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Abstract

To develop a supply chain management (SCM) sys-
tem that performs optimally for both each entity in the
chain and the entire chain, a multi-agent reinforcement
learning (MARL) technique has been developed. To
solve two problems of the MARL for SCM (build-
ing a Markov decision processes for a supply chain
and avoiding learning stagnation in a way similar
to the “prisoner’s dilemma”), a learning management
method with deep-neural-network (DNN)-weight evolu-
tion (LM-DWE) has been developed. By using a beer
distribution game (BDG) as an example of a supply
chain, experiments with a four-agent system were per-
formed. Consequently, the LM-DWE successfully solved
the above two problems and achieved 80.0% lower total
cost than expert players of the BDG.

1. Introduction

As globalization has progressed, businesses have
needed to develop efficient supply chains (SCs). An SC
can be defined as a network of autonomous business
entities collectively responsible for activities such as
procurement, manufacturing, and distribution [1]. Al-
though different entities in an SC operate subject to
different sets of environmental constraints and objec-
tives, they are highly interdependent when it comes to
improving the total SC performances relating to objec-
tives such as on-time delivery and cost minimization.
Therefore, optimizing the performance of a part of the
chain does not necessarily contribute to optimizing the
entire SC performance, and problems regarding supply
chain management (SCM) become more and more
difficult as the scale and structure of the SC become
larger and more complicated. As a result, information
technology (IT) systems that support decision making

about various entity activities by gathering information
about SC have become essential.

To develop efficient IT systems for SCM, multi-
agent-system (MAS) architecture has conventionally
attracted attention [2]. In the MAS for SCM, an au-
tonomous system called an agent decides each entity’s
operations to optimize the performance. All agents also
simultaneously cooperate to optimize performances of
the entire SC. Since such a distributed architecture is
suitable for the network structure of an SC, a MAS-
based SCM system is desired to optimize complicated
SC performances.

The one of the most important challenges to develop
such MAS-based SCM systems is designing agent
policies. A policy is a set of rules for each agent to
decide how to control entity operations with respect to
certain constraints, environments, and objectives and
has conventionally been designed on the basis of hu-
man experiences or theories delivered from simple SC
models. However, designing the policies by these con-
ventional schemes has become difficult because entities
have different constraints, environments, and objectives
and interdependencies among entities become more and
more complex as the SC scale becomes larger.

To address problems in designing agent policies, au-
tomatic policy designing by machine learning (ML) has
drawn attention. Among various ML techniques, policy
learning using reinforcement learning (RL) is con-
sidered as an especially promising approach because
RL does not require prepared datasets about entity
operation whereas other ML techniques require datasets
covering all environments, constraints, operations, and
results of the entity operation. More specifically, RL is
a technique for an agent to learn a policy by correct-
ing necessary data itself during trial-and-error on the
content of operations [3], [4]. Thus, RL is considered
as an optimal solution addressing challenges where a
huge number of factors must be taken into account like
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SCM.
The objective of this research is to develop a multi-

agent RL (MARL) technique [5] that enables agents
to learn policies that optimize SC performance. There
are two challenges to achieve an MARL technique for
SCM: the first is to build an MARL environment of
an SC that is regarded as Markov decision processes
(MDPs) for every agent, and the second is to avoid
learning stagnation among agents in learning processes.

To apply RL to a certain problem, all processes
concerning the problem must satisfy a Markov property
(MP). That is, environmental change for a certain
agent action must be determined by a combination of
the previous state of the environment and the agent
action. For each agent in an MAS, however, other
agents are part of the environment. Since all agents
act independently and mutually affect each other, an
environmental change for an agent depends on not
only the previous state for the agent but also the other
agents actions. In short, it is impossible to assume the
MP. To solve this problem, Nash-Q [6] and Team-Q
[7], which maintain the MP by observing the states
and actions of other agents, have been developed. In
addition to these observations, a model-based method
such as AWESOME [8], which uses prior knowledge
about the task, is presented to maintain MP while
suppressing the RL environmental change. However,
these methods cannot be applied to the MAS-based
SCM because it is difficult to observe the states and
actions of other agents and to preliminarily model tasks
in accordance with customers’ demands, which change
from moment to moment (an imperfect information
problem). Therefore, in the MAS-based SCM, it is nec-
essary to solve learning when information is imperfect.

