again. Troubleshooting information can be stored as version metadata that

can assist in avoiding faulty network configurations from occurring again.

2. How can we integrate troubleshooting information into network control pro-

grams? The presence of multiple versions of network state actually help trou-

bleshooting tools revert to a working version in the case of mis-configurations, fail-

ures or such. The use-cases presented in this section reinforce this point.

3. What abstractions are useful for troubleshooting? Exposing and abstracting the

network state is in itself an interesting proposition. Previously, the absence of ac-

countability was a major driver in not exposing network state to applications running

on the controller. With revision control, we have an extra layer of backup to make

sure the exposed network state is not misused.

As networks grow to be more autonomous and self-healing in nature, automated trou-

bleshooting tools become a focal point of operations. Flow-level revision control can po-

tentially aid these tools exercise a more intricate level of inspection than just investigate

changes to the flow tables.

These illustrative use-cases represent the necessity for versioning across different disci-

plines such as security and troubleshooting. We believe that State-Git makes a strong case

towards filling an existing gap in network state management for software-defined networks.

5.5 Summary

Based on the premise that SDN can also benefit from source code development and

troubleshooting tools in the software world, we proposed State-Git as an important ab-

straction for flow state management. We show several examples where adopting revision

control in the network programming workflow allows us to achieve higher level of safety,

provenance, ease of programmability, and support for multiple applications.

While the use cases discussed above are mostly investigating single switch or single

table scenarios, we envision and expect our revision control system to provide substantial
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support in network-wide and multi-table state management. Our revision control frame-

work can be used to correlate state across multiple switches to identify related disruptive

changes, or across multiple flow tables to identify the exact sequence of rules matched for

a packet.

As part of our future work, we will implement State-Git in a realistic SDN deployment

setting. The usefulness of its features will be evaluated against the presented use cases and

overhead implications investigated.

State-Git, as an abstraction, is easily extensible and allows for adding intelligence on

how the local copy of the state is mutated. Our framework can be reused for other purposes,

including batch transactions, state rollbacks, and clustering consistency. We can also ex-

tend State-Git to address network state optimizations, such as conserving flow table space.

As the flow table state evolves over time, it is critical to maintain the optimal state in the

forwarding agent as well as handle the limitation of flow table size (i.e., TCAM limita-

tion). Efficient aggregation schemes address this problem by reducing the number of flow

entries, but still maintaining the same forwarding behavior. State-Git can facilitate such

optimizations with efficient resolution features.
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CHAPTER 6

ACTIVITY AND BEHAVIOR RECOGNITION FOR NETWORKS

In this chapter, we discuss a sub-area of artificial intelligence, more precisely of ma-

chine learning, called activity recognition. We then hypothesize how activity recognition

and topic modeling can be applied to analyzing network state information.

6.1 The How and Why of Activity Recognition

Activity recognition is a challenge in artificial intelligence research that addresses iden-

tifying high-level descriptions of sequences of events represented using low-level informa-

tion. Approaches for analyzing the low-level information often rely on machine learning

algorithms. The main focus of such activity recognition research is to determine optimal

data formats so that the learned model yields the best classification results. Supervised

learning approaches convert the low-level data into a list of features that can distinguish

between each sequence of information and use a high-level label to note the respective ac-

tivity. Then the supervised learning algorithm of choice uses this data to find a function that

identifies the best label for a given list of features. This however requires manual labeling

of all the sequences by an expert; a process that can be tiresome and/or expensive.

An alternative that avoids the need for labeling the dataset is unsupervised learning.

The algorithms are now tasked with finding clusters of sequences or sequence elements

whose features appear to be similar by some optimization criteria. Due to the absence of

labels, the learned high-level descriptions are simply generic labels that may be annotated

as before at a smaller scale. However, the number of clusters to find is unknown and usually

provided as a parameter for the optimization criteria.
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Figure 6.1: Relationship of high-level activity and low-level network state with data-plane
devices.

We use the work by Freedman et al. [50] [51] as our basis for activity recognition. Even

though the work pertains to developing quantitative representations of RGB-Depth sensor

inputs that are visually interpretable for humans, we believe that the underlying principle

can be adapted for network activity recognition. Being able to correlate this low-level

information to high-level network activity that a human operator can comprehend easily is

the focus of our research.

6.1.1 Background

It seems difficult to justify identifying a seemingly arbitrary number of activities with-

out any discerning label. Consequently, Huynh et al. [64] provided strong empirical ev-

idence for the success of activity recognition using the well-known Latent Dirichlet Al-

location (LDA) topic model [21], which was initially designed for identifying clusters of

semantically similar words throughout collections of text documents. Their verification

method presented a time-line of the observed user during a sensor data’s collection du-
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ration and overlaid it with the clusters assigned to the regions of collected data — each

distinguishable event in the time-line had its own cluster assignment. However, many un-

supervised datasets for activity recognition lack such a time-line or labeling method and

simply enter the data’s feature list into the algorithm, try multiple numbers of clusters, and

then take the one with the best performance likelihood. This is an advantage of supervised

learning methods, but the rigidity of predefined activities means that novel inputs cannot

be recognized properly due to the specificity of labels.

Freedman et al. [50] [51] focus on building a variant of the aforementioned LDA that

accounts for additional information such as temporal consistency and environmental in-

formation that can disambiguate similar activities. This variation of the LDA suits our

network use-case quite well, since the requirement here is to detect network activity in a

temporally consistent manner. Figure 6.2 illustrates the generic LDA from the work. Our

research involves tailoring this LDA for a topic model that is network activity specific. The

black nodes represent the vanilla LDA module, blue nodes represent a hierarchical hidden

Markov model module for temporal consistency, and the red nodes represent parallel LDA

modules for objects in the environment with which the observed subject interacts.

Automated interpretations of unsupervised learning-derived models for such applica-

tions have not been widely studied, and Kim et al.’s [75] Bayesian Case Model is one of the

few other known works in this area. It was not designed specifically for activity recognition,

and thus assumes that a single input in the cluster can represent it entirely. Because it can

still be difficult to identify which features are most important for each cluster’s definition,

Freedman and Zilberstein [52] introduce a higher-level list of features that can describe

the findings more qualitatively, and the lists can be combined to autonomously generate

a qualitative list of features that also describe the more commonly shared features of the

cluster. They instead find an “average description” over all the inputs in the cluster with a

potential for disjunctions of descriptions to account for the variability of features that may

take place in an activity.
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Figure 6.2: Graphical model representation of Freedman et al.’s activity recognition
method.

6.1.2 An Illustration of Activity Recognition for Network Management

We specifically investigate the feasibility of adapting the LDA discussed in Section

6.1.1 to a topic model for network-based activities.

A single epoch’s snap-shot of the network yields a low-level representation, and a se-

quence of updates will produce an evolution of a certain network entity, flow, connection or

device. We believe that this may be attributed to activities performed in/on the network it-

self. Possible activities/events to expect over an enterprise network include node, topology

and path changes, traffic patterns, malicious attacks, route fluctuations, service disruptions

etc. Other interesting avenues to explore would be to create communication “signatures”

for each pair (or set in the case of broadcast/multicast) of communicating hosts to be incor-

porated into data models etc. Events could vary depending on the network’s specifications

and purpose.

Section 1.2 illustrates the motivation for this work with an example. Supervised ma-

chine learning methods will provide the benefit of identifying the most common activities

that will be of importance, but they will also require large amounts of manual annotations
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to specify activities. Furthermore, the aforementioned issues that are unique for each client

would be dismissed unless a sufficient number of examples were recorded during training.

On the other hand, unsupervised methods will be able to develop their own clusters of net-

work configurations for each presumed activity. The biggest challenge with such clusters

is explaining them to system administrators who will have to interpret these activities per-

ceived by the machine. Looking at a collection of network state changes is not a trivial

means of diagnosis; otherwise, a manual perusal of the data would suffice. We intend to

facilitate this task by identifying potential activities that may be occurring throughout the

network over time and presenting them to the system administrators. This should be able to

assist them in making decisions about the network as well as what to do in the eventuality

of any impending or predicted problems.

We believe exploring various representations of the recorded information may identify

regions of interest in the network that pertain to each recognized activity. Trivial repre-

sentations will display the entire network with all its information. Flow-specific data and

routing information can generate additional features that better describe network reacha-

bility and evolution for system administrators and typical users of network management

software.

