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Abstract—This paper studies the demand-capacity balancing
(DCB) problem in air traffic flow management (ATFM) with
collaborative multi-agent reinforcement learning (MARL). To
attempt the proper ground delay for resolving airspace hotspots,
a multi-agent asynchronous advantage actor-critic (MAA3C)
framework is firstly constructed with the long short-term
memory network (LSTM) for the observations, in which the
number of agents varies across training steps. The unsupervised
learning and supervised learning are then introduced for better
collaboration and learning among the agents. Experimental
results demonstrate the scalability and generalization of the
proposed frameworks, by means of applying the trained models
to resolve different simulated and real-world DCB scenarios,
with various flights number, sectors number and capacity
settings.

Index Terms—DCB; Multi-agent; Reinforcement Learning;
Unsupervised Learning; Supervised Learning

I. INTRODUCTION

The limited airspace capacity and the fast growing demand
of flights nowadays have often led to airspace congestions.
It is therefore needed to offload the airspace during the pre-
flight phase, such that the downstream air traffic controllers
(ACTOs) can be well protected when providing in-flight
separation assurance. Air traffic flow management (ATFM)
is one of these activities. In ATFM, a hotpot occurs when
the predicted demand of airspace volume exceeds its capac-
ity, which leads to the so-called demand-capacity balancing
(DCB) problem to eliminate those hotspots.

One common resolution for the problem is to regulate
the demand (or traffic flow). It can redistribute the flow
temporally, such as ground delay and airborne delay, and
can also redirect the flow spatially such as re-routing [1].
Another resolution is to reduce the traffic complexity and
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thus increase the airspace capacity [2] [3]. Conventionally,
the DCB problem has been mathematically formulated with
optimisation models, such as 0-1 Integer Programming [1],
Eulerian-Lagrangian model [4], with ground holding, air-
borne holding and re-routing strategies involved.

With the successful application in many domains, ma-
chine learning methods have been also explored in the
ATFM field. Specifically, multi-agent reinforcement learning
(MARL) methods were adopted to tackle the DCB problem
as the intelligent agent could learn a proper solution, through
numerous trials and errors, without formulating complex
hand-crafted models. The demand-capacity imbalance could
be constructed as the interacted networks of flight trajectories,
in which agents with interactions were defined as “peers”
and the connection of “peers” neighbourhood promoted the
information propagation. Independent reinforcement learning,
edge-based multi-agent reinforcement learning and agent-
based multi-agent learning were proposed according to the
features of agents’ coordination graph [5]. The hierarchical
reinforcement learning frameworks were proposed based on
the state-action abstraction and temporal action abstraction
by taking advantage of the coordination of agents to handle
real-world problems. Regardless of the agents’ actions being
independent or connected, the hierarchical frameworks could
produce promising results [6].

There have been also similar congestion problems in other
fields resolved by MARL methods. The fleet management
for online ride-sharing reallocated the available vehicles to
alleviate the huge amount of orders in the specific areas.
The environment was usually divided into several grid areas
and large-scale agents were involved. The contextual MARL
utilized the geographic context and collaborative context to
tackle the complex stochastic demand-supply issue [7]. The
mean field MARL took advantage of mean field approxima-
tion to resolve the variable population size in the ride-sharing
order dispatching [8]. MARL was also integrated with graph
neural networks to solve the changing demand and supply
issue [9].

In this paper, it is hypothesized that MARL can come
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into play to train a general DCB solver, where some of the
computational complexity can be addressed offline, i.e., in the
learning phase. Thus, the objective is, on one hand, providing
solutions of high quality for different DCB scenarios, and
on the other hand, enabling fast-time computations to meet
the operational requirements. The MARL environment is
constructed by a number of airspace sectors and flights with
spatio-temporal information. Flights in hotspots are defined
as the candidate agents to interact with the environment.
The agents’ number reaches hundreds even thousands, if
compared with typical multi-agent systems [10], therefore
increasing the difficulty of multi-agent learning process.

The contributions of the paper are summarised as follows:
• A multi-agent asynchronous advantage actor-critic

(MAA3C) framework is proposed, with unsupervised
learning and supervised learning further integrated.

• Only flights in hotspots are regarded as the candidate
agents, and as a consequence the proposed frameworks
can well deal with the varying number of agents.

• The scalability and generalization are assessed by eval-
uating the models trained on a simulated DCB scenario
with real scenarios of different magnitudes.