The second is a problem similar to the prisoner’s
dilemma. In the learning process of MARL, other
agents sometimes cannot learn better policies unless
an agent (agent A) changes its policy. When the policy
change temporarily lowers the performance of agent A,
agent A does not change the policy in the learning pro-
cess, so other agents cannot learn a better policy. This
problem is called learning stagnation. To overcome
learning stagnation, studies that learn the communica-
tion protocol between agents have been presented for
sharing the information about the cooperation among
agents [9], [10], [11], [12]. However, in the MAS-based
SCM, these related studies cannot be applied because
the agents do not communicate directly but mutually
affect each other through the environment. Hence, the
agents have to communicate not directly but indirectly.

In this paper, we present a leaning management with
deep-neural-network (DNN)-weight evolution (LM-
DWE) to achieve a MARL technique for SCM. The

LM-DWE uses a learning management method to
reduce the non-stationary property problem of the
MARL environment and introduces an evolutionary
computation (EC) to solve the learning stagnation
problem of MARL. To determine whether learning
stagnation is avoided, we apply the method to a beer
distribution game (BDG), which is a simple example
of SCM. Specifically, by evolving the DNN-weights,
which approximate each agent’s policy, the agents act
cooperatively and the reward of the entire SC increases.

2. Problem settings of MAS-based SCM

In this section, we describe the problem settings
of the MAS-based SCM. We set the following prob-
lem. Most SCM is usually performed in imperfect-
information situations. For example, even companies
that are cooperating do not completely share the same
business goals or technical capabilities and often only
have incomplete knowledge about consumer prefer-
ences. Moreover, the SCM situations are repeated.
Therefore, in this paper, the BDG [13], which is a
famous role-play simulation game of SCM, is taken
as the MAS-based SCM problem.

2.1. Beer distribution game: BDG

The objective in the BDG is to minimize inventory
costs of a supply chain system while preventing short-
ages of beer as requested by customers through the
multi-stage supply chain. The BDG has three game
theory characteristics [14].
• Cooperation and a little competition (non-zero-

sum game)
• Imperfect information
• Repeated dilemmas

When entities cooperate, a low cost is accomplished
for the whole system. However, when entities compete
such as by placing excess orders and making excess
deliveries, the cost of the whole system becomes high.
In addition, the BDG is an imperfect information game
in which strictly limited information can be observed
with respect to other agents (entities) regarding states,
actions (operation), and rewards. Additionally, the BDG
is a repeated-inventory management game containing
dilemmas in which other agents’ policies need to be
considered.

There are three BDG rules in this paper:
• A standard chain system consisting of four entities

connected in series is utilized.
• Delays of the orders and deliveries between con-

nected entities are introduced.
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Customer Retailer FactoryWholesaler Distributor

Delay: 2 weeks
Deliveries

Delay: 2 weeksOrders

Outgoing orderIncoming order

Incoming deliveryOutgoing delivery

Stock 

Backorder Additional hidden information area

Standard hidden information area

Delay:

3 weeks

Figure 1. Beer distribution game (BDG). The standard
BDG system consists of four entities: Retailer, Wholesaler,
Distributor, and Factory. Order delays and delivery delays
are set as two weeks, and production delay of Factory is set
as three weeks. There are some hidden information areas
including an entitys own constraints. This figure indicates
Wholesaler’s observation.

• Each agent can observe only its own entity’s
information.

Figure 1 shows the standard chain system: Retailer,
Wholesaler, Distributor, and Factory. The standard
BDG rules allow each entity’s agent to observe the
other entities’ stocks and deliveries. In this paper, we
impose a stricter rule: each agent can observe only
a connected entity’s information (stocks, backorders,
incoming deliveries, outgoing deliveries, incoming or-
ders, and outgoing orders). Moreover, in the BDG, the
orders and deliveries between connected entities are
always delayed. Each agent needs to decide the size
of orders by considering the state values obtained at
several past turns.

The each cost of a turn is calculated as

Ci,t = 0.5Si,t +Bi,t, (1)

where Ci,t, Si,t, and Bi,t stand for the cost, stock, and
backorder of i-th entity at the turn t being equal to a
week, respectively. Therefore, the total cost Z of the
whole system at the end of an episode is calculated as

Z =

N−1∑
i=0

W−1∑
t=0

Ci,t. (2)

That is, each agent should learn the order policy for
reducing Z.