6.2 Topic Modeling Applied to Networking

When it comes to networking and management, formulating the problem in a specific,

formal manner is hard. When we are looking to identify activities and events on a network,

being specific would mean listing out the hundreds of thousands of events that occur on di-

verse networks. What complicates matters further is the subjectivity in event identification

and the understanding attached to that subjective evaluation. One network administrator

would could consider a certain behavior normal for their network, while it could be dia-

metrically opposite for another administrator managing a different network.
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But what is topic modeling and how it is useful? Topic models are a class of algorithms

that “magically” discern what topics different documents talk about. It is a fairly versatile

area that can be applicable to a variety of applications, of which we believe, networking is

one. The algorithms parse the documents and cluster the document vocabulary into differ-

ent topics (clusters of words that may occur together with some probability). Ultimately,

it is an attempt to infuse vocabulary with semantic meaning. Topic modeling is a simple

and powerful tool to run on a corpus of documents to make some semantic sense. The

subsequent problem that arises is that none of the topics have any labels associated with

them. The models require us to interpret them meaningfully, and that, can be done using

supervised classifiers as explained a little later in this section.

The authors in [65] lucidly formulate the challenges of their domain in the quote below.

Even though their work pertains to anomaly detection for video surveillance, the similari-

ties of the problem at hand are striking and the applicability of this statement to networking

is quite compelling.

Behavior analysis is an important area in intelligent video surveillance,
where abnormal behaviour detection is a difficult problem. One of the chal-
lenges in this field is informality of the problem formulation. Due to the broad
scope of applications and desired objectives there is no unique way, in which
normal or abnormal behaviour can be described. In general, the objective is to
detect unusual events and inform in due course a human operator about them.
This paper considers a probabilistic framework for anomaly detection, where
less probable events are labelled as abnormal.

Subsequently, the reasoning presented above drives us to design this alerter framework

as a probabilistic one, rather than a deterministic one. Section 6.1 briefly talks about the

differences between supervised and unsupervised methods of learning. Abnormal behavior

detection can be re-formulated as a classification problem (which is supervised), but only

as a single-class problem, since it is labor intensive and difficult to collect and tag all kinds

of abnormal behavior. Therefore, one-class classifiers are quite applicable to these cases,

for example, a one-class Support Vector Machine (SVM) [32]etc. When we talk about
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analyzing temporal correlations of how the network has behaved at certain instances and

identifying patterns, we use topic modeling (which is unsupervised in nature) to break down

the dataset into smaller clusters that a supervised classifier can then run through quickly.

6.3 Behavior and Anomaly Detection

In the initial phase of this work, we use commonly available topic models on network

state data to show that topic modeling can break down the problem in clusters that are

quicker to mine for patterns. More specifically, we use the MAchine Learning for Lan-

guagE Toolkit (MALLET) to perform the analysis [92]. The dataset construction is detailed

below.

6.3.1 Dataset Characterization

For the purposes of this illustration, we use BGP message dump datasets from the RIPE

Routing Information Service (RIS) database. The dataset is prepared as follows:

• The RIPE-RIS BGP collectors dump BGP message at 5-minute intervals every day.

We use five of the collectors, RRC01, RRC04-07.

• We form the dataset over the period of one month, from September 8th, 2017 to

October 8th 2017. We pick five 5-minute intervals every day, from every collector.

• We use the BGPStream [108] site to look for potential BGP hijacks that have oc-

curred in the one month time-frame. Subsequently, we collect the message dumps

for the time-intervals identified with potential prefix hijacks and tag the files also as

potential hijacks. For this illustration, we do not consider partial prefix hijacks, only

complete ones.

• Each 5-minute interval or hijacked interval becomes a document for the topic model.
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Table 6.1: Sample BGP Message.

BGP Field BGP Field Value
TIME 09/07/17 00:00:04
TYPE BGP4MP/MESSAGE/Update
FROM 195.66.224.159 AS8966
TO 195.66.225.241 AS12654
ORIGIN IGP
ASPATH 8966 17557 9260 132165
NEXTHOP 195.66.224.159
COMMUNITY 8966:53 8966:8888 17557:65111
ANNOUNCE 111.88.223.0/24

111.88.222.0/24
111.88.221.0/24
111.88.220.0/24
111.88.219.0/24
111.88.218.0/24

6.3.2 Analytical Methodology

The BGP MRT/RIB dumps are parsed with RIPE’s libbgpdump to convert the zipped

dumps into actual messages. An example of a parsed BGP message is illustrated in Ta-

ble 6.1.

There is a singular advantage to using topic modeling. Since the algorithms are de-

signed to work well with documents and vocabularies of unique ‘words’, it is up to the

domain to define what a ‘word’ is and what comprises a ‘document’. For example, the

authors in [65] use topic modeling for video analysis, where cell information constitutes

a ‘visual word’ and video segments of certain lengths form ‘documents’. This is advanta-

geous in our case because we can develop models for different events by defining different

types of ‘network-words’.

If we take the network connection table as the source of information, then considering a

(src ip, dst ip) pair as a single ‘word’ will allow us to cluster connection information using

topic modeling. This way we can understand node communication patterns, discern any

irregularities etc.
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In this BGP message example, since we want to identify prefix hijacks, the pieces of

information that we require are the prefix’s originating ASN, whether the ASN is announc-

ing or withdrawing the prefix and the prefix itself. Using the contents of the message in

Table 6.1, we see the originating ASN is 132165 (from the last entry in the ASPATH) and

there are quite a few prefixes being announced. This information allows us to form a num-

ber of unique words in the format ASN-ANNOUNCE/WITHDRAW-PREFIX, such as

“132165-ANNOUNCE-111.88.222.0/24”, “132165-ANNOUNCE-111.88.221.0/24” and

so on. This allows the topic modeling algorithms to cluster around (ASN, prefix) announce-

ments and withdrawals.

Our dataset for a month, has close to 920 documents, totaling more than 20 million

entries, hijacked and non-hijacked. Depending on the level of accuracy and the nature of

data, running classifiers will take time to train and test. For example, running a K-Nearest

Neighbors classifier over 20 million individual entries takes over an hour of training time

and over two hours of testing time, but is very accurate. Introducing a semantic layer of

abstraction between the data and classification algorithms. Introducing a semantic layer of

abstraction between the data and classification algorithms breaks the dataset down into a

fraction of its size.

The goal of this evaluation is two-fold:

1. Primarily demonstrate that topic modeling can be adapted to work with network state.

If we can achieve a high degree of accuracy by using generic activity recognition al-

gorithms, it lays down a precedence for using these methods with any kind of network

data, and

2. Reduces the computational and spatial requirements for analyzing large amounts of

network data in the future, while still maintaining a high level of accuracy.
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Table 6.2: TP/FP ratios for different classifiers.

Classifier Type
Topic Count

5 Topics 6 Topics 7 Topics 8 Topics 9 Topics 10 Topics
Gaussian
Bayes (Direct)

0.0/0.0

D-Tree (Di-
rect)

1.0/1.0

Nearest Cen-
troid (Direct)

0.76/0.74

Gaussian
Bayes

0.72/0.24 0.96/0.34 0.84/0.21 0.16/0.00 0.56/0.05

Decision Tree 0.12/0.02 0.44/0.10 0.04/0.00 0.40/0.05 0.88/0.28 0.88/0.2
Nearest Cen-
troid

0.84/0.29 0.88/0.28 0.92/0.22 0.84/0.22 0.92/0.33 0.96/0.35

6.3.3 Modeling and Classification Results

In this section, we summarily illustrate the comparison between running the dataset

described in Section 6.3.1 directly using a classifier and after introducing an topic modeling

layer between them.

We use three different classifiers to test for accuracy and performance. The Gaussian-

based Naive-Bayes classifier is just used as a baseline to understand classification behavior.

The other two classifiers are a Decision-Tree classifier and a Rocchio classifier. The latter

operates on the basis of finding the centroid nearest to a data-point.

Every run of the topic model is different in how it probabilistically determines what

the word-topic allocation is. Subsequently, each topic model execution, for n topics, is run

10 iterations to ensure we have a consistent topic distribution reading. We then pick the

results of a single iteration at random to analyze with a classifier. To avoid over-fitting or

under-fitting the data, each run of the classifier is validated with a k −fold cross-validation

technique. We use k = 10 for our runs.