The rest of the paper is organized as follows: Section II
introduces the fundamental mathematics of the DCB problem
and the reinforcement learning. Section III describes the
proposed MAA3C frameworks, unsupervised and supervised
learning methods. Section IV demonstrates and analyses the
results on simulated and real cases. Section V gives the
conclusion of the paper.

II. PROBLEM STATEMENT

In this section, the basic DCB problem and a general
understanding of its modelling approach are elaborated via
an illustrative example. The problem is then formulated as a
Partially Observable Markov Decision Process (POMDP), in
which the involved components are explained in detail.

A. DCB problem

The DCB problem involves two kernel objects: the flight
information (demand) and the airspace sector configura-
tion (capacity). A flight in this paper is represented by
a spatio-temporal trajectory, in general, written as fi =
{(Sp, EntryT imep), · · · , (Sq, EntryT imeq)}, where i is
the flight index, p and q are indexes of sectors, p 6= · · · 6= q
and there is no strict order for them.

Taking a toy model as an example, there are 16 sectors
S0-S15 created and constructed as 4 × 4 squares. A sample
flight f1 = {(S4, 10:22), (S5, 10:32), (S1, 10:52)} is then
simulated which means that the flight f1 enters the sector S4

at 10:22, sector S5 at 10:32 and sector S1 at 10:52. The matrix
expression of the flight is F1×M , where M is the number of
sectors, then N -flights plan is FN×M . In each sector, the
flights inside also carry the information about other sectors.
For instance, when considering f1 in S4, it also includes its
information in sector S5 and S1. Hence, it is a compromise
process to achieve the global observation about all interested

sectors. The capacity of sectors depicts the maximum number
of flights that can enter the sector within a specific period of
time. In this paper, the capacity of each sector CS,T (S is the
sector index, and T is the time period) is given in 20-minutes
period.

An illustrative example used to understand the toy model
is shown in Fig. 1. The time horizon (24 hours) are equally
divided into 72 time periods, each combined with the con-
figured 4× 4 sectors, leading to 72 snapshots. Each snapshot
contains the traffic flow of all sectors within 20 minutes. To
clearly illustrate the scheme, an example of flight plan is
given in (1):
f1 = {(S4, 10:22), (S5, 10:32), (S1, 10:52)}
f2 = {(S4, 10:05), (S5, 10:25), (S10, 10:45), (S11, 11:05)}
f3 = {(S13, 09:55), (S9, 10:15), (S5, 10:35), (S6, 10:55),

(S2, 11:10}
(1)

Above are three flights randomly generated with different
number of traversed sectors. All flights are mapped into the
snapshots. Assuming that the capacity of all sectors is 2,
we can observe from Fig. 1 that sector S5 in period T31
becomes a hotspot as there are three flights entering the
sector during 10:00-10:20. The three flights can constitute
a multi-agent system, and then some learning algorithm can
be applied to the system to select which flight to delay
and how long. In this paper, only the ground delay strategy
is considered. Thus, if the learning algorithm outputs a
delay result, such as [10min, 0min, 0min], it means that
only f1 is delayed for 10 minutes. This delay result is
then used to update the flight plan, where f1 is updated
to f1 = {(S4, 10:32), (S5, 10:42), (S1, 11:02)}, with f2 and
f3 unchanged. This process is repeated until all hotspots are
eliminated.

B. POMDP

Following the previous discussion, the DCB problem can
be formulated as a Partially Observable Markov Decision
Process (POMDP) for N agents [11], and defined by a
tuple

(
N ,S,

{
Ai
}
i∈N ,P,

{
Ri
}
i∈N , γ,

{
Oi
}
i∈N

)
, where

N = {1, · · · , N} is the agent set, S is the state set of
all agents, Ai is the action space of agent i, and

{
Ai
}
i∈N

means the joint action space. Let A = A1 × · · · × AN ,
then the transition probability becomes P : S × A −→ S.
Ri : S ×A× S −→ R is the reward obtained from agent i,
with discount factor γ ∈ [0, 1]. Oi is the observation set of
agent i. Specifically,

a) Agent: Only flights in hotspots are regarded as the
candidate agents. Since the flight number in each sector is dif-
ferent, it will change over training steps and the agent number
is an unfixed value among steps. Agents are homogeneous
in the designed multi-agent system, with a common reward
function.

