13,971 research outputs found

    Multi-class classification for semantic labeling of places

    Full text link
    Human robot interaction is an emerging area of research, where human understandable robotic representations can play a major role. Knowledge of semantic labels of places can be used to effectively communicate with people and to develop efficient navigation solutions in complex environments. In this paper, we propose a new approach that enables a robot to learn and classify observations in an indoor environment using a labeled semantic grid map, which is similar to an Occupancy Grid like representation. Classification of the places based on data collected by laser range finder (LRF) is achieved through a machine learning approach, which implements logistic regression as a multi-class classifier. The classifier output is probabilistically fused using independent opinion pool strategy. Appealing experimental results are presented based on a data set gathered in various indoor scenarios. ©2010 IEEE

    Semantic grid map building

    Full text link
    Conventional Occupancy Grid (OG) map which contains occupied and unoccupied cells can be enhanced by incorporating semantic labels of places to build semantic grid map. Map with semantic information is more understandable to humans and hence can be used for efficient communication, leading to effective human robot interactions. This paper proposes a new approach that enables a robot to explore an indoor environment to build an occupancy grid map and then perform semantic labeling to generate a semantic grid map. Geometrical information is obtained by classifying the places into three different semantic classes based on data collected by a 2D laser range finder. Classification is achieved by implementing logistic regression as a multi-class classifier, and the results are combined in a probabilistic framework. Labeling accuracy is further improved by topological correction on robot position map which is an intermediate product, and also by outlier removal process on semantic grid map. Simulation on data collected in a university environment shows appealing results

    Semantic labeling of places using information extracted from laser and vision sensor data

    Get PDF
    Indoor environments can typically be divided into places with different functionalities like corridors, kitchens, offices, or seminar rooms. The ability to learn such semantic categories from sensor data enables a mobile robot to extend the representation of the environment facilitating the interaction withhumans. As an example, natural language terms like corridor or room can be used to communicate the position of the robot in a map in a more intuitive way. In this work, we firrst propose an approach based on supervised learning to classify the pose of a mobile robot into semantic classes. Our method uses AdaBoost to boost simple features extracted from range data and vision into a strong classifier. We present two main applications of this approach. Firstly, we show how our approach can be utilized by a moving robot for an online classification of the poses traversed along its path using a hidden Markov model. Secondly, we introduce an approach to learn topological maps from geometric maps by applying our semantic classification procedure in combination with a probabilistic relaxation procedure. We finally show how to apply associative Markov networks (AMNs) together with AdaBoost for classifying complete geometric maps. Experimental results obtained in simulation and with real robots demonstrate the effectiveness of our approach in various indoor environments

    Efficient exploration of unknown indoor environments using a team of mobile robots

    Get PDF
    Whenever multiple robots have to solve a common task, they need to coordinate their actions to carry out the task efficiently and to avoid interferences between individual robots. This is especially the case when considering the problem of exploring an unknown environment with a team of mobile robots. To achieve efficient terrain coverage with the sensors of the robots, one first needs to identify unknown areas in the environment. Second, one has to assign target locations to the individual robots so that they gather new and relevant information about the environment with their sensors. This assignment should lead to a distribution of the robots over the environment in a way that they avoid redundant work and do not interfere with each other by, for example, blocking their paths. In this paper, we address the problem of efficiently coordinating a large team of mobile robots. To better distribute the robots over the environment and to avoid redundant work, we take into account the type of place a potential target is located in (e.g., a corridor or a room). This knowledge allows us to improve the distribution of robots over the environment compared to approaches lacking this capability. To autonomously determine the type of a place, we apply a classifier learned using the AdaBoost algorithm. The resulting classifier takes laser range data as input and is able to classify the current location with high accuracy. We additionally use a hidden Markov model to consider the spatial dependencies between nearby locations. Our approach to incorporate the information about the type of places in the assignment process has been implemented and tested in different environments. The experiments illustrate that our system effectively distributes the robots over the environment and allows them to accomplish their mission faster compared to approaches that ignore the place labels

    Supervised semantic labeling of places using information extracted from sensor data

    Get PDF
    Indoor environments can typically be divided into places with different functionalities like corridors, rooms or doorways. The ability to learn such semantic categories from sensor data enables a mobile robot to extend the representation of the environment facilitating interaction with humans. As an example, natural language terms like “corridor” or “room” can be used to communicate the position of the robot in a map in a more intuitive way. In this work, we first propose an approach based on supervised learning to classify the pose of a mobile robot into semantic classes. Our method uses AdaBoost to boost simple features extracted from sensor range data into a strong classifier. We present two main applications of this approach. Firstly, we show how our approach can be utilized by a moving robot for an online classification of the poses traversed along its path using a hidden Markov model. In this case we additionally use as features objects extracted from images. Secondly, we introduce an approach to learn topological maps from geometric maps by applying our semantic classification procedure in combination with a probabilistic relaxation method. Alternatively, we apply associative Markov networks to classify geometric maps and compare the results with a relaxation approach. Experimental results obtained in simulation and with real robots demonstrate the effectiveness of our approach in various indoor environments

    Semantic labeling of places

    Get PDF
    Indoor environments can typically be divided into places with different functionalities like corridors, kitchens, offices, or seminar rooms. We believe that such semantic information enables a mobile robot to more efficiently accomplish a variety of tasks such as human-robot interaction, path-planning, or localization. In this paper, we propose an approach to classify places in indoor environments into different categories. Our approach uses AdaBoost to boost simple features extracted from vision and laser range data. Furthermore,we apply a Hidden Markov Model to take spatial dependencies between robot poses into account and to increase the robustness of the classification. Our technique has been implemented and tested on real robots as well as in simulation. Experiments presented in this paper demonstrate that our approach can be utilized to robustly classify places into semantic categories

    Categorization of indoor places using the Kinect sensor

    Get PDF
    The categorization of places in indoor environments is an important capability for service robots working and interacting with humans. In this paper we present a method to categorize different areas in indoor environments using a mobile robot equipped with a Kinect camera. Our approach transforms depth and grey scale images taken at each place into histograms of local binary patterns (LBPs) whose dimensionality is further reduced following a uniform criterion. The histograms are then combined into a single feature vector which is categorized using a supervised method. In this work we compare the performance of support vector machines and random forests as supervised classifiers. Finally, we apply our technique to distinguish five different place categories: corridors, laboratories, offices, kitchens, and study rooms. Experimental results show that we can categorize these places with high accuracy using our approach

    Crowdsourcing in Computer Vision

    Full text link
    Computer vision systems require large amounts of manually annotated data to properly learn challenging visual concepts. Crowdsourcing platforms offer an inexpensive method to capture human knowledge and understanding, for a vast number of visual perception tasks. In this survey, we describe the types of annotations computer vision researchers have collected using crowdsourcing, and how they have ensured that this data is of high quality while annotation effort is minimized. We begin by discussing data collection on both classic (e.g., object recognition) and recent (e.g., visual story-telling) vision tasks. We then summarize key design decisions for creating effective data collection interfaces and workflows, and present strategies for intelligently selecting the most important data instances to annotate. Finally, we conclude with some thoughts on the future of crowdsourcing in computer vision.Comment: A 69-page meta review of the field, Foundations and Trends in Computer Graphics and Vision, 201
    corecore