For the topic-modeling runs, the training sample contains 205 non-hijack cases and 25

hijack cases (based off a 80-20 split from the original dataset for training and testing). The
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ratios are represented with respect to these numbers. The results are tabulated above in

Table 6.2.

The numbers in the table do not tell us much with respect to direct classification. It

is as much as we expected with the decision-tree classifier scoring a 100% accuracy on all

counts, hijack and non-hijack. What is interesting though, is that the same classifier demon-

strates an extremely poor level of performance when the topic model layer is introduced

in between. The nature of data being generated as an output by the topic model compels

us to look for alternatives to the D-Tree classifier. Since the number of data points are not

too high, we opt for a bounding classifier such as the Nearest Centroid (NC) or Rocchio

classifier.

Using the NC classifier on the topic model output is interesting in a way that it is

able to maintain a high degree of accuracy for a majority of the time, but only with the

hijacked classes. It is a bit over-sensitive in its approach and hence the false positive count

is incomparable to what the D-Tree obtains. We believe this phenomenon is due to the

absence of domain information in the topic model. It is quite possible to bring the false

positive count down with custom-designed topic models for network state.

Figure 6.3 plots the false positive count against the topic count for 10 iterations of every

run of the topic model. It is clear from the graph that one of the ways to reduce the false

positive count is empirically determine the best number of topics to group the network

vocabulary into. But this is going to reduce the count only to a certain extent. To make it

as efficient as possible, the activity recognition methods need to have domain information

encoded in them. Building such a model is one of the primary objectives of this framework.

6.4 Summary and Conclusion

In this section, we explored the possibility of utilizing topic modeling to identify anoma-

lies in network state information. Based on the results, it appears that the topic modeling

or bag of words based approach is not extremely suited for this task specifically. Conse-
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Figure 6.3: False positive count for topic modeling.

quently, we require other reliable methodologies for network state analysis. In the next

set of chapters, we explore the potential of natural language understanding and concepts

derived from that area to try and make sense of network state information.
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CHAPTER 7

USING NATURAL LANGUAGE CONCEPTS TO ANALYZE
NETWORK STATE

7.1 Introduction

Networked systems today operate at an unprecedented scale. Data communication net-

works provide core functionality for today’s distributed services and applications that span

personal, business, and government use. Various developments in technology, networking

or otherwise, continue to put a massive strain on these networked devices in our daily lives.

Virtualization is re-defining hyper-scale on-demand computing by pushing the boundaries

of how much can be achieved on a single hardware device. Containerization is revolution-

izing operational time-scales in DevOps and traditional design-develop-test cycles. The

Internet of Things promises to connect every device to the Internet. Each of these tech-

nologies place demands of varying nature on communication networks, such as real-time

responsiveness, rapidly changing traffic workloads or security concerns [48].

The advent of programmable networks that provide fine-grained control of network

traffic have given rise to new challenges in network management. It is now critical to

maintain correct operation of these networks to avoid adverse business outcomes. Unfor-

tunately, existing network management methodologies have not evolved at the same pace

as these networking technologies and architectures. Subsequently, current network man-

agement practices do not provide adequate solutions for highly dynamic, programmable

environments. This is summed up perfectly by:

“The widespread integration of these applications into our daily lives raises the bar

for network management, as users elevate their expectations for real-time interaction, high

availability, resilience to attack, ubiquitous access, and scale.” [48]
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Our research attempts to explores a key question in network management – can the

power of machine learning be efficiently harnessed such that network administrators can

make better decisions in highly dynamic environments? Specifically, we propose an ap-

proach to network management that is conceptually based on statistical Natural Language

Processing (NLP).

Today, data is available in abundance. Such data includes log files, routing tables, BGP

tables, IP tables etc. With machine learning making great advances, we believe this data

can be put to good use. Computational linguistics tries to characterize and explain the ex-

pressions appearing in the language, taking into account semantics and context [89]. What

if network management could be improved with the help of a framework developed specif-

ically to understand network vocabulary, terminology, semantics and context? Such an ap-

proach that can be trained to analyze the semantics and context behind network paradigms,

etc. We believe that network management can definitely benefit from a Network Processing

Language framework.

The contributions are as follows:

1. We state the case for developing a network processing language,

2. We demonstrate how collocations can be used to process network management data,

and

3. We evaluate a BGP dataset with these approaches and show that it can be used to

successfully detect route prefix and sub-prefix hijacks.

The primary motive here is to present the need for a framework that can contextually

and semantically construct reasoning when provided with network state and information.

We utilize BGP routing data only to illustrate the feasibility of using natural language

constructs as a source of inspiration to analyze network data.

Section 7.3 discusses the need to start embedding intelligence in the network itself, with

the aim of improving network management. Subsequent sections 7.3.1 and 7.3.2 deal with
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the potential advantages of developing a network processing framework and constructs

from statistical NLP. Section 7.4 characterizes the dataset and tools used. An illustration

of detecting route prefix hijacks on BGP data is discussed in Section 7.5 and preliminary

results are presented in Section 7.6. Section 7.7 summarizes our contributions.

7.2 Related Work

Traditionally, machine learning has been used in some form or the other to aid network

analysis. Pytheas [71] explores a data-driven method to optimize quality of experience

(QoE) using machine-learning techniques. Li et al. provide a novel machine learning based

approach for efficient traffic classification [81]. A really old approach by Sasisekharan et

al. [122] demonstrates that such machine-aided and data driven approaches are not new to

networking or network management. They have been around for a long period of time, but

now are at the forefront of research and development due to their capabilities and applica-

bilities to problems being seen in present-day networks, especially the newer architectures.

A holistic view of network management will tell us many problems that programmable

architectures face are not even new. They are newer manifestations of solved problems

from legacy networks that are re-appearing due to the scale and levels of dynamism present

today.

Some of the conceptual ideas for our research are tenets of linguistic science, which

are explored and explained in lucid detail by Manning and Schutze in their seminal book

“Foundations of Statistical Natural Language Processing” [89]. This research borrows just

some fundamental concepts to demonstrate that these can be generalized and extended to

networking too. We do this by applying these concepts on public BGP routing data from

the RIPE-RIS database.

The Border Gateway Protocol is a research world unto itself, to the extent that the

subject matter is voluminous. Much of our understanding of ASes, their relationships, BGP

anomalies and misconfiguration has been drawn from [11, 20, 53, 88, 114, 149]. Machine
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learning has previously been used to analyze and understand BGP data. Li et al. [78]

use machine learning to extract features from RouteViews [4] data and present an Internet

Routing Forensic Framework to reason about BGP anomalies. [6] talks about a 2-stage

machine-learning model for BGP anomaly detection and [87] approach the same problem

by considering prefix visibility.

A comprehensive summarization of a wide-range of BGP anomaly detection techniques

is presented in [5]. We use ARTEMIS [124] as our primary source of information for state-

of-the-art and to draw parallels with our methods of detecting BGP route anomalies.

7.3 Augmenting Network Management with Intelligence

Over the years, advances in network management have lagged behind those in proto-

cols, application, architectures and designs. But as we keep falling behind the curve, it is

only going to get harder to manage the extremely dynamic networking devices and architec-

tures in use today. For network management to improve, the network needs to change [48].

It is essential to infuse the network with a certain degree of intelligence that will allow it to

assist us in making decisions. We do not envision this approach in the context of entirely

replacing the human operator, but bolstering the quality of information being provided,

thus leading to enhanced decision making capabilities.

7.3.1 The Need for Network Language Processing

The advantages of network programmability are well documented [16, 101, 126] with

programmatic networks being extensively researched in both the industry and academia

[105]. Google’s B4 WAN [68] is a prime example of a wide-area programmable deploy-

ment. The presence of various open source programmable frameworks such as OpenCon-

trail [10], OpenStack, OP-NFV etc. bear evidence of industrial interest in the area.

In recent times, there has been a surge of interest in developing languages for networks.

Most of the languages have been dictated by domain and application requirements rather
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than general purpose network programmability. One of the more notables ones advocating

for platform and protocol independence on the data-plane has been P4 [22]. There have

been other ones such as NetKAT that are based on mathematical foundations and equational

theory [9], rather than ad-hoc programmability, Frenetic [117] that facilitates building SDN

applications in a facile manner. But most of these languages focus on packet manipulation,

data-plane operations, telemetry and application programming. Their focal point has been

to abstract the network away from the data-plane, thus raising the level of abstraction away

from hardware, and making the network easier to program.