b) State, Observation: Agent i observes local infor-
mation oist ∈ Oi at each training step st from the global
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Fig. 1: Effects of delay on spatio-temporal trajectory information associated with traversed sectors.

environment state Sst ∈ S based on the observation function
S×N −→ O. Each agent observes the information regarding
its entry time, demand, capacity, over-demand status and
sector index of all traversed sectors from the global state.
Flights may traverse different number of sectors. According
to the definition of observation, different agents have specific
dimensions of their observation matrix.

c) Action: Each agent selects an action aist ∈
Ai (i = 1, · · · , Nst), namely the exact delay time, from the
action set, which together forms the joint action ast ={
aist
}
∈ A at each step st. As all agents are considered to

be homogeneous, the action spaces can be naturally viewed
as A1 = · · · = ANst .

d) Reward function: The goodness of the executed
action is assessed by a reward function. The goal of all
agents is to minimize the average or total delay, and in the
meanwhile, eliminate all the hotspots. With the cooperative
setting, all agents share one joint reward function which is
also formed by all local observations and actions as in (2):

Rist
({
oist
}
,
{
aist
}
,
{
oist+1

})
= α · r1 + β · r2 (2)

where r1 denotes the average delay of all agents as in (3), and
r2 is the relative change of hotspot number after executing
the joint action as in (4). α and β are the coefficients. Here,
α = 1 and β = 10.

r1 = −

(
Nst∑
0

aist

)
/Nst (3)

r2 =
[
hotspot(

{
oist+1

}
)− hotspot(

{
oist
}
)
]

/hotspot(
{
oist=0

}
)

(4)

where hostpot(·) calculates the hotpsot number.
All agents share the same function and get the same reward

value in each step as follows.

R1
st = R1

st = · · · = R
Nst
st (5)

e) State transition: The state transition function repre-
sents the probability of converting state Sst to Sst+1 after
executing the joint action ast.

f) Discounted factor: The total discounted return of
agent i at step st is Gist =

∑∞
k=0 γ

kRist+k. All the agents
aim at maximizing the expected discounted return E

[
Gist
]
.

According to (5), all the agents have the same objective.
g) Policy: Each agent selects its action based on the

policy πi : Oi −→ Ai, and then the joint policy is π =
{
πi
}

.
The state value function and state-action value function are
expressed in (6) and (7) respectively.

V π (Sst) = E
[∑∞

k=0 γ
kRist+k | S0 = Sst

]
(6)

Qπ (Sst, ast) = E[R (Sst, ast,Sst+1) + γV π (Sst+1) |
S0 = Sst, a0 = ast]

(7)

The state value function V π (Sst) is the expectation
of Qπ (Sst, ast) regarding action ast. It has V π (Sst) =
East [Qπ (Sst, ast)], and the Q-function can be rewritten as
(6):

Qπ (Sst, ast) = ESst+1
[R (Sst, ast,Sst+1) + γEast+1

[

Qπ (Sst+1, ast+1)]]
(8)

If an action a∗ makes Qπ (Sst, a∗) > V π (Sst), the return of
executing a∗ is higher than current policy π, and in turn the
policy are supposed to be revised to increase the propability
P(a∗ | Sst).

III. MULTI-AGENT REINFORCEMENT LEARNING
FRAMEWORKS

The proposed multi-agent reinforcement learning frame-
works and their relevant specifications are presented in this
section. The basic multi-agent asynchronous advantage actor-
critic (MAA3C) framework is implemented at first. To im-
prove its learning performance, unsupervised and supervised



learning are introduced and further integrated, resulting to
enhanced MAA3C frameworks.

A. Multi-agent A3C Algorithm

The single-agent asynchronous advantage actor-critic al-
gorithm (A3C) [12] is extended to a multi-agent ver-
sion (MAA3C) in this paper. The advantage function is
still estimated by Aπ (Sst, ast) = Qπ (S, a) − V π (S) =∑k−1
j=0 γ

jRjst+k + γkV π(Sst+k)− V π(Sst), which indicates
the better performance of action ast compared with the
average level. Specifically, Aπ > 0 means the action is better
than the average.