2.2. Non-stationary environments

In the MARL, each agent learns a cooperative task by
individually performing it in a trial-and-error manner
and working in an RL environment, which is non-
stationary. Therefore, the MP cannot be assumed.

For simplicity, game simulations are performed by
simulating situations in which trial-and-error of RL is
performed in the BDG where agents are connected to
two of the four entities. In this case, the entities’ agents
are connected to Retailer and Wholesaler. Meanwhile,
Factory and Distributor have a fixed policy that orders

an incoming order quantity that is the same as the
outgoing order quantity. Here, we design a simple
policy function for each agent to maintain an arbitrary
amount of stock shown in the following action function

ai,t = x1ROi,t + pi,t(Si,t, x2) (3)

pi,t(Si,t, x2) =

{
(12 + x2)− Si,t (≥ 0)
0 (otherwise)

,

(4)
where x1 and x2 are parameters to be optimized and
ROi,t stands for the received order of i-th entity at
the turn t. By changing these parameters, the policy
is updated. Figure 2 shows the order transition of
two game simulations in which two agents perform
trial-and-error. In this game simulation, trial-and-error
of the Wholesaler agent leads to the same parameter
change in both games. On the other hand, trial-and-
error of the Retailer agent leads to different parameter
changes in both games. As a result, we found that
agents were repeating totally different orders. As shown
in Table 1, the two games were almost completely
different. Therefore, when multiple agents perform
trial-and-error, the environment becomes non-stationary
and MP cannot be assumed. This phenomenon occurs
particularly conspicuously at the beginning of learning.

However, it is possible to learn by creating a situation
where weak MP can be assumed. In the next simulation,
we fix the Retailer agent’s policy to prevent two agents
from performing trail-and-error at the same time. As a
result, the agent whose policy is fixed returns constant
output for certain input like that from Distributor and
Factory, so weak MP can be assumed. Figure 3 shows
the simulation results when the parameters of the
Retailer agent are x1 and x2, which are 0.5 and 0,
respectively.
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Figure 2. Order transitions in non-stationary environments.
(a) Game 1 and (b) Game 2
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Figure 3. Order transitions in weak Markov-property envi-
ronments. (a) Game 1 and (b) Game 2
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Table 1. Degrees of similarity and cost differences
between non-stationary and weak MP environments in two

games.

Non-stationary Weak MP
Entity type R W R W

DoS of orders 0.12 0.54 0.99 0.88
Cost difference 1279.5 2192.5 209 114.5
DoS: Degree of similarity, R: Retailer, W: Wholesaler

As shown in Figure 3 and Table 1, the two games had
a high degree of similarity. Moreover, the difference
in total costs is small. The results reveal that the
environment became more stable than when two agents
performed trial-and-error at the same time. On the basis
of these results, we introduce an M-agent that switches
on/off the learning of each entity agent and repeats the
learning for selecting a well evaluated story. Here, a
story is defined as a collection of multiple episodes.

2.3. SCM dilemma

For the second problem, we consider situations sim-
ilar to the prisoner’s dilemma in the BDG by using the
Retailer and Wholesaler agents as shown in Table 2.
For Wholesaler to minimize cost, it needs to handle
order quantity so that it can deliver on-time while
estimating the order policy of Retailer. However, per-
fect estimation is difficult, leading to Wholesaler either
holding excess stock or causing backorders. Equation
(1) indicates that the backorder cost is higher than the
stock cost in the BDG cost calculation. The rational
(selfish) Retailer agent cannot accommodate the de-
mand increase from the customer, and as backorders
occur, Retailer tries to decrease the backorders quickly,
so demand can increase drastically with the number
of orders. However, Wholesaler cannot respond to this
drastic demand increase, so backorders occur and cost
increases. This is a betrayal of Retailer.

On the other hand, a cooperative Retailer agent
does not drastically increase order quantity, even if a
backorder occurs. In other words, Retailer does not
increase the cost for Wholesaler unnecessarily (Re-
tailer increases order quantity gradually, which does
not cause excess stock or shortages). However, as a
penalty for this operation, the cost for the Retailer agent
increases. In fact, such dilemmas occur between all
connected agents.