If network programmability can be applied to almost all the aspects and component

layers of the architecture, then why not for network management? It is our belief that

developing a network processing language framework for managing these new, hyper-scale

architectures merits thorough investigation.

7.3.2 Statistical Sequence-Based Analysis

Drawing parallels from [89], we can define two basic questions, which if answered,

should be able to broadly capture the essence of a language. (i) what are the kinds of things

networking devices are “saying”?, and (ii) what do these things tell us about the “world”

(in our case, the network)?

There is a clear distinction here with the scope of these two questions. The first ques-

tion deals primarily with structural aspects of the language. The latter addresses semantics

and a contextual understanding of the information, relative to the greater whole. In a net-

working context, we know what devices are “saying”. This is network state, both hard

and soft-state [70]. At this point, the state is constitutionally just raw information, without

structure, semantics or context. A network language framework will allow this data to have

a “linguistic” structure. A structure, such as NetKAT’s [9] will help extract knowledge

from it. This helps put information in context to the “network world”, making it useful and
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providing us with better insights into network operation, thus improving network manage-

ment.

Here, we elaborate on a few concepts from NLP that we use in our research. A sequence

is a collection of entities (here, words) that occur one after the other. In our BGP example,

it might be the peer-address and peer-asn occurring one after the other. They just appear

together, and possess a pseudo-semantic meaning, only telling us where the BGP message

is coming from. Alternatively, a “collocation” is by definition a pair or group of words

that are habitually juxtaposed. In linguistic parlance, this means “the whole is perceived

to have an existence beyond the sum of the parts” [89]. For example, the words in the

ASPATH are semantically related to each other, and offer us more information together as

a whole. Even if the ASPATH is broken down into individual bigrams, each bigram still

retains a semantic significance, because it tells us what edges are more popular than the

others (based on pure statistical inference). We utilize collocations in BGP dataset analysis

to identify prefix announcements/withdrawals and pathlets that make up the ASPath.

We look for collocations and sequences in the resulting text in both cases of analyzing

a corpus of BGP message or a live stream. The subtle difference between a collocation

or a sequence comes from the input. A collocation finder works extremely well on large

corpora, which would be the offline approach. The parser, while looking to infuse seman-

tic meaning, evaluates collocations not just when they occur, but their occurrences in the

corpora as a whole. But then, a live BGP stream does not afford us the luxury of a huge

corpora. Consequently, we look for sequences in each BGP message and then condition the

sequence statistically, building conditional probability distributions around the sequences.

7.4 Tools and Datasets

We build our dataset using publicly available control-plane monitoring resources, such

as RIPE’s Routing Information System (RIS) [118]. RIS is connected to 21 route collectors
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Table 7.1: Sample BGP Message.

BGP Field BGP Field Value
TIME 09/07/17 00:00:04
TYPE BGP4MP/MESSAGE/Update
FROM 195.66.224.159 AS8966
TO 195.66.225.241 AS12654
ORIGIN IGP
ASPATH 8966 17557 9260 132165
NEXTHOP 195.66.224.159
ANNOUNCE 111.88.223.0/24

111.88.222.0/24

in geographically diverse locations, peering with ≈ 300 ASes. The route collectors provide

both RiB dumps and updates collected from monitors.

We also use CAIDA’s BGPStream [109] framework. This enables live streaming of

BGP messages from the RouteViews [4] project, CAIDA’s own OpenBMP and RIPE’s RIS

collectors. Some RIS collectors live-stream updates and information in available on other

collectors typically within minutes. OpenBMP also supports low-latency streaming for

applications that do monitoring at shorter time-scales.

Table 7.1 illustrates a BGP update message in human-readable format. The corpus that

we use to train the offline model uses a slightly different, one-entry per line format that is

lighter to process and quicker to generate.

7.4.1 Offline Modeling

The dataset from the RIPE/RIS database for the offline modeling is prepared as follows:

• We use five of the RIS collectors, RRC01, RRC04-07. The collectors dump BGP

message at five-minute intervals. Consider this as one time epoch.

• We form the dataset over a period of one month, from September 8th, 2017 to Octo-

ber 8th 2017. We pick five epochs every day, from each collector.
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• We use the BGPStream [108] site to look for potential BGP hijacks that have oc-

curred in the one-month time-frame. Subsequently, we collect the message dumps

for time-epochs identified with potential prefix hijacks. This forms our test dataset

that we run against our trained model.

7.4.2 Modeling Based on Live BGP Streams

For the online model, we pick a random time from April 8th 2018 and go back one

year. We then consider a 30-minute window starting from this random timestamp and col-

lect announcements from a RIS collector picked at random from RRC01, RRC04, RRC05,

RRC06 and RRC07. This process is repeated 360 times, and we end up with 10800 hours

worth of BGP updates. The model is trained as the updates are live-streamed using PyBG-

PStream, a Python bindings package to BGPStream [109].

7.5 Detection Methodology

In this section, we elaborate on how to detect Type-0, Type-1 and sub-prefix hijacks.

Borrowing from [124], the percentage of invisible, higher-order hijacking events tend to

pollute smaller sections of the Internet. Subsequently, here we deal with only Type-0,

Type-1 and sub-prefix hijacking of both types.

7.5.1 Overview

Section 7.3.2 elaborates on the constructs used for our analysis. Here, we illustrate how

to actually detect hijacks based on a model that is combination of an offline and online

approach. We use collocations, or pairs/triplets/quadruplets of words that occur more fre-

quently than expected judged on the frequency of their individual words. Collocations are a

whole beyond the sum of the parts. Finding collocations primarily requires the frequencies

of words and their occurrence in the context of other words. They, more often than not,

need to be filtered to get rid of juxtapositions that do not make sense, thus only retaining

useful content terms. We then score each sequence (we use sequence here to establish the
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notion of a collocation) of words with an association measure, to determine the relative

likelihood of each sequence being a collocation. Our approach utilizes a combination be-

cause of some limiting factors of streaming updates. When we stream information, each

message is independent of the other and bigrams end up being simple sequences of words.

As a result, the semantic understanding provided by their appearance in a corpus is lost. To

correct for this phenomenon, we first train the model on a corpus of BGP updates down-

loaded from the RIPE-RIS [118] database, then we further train the model on live streams

to keep it up-to-date.

Collocations, frequencies and their probabilities work well if given a sizeable corpora

to work with. With BGP data, this is not a concern since there is an inordinately large

amount of data available to work with. Also, any analysis of a natural language involves

pre-processing to prepare the corpora. In the case of NLP, it would be normalizing the

text, converting everything to lower-case, removing punctuation and stop-words etc. Our

pre-processing involves normalizing fields found in the messages etc, tokenization etc. It

is the network equivalent of preparing a natural language corpus for analysis.

7.5.2 Detecting Type-0/1 Hijacks

Origin-AS or Type-0 hijacks are by far the simplest ones to observe. These are route

hijacks in which an AS announces its ownership of a prefix, that is neither its own, nor

does it have authorization to originate an announcement. Suppose AS1 - 192.168.0.0/23 is a

valid mapping, if another AS, say AS2 suddenly advertises 192.168.0.0/23, that constitutes

a Type-0 hijack.

Understanding the data to be analyzed is critical. The key to detecting a Type-0 route

hijack is the prefix and its originating AS, that is the last entry of the ASPATH. Thus, we

look for collocations of size 2, or bigrams, where either the left value is a prefix accompa-

nied by a string consisting of only numerals, or vice versa. Other bigrams can be discarded.

In BGP MRTs, the prefix appears first, followed by the ASPATH. If the order were to be
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swapped, it would be trivial to just find bigrams over these two entities, which would defi-

nitely result in one of the bigrams being an advertisement. Since our data is the positioned

in the opposite order, we can do one of two things: (i) swap them around and find bigrams,

or (ii) adjust the window size for finding collocations.

The latter approach uses a look-ahead parameter to form bigrams. Since the prefix

is followed by the ASPATH, and self-prepending is prevalent, we process the ASPATHs

to remove AS-prepending and adjust the window size accordingly to find bigrams. The

frequencies of occurrence of the bigram itself, in conjunction with the frequency of each

component of the bigram occurring with the other, dictate the level of correlation between

the components. This information, analyzed over a sizeable corpus, will most definitely

establish a certain confidence level for prefix advertisements that normally occur together.