The parameter of policy network in MAA3C is denoted as
φ and of critic network is φv . The loss function consists of
three parts: policy loss J(πφ′ ), value loss L(φv) and entropy
regularization −H(πφ′ (ast | Sst)), as below:

J(πφ′ ) = E

[
T∑

st=0

logπφ′ (ast | Sst)Aπ (Sst, ast;φ, φv)

]
(9)

L(φv) = E

[
1

2

T∑
st=0

(R− V (Sst;φv))2
]

(10)

As a result, the loss function of MAA3C is denoted as in
(11).

loss = J(πφ′ ) + L(φv) + (−H(πφ′ (ast | Sst))) (11)

Some important features of the MAA3C framework in-
clude:

1) Recurrent structure: The policy network is constructed
to estimate the action distribution, more specifically, the µ and
σ values of normal distribution. All continuous actions are
sampled from the distribution. The long short-term memory
(LSTM) [13] is used as the basic layer of the neural networks
to flexibly deal with the different number of traversed sectors
of stacked observations. As depicted in Fig. 2, the first layer
in MAA3C is shared, and three branches are formed on the
second layer to approximate the policy parameters µ, σ and
the value function V (Sst;φv) respectively.

LSTM

LSTM

LSTM

LSTM

Observations

First Layer Second LayerInput Output

Fig. 2: Network structure in MAA3C framework.

The agent number varies with training steps, the batch size
of the networks’ input accordingly becomes dynamic as the
agent number equals to the batch size. To some degree, a
dynamic batch size can promote the learning process [14].
The structure of MAA3C, on the one hand, can be viewed

as centralized if all agents’ observations are stacked to be a
batch. On the other hand, as the batch calculation can be also
regarded as the loop operation of single agent’s observation,
the learning process can also be viewed as decentralized.

2) Parameter Sharing: Instead of initializing an individual
policy for every agent, all agents share a single policy network
and can then share the experience [15]. From the perspective
of the network, it is also a single meta-agent network.
Although the parameters are shared, the agent will get its
unique output as each agent receives different observations
[16]. With parameter sharing, the storage cost and training
process can be optimized.

3) Stationarity Analysis: In POMDP, from agents’ per-
spective, the multi-agent environment is non-stationary as
other agents interacts with the environment. If the learning
process is centralized , the concatenation of the observations
of all agents is taken as the input and the critic can access
the information from all agents. With the centralized critic,
regardless of the actor being centralized or decentralized, the
environment can be stationary [17].

4) Scalability: The observations of agents are stacked as
the input matrix, and the dimension of this matrix will change
as the number of agent varies. Since there is a single policy
network, it can allow dynamic batch size, or in other words,
any number of flights. More importantly, the scalability and
generalization of the application process can be guaranteed
by the state definition as well as the shared parameters.

The above features apply to the proposed MAA3C frame-
work and also the following variations.

B. Unsupervised Learning

We define those flights in hotspots as candidate agents. It
is not wise to have all of them equally treated, which will rise
the number of delayed flights and costs. Thus, the next step
is to find which flights are most critical to be delayed. From
the perspective of cooperation and prioritization, two unsu-
pervised learning methods including clustering and ranking
are introduced to select the critical flights for delay.

1) Clustering: A hierarchical clustering mechanism is
designed for agents’ cooperation instead of constructing a
structured network [18]. The unsupervised communication
scheme is illustrated in Algorithm 1.

As also depicted in Fig. 3, the scheme consists of three
steps:

Intra-group sharing (clustering) Inter-group selection Intra-group aggregation (clustering)

Fig. 3: Schematic of hierarchical clustering.

• Intra-group sharing. At first, the dimension of the
observation matrix is reduced to 1 × 2 with principal
component analysis (PCA) [19] for the 2-dimensional



Algorithm 1: Hierarchical Clustering

1 for S ∈ hotspots do
2 Reduce the dimension of observation matrix OS :

M = PCA(OS);
3 First-level clustering:

{C1, C2, · · · , CN} = DBSCAN(M);
4 Choose one cluster Ci, i ∈ 1, · · · , N ;
5 Second-level clustering:

{c1, c2, · · · , ck} = DBSCAN(Ci);
6 Get agent list LS in cluster c1, · · · , cj(j ≤ k);
7 L.append(LS)

8 Get observations O.

clustering. The first-level clustering is conducted with
the Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) method [20], as DBSCAN can
find arbitrarily-shaped clusters without specifying the
number of clusters in advance. Low-level agents can ag-
gregate for high-level information based on the similarity
of features.

• Inter-group selection. A typical cluster is selected as
the candidate agents group.

• Intra-group aggregation. The second-level clustering is
then conducted in the selected cluster using DBSCAN
for internal refined information. Final agents list is
selected from the sub-clusters.

