55,178 research outputs found

    Multi-agent reinforcement learning for route guidance system

    Get PDF
    Nowadays, multi-agent systems are used to create applications in a variety of areas, including economics, management, transportation, telecommunications, etc. Importantly, in many domains, the reinforcement learning agents try to learn a task by directly interacting with its environment. The main challenge in route guidance system is to direct vehicles to their destination in a dynamic traffic situation, with the aim of reducing travel times and ensuring efficient use of available road network capacity. This paper proposes a multi-agent reinforcement learning algorithm to find the best and shortest path between the origin and destination nodes. The shortest path such as the lowest cost is calculated using multi-agent reinforcement learning model and it will be suggested to the vehicle drivers in a route guidance system. The proposed algorithm has been evaluated based on Dijkstra's algorithm to find the optimal solution using Kuala Lumpur (KL) road network map. A number of route cases have been used to evaluate the proposed approach based on the road network problems. Finally, the experiment results demonstrate that the proposed approach is feasible and efficient

    D4.2 Intelligent D-Band wireless systems and networks initial designs

    Get PDF
    This deliverable gives the results of the ARIADNE project's Task 4.2: Machine Learning based network intelligence. It presents the work conducted on various aspects of network management to deliver system level, qualitative solutions that leverage diverse machine learning techniques. The different chapters present system level, simulation and algorithmic models based on multi-agent reinforcement learning, deep reinforcement learning, learning automata for complex event forecasting, system level model for proactive handovers and resource allocation, model-driven deep learning-based channel estimation and feedbacks as well as strategies for deployment of machine learning based solutions. In short, the D4.2 provides results on promising AI and ML based methods along with their limitations and potentials that have been investigated in the ARIADNE project

    Deep Multi-Agent Reinforcement Learning using DNN-Weight Evolution to Optimize Supply Chain Performance

    Get PDF
    To develop a supply chain management (SCM) system that performs optimally for both each entity in the chain and the entire chain, a multi-agent reinforcement learning (MARL) technique has been developed. To solve two problems of the MARL for SCM (building a Markov decision processes for a supply chain and avoiding learning stagnation in a way similar to the prisoner\u27s dilemma ), a learning management method with deep-neural-network (DNN)-weight evolution (LM-DWE) has been developed. By using a beer distribution game (BDG) as an example of a supply chain, experiments with a four-agent system were performed. Consequently, the LM-DWE successfully solved the above two problems and achieved 80.0% lower total cost than expert players of the BDG

    Cooperative Multi-Type Multi-Agent Deep Reinforcement Learning for Resource Management in Space-Air-Ground Integrated Networks

    Full text link
    The Space-Air-Ground Integrated Network (SAGIN), integrating heterogeneous devices including low earth orbit (LEO) satellites, unmanned aerial vehicles (UAVs), and ground users (GUs), holds significant promise for advancing smart city applications. However, resource management of the SAGIN is a challenge requiring urgent study in that inappropriate resource management will cause poor data transmission, and hence affect the services in smart cities. In this paper, we develop a comprehensive SAGIN system that encompasses five distinct communication links and propose an efficient cooperative multi-type multi-agent deep reinforcement learning (CMT-MARL) method to address the resource management issue. The experimental results highlight the efficacy of the proposed CMT-MARL, as evidenced by key performance indicators such as the overall transmission rate and transmission success rate. These results underscore the potential value and feasibility of future implementation of the SAGIN

    Integrated frameworks of unsupervised, supervised and reinforcement learning for solving air traffic flow management problem

    Get PDF
    This paper studies the demand-capacity balancing (DCB) problem in air traffic flow management (ATFM) with collaborative multi-agent reinforcement learning (MARL). To attempt the proper ground delay for resolving airspace hotspots, a multi-agent asynchronous advantage actor-critic (MAA3C) framework is firstly constructed with the long short-term memory network (LSTM) for the observations, in which the number of agents varies across training steps. The unsupervised learning and supervised learning are then introduced for better collaboration and learning among the agents. Experimental results demonstrate the scalability and generalization of the proposed frameworks, by means of applying the trained models to resolve different simulated and real-world DCB scenarios, with various flights number, sectors number and capacity settings.10.13039/501100004543-China Scholarship Counci

    3R: a reliable multi-agent reinforcement learning based routing protocol for wireless medical sensor networks.

    Get PDF
    Interest in the Wireless Medical Sensor Network (WMSN) is rapidly gaining attention thanks to recent advances in semiconductors and wireless communication. However, by virtue of the sensitive medical applications and the stringent resource constraints, there is a need to develop a routing protocol to fulfill WMSN requirements in terms of delivery reliability, attack resiliency, computational overhead and energy efficiency. This paper proposes 3R, a reliable multi-agent reinforcement learning routing protocol for WMSN. 3R uses a novel resource-conservative Reinforcement Learning (RL) model to reduce the computational overhead, along with two updating methods to speed up the algorithm convergence. The reward function is re-defined as a punishment, combining the proposed trust management system to defend against well-known dropping attacks. Furthermore, an energy model is integrated with the reward function to enhance the network lifetime and balance energy consumption across the network. The proposed energy model uses only local information to avoid the resource burdens and the security concerns of exchanging energy information. Experimental results prove the lightweightness, attacks resiliency and energy efficiency of 3R, making it a potential routing candidate for WMSN
    corecore