It would be fair to question the notions of a bigram, as it appears to be a tuple of

two components, but subtleties lie in the interpretation. Tuples are just two words put

together with no real relationships, but an n-gram (and thus a bigram) establishes a semantic

relationship between the two components themselves put in perspective of the entire corpus.

Detecting Type-1 route hijacks follows a similar line of reasoning, except that we look for

collocations of order 3, rather than 2. Again, in this case, we end up with substantially

more collocations and these have to be filtered. For example, our test corpus of a 140-odd

documents results in ≈ 22 million collocations. When we filter these to take into account

only announcements, the number drops to ≈ 3 million.

7.5.3 Sub-Prefix Hijacks and Potential Misconfiguration

One of the concerns of using NLP approaches for BGP anomaly detection is its ability

to detect sub-prefix hijacks. In this section, we illustrate that it is definitely possible to

identify sub-prefixes using language processing techniques.

To identify sub-prefixes with natural language methods, we have to consider them as

strings of characters and not IP addresses. The relationship between a sub-prefix and
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Table 7.2: RiB Prefix Corpus Sizes.

Collector RiB Prefix Count
RRC00 771388
RRC01 771133
RRC04 750499
RRC05 737207
RRC06 756660

its super-prefix (or at many pairs for that matter) is not very different when they are

treated as strings and not IP addresses. For example, 64.106.0.0/17 is the super-prefix of

64.106.64.0/18. The difference between both strings is a single character transformation. It

is possible to transmute one string into the other by either deleting one character and adding

the other or replacing the character in question. This concept of string similarity is termed

as word-distance and is defined by the number of operations it takes to transform a string

into another. Possible operations are additions, deletions, replacements and transpositions.

There are various fuzzy string matching techniques that use different measures of distance.

One of the well-known ones is the “Levenshtein distance” that considers only additions,

deletions and substitutions.

We utilize this metric to list similar prefix strings extracted from an exhaustive list of

prefixes observed during the training phase. This “prefix-corpus” can also be built using

the CAIDA AS-relationship dataset [1] listing all advertised prefixes. It is then trivial to

eliminate the candidates from this list that do not share a network space overlap with the

sub-prefix. One might be led to question the advantage of this approach, because trie-based

subnet lookups are faster and it is just a reverse-trie traversal to obtain all the super-nets for

a certain prefix. To explain this, we look to Mahajan et al’s study of BGP misconfiguration

[88]. The study shows that a lot of short-lived routes are indeed misconfiguration. In

this eventuality, it might not exactly be a sub-prefix, but one that appears to be lexically

similar. A list of such strings helps us narrow down any similar looking prefixes (if there

are no super-prefixes present). We can subsequently estimate the probability of this prefix

106



belonging to any of the ASes that own prefixes on the candidate list. This is an advantage

that trie-based approaches cannot provide.

7.5.4 A Note on Type-N, N≥2 Hijacks

We have not dealt with Type-N hijacks as part of this work, mainly due to the difficulty

in finding a sufficient number of Type-N hijacks to test the model with (in a simulated

scenario). Since our primary focus is to make a case for developing a network processing

language framework and BGP data analysis only serves as the means to that end, we reserve

this for future investigation. That being said, it is not very difficult to cast the Type-N hijack

problem as a collocation finding problem.

One approach to accomplish this would be to vary the window size for collocation

finding until a best-fit is found for accuracy. [2] provides a good starting point to experiment

with this approach. The window size can be set to accommodate the average ASPATH

length on the Internet and varied around it to observe accuracy variations.

7.6 Evaluation Methods and Experimental Results

We now analyze the results of our experiments with respect to the model’s accuracy

in predicting outcomes. Doing this allows us to evaluate whether the model was able to

successfully utilize the semantics of collocation to arrive at the right result. To evaluate the

collocation-based classification, receiver operating characteristic (ROC) curves are plotted

and the area under the ROCs for the Type-0 and Type-1 hijacks calculated. The ROC curves

give us a good estimate of how the classifier is working.

The sub-prefix matching evaluation is carried on the dataset constructed in Section

7.4.1. A prefix corpus is also constructed from the dataset, that consists of all the unique

prefixes contained in it. First, we pick 100 prefixes at random from the prefix corpus. A

subnet is generated for each prefix (provided that the subnet itself is not present in the

corpus). It is then matched against all prefixes in the corpus to find strings that are most
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similar to the prefix, using the Levenshtein distance metric. If the super-prefix picked

earlier is part of the candidate list, it is counted as a successful sub-prefix identification. The

hijack analysis then proceeds as described already for regular Type-0 and Type-1 hijacks

with evaluation being performed for the sub-prefix:ASN mapping.

The test dataset contains ≈ 2.9 million genuine prefix announcements and 45000 route

hijack announcements.

These tests are run for RiB prefixes from five collectors, all of them being approxi-

mately the same size (to keep the evaluation consistent). The precision of sub-prefix match-

ing and the execution time are compared to ensure that this is not a bottleneck. Table 7.2

shows the number of unique prefixes present in the respective collector’s dataset.

7.6.1 ASPath Change Detection

We use one experiment from Blazakis et al. [20] to demonstrate that we can successfully

utilize the concept of collocations to extract useful information from network data. The

authors in [20] describe an ASPATH edit distance metric (AED), based on the concept of

Levenshtein distance to track changes to the ASPATH. Using a Levenshtein distance-based

metric normally means making code changes to account for the ASPATH being treated as

a special case of a string. The same results can be achieved with what we term the bigram

edit distance, or BED. A bigram edit distance metric can accomplish the same without the

need for any external code changes or modifications to the Levenshtein distance algorithm.

In one of the experiments, the authors try to characterize how the AED behaves on a

global scale. For this example, they consider BGP routing data from the week starting

December 21, 2004 through December 28, 2004. The authors reason that a BGP route-

leak during this period should show up definitely on the AED characterization. Figures 7.1

and 7.2 illustrate the cumulative distribution of the BED over the specified time period.

The route leak incident is clearly reflected in the BED trace for December 24, 2004, very

similar to the results that Blazakis et al. demonstrate in their research.
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Figure 7.1: CDF of Bigram Edit Distance.

Figure 7.2: CDF of Bigram Edit Distance (logscale).

7.6.2 Hijack Detection Results

Figures 7.3 and 7.4 are the ROC curves for the Type-0 and Type-1 route hijacks respec-

tively. Since we do not know what is a good threshold to use for classification, we make

use of the ROC curve to plot the specificity against sensitivity. Since the diagonal of an
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Figure 7.3: Type-0 ROC Curve.

Figure 7.4: Type-1 ROC Curve.

ROC curve describes a uniformly random classifier such as a coin flip, classifiers should

minimally perform better than this. The extent to which they score higher than this dictates

how much better they are performing, since the area under the ROC, or AUROC is greater.

In both our cases, the true positive counts are high and false positive counts are minimal,

which is why we see the curve being pulled towards the ideal (0, 1) corner of the graph.
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Figure 7.5: Sub-Prefix Matching Precision.

The other avenue where the ROC helps us is to choose a good threshold value which

minimizes the false positive rate and maximizes the true positives. In the case of Type-0

hijacks, a good threshold appears to be 0.98, which is very close to 1. For the Type-1 ROC

curve, it is around 0.85. The false positive rate is ≈ 0.18 in both cases. We believe that using

a maximum likelihood estimate (MLE, that is based on raw frequencies of occurrence),

coupled with the huge difference in classes themselves (2.9 million to 45K), results in some

lesser seen announcements to be classified as hijacks. A few ways to fix this would be to

use a probability estimate other than MLE, such a Kneser-Ney distribution, that allocates

certain margins for unknowns. Increasing the number of collectors that the model is getting

information from is also a potential solution, followed by developing a weighted method to

score the likelihood of appearance.

7.6.3 Sub-prefix Matching Results

Sub-prefix matching was performed as explained in the experimental methodology.