In the clustering process, it can be regarded as the un-
intentional cooperation because all flights in the hotspots
move into the same cluster only based on the density of the
feature distributions. The selected flights of clustering are the
agents. Their observations O are finally stacked as the input
of MAA3C networks.

2) Ranking: To obtain the prioritization of all flights in the
hotspots, ranking method is also taken into consideration. As
conventional ranking algorithms are supervised [21] and the
priority label can not be accessed, it is not feasible to directly
apply the supervised ranking in our MAA3C framework.
Hence, we transfer the supervised ranking to the unsupervised
version and define a function as the evaluation metric.

• The metric definition: the influence (the change of
hotspot numbers) of delaying this flight

All flights in the hotspots will be assessed with this metric,
leading to the final score list. The flights with higher score are
the better selections, because delaying this flight, to the max-
imum extent, can relieve the current congestions and avoid
generating new hotspots. The unsupervised ranking scheme is
presented in Algorithm 2 in detail. Each flight in the hotspot
will try to delay itself of 1 to 5 minutes. As the flight contains
the entry time of several sectors, when delaying the flight,
the entry time for all traversed sectors will also change. For
each traversed sector S, the hotspot status is calculated by
hotspot(·) in the current period T (EntryT imeS) and the
adjacent period T (EntryT imeS) + 1.

Algorithm 2: Unsupervised Ranking

1 for f ∈ flights in hotspots do
2 f =

{(Sp, EntryT imep), · · · , (Sq, EntryT imeq)};
3 Delay the flight with t ∈ {1, 2, 3, 4, 5} minutes

and get f t;
4 Reset global score sct ←− 0;
5 for S ∈ [Sp, · · · , Sq] do
6 The influence of delaying the flight for S in

period T (EntryT imeS):
V tS1

= hotspot(S, T (EntryT imeS), f)−
hotspot(S, T (EntryT imeS), f

N );
7 The influence of delaying the flight for S in

period T (EntryT imeS) + 1:
V tS2

= hotspot(S, T (EntryT imeS) +
1, fN )−hotspot(S, T (EntryT imeS)+1, f);

8 Score of delay t minutes:
sct+ = V NS1

− 2× V NS2
;

9 Global Score of delaying flight f :
scoref =

∑5
t=1 sc

t;

10 Sort all scoref of all flights in the hotspots and
choose the flights with higher scores.

Taking an example to explain the algorithm, as demon-
strated in Fig. 4, suppose that sector Sp is a hotspot during
the entry period T (EntryT imep) for flight f , the hotspot
status is denoted by hotspot(Sp, T (EntryT imep), f) = 1
for the entry period , and hotspot(Sp, T (EntryT imep) +
1, f) = 0 for the next period T (EntryT imep) + 1.
If the flight is delayed by t (t ∈ {1, 2, 3, 4, 5}) min-
utes, the hotspot(Sp, T (EntryT imep), f) = 0 as the cur-
rent hotspot is eliminated after this flight is delayed. Let
hotspot(Sp, T (EntryT imep)+1, f) = 1, which means that
the delayed flight causes new hotspot in T (EntryT imep)+1
period. Hence, for the entry time period and its adjacent
period, the hotspot status changes before and after the delay,
which can reveal the influence of delaying this flight. Those
flights, who can eliminate hotspots and not generate new
hotspots if delayed, will have the higher priority to be
delayed.

C. Supervised Learning

Supervised learning aims at narrowing the gap between
the networks output and the trusted label, and improving
the learning ability of the neural networks. If the supervised
learning is involved, the initialization point of the reinforce-
ment learning might be better [22].

In order to improve the training process, a supervised loss
based on Computer-assisted Slot Allocation (CASA) solution
[23] is introduced to update the network. The practical
CASA algorithm in [23] is referred and adapted as shown in
Algorithm 3. Some conditions have been simplified, keeping
only the key principles for equivalent comparison with respect
to the proposed methods.
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Fig. 4: Unsupervised ranking mechanism.