Table 2. SCM dilemma.

W: Coordination W: Betrayal
R: Coordination R:◦ W:◦ R:× W:�

R: Betrayal R:� W:× R:4 W:4
R: Retailer, W: Wholesaler

Cost �: Very low, ◦: Low, 4: Moderate, ×: High

Customer

Retailer

E-agent

Retailer

Factory

E-agent

Factory

Wholesaler

E-agent

Wholesaler

Distributor

E-agent

Distributor

Stock,

Backorder,

Orders,

Deliveries Order

M-agent Learned model

On/off learning

Chain score

Figure 4. M-agent as a weak centralized control agent
that manages learning of each E-agent. Specifically, each
E-agent shares learned NN model and supply chain costs
with M-agent.

To solve this problem, we introduce evolutionary
computation techniques that force the entities’ agents
to change their policies.

3. Method: DNN-weight evolution for deep
MARL

In this paper, we present a leaning management with
DNN-weight evolution (LM-DWE) for a deep MARL.
Our proposed method utilizes two techniques.
• Actor-critic deep RL is applied to the learning

algorithm of each entity agent (E-agent) for han-
dling continuous values in the complex system.

• The learning management agent (M-agent) with
evolutionary computation (EC) is introduced to
manage an E-agent’s learning. Each E-agent
shares abstract data such as the learned DNN
model and supply chain costs with the M-agent.

The relationship between the M-agent and E-agents is
as shown in Figure 4. Each E-agent connects to one
entity but cannot communicate with other E-agents.

3.1. E-agent’s learning algorithm: Actor-critic
deep reinforcement learning

In this section, we describe the E-agent learning
using deep RL. In the following, we use “action” as
a substitute for “operation” in accordance with RL.
In single-agent RL, the environment of the agent is
described by a Markov decision process [5].

Definition: A Markov decision process is a tuple
〈S,A, f, ρ〉 where S is the finite set of environment
states, A is the the finite set of E-agent actions,
f : S × A → S is the state transition function, and
ρ : S ×A→ R is the reward function.

The state vector sk ∈ S is observations from the
environment at each discrete turn k. The E-agent can
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Figure 5. Actor critic method.

alter the state at each turn by taking action ak ∈ A.
After the action vector ak, the environment change
its state from sk to sk+1 ∈ S according to the state
transition probabilities. The E-agent receives a scalar
reward rk+1 ∈ R, according to the reward function
ρ : rk+1 = ρ(sk,ak).

The E-agent’s goal is to maximize, at each turn k,
the expected discounted reward of an episode

Rk = E

{ ∞∑
t=0

γtrk+t+1

}
(5)

where γ represent a discount factor at the present
state, respectively. The value Rk represents the reward
accumulated by the E-agent in the long run. In this
paper, an actor-critic deep RL [15] is applied to the
learning algorithm of each E-agent. In this method, a
probabilistic policy function µ(a|s), where a and s
are action vector and state vector, respectively, with the
expected reward as the evaluation value is defined, and
the policy is updated along the direction of the policy
gradient.

The actor-critic, which has an actor model as the
policy function and a critic model as the value function,
is utilized for handling continuous values. The basic
concept of the method is to regard the policy function as
independent from the value function as shown in Figure
5. The actor model generates an action in a certain state,
the critic model calculates the temporal-difference (TD)
error, and then these models are updated on the basis
of the TD error.

Similar to the deep-Q-network (DQN) [3], experi-
ence replay is used. It is said that initial value depen-
dency and the need for a dropout technique [16] can
be alleviated. Furthermore, to calculate the TD error, a
target model is set and is updated after a certain period
of time. Target yt is used together to define a loss error
function, and this error is improved. The target yt is
expressed by the following formula:

yt = rt+1 + γQ′
(
st+1,µ

′
(
st+1 | θµ

′
)
| θQ

′
)
, (6)

where θµ
′

and θQ
′

are weights of the actor and
critic models, respectively, which take an action

when the best evaluation value is obtained in the
present state. The TD error is calculated as yt −
Q
(
st,at | θQ

′
)

.Then, the actor and critic models
are updated with the gradient calculated by the loss
function:

L =
1

N

∑
y

(
yt −Q

(
st,at | θQ

′
))2

. (7)

The probabilistic policy gradient is given as

∇θµJ ≈ 1

N
Eµ′

[
∇aQ

(
s,a | θQ

)
|s=st,a=µ(st) ∇θµµ(s | θµ)

]
.