Figures 7.5 and 7.6 plot performance of the matching algorithms on a single collector’s

RiB prefix corpus. We evaluate three different metrics, ratio, partial ratio and token set

ratio. Ratio works purely on the basis of Levenshtein distance-based matching. Partial
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Figure 7.6: Sub-Prefix Matching Runtime.

ratio evaluates potential matches based on best sub-string matches and token set ratio ap-

proach tokenizes the strings and compares their intersection with the remainder. It is clear

from these two figures that pure Levenshtein distance-based matching is extremely fast and

maintains a consistent level of performance, invariant with an increase in the number of

requested matches. It takes about 5 seconds to return anywhere from 100-2000 matches in

the candidate list. The Levenshtein distance-based metric also plateaus at 1000 requested

matches and the trade-off may not be worth the extra computational effort. A 98% accuracy

on prefix-matching appears to be a acceptable solution.

Since we pick the Levenshtein distance based metric for our string matching, we ana-

lyze its performance across RiBs from different RIPE-RIS collectors. Figures 7.7 and 7.8

illustrate its performance. Again, it is evident that the performance is fast and consistent

across a variety of scenarios, at the same time maintaining a high degree of accuracy.

7.7 Conclusions

Here, we made the case for a network processing language framework. It is our belief,

based on prior research, ongoing work in the area, and current problems being faced in
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Figure 7.7: Fuzzy Matching Precision.

Figure 7.8: Fuzzy Matching Performance.

network management, that network management needs a novel approach of analyzing and

correlating huge amounts of information. We hypothesized that network state inherently

possesses semantics and structure, similar to a natural language that can be harnessed and

utilized to make decisions. This hypothesis was then tested using publicly available BGP

routing information to identify route prefix hijacks by analyzing the semantics of their

occurrences.
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Based on our results, we can confirm that our approach utilized network state semantics

to accurately classify and predict route hijacks. These results lay a good foundation for

further investigative research into developing a network processing language framework

that can aid and improve network management techniques.
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CHAPTER 8

TOWARDS AUTOMATED INTERPRETATION OF NETWORK
STATE

So far, in Chapters 6 and 7, we discussed the methodologies and approaches that are

central to the design of our network alerter framework. In this chapter, we will deal with

the design, development and integration of these methodologies into components that can

ultimately be integrated into a framework that can identify events and extract information

from them.

8.1 System Architecture

The architecture of the framework is illustrated in Figure 8.3. The components can be

delineated into three different categories on a temporal scale, from left to right, as indicated.

Various information and data sources are monitored for network state, such as rout-

ing information bases, connection tables, log files etc. When any change of network

state is detected, in any of the sources, a variant of our model (proposed in Chapter 5)

will version that change into an appropriate state repository. Activity recognition mod-

els that are developed specifically to extract the most important information from net-

work state then process the state repository at pre-defined intervals of time, building mod-

els that are state-information specific. This phase of the process put together constitutes

“event identification”. Every event on the network will have a unique signature based

on the different pieces of information that it depends on. For example, just looking at a

(srcip, dstip, srcport, dstport, protocol) tuple tells us this is one node connection to an-

other node. We can build an initial set of events based on these activity patterns.
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The second phase involves assessment of the event. This phase determines “what” the

event is triggering and “how” is it going to affect the system. This in itself is a two-step

process. When the changes from data sources run through their respective models, they

are assessed against an established set of patterns in the network. The models will tag

their output with these potential flags. The output from the models is then sent into the rule

repository. This is a store for well-known rules and actions that have been programmed and

also have been learned from the actions of network administrators. Depending on the rule

specifications, and the degree of confidence the system has about the rule, either corrective

action is taken, or an alert is sent upward to the network administrator.

8.2 Introduction and Related Work

As modern computer and communication systems scale in size to meet emerging con-

sumer demands, they continue to push the boundaries of technology. With the increase in

complexity, problems associated with these systems also rise, brought about by bugs and

unexpected operations. Consequently, legacy methods for system management and trou-

bleshooting become increasingly cumbersome and involve a substantial amount of manual

work in debugging the problem.

Machine learning (ML) offers potential solutions to a wide variety of these problems.

With complex systems and hyper-scale networks, data is abundant and developing new

methods that incorporate machine learning appears to be the logical path to take. Since

a large amount of the available data is in the form of textual log data, Natural Language

Processing (NLP) and Information Extraction (IE) techniques can be utilized to understand

the contents of this data.

The authors of DeepLog [40] demonstrate this research direction by performing anom-

aly detection on log files using a deep learning-based method. We propose an approach that

is similar to DeepLog, but with a different methodology and goals. Our work focuses on

building a robust event identification framework that can automatically extract events, their

116



extents, and relevant attributes. This information can then be utilized in different ways,

with anomaly detection being one of them.

Computer networking has recently moved significantly towards programmatic network-

ing. Programmability provides administrators with much needed flexibility to manage the-

ir networks, but comes at a cost of operational and management inefficiency. As the-

se networks dynamically scale, a small problem can potentially have magnified effects.

Conversely, tracking down this small problem in a large deployment can be difficult and

time-consuming. Combining these challenges with human factors can result in high trou-

bleshooting turnaround times and significant management workloads.

We posit that an event in a log file is ultimately constructed by a human programmer

to convey some information about system state. Therefore, the event log follows the con-

structs of natural language, albeit semi-structured in nature. Inspired by traditional event

extraction schema, such as Automatic Content Extraction (ACE) [83] and Entity Relation

Events (ERE) [84], we create an event ontology, aiming to be as comprehensive as possi-

ble. We then use a rule-based event extraction framework based on this ontology to define

the salient event types that should be extracted from the logs.

In IE, event extraction is the task of identifying and classifying event trigger words and

their arguments in text. A prodigious amount of work has been done on event extraction

for unstructured data [62, 63, 69, 79, 80, 104]. Many of these efforts rely upon manually

created schema or ontologies [83, 84] to define the events of interest. However, existing

ontologies are domain-specific and unable to generalize to a network management setting.

Our ontology is designed for network management and captures the underlying semantics

of network events that can be applied across networks for analytics.

Approaches to applying NLP techniques to network logs typically are difficult to trans-

fer to other applications and rely upon either the discovery of the log statements in the

source code [40] or clusters of potentially unstable word embeddings [142]. In contrast,
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our approach has the potential to be used for different applications without a change in the

underlying framework as it does not need a priori information about the log file structure.

The remainder of the chapter describes the event identification framework in Sec-

tion 8.3, use cases in Section 8.4, the methodology in Section 8.5, and an evaluation in

Section 8.6.

8.3 Event Identification Framework

An event is an occurrence of something specific that happens involving certain actors.

The event invariably results in a change of state. Since these occurrences and changes

of state are considered to be important, log files record them assiduously to help with

troubleshooting and root cause analysis in case of an untoward occurrence. In this section,

we describe the event identification framework and ontology.

8.3.1 Event Ontology

There are two important pieces of information in a log message that relate to event

identification: the event extent or event scope and the event trigger. The event extent is

a sentence that contains a taggable event and the trigger is the word or words that most

clearly explain the reason for the event’s occurrence. In addition to the extent and the

trigger, we need to identify the entities involved in each event. These entities constitute

the event participants. Many events contain infrequent occurrences of certain entities, that

are part of the event, but not primary participants. These entities constitute event attributes

and act to further qualify the event. Attributes and participants are collectively called event

arguments.

To perform this identification as accurately as possible, we need a well-defined event

ontology that describes the different classes of events and their sub-types and arguments.

We define a potential event identification ontology as depicted in Figure 8.1. This ontology
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Figure 8.1: Ontology for Event Identification.

is a combination of classifications from sources such as [121], the AIX Audit Events guide,

and various other manuals.
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Figure 8.2: Log Dependency Parse Tree Visualization.

8.3.2 Event Identification

Identifying events can be accomplished in one of two ways: selecting event triggers and

arguments from the log message, and then classifying them as an event type in the ontology,

or two, by building event identification into the NLP pipeline. We illustrate how the latter

can be accomplished using sentence similarity models and text categorization models, both

built using convolutional neural networks (CNNs).

Event logs have well-defined scopes and thus event extents are simple to identify. Trig-

gers can be determined by performing part-of-speech tagging on the entry with dependency

parsing [94]. This is illustrated in Figure 8.2. This process helps to identify event triggers

as described in section 8.3.3.2.

The syntactic relations in the dependency parse form a tree and every word has exactly

one head. We can process the arcs in the tree by iterating over the words in the sentence.

Arcs of interest can then be processed to tag event arguments with their appropriate entity

types, which the schema dictates. In Figure 8.2, we may start from the root “failed” and

crawl prepositional (prep) or primary object (pobj) edges, taking nodes labeled as nouns

or numbers as argument candidates. We then assign an entity type from our ontology to

each candidate argument.