Algorithm 3: Adapted Computer-assisted Slot Allo-
cation (CASA) Algorithm

1 Initialize computational round: r = 0;
2 repeat
3 Get hotspots list {H} based on the demand DS,T

and capacity CS,T ;
4 for each sector S ∈ hotspots{H} do
5 Get current period t = T of S;
6 Reset the accumulated capacity AC = CS,t ;
7 Reset the accumulated demand AD = DS,t ;
8 Reset the counter: count = 1;
9 while AC < AD do

10 Include next period: t = t+ 1 ;
11 Accumulated capacity: AC = AC + CS,t;
12 Accumulated demand: AD = AD +DS,t;
13 count+ = 1;

14 Rank all flights from period T to T + count
in the sector S;

15 Divide the accumulated capacity AC into
equal slots according the accumulated
demand AD;

16 Map all ranked flights into slots and get the
delay result list DLS in this sector;

17 Compare delay results of all sectors and apply the
maximum delay for each regulated flight.;

18 r = r + 1;
19 until Hotspots list {H} ∈ � or r > 100;
20 Output delay result acasa of all flights.

At each training step, the updated flight plan is fed into
CASA, resulting to result acasa. The estimated joint action a
of MAA3C is compared with CASA result as the additional
loss as in (12), which can also be regarded as the average
difference value. Then, the overall loss function is written as
in (13) with the CASA loss included.

C(φ, φv) =
∑

(a− acasa)/N (12)

loss = J(πφ′ ) + L(φv) + (−H(πφ′ (ast | Sst))) + C(φ, φv)
(13)

Finally, the proposed MAA3C frameworks with unsuper-
vised learning and supervised learning involved are presented
in Algorithm 4. To wrap up, four algorithms are constructed
and will be compared:

Algorithm 4: MAA3C Framework

1 Initialize global parameters φ and φv , thread
parameter φ

′
and φ

′
v , thread step counter st←− 1;

2 repeat
3 dφ←− 0 and dφv ←− 0;
4 Synchronize parameters in each thread with global

parameters φ
′
= φ and φ

′
v = φv;

5 ststart = st;
6 Get all agents’ observations O in hotspots with

unsupervised learning methods;
7 repeat
8 Execute joint action ast according to policy π;
9 Get reward Rst and new state sst+1;

10 st←− st+ 1;
11 until terminal sst or st− ststart == stmax;

12 U=
{

0 for terminal sst
V (sst, φ

′
v) for non-terminal sst

;

13 for i ∈ {st− 1, · · · , ststart} do
14 U ←− Ri + γU ;
15 Accumulate gradients wrt φ

′
: dφ←− dφ+

∇φ′ logπ
(
ai | si;φ

′
)(

U − V
(
si;φ

′
v

))
+

(∂C(φ
′
, φ

′
v)/∂φ

′
);

16 Accumulate gradients wrt φ
′
v:

dφv ←− dφv + ∂
(
U − V

(
si;φ

′
v

))2
/∂φ

′
v +

(∂C(φ
′
, φ

′
v)/∂φ

′
v) ;

17 Perform asynchronous update of φ using dφ and
of φv using dφv;

18 until MaxSteps;

• MAA3C + Clustering (MAA3C-C)
• MAA3C + Clustering + CASA Loss (MAA3C-C-C)
• MAA3C + Ranking (MAA3C-R)
• MAA3C + Ranking + CASA Loss (MAA3C-R-C)

IV. EXPERIMENTAL ANALYSIS

To evaluate the proposed MAA3C frameworks, several
simulated and real-world case studies are performed. We
will evaluate the models trained on simulated small-scale
scenarios with real large-scale scenarios in such a way to
demonstrate the generalisation capability,

A. Simulated Case Study

A DCB simulator is developed to perform and visualize the
training process. As shown in Fig. 5, 4×4 sectors are created
and randomly generated flights are projected into the 72 time
periods. With the capacity pre-defined, the ratio numbers of
demand/capacity can be obtained and depicted in the boxes.



Fig. 5: DCB simulator developed to perform and visualize the training process.

Key information can be noticed from the interface, such as the
training steps, hotspots information and capacity information.

The training flight plan includes 3000 simulated flights,
as shown with Case 1 in TABLE I, the number of initial
hotspots is 38 in spatio-temporal 4×4×72 sectors, of which
the capacity in any 20-minutes period is 23 constant, and
there are 823 flights flying across at least one hotspots. All
the proposed frameworks are trained with this plan to obtain
models that can eliminate all the hotspots.

TABLE I. Cases of the study.

Sectors Flights Capacity Initial Initial Flights
Num Num (/20 min) Hotspots in Hotspots

Case 1 16 3000 23 38/1152 823/3000

Case 2 16 3000 23 49/1152 1074/3000

Case 3 16 5000 40 15/1152 625/5000

Case 4 376 8153 CS 31/27072 293/8153

CS : capacity varies with sectors.