(8)
The DNN-weights are updated with τ(� 1) as follows,

θµ
′
← τθµ + (1− τ)θµ

′
(9)

θQ
′
← τθQ + (1− τ)θQ

′
. (10)

3.2. M-agent’s algorithm: Learning manage-
ment with DNN-weight evolution

The M-agent is introduced as a weak centralized
control for multi-agent learning, as shown in Figure
6. The M-agent addresses the two MARL problems
mentioned in Section 2. The M-agent copes with the
problem that the environment is destabilized by trial-
and-error of multiple agents using multi-point-search
learning management. For the SCM dilemma, we apply
the weight generation method of DNN using EC, which
extends the multi-point search method.

3.2.1. Multi-point-search learning management The
M-agent can switch on / off weight updates of each
E-agent’s DNN-weights and decides which E-agent to
learn. In addition, as shown in Figure 6, we define a
fixed number of learning episodes in the BDG system
as a story and repeat this M times to make E-agents
learn M stories. The initial DNN-weights of M trials
repeatedly use the predetermined values.

During the learning of each story, the DNN-weights
are saved every time the total cost is updated as a lower
cost. After completing a story trial, E-agents send the
value of total cost when the lowest cost is achieved and
the weight of the DNN-weights to the M-agent in the
story. Then, the M-agent selects the DNN-weights in
accordance with criteria based on the total cost received
from all E-agents. The selected DNN-weights are sent
to each E-agent and set as the initial DNN-weights.
Then, relearning is performed.
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Figure 6. Learning management by M-agent. M-agent can switch on / off weight updates of each E-agent’s DNN-weights and
decides which E-agent to learn. M-agent selects the DNN-weights in accordance with criteria based on the total cost received
from all E-agents. Selected DNN-weights are sent to each E-agent and set as initial DNN-weights.
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Figure 7. DNN-weight evolution using evolutionary com-
putation (EC). Differential evolution is utilized as EC.
Crossover and mutation are applied to weights of learned
models

3.2.2. DNN-weight evolution Next, we describe the
selection method of DNN-weights to be used for the
next generation on the basis of the total cost received
from all E-agents. In this paper, we propose using two
methods. The first is to simply set the DNN-weights
of a previous generation, which had the lowest cost,
as the initial values. It is a so-called elite strategy
and has relatively good learning efficiency. However,
the dilemma situations are difficult to break down
because only an elite individual’s range is searched, so
the evaluation value cannot be expected to be further
improved.

Therefore, we propose applying EC to generate the
new DNN-weights as shown in Figure 7. This method
has the effect of creating a new policy on the basis
of diversity when the learning stagnation occurs and
forcibly changing it to a policy that makes the total
cost value lower. In this paper, we apply a differential
evolution (DE) algorithm [17], which has a high search
performance even though it is simple, to the DNN-
weight evolution. In this method, a story corresponds
to an individual of the DE.

Algorithm 1 DE for DNN-weight evolution
for story j = 0 to M − 1 do

Generate random numbers a, b, c ∈ [0,M − 1]
for E-agent i = 0 to N − 1 do

Select three weights wa,i, wb,i, wc,i as parents
Calculate mutator vi = wa,i + F (wb,i −wc,i)
Compute crossover ui = [ui,0, ..., ui,P−1] as
follows:
for parameter k = 0 to P − 1 do

Generate uniform random rnd ≡ U(0, 1)
if rnd < CR then

Set ui,k = vi,k
else

Set ui,k = wj,i,k

end if
end for

end for
if f(u0, ...,uN−1) < f(wj,0, ...,wj,N−1) then

Replace wj,i with u
end if

end for

Algorithm 1 formally describes DE for DNN-weight
evolution. First, three DNN-weights (wi,a, wi,b, and
wi,c) are randomly selected as parents. Then, the
mutator v is calculated on the basis of the following
equation:

v = wi,a + F (wi,b −wi,c), (11)

where F is a scaling factor (0 < F < 1). Next, a
child weight u is generated by doing crossover between
wi,j and v. Finally, xi and uj are evaluated using
the fitness function f of the BDG test, and then better
DNN-weights are selected.
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Table 3. Parameter settings of BDG.