We finally match each candidate argument to its correct argument role. A canoni-

cal representation of the argument roles in our example would be “Login failed for user

AGENT-ARG from host DEVICE-ARG”. Of the various entity types available, this LOGIN

RELATED FAILURE EVENT from our ontology could contain entity types USER and
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Table 8.1: Sample event schema.

Event Arg Entity Type Entry Match
AGENT-ARG USER Login failed for user

abcd from host 10.1.1.1
DEVICE-ARG HOSTNAME Login failed for user

IPADDRESS abcd from host 10.1.1.1
ACCOUNT

DEVICE. The schema would then map “abcd” to AGENT-ARG and “10.1.1.1” to

DEVICE-ARG, as illustrated in Table 8.1.

For the purposes of this discussion, we perform event identification using sentence

similarity and text categorization techniques. The text categorization models are trained

and evaluated using Prodigy [45] and are subsequently used in the sPacy [46] NLP pipeline

for extended analysis. We develop the sentence similarity models using Keras running on

a Tensorflow backend.

8.3.3 Automatic Content Extraction

Automatic content extraction (ACE) [83], is a set of guidelines laid out by the Linguis-

tic Data Consortium, for annotating and identifying entities, relations, and events. These

guidelines facilitate accurate and precise event extraction. This section explains how the

ACE schema relates to our problem and what parts are adapted to develop our framework.

8.3.3.1 Event Extent

The semi-structured nature of log files is advantageous: every event being a self-

contained message in itself almost always makes identifying the event extent facile, and

the event boundaries are distinct. The crux of the problem lies in identifying event triggers

accurately and mapping its corresponding event arguments.
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8.3.3.2 Event Triggers

An event trigger is the word (or words) that most clearly explain the scope of the event.

In many cases, the main verb of the log will sufficiently describe the event. Consider the

two following examples: “Login failed for user ABC from host xyz” and “Protocol test:proc

is violated at location for 604 times, started at 2017-10-04 20:20:38 EDT”.

In both cases, the main verbs, namely “failed” and “violated” adequately describe what

the event is about. If we want to be more specific, “login failed” can be used the event trig-

ger to further set it apart from successful logins, for instance. As part of our identification

framework, we list potential trigger identification semantics below:

• Verb: The main verb suffices in most cases.

• Verb + X + Adjective: In slightly more complex cases, event triggers are identified

by a combination of words and occur in attempts to adequately describe certain con-

sequences of an event.

• Multiple Verbs: These occur, but are rare, due to semantics not being a priority in

event description.

8.3.3.3 Event Properties

Event types and sub-types are not the only constituents of an event description. There

are many properties that lend meaning to an event. The polarity, tense, genericity and

coreference are some examples of such properties. A discussion about these fall beyond

the scope of this chapter (and this dissertation, since that is a subject domain by itself) since

much of the work here is focused on event identification.
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Figure 8.3: Event Identification Framework.

8.4 Use Case Scenarios

8.4.1 Anomaly Detection

The reference architecture of our intelligent alerting system is illustrated in Figure 8.3.

The components can be delineated into three categories on a temporal scale of occurrence,

from left to right, as indicated.

Event identification models can be built based on the information stored in the various

log sources depicted in Figure 8.3. Event identification algorithms may then process the

incoming logs in a streaming fashion against the models, generating fundamental event

identifiers. For example, one algorithm could process the interface logs for changes. This

phase of the process constitutes “event identification”. Every event on the network will

have a unique signature based on the different pieces of information that it depends on.
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Identifying these components as event arguments makes it easier to correlate information

across the board.

The second phase involves assessing the event. This phase determines “what” the event

is triggering and “how” is it going to affect the system. When the changes from data

sources are run through their respective models, they are assessed against an established

set of patterns. If there are any deviations noticed, or anomalies detected, the models will

tag their output with these potential flags. These output from the models are then sent

into the rule repository, with the repository being a data-store for well-known rules and

actions. Many common rules and actions can be programmed a priori into the repository.

The data-store can also contain rules and actions learned from network administrators.

Based on the rule specifications, the degree of confidence the model has about its output

matching a certain rule, and the availability/confidence in the appropriate actions to be

taken, the system decides whether to employ a proactive, corrective action or send an alert

to the administrator.

8.4.2 Extractive Summarization

A good illustration of an NLP application would be that of text summarization. Sum-

marization is the process of automatically generating a summary of the text being pro-

cessed. Consider a scenario in which a network administrator has identified the occurrence

of a fault and wants to perform root cause analysis. The administrator then manually sifts

through the logs for that time period, looking for clues that might throw some light upon

the network fault. Our framework can potentially extract all the log entries for each device

for the specified time period, and create an extractive summarization of the key events oc-

curring on a per-device basis. These summaries can then be compared by the administrator

to gain baseline knowledge of what is happening across the network. Now, this certainly is

not sufficient to analyze the problem entirely, but we argue that it gives the administrator a

good handle on the situation of what is involved and reduces manual effort.
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8.4.3 Knowledge Graphs and QA Systems

This use case is valuable in aiding administrators in troubleshooting their systems. A

knowledge graph (KG) is a graph form that captures entities and events (nodes) as well as

their attributes and corresponding relationships (edges). KGs are used in many different

domains and for a variety of purposes, ranging from improving searches [129] to fighting

human trafficking [135]. One particularly important usage of KGs is in Question Answer-

ing (QA), where automated systems are able to use this powerful and structured knowledge

to answer human-created natural language questions [148, 150]. Since a KG can represent

complex semantic relationships between entities and events on the network, administrators

have the ability to execute complex natural language queries, such as “What users failed

to login on 10.1.1.1”, that may reduce the dependency on filter-based reporting. Predictive

analytics over the KG can be performed, similar to how patterns in heterogeneous graphs

can be used for link prediction [133, 134]. This helps understand network entity and/or

event interactions as well as learn patterns that correspond to important higher-level events,

such as man-in-the-middle attacks.

8.5 Methodology

We limit the scope of this research to the task of identifying events successfully. The

successive sections deal with accomplishing this task.

8.5.1 Using CNN-based Text Classification

The event identification problem can be considered a special case of text classification.

The eventual goal of event identification is to attach a specific label to a set of words

and entities, thus signifying that it denotes the occurrence of a particular event. Tagging

events is not very different from attaching labels to sentences, where the label immediately

relates the text to a topic. We refer to event identification from a systems management

perspective of attaching a label from the ontology to a state change. It does not refer
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to event identification in NLP, that deals with identifying real-world events occurring in

natural language sequences.

CNNs are used typically for sentence classification, that is grouping a sentence into

a set of pre-determined categories by considering n-grams, or a sequence of words in a

window. Using this, events are assigned to categories, such as the ones defined in our event

ontology in Figure 8.1.

To understand the process and how a CNN works, consider a sequence of words w1∶n =

w1, . . . ,wn, where each word is associated with an embedding vector of dimension d. A

1-dimensional convolution of width-k is the act of sliding a window of size k over the

sentence (typically viewed as n-grams). The same convolution filter or kernel, a dot-product

between the concatenation of embedding vectors in the window and a weight vector u,

is applied to each window in the sequence. A non-linear activation function g is finally

applied to the entire convolution.

If we look at a window of wordswi, . . . ,wi+k the concatenated vector of the ithwindow

is then: xi = [wi,wi+1, . . . ,wi+k] ∈ Rk×d. The convolution filter is applied to each window,

resulting in scalar values ri, each for the ith window: ri = g(xi ⋅ u) ∈ R. In practice, more

filters are applied, u1, . . . , ul, which are then represented as a vector multiplied by a matrix

U , with a bias b: ri = g(xi ⋅U + b), where ri ∈ Rl, xi ∈ Rk×d, U ∈ Rk⋅d×l, b ∈ Rl.

The vectors resulting from different convolution windows are subsequently combined

into a single l-dimensional vector using a pooling operation. The maximum or average

value observed in resulting convolution vectors are considered. Ideally, this vector should

capture the most relevant features of the sentence. This vector is then fed forward into the

network, most probably to a fully connected layer to perform predictions [35].

As part of developing a proof-of-idea that text categorization approaches can be applied

to do event identification (which can also be considered a form of categorization), we an-

notated, trained and evaluated models developed using Prodigy [45]. We do not go into
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detail about them because they are part of the annotation tool and thus are out of scope.