Training return curves of all frameworks are shown in Fig.
6, the MAA3C+Ranking (+CASA Loss) frameworks have the
higher return values in the training process compared with
MAA3C+Clustering frameworks, regardless of the supervised
loss is involved or not. Agents can learn to resolve the
hotspots in the training process as depicted in Fig. 7, and the
MAA3C+ Clustering (+CASA Loss) frameworks are stable
to resolve all hotspots. The results will be assessed by the
following metrics:
• Average delayed flights number
• Percentage of delayed flights number
• Average delay time of all flights
• Average delay time of delayed flights

• Percentage of resolved hotspots
• Flights delayed to the next day
• Computational cost
• Distribution of delays
To evaluate the effectiveness of the trained models, brand-

new flight plans are generated or collected. Case 2 uses a
simulated flight plan, in which the number of flights and
that of sectors as well as the capacity value remain the
same as used in the training, but the hotspots number is
higher than Case 1. The test results are listed in TABLE
II. Specially, the actor network in the MAA3C is to approx-
imate the two parameters of the normal distribution, thus a
random normal distribution is included to replace the network
for comparison. MAA3C+Clustering+Random (MAA3C-C-
R) and MAA3C+Ranking+Random (MAA3C-R-R) are also
included for comparisons.

We can observe that the multi-agent reinforcement learning
methods are better than CASA in average delay flights num-
ber, percentage of delayed flights, and average delayed time.
The MAA3C+Ranking frameworks can reduce the delayed
flights number significantly. In the MAA3C+Clustering and
variations, the results achieve the best after the supervised
CASA loss is included, but MAA3C+Ranking frameworks
are not the same case.

Combined with Fig. 8, over 90% of delayed flights are
delayed less than 20 minutes. There is no flight delayed to
the next day and all hotspots can be eliminated except for the
MAA3C-R-C. We can see that the supervised CASA loss is
much more effective for MAA3C-C-C than for MAA3C-R-C.
The computational time of multi-agent reinforcement learning
algorithms is the average time of several test episodes and can
be acceptable even if CASA can output its result in a very
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Fig. 6: Training return curves for different frameworks.
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Fig. 7: Resolved hotspots ratios for different frameworks.

TABLE II. Test results on Case 2.

MAA3C+Clustering MAA3C+Ranking

CASA MAA3C-C MAA3C-C-C MAA3C-C-R MAA3C-R MAA3C-R-C MAA3C-R-R

Avg delayed flights num 1600 639 613 637 447 527 408

% of delayed flights 53.33% 21.31% 20.44% 21.23% 14.91% 17.58% 13.59%

Avg delay time (/ all flights) [min] 3.90 1.43 1.25 1.88 1.34 1.84 1.33

Avg delay time (/ delayed flights)
[min] 7.31 5.65 6.40 8.67 8.08 9.74 10.33

% of resolved hotspots 100% 100% 100% 100% 100% 96.7% 100%

Flights delayed to the next day 0 0 0 0 0 0 0

Total computational time [s] 0.2 14.9 25.1 8.0 19.8 20.3 5.7

short time. It should be noted that the exact computational
time of each method varies with the computational platform,
but the minor difference can be ignored.

The scalability of the proposed algorithms is evaluated by
larger-scale flight plans, as with Case 3 shown in TABLE
I. The test number of flights is expanded from 3000 in
the training case to 5000 for evaluation, but the hotspot
ratio is decreased to 1.3% from 3.3%. As demonstrated
in TABLE III, multi-agent reinforcement learning methods
achieve better results than CASA, and, in particular, the
delayed flights number is reduced to around 1/3 − 1/6 of
what CASA needs. If the total delay is divided by total
flights number, multi-agent reinforcement learning methods
can get the small average delay. In contrast, if it is divided
by delayed flights number, each delayed flight is delayed for
shorter time when using CASA, which means that multi-agent
reinforcement learning methods output more delay time for

each delayed flight.
The hotspots can be resolved by most of the methods,

and only CASA delays one flight to the next day. The
computational time of transferring trained models to the
larger-scale are also reasonable. The delay distribution of the
test case is shown in Fig. 9, nearly all flights can be delayed in
less than 30 minutes no matter which algorithm is applied.
All analyses above prove the feasibility and availability of
directly using trained models on different flight population
scales. Sometimes the random results are better since the
randomly generated normal distribution is better than the
network parameters.

