19,531 research outputs found

    Optimal dynamic operations scheduling for small-scale satellites

    Get PDF
    A satellite's operations schedule is crafted based on each subsystem/payload operational needs, while taking into account the available resources on-board. A number of operating modes are carefully designed, each one with a different operations plan that can serve emergency cases, reduced functionality cases, the nominal case, the end of mission case and so on. During the mission span, should any operations planning amendments arise, a new schedule needs to be manually developed and uplinked to the satellite during a communications' window. The current operations planning techniques over a reduced number of solutions while approaching operations scheduling in a rigid manner. Given the complexity of a satellite as a system as well as the numerous restrictions and uncertainties imposed by both environmental and technical parameters, optimising the operations scheduling in an automated fashion can over a flexible approach while enhancing the mission robustness. In this paper we present Opt-OS (Optimised Operations Scheduler), a tool loosely based on the Ant Colony System algorithm, which can solve the Dynamic Operations Scheduling Problem (DOSP). The DOSP is treated as a single-objective multiple constraint discrete optimisation problem, where the objective is to maximise the useful operation time per subsystem on-board while respecting a set of constraints such as the feasible operation timeslot per payload or maintaining the power consumption below a specific threshold. Given basic mission inputs such as the Keplerian elements of the satellite's orbit, its launch date as well as the individual subsystems' power consumption and useful operation periods, Opt-OS outputs the optimal ON/OFF state per subsystem per orbital time step, keeping each subsystem's useful operation time to a maximum while ensuring that constraints such as the power availability threshold are never violated. Opt-OS can provide the flexibility needed for designing an optimal operations schedule on the spot throughout any mission phase as well as the ability to automatically schedule operations in case of emergency. Furthermore, Opt-OS can be used in conjunction with multi-objective optimisation tools for performing full system optimisation. Based on the optimal operations schedule, subsystem design parameters are being optimised in order to achieve the maximal usage of the satellite while keeping its mass minimal

    Unattended network operations technology assessment study. Technical support for defining advanced satellite systems concepts

    Get PDF
    The results are summarized of an unattended network operations technology assessment study for the Space Exploration Initiative (SEI). The scope of the work included: (1) identified possible enhancements due to the proposed Mars communications network; (2) identified network operations on Mars; (3) performed a technology assessment of possible supporting technologies based on current and future approaches to network operations; and (4) developed a plan for the testing and development of these technologies. The most important results obtained are as follows: (1) addition of a third Mars Relay Satellite (MRS) and MRS cross link capabilities will enhance the network's fault tolerance capabilities through improved connectivity; (2) network functions can be divided into the six basic ISO network functional groups; (3) distributed artificial intelligence technologies will augment more traditional network management technologies to form the technological infrastructure of a virtually unattended network; and (4) a great effort is required to bring the current network technology levels for manned space communications up to the level needed for an automated fault tolerance Mars communications network

    Multi-Agent Orbit Design For Perception Enhancement Purpose

    Full text link
    This paper develops a robust optimization based method to design orbits on which the sensory perception of the desired physical quantities are maximized. It also demonstrates how to incorporate various constraints imposed by many spacecraft missions such as collision avoidance, co-orbital configuration, altitude and frozen orbit constraints along with Sun-Synchronous orbit. The paper specifically investigates designing orbits for constrained visual sensor planning applications as the case study. For this purpose, the key elements to form an image in such vision systems are considered and effective factors are taken into account to define a metric for perception quality. The simulation results confirm the effectiveness of the proposed method for several scenarios on low and medium Earth orbits as well as a challenging Space-Based Space Surveillance program application.Comment: 12 pages, 18 figure