Section 8.6 contains more details.

8.5.2 Using Sentence Similarity Metrics for Event Identification

Sentence similarity metrics and measurement approaches are used extensively to ac-

complish various NLP tasks, such as identifying duplicate questions on online forums,

sentiment analysis from user reviews on various online sites, etc. The reader might wonder

how or why identifying two sentences that are semantically and contextually similar is ap-

plicable to event identification, especially from a management perspective. How would the

system be able to identify events that are similar? Foremost, building a comprehensive and

representative dataset of all events across platforms is infeasible. For example, authentica-

tion failure logs invariably convey the same information but vary in format and semantics

across systems. However, teaching the model the context and semantics of event types is

definitely possible and also transferable to new event formats.

Here, we aim to illustrate that sentence similarity can be used to recognize events that

are semantically and contextually relatable to each other. By using sentence distance met-

rics and feature engineering a supervised classification to establish a baseline; and by build-

ing a deep learning model, it can be demonstrated that certain properties in event logs can be

utilized to attain a high level of precision and recall, especially in very unbalanced datasets.

Our methodology is conceptually derived from the one succinctly explained in [3],

albeit adapted for event logs. This is an attempt to mimic real-world scenarios where the

event types we are interested in tend to be outnumbered by other dissimilar types. There are

a few properties of event logs that we can leverage to our advantage. First, they are largely

repetitive in nature, and second, they exhibit low variance in content. These properties

mean that extracting semantically useful patterns are much easier when compared to the

same operations on unstructured text that occurs in natural languages.
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Sentence similarity metrics are organized into feature sets and then divided into three

fundamental groups. The first set consists of basic sentence features such as word and

character counts, similar word counts, etc. The second set contains more advanced fuzzy

features such as token set ratios, etc., and the final set comprises of sentence distance

metrics such as cosine distance, Manhattan and Jaccard indices, word-mover distance etc.

We also combine these feature sets to generate more coverage and allow for clustering.

To demonstrate that deep learning can utilize the properties of event logs described

above and do much better than feature-engineered supervised classifiers, we build a model

as depicted in Figure 8.4. The model is an integration of both LSTM and CNN represen-

tations of the log files that go through a series of dense and batch normalization layers.

We experiment with different layer combinations and depth, maintaining the basic merged-

model structure. We use GloVe (Global Vectors) embeddings [111], a popular technique for

generating word representations, to initialize the LSTM and CNN representations. Specif-

ically, we use pre-trained 300-dimension vectors. For the convolution layers, we use 64

filters, with filter length of 5. We also use a dropout rate of 0.2 and train the model over

200 epochs. We evaluate their performances in the next section.

8.6 Evaluation

The dataset is built from event logs gathered from four different sources, namely net-

work routers, access points, switches and OpenSSH logs. It contains around five million

log entries. The dataset is divided into a 70-30% train-test split. There are about 12-13%

of logs that are similar (authentication failure, login-related failure, etc.). This percent-

age is maintained in the train-test split using stratification. The models are then trained

and evaluated on the 70% and we then test the model on the 30% that has been held back.

The supervised classifier is constructed using Python and scikit-learn and the deep-learning

model is built using Keras on top of Tensorflow.
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Figure 8.4: Sentence Similarity Model.

Prodigy [45] is a training and annotation tool that operates with the model in the loop

and its models are CNN-based extensions of the work described in [132]. As features and

categories are annotated, the model is continually updated in the background. We use this

method to illustrate that a CNN-based text categorization approach can be used to identify

events. We annotated around 10K logs with various authentication related labels, sourced

from the same logs are described in the dataset creation section above. Because the model

was in the loop, we used only 50% of the examples for training and the remaining for

evaluation. This is again tested on an unbalanced dataset (which is not the same as the one
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(a) Precision. (b) Recall.

(c) F1-Score.

Figure 8.5: Performance Baseline for Supervised Classifier.

used for the next section). Due to scarcity of space, we just list the numbers inline here.

The model attained 98% precision, recall, and F1-scores.

Figures8.5 and 8.6 illustrate our comparison of a baseline supervised classifier and the

deep learning-based models. The 0 and 1 on the axes labels indicate whether logs were

similar (1) or not (0). We consider the preicion, recall, F1-score and weighted average

metrics to compare the performance. We use precision-recall features due to the proper-

ties of the dataset, as demonstrated in [120]. The behavior of the supervised classifier is

in accordance with what we expect when the event logs are dissimilar because they form

the majority portion in the dataset. Advanced fuzzy feature alone are not enough to gener-
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Figure 8.6: Recall Comparison Across Models.

ate enough clustering for confident predictions. It averages 48% when identifying similar

logs, which is not The performance improves drastically when multiple feature sets are

combined, climbing to 80%. This is an indication that extracting NLP-specific features are

definitely beneficial.

From the numbers, it is quite clear that the deep-learning model is especially efficient

at identifying similar events, even though they are scarce in the dataset, much like the

CNN-based text categorization model. The deep learning model outperforms the baseline

classifier comfortably, being able to extract more features through iterated convolutions

than the feature engineered methods tried above. The high numbers can be attributed to

a few reasons: repetitiveness, low variance and the effectiveness of CNNs in extracting

language-specific patterns.

8.7 Conclusion

Based on the administration and troubleshooting requirements for contemporary sys-

tems, we proposed a robust event identification framework based on natural language pro-

cessing concepts. We illustrated how log files and their associated entries are extensions

of natural language, albeit semi-structured and can be processed accordingly. We then pre-

sented various scenarios where the event identification network can potentially be utilized
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to help administrators utilize their time more efficiently. From the results, it is clear that

NLP-based approaches can help in processing large volumes of event logs, helping to iden-

tify and extract relevant information. These results lay the foundation for further research,

such as zero-shot transfer learning, that can demonstrate the effectiveness of deep-learning

approaches applied to systems/network management.
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CHAPTER 9

SUMMARY

We started by hypothesizing that networks are becoming more dynamic in nature and

we need novel methods and approaches to enhance network management. Subsequently,

we presented four different methods to enhance the network management experience.

• Adaptive Service-Chain Routing for NFVs: We explored how a problem in the con-

text of a dynamic, programmable networking environment that could be intractable

was solvable through a network graph transformation, compared to designing com-

plex algorithmic approaches. We demonstrated the feasibility of such a solution by

prototyping it on an emulated network with DockerNet, ONOS and sFlow.

• Multi-Criteria Routing in Networks with Path Choices: Here, we presented Pare-

toBFS, a variant of a breadth-first search that uses branch-and-bound techniques to

find all the Pareto-optimal paths while effectively limiting the potentially very large

search space. We explored several sampling techniques to further improve search

performance while limiting the degradation in quality of the results to only a marginal

amount. Our simulation results show that existing multi-criteria combinatorial opti-

mization approaches can only search a small fraction of all the Pareto-optimal paths

while ParetoBFS can obtain the whole path set in shorter time. We also present re-

sults from an implementation of ParetoBFS on a software-defined network prototype.

• Flow Revision Management for Software-Defined Networks: We presented a design

for a versioning system for software-defined networks. Our work addresses the prob-

lem of revision control for flow state management in SDN-enabled networks, so that
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the underlying data plane might be able to provide better state protection, prove-

nance, ease of programmability, and support for multiple applications. Inspired by

the revision control tools in the software development world, we propose an abstrac-

tion and a system called GitFlow, which provides flow state versioning in the SDN

context.

• Automated Event Identification and Information Extraction from System Logs Us-

ing NLP: With the increased pervasiveness of machine learning, this technology is

capable of changing the way newer network management systems are built. We

propose an event identification and management framework based on natural lan-

guage processing concepts. Our system processes events in a log file as a natural

language sequence and builds models of the extracted events to be used in various

online or post-processing scenarios. We demonstrate how text categorization and

sentence similarity concepts can be used to automatically identify events in logs. We

also illustrate the advantages of our event extraction framework in different use cases

and how our system helps to make network troubleshooting and management more

efficient.

These approaches demonstrate how novel methods can be utilized to adapt to a rapidly

evolving networking landscape, albeit one where network management approaches have

failed to keep up. It is the author’s sincere hope that these exploratory approaches contribute

to expanding the body of knowledge in this area in a meaningful manner, however small it

may be.
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