B. Real World Case Study

The real world scenario consists of a large amount of sec-
tors and flights. As a result, it is computationally challenging
to train with the real data. Thus, it is valuable to train with
the simulated data and then apply it to the real scenario, due
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Fig. 8: Delay distribution of Case 2.
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Fig. 9: Delay distribution of Case 3.
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Fig. 10: Delay distribution of Case 4.

TABLE III. Test results on Case 3.

MAA3C+Clustering MAA3C+Ranking

CASA MAA3C-C MAA3C-C-C MAA3C-C-R MAA3C-R MAA3C-R-C MAA3C-R-R

Avg delayed flights num 1315 358 358 387 201 214 183

% of delayed flights 26.30% 7.16% 7.16 % 7.75% 4.02% 4.29% 3.66%

Avg delay time (/ all flights) [min] 0.82 0.27 0.26 0.44 0.28 0.31 0.27

Avg delay time (/ delayed flights)
[min] 3.10 4.08 3.44 5.12 7.00 7.07 7.23

% of resolved hotspots 100% 100% 100% 100% 100% 98.7% 100%

Flights delayed to the next day 1 0 0 0 0 0 0

Total computational time [s] 0.4 19.7 25.4 17.6 15.4 17.5 18.5

to the fact that similar experience can be learned with lower
computational cost. Hence, the models trained on Case 1 are
tested on a real case, as shown with Case 4 in TABLE I.
Data are collected from the EUROCONTROL Demand Data
Repository v2 (DDR2).

The sector number is much increased compared with
simulated cases. there are 376 sectors considered in French
and Spanish airspace, and 8153 flights in total. Even more, the
capacity is different for each sector rather than a fixed value
used in simulated plans. Effective results are listed in TABLE
IV where we can observe the feasibility of the trained models
used for the real case. All proposed methods can achieve less
delayed flights and average delay time than CASA, with all
computational costs acceptable. Hotspots can be effectively
eliminated. In Fig. 10, most of the delays produced by the
proposed methods are within 20 minutes and better than
CASA results.

It is an encouraging result that such operation, namely
applying the models trained on small-scale simulated data
to tackle real world large-scale DCB scenarios, can prove
effective and cost-efficient. With the performance permitted,

the proposed frameworks can be suitable for any different
flight plans, sector configurations and capacity settings.

V. CONCLUSION

In this paper, the DCB problem is formulated as a multi-
agent system where hundreds or thousands agents collabo-
ratively work to minimize the average delay and eliminate
airspace hotspots. The flight is represented by spatio-temporal
trajectory and only flights in hotspots are regarded as the
candidate agents. The asynchronous advantage actor-critic
reinforcement learning algorithm is extended to multi-agent
version (MAA3C). To promote the cooperation and collabo-
ration of agents, the unsupervised learning methods including
clustering and ranking are then introduced. Supervised CASA
loss is also incorporated and expected to improve the learning
results. Experiments on the simulated and real case studies
show the effectiveness of the proposed frameworks. Trained
models can easily deal with dynamic flight plans including
the change of flight number, sector number and capacity.

It is not quite clear to conclude the effects of introducing
supervised CASA loss, as sometimes the results are better



TABLE IV. Test results on Case 4.

MAA3C+Clustering MAA3C+Ranking

CASA MAA3C-C MAA3C-C-C MAA3C-C-R MAA3C-R MAA3C-R-C MAA3C-R-R

Avg delayed flights num 473 131 132 124 187 159 159

% of delayed flights 5.80% 1.60% 1.62% 1.52% 2.29% 1.96% 1.95%

Avg delay time (/ all flights) [min] 0.81 0.17 0.16 0.20 0.24 0.16 0.21

Avg delay time (/ delayed flights)
[min] 13.96 8.03 10.84 14.92 19.22 6.73 7.35

% of resolved hotspots 100% 100% 100% 100% 100% 100% 100%

Flights delayed to the next day 80 80 80 80 80 80 80

Total computational time [s] 12.1 39.4 43.5 34.2 29.8 31.2 34.6

when this loss is involved in MAA3C+Clustering frame-
work, but sometimes better in MAA3C+Ranking framework.
Further investigation in this regard is required in our future
work. Besides, we will take into account the aspects of re-
routing and dynamic airspace structures. In addition, it is also
necessary to improve the fineness of the actions for more
practical applications.
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