Parameters Values
Unit type, Num. of Units R, W, D, F: 4 units

Num. of turns 1 episode : 50 turns
Num. of product types 1
Max of order number 100

Initial Stock 12
Customer order type Constant (0-3 turn: 4, 4-49 turn: 8)

R: Retailer, W: Wholesaler, D: Distributor, F: Factory

State

Full-connection

Actor Critic

Q Value

Action

μ(s|θμ)

Qθ
Q(s, μ(s|θμ)

Rectified Linear Unit

Δ

16 16 16 32 32 32

Qθ
Q (s, μ(s))

Figure 8. DNN Model design of all E-agents. DNN model
consists of actor model and critic model. Both models have
three layers. Output of actor model will be input to critic
model with a state.

4. Experiments

In this section, we evaluate LM-DWE on the BDG.
We connect E-agents individually to entities constitut-
ing a SCM system. There is no direct communication
between E-agents. Instead, each E-agent is weakly con-
trolled by the M-agent while communicating abstract
data, which are the E-agent’s total costs and DNN-
weights.

4.1. Implementation

Table 3 shows parameter settings of the BDG that
were set on the basis of the standard BDG rules. In
addition to the rules, we imposed a severe limitation:
each E-agent can observe only its own entity’s infor-
mation (stock, backorder, incoming orders, outgoing
orders, incoming deliveries, and outgoing deliveries) in
the past 10 turns as shown in Figure 1.

Figure 8 shows the DNN model architecture for the
learning. The learning parameter settings are shown in
Table 4. The actor model and critic model both had
three middle layers. Each middle layer of the actor and
critic models had 16 and 32 units, respectively. The
Rectified Linear Unit (Relu) function was applied to
the activation function. These parameter settings were
determined empirically.

4.2. Preliminary experiments

First, we conducted a single-agent RL (SARL) ex-
periment to determine whether convergence of SARL

Table 4. Parameter settings of MARL.

Parameters Values
Target model update rate τ 10e-3

Batch normalization size 32
Discount rate γ 0.99

Experience memory size 100k
Ornstein-Uhlenbeck process θ, µ, σ 0.15, 0., 0.3

Num. of actor middle layers 3 (16/16/16)
Num. of critic middle layers 3 (32/32/32)

Num. of sequential turn data (=State) 10
Num. of learning episodes (arbitrary) 0.1 k–2 k
Num. of learning stories (arbitrary) 1–40

Scaling factor F of DE 0.5
Crossover rate CR of DE 0.5
Reward for each E-agent -Ci,t
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Figure 9. SARL result for Retailer E-agent.

is possible. Next, we verified the effect of learning
management using multiple stories in MARL and per-
formed MARL experiments using two E-agents.

4.2.1. Single-agent RL One entity was connected to a
learning E-agent, and the other three entities’ policies
were set as “No policy” in which the quantities of
outgoing orders and incoming orders are the same.

Figure 9 shows an example result of SARL for the
Retailer E-agent. This result revealed that SARL is
possible in the problem dealing with multi-dimensional
state number and continuous values.

4.2.2. Learning management using multiple stories
in MARL In this experiment, two learning E-agents
connect to Wholesaler and Distributor individually. The
initial DNN-weights of both E-agents are set as the
DNN-weights obtained by each SARL. Moreover, the
policies of Retailer and Factory are set to “No Policy”
as a stable policy.

Figure 10 shows the learning results for two E-agents
using five stories. The x-axis indicates the expected
episode reward, and the y-axis indicates the number
of learning turns: 50 trial-and-error turns × 1000
episodes. The results reveal that the expected reward
value of story 4 was relatively low and reduced rapidly.
Meanwhile, stories 2 and 4 maintained relatively high
expected reward values.

In this experiment, by making two E-agents indi-
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Figure 10. Results for MARL in which two agents connect
to Wholesaler and Distributor, individually. Policies of Re-
tailer and Factory are set as “No Policy.” Blue dotted line
is average value transition of all stories, and max line is
maximum value transition of all stories.

vidually connected to the two entities learn and the
other entities use “No Policy,” the non-stationarity of
the environment and learning processes were reduced.
Moreover, even if the same initial values of weights
were set to each E-agent’s model for each story, MARL
diversified. Thus, in the MARL environment, multiple
stories should be utilized.