    Mission Planning Techniques for Cooperative LEO Spacecraft Constellations

    Get PDF
    This research develops a mission planning approach that allows different systems to cooperate in accomplishing a single mission goal. Using the techniques described allows satellites to cooperate in efficiently maneuvering, or collecting images of Earth and transmitting the collected data to users on the ground. The individual resources onboard each satellite, like fuel, memory capacity and pointing agility, are used in a manner that ensures the goals and objectives of the mission are realized in a feasible way. A mission plan can be generated for each satellite within the cooperating group that collectively optimize the mission objectives from a global viewpoint. The unique methods and framework presented for planning the spacecraft operations are flexible and can be applied to a variety of decision making processes where prior decisions impact later decision options. This contribution to the satellite constellation mission planning field, thus has greater applicability to the wider decision problem discipline

    Genetic algorithms for satellite scheduling problems

    Get PDF
    Recently there has been a growing interest in mission operations scheduling problem. The problem, in a variety of formulations, arises in management of satellite/space missions requiring efficient allocation of user requests to make possible the communication between operations teams and spacecraft systems. Not only large space agencies, such as ESA (European Space Agency) and NASA, but also smaller research institutions and universities can establish nowadays their satellite mission, and thus need intelligent systems to automate the allocation of ground station services to space missions. In this paper, we present some relevant formulations of the satellite scheduling viewed as a family of problems and identify various forms of optimization objectives. The main complexities, due highly constrained nature, windows accessibility and visibility, multi-objectives and conflicting objectives are examined. Then, we discuss the resolution of the problem through different heuristic methods. In particular, we focus on the version of ground station scheduling, for which we present computational results obtained with Genetic Algorithms using the STK simulation toolkit.Peer ReviewedPostprint (published version

    Robot swarming applications

    Get PDF
    This paper discusses the different modes of operation of a swarm of robots: (i) non-communicative swarming, (ii) communicative swarming, (iii) networking, (iv) olfactory-based navigation and (v) assistive swarming. I briefly present the state of the art in swarming and outline the major techniques applied for each mode of operation and discuss the related problems and expected results

    An autonomous satellite architecture integrating deliberative reasoning and behavioural intelligence

    Get PDF
    This paper describes a method for the design of autonomous spacecraft, based upon behavioral approaches to intelligent robotics. First, a number of previous spacecraft automation projects are reviewed. A methodology for the design of autonomous spacecraft is then presented, drawing upon both the European Space Agency technological center (ESTEC) automation and robotics methodology and the subsumption architecture for autonomous robots. A layered competency model for autonomous orbital spacecraft is proposed. A simple example of low level competencies and their interaction is presented in order to illustrate the methodology. Finally, the general principles adopted for the control hardware design of the AUSTRALIS-1 spacecraft are described. This system will provide an orbital experimental platform for spacecraft autonomy studies, supporting the exploration of different logical control models, different computational metaphors within the behavioral control framework, and different mappings from the logical control model to its physical implementation

    Fourth Conference on Artificial Intelligence for Space Applications

    Get PDF
    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming

    A multi-agent adaptive protocol for femto-satellite applications

    Get PDF
    Femto-satellites are a very promising category of satellites that weigh less than 100 grams. Also, a Pico-Rover it is a self-contained robot that weighs less than 1 kilogram and its motion works by rolling the external enclosure that keeps out any environment threats. The main advantage of this kind of small agents is the multi-point of view when they work as swarm or taking part of a larger constellation. The complexity of these kinds of network sensors, in addition to the low power requirements and low size, requires a good strategy of management that we want to present in this work. The paradigm on management-on-agent consists of a single high quality point of view and multiple low quality points of view where the selection of the point of view is done inside the network but decided externally to the network or done by a basic law. This approach optimizes the bandwidth used by the net. Instead of streaming every high quality point of view we only stream one of them. At the same time, this approach allows a task distribution on the network where there is only one producer agent, one consumer agent while the rest of agents work as relay nodes. This work is addressed, on one side, to the design of a simple but robust and adaptive protocol based on this paradigm; on the other hand, an implementation using a low performance platform like the 8051 microcontroller architecture is required
    corecore