4.3. Evaluation of LM-DWE

To evaluate LM-DWE, we performed MARL ex-
periments in which four E-agents connect to four SC
entities. By comparing LM-DWE with the LM with
an elite strategy (LM-ES), we verify the performance
of our proposed method. The initial weights of all E-
agents are also set as the weights obtained by each
SARL. There are 300 episodes in a generation and
40 stories (individuals). In the LM-DWE method, 20
stories are set as elite stories and the remaining 20
stories are generated by DE processes including the 20
elite stories. Moreover, the M-agent switches on/off the
learning of each E-agent and the DE processes every
three generations. The learning E-agents are randomly
selected under the constraint of reducing the number of
learning E-agents at an early stage of learning. At the
beginning of the learning, learning of two E-agents is
performed to make the environment stable. Then, the
learning E-agents are added one by one.

Figure 11 shows comparison results for cost tran-
sitions between LM-ES and LM-DWE. The results
were average cost transitions of six experiments. In
the experiments, the same changes were applied for
the mode of each entity. The intermediate gray and
light gray areas indicate two-agent learning and three-
agent learning stages, respectively. From the results,
both total costs were increased by adding the learning
E-agents and were reduced by the learning. The total
cost for LM-DWE was lower than that for LM-ES.
Specifically, the total cost for LM-DWE gradually
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Figure 11. Comparison results for total-cost transitions
between LM-ES and LM-DWE (average of six experiments).
Each entity’s mode which is “No policy” mode (no agent),
“learning on” mode, or “learning off” mode is repre-
sented by bit flags with two hexadecimal numbers. Left
and right hexadecimal numbers indicate fixed policy mode
and learning mode positions respectively for Retailer(R),
Wholesaler(W), Distributor(D), and Factory(F). (e.g. “08”→
R: learning on, W: No policy, D: No policy, F: No policy, “c3”
→ R: learning off, W: learning off, D: learning on, F: learning
on)
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Figure 12. Example of order transition changes between
before and after DE process in BDG test. DE processes
were applied only to learning E-agents. Total cost for the
50th turn was reduced from 542.5 to 505. Average (Ave.)
and standard deviation (Std.) of all E-agents’ orders →
Before: [Ave. 7.65, Std. 2.63], After: [Ave. 7.62, Std. 2.64]

reduced whereas that for LM-ES did not change from
the learning turns near 120k turns.

Figure 12 shows the examples of order transition
changes by the DE processes in the BDG test. The
total cost for the 50th turn was reduced from 542.5 to
505. However, the averages and standard deviations of
all E-agents’s orders differed little.

Figure 13 shows the stock/backorder transition of the
BDG test before and after LM-DWE-based MARL.
Figure 13(a) shows results of the BDG test using
the learned models obtained by SARL of each E-
agent. Figure 13(b) shows results obtained by using
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Figure 13. Comparison results for the stock/backorder
transition before and after application of LM-DWE (best) in
BDG test.

Table 5. Average and standard deviation of orders before
and after LM-DWE based MARL.

Before After(best)
Entity Ave. SD Ave. SD

Retailer 7.78 7.02 7.76 1.99
Wholesaler 8.28 13.89 7.72 4.17
Distributor 10.28 26.24 7.56 1.88

Factory 14.96 32.49 7.44 2.54
Ave.: Average, SD: Standard deviation

Table 6. Total cost for 35th week.

Human[13] Before LM-DWE After LM-DWE
Total cost 2028 4823 406 (best)

the learned models that were finally acquired by the
LW-DWE-based MARL. From the results, the stock
management of LM-DWE-based MARL was greatly
improved. Table 5 also indicates the improvement of
order policy of each E-agent in response to the cus-
tomer’s demands. Finally, we compared the proposed
LM-DWE’s cost with human-level cost [13] as shown
in Table 6. From the results, LM-DWE’s cost was 80.0
% lower than human-level cost.

4.4. Discussions

The purpose of this paper was to solve two problems
of MARL in the MAS-based SCM by using LM-
DWE. Indeed, we demonstrated results for reducing
non-stationary by the learning management and results
for braking down the learning stagnation of MARL by
using the DNN-weight evolution.

The results in Figure 11 show that the learning
progresses with the elite strategy using multiple stories.
However, the problem of learning stagnation occurred
in the latter half of the learning. Thus, no matter how
much it was learned, the total cost was not improved.
Meanwhile, by changing the policies of the learning
E-agents simultaneously to policies that were able to
obtain better costs by using the DNN-weight evolution,
it was possible to advance learning while reducing the
occurrences of the dilemma situations. Moreover, the
results in 12 show that slight changes of each entitys
ordering policy have a large impact on total costs.

When the cost of this experiment improve, the entity
mode pattern was ”c3”, and Distributor and Factory
were the learning entities. The details of cost changes
for Retailer, Wholesaler, Distributor, and Factory were
+12.0, −6.0, −22.5, and −21.0, respectively. That is,
the cost for Retailer only increased. If Retailer was a
learning entity, trial and error would be done to improve
the entity’s cost. In this situation, there is a high
possibility that the cost improvement did not occur.
Therefore, it can be said that LM-DWE contributed
to the total cost improvement when the stagnation of
MARL under imperfect information (dilemma situa-
tion).

Figure 13(a) shows an interesting phenomenon in the
SCM. In the MAS-based SCM, if the agent’s action
at the head of the supply chain affects the adjacent
agent, the problem is that the effect become larger
the further towards the back of the supply chain the
agent is. As a specific example, the Bullwhip Effect
(BE) is a typical problem in SCM [18]. The BE
amplifies the demand fluctuation on the downstream
side towards the upstream side. In this SCM system,
Retailer selling the beer to the customer was set as the
down-stream side and Factory producing beers was set
as the upstream side. As a result of each entity trying to
respond to the down-stream side’s requests individually,
an enormous shortage of items and excessive beer
delivery were caused on the upstream side, which was
more affected by the demand fluctuation. Thus, stable
supply could not be performed in the whole system.
Meanwhile, as shown in Figure 13(b), LM-DWE based
MARL succeeded in suppressing the BE by learning
the coordination.

The learning management using multiple stories
could be performed in parallel for speeding up MARL.
In related work, A3C [19] succeeded in efficient learn-
ing by parallelized SARL. Similarly, the parallelized
MARL could improve the learning speed.

We acknowledge there are several limitations in this
study. First, in our experiments, the SC entities were
connected in series. Thus, the effectiveness of our
proposed method was not verified in branched systems,
which are more realistic. However, the proposed LM-
DWE may also work well in branched systems because
it is applied the same way. Second, the customer order
policy and the delays between entities were fixed. In the
real system, these values usually change from moment
to moment. Third, in the experiments, the number of
turns was fixed as 50. Thus, if the number of sequential
turn data as input data for the DNN was fixed, each E-
agent was able to learn the order policy. However, if
the number of turns increases, the size of input data
should be increased. Therefore, we need to consider
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combining our method with an algorithm that can
deal with arbitrary-length data such as long short-term
memory (LSTM) [20].

5. Conclusion

In this paper, we presented a LM-DWE that enables
all E-agents controlled by a M-agent to learn a coordi-
nation task. The proposed LM-DWE used a learning
management method for reducing the non-stationary
property problem of the MARL environment, and an
EC for the learning stagnation problem of MARL. We
used a stricter BDG, in which each entity’s observation
was more restricted than under the standard BDG
rules, as a problem of MAS-based SCM. By using
the stricter BDG, experiments of four-agent learning
were performed. The results revealed that LM-DWE
could successfully learn the coordinated order policy in
an imperfect information game. Moreover, LM-DWE’s
total cost was 80.0 % less than the human-level total
cost at the 35th turn in the BDG test.

In future work, to make it closer to a more realistic
problem, we will extend the standard BDG problem
to more complicated and realistic SC problems, in
which more entities, branches, and delays are added.
Moreover, the sequential turn data used as input data
were fixed as 10-turn data in the experiments although
the length of meaningful time series fluctuates from
time to time. Therefore, we will apply a recurrent NN
using an LSTM [20] to LM-DWE to make it able to
handle data of arbitrary lengths.
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